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RL-Based Waveform Adaptation With Partial Overlapping Tones in HetNets
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Abstract— Partially-overlapping tones (POT) mitigate the
co-channel interference in a wireless network by exploiting
the space between adjacent subcarriers through intentional fre-
quency offsets (FOs). In this letter, we use partially-overlapping
tones (POT) in a two-tier heterogeneous network, where multiple
small cells (SCs) interfere with a macro cell. We propose a
multi-agent Q-learning-based approach to obtain transmit power
and intentional FOs assigned to SCs for filtered multi-tones with
various pulse shapes. We show that the proposed method reduces
the total interference and in turn, increases the throughput in
the network. We then compare the performance of the proposed
approach to the existing schemes and demonstrate its advantage
with numerical results.

Index Terms— HetNets, partial overlapping, Q-learning.

I. INTRODUCTION

AMULTI-AGENT reinforcement learning (MARL) sys-
tem comprises individual entities that share and inter-

act within the same environment [1]. By this definition, a
heterogeneous network (HetNet), which consists of irregular
deployments of different classes of small cells (SCs), can
be considered as a multi-agent system, where multiple base
stations (BSs) and user equipments (UEs) share the available
resources. The density of a HetNet and the complexity of
resource allocation sometimes lead to co-channel interference
(CCI) scenarios. To solve this problem, resource allocation and
interference mitigation schemes that use MARL are introduced
in the literature. In [2], a multi-agent Q-learning algorithm
that finds the optimal femtocell transmit powers in a two-tier
HetNet is investigated. In [3], a dynamic resource allocation
algorithm using RL is proposed for unmanned air vehicles
(UAVs), where all UAVs make their decisions independently to
minimize their total interference. In [4], the resource allocation
problem is tackled with deep reinforcement learning (RL) in
a multi-agent learning scenario. In [5], the authors formulate
three different strategies based on deep Q-learning, convex
optimization, and traditional Q-learning to solve the strategy
and resource allocation problem in mobile edge computing
(MEC) networks.

To address the CCI problem in wireless networks, partially-
overlapping tones (POT), which exploit the intentional
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Fig. 1. Reducing CCI with POT in a HetNet scenario.

frequency shifts and the pulse shape used in a multi-carrier
scheme, are proposed in [6] and [7].

The transmitted signal in one of the links in
partially-overlapping tones (POT) is shifted by an intentional
frequency offset (FO) equal to a fraction of the frequency
spacing between two tones (see Fig. 1). It was shown in [6]
that the intentional FO can reduce the interference between
the links and thus improve the throughput and error-rate
performance if the orthogonality of the pulses is compromised.
POT converts a hard problem (i.e., CCI), to an easier problem
(i.e., self-interference) that can be solved using an equalizer.
Nevertheless, utilizing POT in a large, multi-tier network is
challenging as it requires sophisticated coordination.

In this letter, we formulate CCI as a function of the transmit
power levels, intentional FOs, and the pulse shape used in
each small cell, and introduce a new multi-agent Q-learning
framework that aims to reduce the overall CCI in the network.
To the best of our knowledge, MARL-based HetNet CCI
mitigation considering simultaneously the waveform parame-
ters and the transmit power for partial overlapping does not
exist in the literature. Combining both aspects reduces the
CCI significantly, which is corroborated by our link-level and
system-level simulation results. By using orthogonal and other
non-orthogonal schemes based on filtered multi-tone (FMT),
we analyze the impact of waveform adaptation on interference.
For assigning the intentional FO, we consider the effect of the
pulse shape on the CCI within the HetNet. We develop two
reward functions and observe their convergences for different
configurations. We also compare the capacity and block-error
rate (BLER) performance of the proposed algorithm with
full-overlapping and a state-of-the-art algorithm in [2].

II. SYSTEM MODEL

Consider a HetNet downlink scenario with U cells, where
U −1 small cells (SCs) are deployed within a macro cell. The
transmitted signals from the small cell base stations (SCBSs)
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to their small cell user equipments (SCUEs), and from the
macro base station (MBS) to its macro user equipment (MUE),
interfere with each other. For simplicity, we assume that each
MUE within the MBS is interfered by disjoint sets of SCBSs
(other weak interference are neglected), and each SC consists
of a single pair of SCBS and SCUE. Therefore, the rest of this
letter considers the collision domain between U − 1 SCs and
a given MUE, and generalization to multiple MUEs/SCUEs is
left as a future work.

