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Abstract—The world is moving towards faster data trans-
formation with more efficient localization of a user being the
preliminary requirement. This work investigates the use of a
deep learning technique for wireless localization, considering
both millimeter-wave (mmWave) and sub-6 GHz frequencies.
The capability of learning a new neural network model makes
the localization process easier and faster. In this study, a Deep
Neural Network (DNN) was used to localize User Equipment
(UE) in two static scenarios. We propose two different methods to
train a neural network, one using channel parameters (features)
and another using a channel response vector, and compare
their performances using preliminary computer simulations. We
observe that the former approach produces high localization
accuracy: considering that all of the users have a fixed number
of multipath components (MPCs), this method is reliant on the
number of MPCs. On the other hand, the latter approach is
independent of the MPCs, but it performs relatively poorly
compared to the first approach.

Index Terms—Deep neural network, localization, mmWave,
positioning, ray-tracing, Wireless Insite.

I. INTRODUCTION

In the upcoming 5th generation (5G) wireless communica-

tion networks, one of the most promising enhancements will be

larger data rates with increased coverage, which requires faster

beamforming in a given direction to maintain uninterrupted

communication. To accomplish this, a base station (BS) must

know a user equipment’s (UE) location within the network.

The process of determining the location of a given UE within a

particular area is called localization. Capability of localizing a

UE can further be leveraged to provide location-based services

by the cellular network. Thus, the process of localization is

highly necessary in wireless communication.

In wireless networks, there exist many localization algo-

rithms. In [1], the authors perform localization with the help of

signaling data like Reference Signal Received Power (RSRP)

and timing advance. In [2], authors compare different ad-

vanced algorithms, such as localization with hybrid Received

Signal Strength (RSS) and Angle of Arrival (AOA), projection

onto convex set, multi-hop methods, etc. In [3], the authors

explore different Time-of-Arrival (TOA) based algorithms for

localization. In general, these algorithms use channel param-

eters such as AOA, TOA, RSS as well as various channel

statistics, derived from the channel parameters, to perform

accurate localization. These procedures often involve time-

consuming and complex operations, such as the least square

methods mentioned in [2]. A geometry based perspective to

improve localization performance using the non-line of sight

(NLOS) paths is explored in [4], [5].

Researchers considered NLOS components as source of dis-

tortion in earlier studies [6]. However, the NLOS components

increase the channel sparsity as few MPCs can be received

with significant RSS, hence provide additional information

about the location of a UE [7]. In [8], it is mathematically

demonstrated that NLOS components are the most informative

ones in case of narrow beams (e.g. mmWaves). The most

popular features used to predict the location in the literature

are AOA, TOA, and RSS. The authors in [9] provides the

performance analysis of localization using these features.

They observed different combinations of these features and

found the result to be better for the combination of TOA

and AOA, but not much reliable with RSS. The numerical

analysis of these features using Monte-Carlo simulation can

be found in [10].

The aforementioned works tackle the localization prob-

lem from a system modeling, signal processing, and even

a geometry-based perspective. In this study, we leverage

machine learning (ML) aiming to improve the localization

process, in terms of low run-time complexity i.e. lower

computation time without sacrificing the accuracy. The ML

algorithms are capable of learning complicated functions if

provided enough training samples. It is used extensively in

the field of wireless communication for various tasks, such

as the prediction of the Angle of Departure (AoD) channel

feature from AOA [11], predicting channel characteristics of a

massive multiple-input multiple-output (MIMO) system [12],

classification of different types of Unmanned Aerial Vehicles

(UAVs) [13], etc. ML is being used in localization research

as well. In [14], the authors observe the effects of a BS or

an eNodeB (eNB) on node localization. In this study, a deep

neural network (DNN) is proposed to locate user nodes in

a mmWave network. However to the best of our knowledge,

there is no study in the literature that compares mmWave and

sub-6 GHz bands using ML techniques and explore the effect

of using different channel parameters.

We use a supervised ML technique in this paper and pose

the localization problem as a regression problem. In supervised

learning, it is assumed that one has access to a set of learning

features, measured over several observations, and an outcome

variable ( i.e.the UE location in this paper), which is also
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known as the label or the target. The learning features can

either be the combination of raw channel parameters, such

as AOA, TOA, and RSS, or the channel response vector;

see Section II for more details. The training data for the

DNN was generated by Remcom’s Wireless Insite R©, a ray-

tracing simulator. Our preliminary results show that the pro-

posed localization technique gives high accuracy considering

a high signal-to-interference ratio (SNR) regime. Our future

work includes studying the performance trade-offs in various

different environments and SNRs, and exploring the effect of

beam forming on the localization accuracy.