We consider a large-scale fading model between any trans-
mitter and the receiver in the uth cell for u ∈ {1, 2, . . . , U}
as P r

u = P t
u + Ku − 10ζulog10

(
du

d0

)
− ψu in dB, where

P r
u = G2

u is the received power, Gu is the gain accounting for
the channel effects and transmit power of the desired signal,
P t

u is the transmit power, Ku captures the attenuation and
antenna characteristics in the link, ζu is the path loss exponent,
d0 is the reference distance for the antenna far-field, du is
the distance between the transmitter and the receiver, and ψu

represents log-normal shadowing [8].
We consider FMT for the transmitted signals from the

SCBSs and the MBS. FMT can be thought of as simultaneous
narrow-band single carrier transmissions on different fre-
quencies, where the spacing between any two adjacent
transmissions in the frequency domain is identical. Since
FMT can be easily constructed as an orthogonal or a
non-orthogonal waveform by using different pulse shapes,
it can be effectively utilized with the concept of POT [6].
The transmitted FMT symbols can be described as su(t) =∑∞

l=−∞
∑N−1

n=0 Xu
lngln(t), where Xu

ln is the information sym-
bol to be transmitted from the uth SC, l is the time index, n
is the subcarrier index, N is the total number of subcarriers,
and gln(t) is the synthesis function [9] that maps X to the
time-frequency domain in a lattice structure as gln(t) =
p(t−lτ0)ej2πnν0t, where p(t) is the prototype filter being used,
τ0 is the time spacing between two consecutive symbols and
ν0 is the spacing between any two subcarriers. The received
signal at the receiver of the uth cell can be calculated as

yu(t) =
U∑

i=1

∫
τi,u

hi,u(τi,u, t)si(t − τi,u)dt + w(t), (1)

where hi,u(τi,u, t) is the multi-path channel between the
transmitter at the ith cell and the receiver at the uth cell and
w(t) is the additive white Gaussian noise (AWGN).

After using a matched filter, the demodulated sig-
nal is obtained as X̃u

mk = 〈yu(t), γmk(t)〉, where
γmk(t) = γ(t − mτ0)ej2πkν0t is the dual of the synthesis
function at the receiver [9]. Accounting for the desired part,
the CCI and noise in X̃u

mk as described in [6], the signal-
to-interference-plus-noise ratio (SINR) of the MUE can be
calculated as

ΓMUE =
|GuAu

mkmk|2
I
(1)
mk + I

(2)
mk + σ2

, (2)

where

I
(1)
mk =

∣∣∣∣∣Gu

K−1∑
l=−K+1

N−1∑
n=0

Au
lnmk

∣∣∣∣∣
2

,

and

I
(2)
mk =

∣∣∣∣∣
∑
i�=u

Gi

K−1∑
l=−K+1

N−1∑
n=0

Ai
lnmk

∣∣∣∣∣
2

,

in which Gi is the gain accounting for the channel effects and
transmit power of the ith aggressor, X i

mk is the symbol of the
ith aggressor, σ2 is the noise variance and Au

mkmk and Ai
nlmk

represent the coefficients obtained through the corresponding
ambiguity functions of the desired signal and the ith aggressor,
respectively, which can be calculated as:

Ai
nlmk =

∫
τ

∫
ν

∫
t

gln(t−τ)ej2πΔfi(t−τ)γmk(t)ej2πνtdtdτdν,

(3)

where Δfi is the intentional FO given to the ith aggressor. The
SINR of an SC can be calculated with a similar formulation.

From (3), it is clear that the intentional FO allocated to
a user can influence the interference and in turn the SINR.
Fig. 1 describes the partial overlapping concept. There are
multiple SCs (aggressors) with one MUE (victim) nearby those
aggressors: interference to other, far-away MUEs are assumed
weak and hence neglected. Assume all users have the same
transmitted powers. In the context of a HetNet, we consider
the macro-cell to be a victim with {fv1, fv2, . . . , fvN} as the
center frequencies of its N subcarriers. A SC re-using the
same frequencies is considered to be an aggressor and also has
N sub-carriers with center frequencies {fa1, fa2, . . . , faN}.
When we use partial overlapping, one of the users’ signal
(aggressor’s signal in this case) is shifted by a fraction of
the carrier spacing between two subcarriers to reduce the
interference between the two users. Thus, an intentional FO,
i.e., Δfi = βi(fa2 − fa1), is given to the ith aggressor,
where βi is a fractional value between 0 and 1. When multiple
aggressors enter the network, each one of them can be assigned
to an intentional FO to reduce the sum interference.

The pulse shape used in (3) determines the interference
characteristics in (2). In this study, we consider a root-raised-
cosine (RRC) filter with a roll-off factor α, which leads to an
orthogonal waveform if the minimum normalized subcarrier
spacing is 1 + α and a Gaussian filter with a time-frequency
dispersion parameter ρ, which causes a non-orthogonal wave-
form. For further details on filters, we refer the reader to [9].

III. PROPOSED Q-LEARNING ALGORITHM

The primary objective of this work is to maximize the
capacity of the MUE by finding the optimal frequency offsets
and transmit power levels for the interfering SCs, which can
be expressed as

max
p′
1,...,p′

U

β′
1...,β′

U

log2(1 + ΓMUE), s.t. p∀i ∈ (pmin, pmax), β∀i ∈ (0, 1),

where pi is the transmit power of the ith interfering SC that
can vary between pmin and pmax and βi is the fraction of the
carrier spacing between 0 and 1, i.e., the FO for the ith SCBS.

In a traditional single-agent Q-learning algorithm, the agent
goes through numerous state-value iterations to observe long
term rewards at different states for different actions and
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optimizes for the action it should take in every state it reaches.
In our system model, however, we have U − 1 SCBSs that
will take their actions individually. Therefore, in this paper,
we formulate a multi-agent Q-learning algorithm to solve this
problem of power and FO allocation to each SCBS. In a
multi-agent system, each agent goes through a similar iter-
ative process but accounts for a global (or collective) reward
function that influences the actions of all the agents interacting
within the environment [1]. In our case, the collective reward is
formulated to optimize the capacity of the MUE and minimize
the total interference in the network. We use the ε-greedy
method for training our algorithm [10].

States: We use a set of three variables in our state, namely:
1) D1 - a variable indicating the distance of the SC from the
MBS, 2) D2 - a variable indicating the distance of the SC from
the MUE, and 3) Ω - a binary value indicating whether the
SINR threshold of the MUE is satisfied or not. Mathematically,
the state of each SC is described by the set S = {D1, D2, Ω}.
Our state formulation is similar to that in [2].

Actions: A SCBS can: 1) change its transmit power level
(p), and 2) change its FO (β). The action that each SCBS takes
can be represented by the set A = {p, β}.

In each time step of the simulation, each agent (or SCBS)
will update its Q-value while iterating through the action set
in every state for exploring future rewards. For a multi-agent
Q-learning algorithm, the Q-value update is mathematically
represented as [1]:

Qt+1
i (xi, ai) = Qt

i(xi, ai) + α
[
Rt+1

i

+ γ
(

max
a∈A

Qt
i(x

t+1
i , ai) − Qt

i(xi, ai)
)]

, (4)

where xi represents the state of the ith SCBS (xi ∈ S), ai

represents the action of the ith SC, α is the learning rate, Rt

is the reward calculated by the ith SCBS at time t, and γ is the
discount factor that decides the trade-off between exploration
of future rewards and exploitation of immediate rewards.

Reward: We consider two different rewards to evaluate our
algorithm. The first reward function prioritizes the improve-
ment in the capacity of the MUE and is given by

Rt
1 = λ11(CMUE − C0) + λ12(Ct

i − Ct−1
i ), (5)

where λ11 and λ12 are scalar values that are used to tune
the reward function, CMUE is the capacity of the MUE, C0

is the pre-defined threshold for the MUE, and Ct
i is the

capacity for the ith SC at time instant t. The second reward
function considers fairness of the resources being allocated to
the SCBSs using Jain’s fairness index [11] and is given by

Rt
2 = λ21(CMUE − C0) + λ22(Jp + Jβ), (6)

where λ21 and λ22 are scalars to tune the reward function,
Jp and Jβ are Jain’s fairness index values for the allocated
transmit power and FOs respectively. The capacity for the uth
user (including MUE and SCs) is calculated as

Cu = log2

(
1 +

P r
uσ2

u

σ2
noise +

∑
i P r

i σ
2
i (Δfi)

)
, (7)

where P r
u and P r

i are the received powers for the desired user
and the interfering user respectively, σnoise is the variance in

the noise in the channel, σu is the gain for the desired user
obtained after calculating singular value decomposition (SVD)
of all the correlated users in the interfering channel, and σi is
the gain of the ith interferer (which is a function of the FO
assigned to it). The SVD is used to decorrelate the channels
for the desired as well as the interferer [6], [12].

A. System-Level Aspects

The steps to implement the proposed algorithm in a practical
HetNet deployment are given as follows: 1) Each SCBS counts
its state variables D1 and D2 based on its location with respect
to the MBS and the MUE. Depending on whether the SINR
of the MUE is above or below the threshold, the third variable
Ω of the state is then decided for every SCBS. 2) Based on
the state of an SCBS, it looks up the corresponding action
values from the pre-trained Q-tables and chooses the trained
transmit power level and FO to use. 3) If a new SCBS joins
the network, the MBS has to update all the SCBSs since the
Q tables are trained separately for different number of SCBSs
in the network. 4) If there are any mobile SCBSs, the latency
between the MBS and the SCBS should be short enough to
track the state changes that may occur with the change in the
location of the SCBS. In this study, we assume that SCBSs
locations are fixed.

1) Latency: After the training is complete and the Q tables
are generated, each SCBS would require feedback from the
MBS to update its state Ω. This may cause additional latency
in the network, depending on how frequently the SCBS is
programmed to update its state. Since we consider stationary
SCBSs and SCUEs, we do not consider latency constraints.
As long as an SCBS can identify its state correctly, it does not
have to concern with coherence time in a multi-path channel
while assigning the transmit power level and FO to the SCUE.

2) Overhead: Any overhead caused due to the proposed
algorithm lies in the communication between the MBS and
all the SCBSs and storing their respective state values and Q
tables. We consider all the base stations and equipment to have
sufficient computing power, for this overhead to be negligible.

3) Convergence: We do not add any constraints for SCUEs
to ease the burden on the RL algorithm to converge without
adding too many restrictions since the action space here is
fairly limited. While calculating the reward function, we do
consider the improvement of SINR for SCUEs as well, so that
the MARL algorithm does not always choose pmin.

4) Fairness: To consider fairness in terms of the resources
allocated to the SCs, we use Jain’s fairness index in (6)
that allows the algorithm to allocate resources fairly to the
SCs instead of prioritizing for MUE performance. We discuss
the implications of this and compare with the other reward
function in the next section.

5) Complexity & Optimality: We consider a multi-agent
Q-learning framework that has to find the appropriate action
values from the set of possible actions A for all the possible
states in the set S for U number of small cells in the network
in a distributed manner. The complexity of our algorithm at
each cell can be given by O(|S||A|), where |.| denotes the
cardinality of the set.
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Fig. 2. (a) Convergence of the algorithm in different reward configurations,
(b) Tracing the reward function value in one simulation.

Q-learning has been proven to converge to the optimal solu-
tion in [13]. The algorithm may at times converge prematurely
with the ε-greedy approach yet it is still used in practice
because it offers significant time reduction in convergence.

IV. NUMERICAL RESULTS

We assume that each MUE transmits with a physical
resource block consisting of K = 12 symbols and N = 12
subcarriers. The subcarrier spacing and the carrier frequency
are set to 16.67 kHz and 2 GHz, respectively. To simulate
path loss between the MBS and the MUE, and between the
MUE and the SCUE, we use the urban dual strip path loss
models from [14]. The transmit power levels for the SCs vary
from pmin = 5 dBm to pmax = 15 dBm in 10 steps. The
fractional FO values are swept from 0 to 1 with increments of
0.1, i.e., β ∈ {0, 0.1, 0.2, . . . , 0.9}. For the ε-greedy method,
we start training with ε = 1 and decay it with time as
ε = ε × e−10−6t. For the deployment, we consider a dense
urban scenario with a dual strip apartment block, similar to the
scenario being considered in [2]. In our simulations, the MUE
is located approximately 140 m away from the MBS. The
MUE is in a corridor inside a building. The dimensions of
the corridor are assumed to be 10 m × 50 m. Adjacent to
the corridor on both sides are total ten rooms of dimensions
10 m × 10 m. Each room has one SCBS randomly placed
within it and interfering at the MUE. In all our simulations,
the signal-to-noise ratio (SNR) between the MUE and the
MBS is maintained to be 20 dB, whereas the SNR for the
SC changes according to its allocated transmit power.

As a measure of the time it takes for our proposed algorithm
to converge, we provide the number of iterations in Fig. 2a.
Our simulation runs until the reward function starts converging
to a constant value, for a given number of SCBSs in the
network. We consider three different configurations of the

scalar weights W1 = {1, 1}, W2 = {10, 1} and W3 = {1, 10}
for {λ11, λ12} in R1 in (5) and for {λ21, λ22} in R2 in (6)
to observe how they affect convergence. We find that our
simulation does not converge to a single value when using
W3, so we exclude those plots. Fig. 2a shows how changing
the scalar weights in the reward function can affect the
convergence of the algorithm. To show the effect of changing
the candidate solution space size on convergence, we consider
two different sized action spaces (Ai : {pi, βi}) for training
our algorithm. The action space A1 is the one described in the
paragraph above and A2 : |pi| = 2, β ∈ {0, 0.5}. In Fig. 2b,
we show the value of the reward function against the number
of iterations as our algorithm progresses. In this particular
case, we have five SCs in the network fully overlapping with
the MUE, the reward function used is R2 and Gaussian filter
is used. At every iteration, one SCBS chooses an action and
the reward changes correspondingly. Eventually, as all SCBSs
explore all the possible action values, they all converge to
take a certain action that maximizes the reward function.
Hence, these actions that the SCBSs converge to are essentially
determined by the formulation of the reward function.

In Fig. 3a, we compare the capacity for the MUE obtained
from the proposed algorithm for a given number of inter-
fering SCs under various simulation settings. One of the
settings is based on full overlapping, where all the SCs
choose the maximum transmit power level available to them
(p = 15 dBm) and do not use POT (β = 0). The second
plot for comparison is a state-of-the-art algorithm proposed
in [2]. As expected, the results in Fig. 3a show that the full
overlapping exhibits the worst performance. The algorithm
we compare to by Amiri et. al. in [2] uses a co-operative
multi-agent Q-learning approach to assign optimal transmit
power levels to all interfering users in a two-tier HetNet.
On the other hand, our algorithm optimizes each SC for
optimal transmit power as well as FOs. The additional benefits
of using POT in addition to the power control are clear from
the figure since our proposed algorithm provides a higher
capacity for the MUE. Thus, our approach finds a trade-off
for both actions of the SCs so that it improves the MUE
capacity compared to any other simulation setting. For the
proposed algorithm, we use two different configurations of
the scalar weights for both of the reward functions. When we
give equal scalar weights, i.e., {λ11, λ12} = {λ21, λ22} = W1,
we achieve higher capacity when R2 is used. Here we give
equal weight to improving the MUE capacity and to improve
individual SCUE capacity if using R1 or the fairness index
if using R2. When we use {λ11, λ12} = {λ21, λ22} = W2

instead, the algorithm prioritizes improving the capacity of
the MUE, in turn achieving a higher performance.

In Fig. 3a, we compare the proposed algorithm by using the
two different prototype filters, i.e., Gaussian (non-orthogonal)
and RRC (orthogonal). FMT with a Gaussian filter outper-
forms the one with RRC in all simulation settings. Even in
the presence of self-interference due to the non-orthogonality
of the pulse shapes, by allowing the transmission to fit more
subcarriers for a given bandwidth, Gaussian filters lead to a
lower CCI. These results also corroborate with the findings in
our previous results in [15].
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Fig. 3. Performance results for the proposed algorithm in different settings.

We compare the proposed method in terms of the BLER
of the MUE in Fig. 3b. Using {λ11, λ12} = {λ21, λ22} =
W2 during training prioritizes the capacity improvement of
the MUE, the result of which is evident again here. When
using R1 with {λ11, λ12} = W1, the instantaneous change in
the SCUE capacity can be negative which sometimes causes
negative reward values, eventually leading to non-ideal values
for power and FO allocation. We use the Extended Pedestrian
A model (EPA) for characterizing multi-path channel between
the MBS and MUE. For the channel between the SCs and
MUE, we use the ITU channel model for an indoor office
[16]. All simulations have five SCs interfering with the MUE
and consider quadrature phase shift keying (QPSK) modulated
FMT symbols. At the receiver, we use a maximum likelihood
sequence estimation (MLSE) equalizer. We also use a rate 1/2
low-density parity check (LDPC) code, where the parity check
matrix is generated according to the DVB-S.2 standard.

To observe the effect of the two reward functions on the
performance of the SCUEs, we compare average cumula-
tive distribution function (CDF) of the BLER at the SCUE
in Fig. 3c. Using R2 with equal scalar weights provides
better performance than other configurations shown in the plot.
Since using {λ11, λ12} = {λ21, λ22} = W2 prioritizes power
and FO allocation to improve MUE performance, the SCUE
performance suffers as SCUEs are assigned the same FOs in
some cases and they fully overlap with each other.

V. CONCLUSION

We propose a multi-agent Q-learning approach to mitigate
interference in a HetNet that accounts for the PHY waveform
being used, POTs and transmit power control of SCs. Our
simulation results show superiority in throughput performance
compared to a state-of-the-art algorithm. Since the action space
of our algorithm is larger, this superiority comes at a cost of
higher computational complexity. The proposed algorithm can
be extended to a larger scenario that accommodates multiple
tiers of layers in the HetNet and incorporates a deep-Q
learning-based algorithm, which will potentially reduce the
training complexity while allowing us to redefine the states
to be based on exact locations of the agents.
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