The rest of this paper is organized as follows. Section II

introduces the system model and problem formulation, in-

cluding two different approaches for generating inputs for the

DNN. Section III introduces the proposed DNN technique.

Section IV provides our preliminary simulation results, Sec-

tion V discusses about the future direction of this work, and

Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe how the channel features and

location information provided by the ray-tracing model are

transformed into input features and output labels for training

a DNN at the BS side. In this process, we will mention two

different approaches that we followed with relevant details.

As described briefly in Section I, the training data for the

DNN was obtained from ray-tracing simulations. The ray-

tracing simulator generates channel parameters that capture

the dependence of the environment geometry and transmit-

ter/receiver locations, which are crucial for the ML applica-

tions. The choice of a dataset depends on our approach to

designing the DNN, which is discussed up next.

A. Approach 1: Utilization of the Channel Parameters

In this approach, we use raw channel parameters observed at

the BS, provided by the simulator i.e. AOA, TOA, and RSS,

to train the DNN model in order to predict the location of

the users. The number of inputs to the model depends on

the selected number of MPCs and the number of features

considered. For simplicity, we fixed the number of MPCs to

three, and we used three different combinations of channel

parameters to feed the model. Details of the DNN architecture

for Approach 1 are as follows:

• Input: The number of inputs will vary for each combi-

nation of features - it will be the product of the number

of MPCs and number of features.

– Only AOA (3 inputs)

– Only AOA and RSS (6 inputs)

– Only AOA, RSS and TOA (9 inputs)

• Output: We consider the output to be the x and y

coordinates of a user’s location. We assume all the users

are on the same plane, thus we ignore the z coordinates.

Details of the trained DNN model are further discussed in

Section III.

Fig. 1: Approach 1: Ray tracing scenario in North Moore

Street, Rosslyn, Virginia.

Intuitively, more MPCs will provide more information to

the DNN to be trained more efficiently, but it will increase the

training computational complexity and likelihood of overfitting

as well. In this trade-off, we defined the number of MPCs as

three to have the balance between accuracy and complexity.

Fig. 1 shows a scenario where a UE communicates with

BSs. We set up multiple UE grids (red path) and BS nodes

(green point) within an urban environment. All of the nodes

use half-wave dipole antennas at a height of 10 m from the

ground and transmits at a power level of 0 dBm. They are

excited with two different frequencies, 5 GHz and 28 GHz,

with 100 MHz and 500 MHz bandwidths, respectively.

Specifically, for this study, Txrs #1 is the transmitter for

which we observe the channel parameters for both receiver

grid 2 and 3. All of the users in receiver grid 2 are in Line

of Sight (LOS), and the users in receiver grid 3 are in Non-

Line of Sight (NLOS). The UEs are spaced 1 meter apart

from each other, and there are a total of 1530 receiver points,

990 in receiver grid 2, and 540 in receiver grid 3. The UE

locations, within their respective receiver grid, serve as the

expected output of the DNN.

Drawback of this approach: In this approach, we only

consider a fixed number of MPCs which might not be a

realistic assumption. This is because the actual number of

MPCs vary in practice for each user due to the dynamic

environment and scatterers. To make the model more flexible

and independent of the number of MPCs, we took another

approach, which is described below.

B. Approach 2: Utilization of the Channel Response Vector

In this approach, we considered a channel response vector

as the input to the DNN model. Namely, we took the number

of antennas as inputs, which makes the system robust against

the number of varying MPCs. For simplicity, we assumed a

single antenna on the UE and set the number of antennas on
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Fig. 2: Approach 2: Ray tracing scenario from DeepMIMO

dataset.

the BS to 10. Details of the DNN architecture for Approach

2 is as follows:

• Input: The number of inputs will be the product of

antennas at the BS and UE.

– We pass the absolute value of the channel response

vector as the input. The absolute value of the channel

impulse response was calculated using functions

provided in [15]. 1

• Output: We consider the output to be the x and y

coordinates of a user’s location. We assume all the users

are on the same plane, thus we ignore the z coordinates.

We used a scenario where UEs communicate with different

BSs as shown in Fig. 2. The Deep-MIMO dataset was gener-

ated for ML researchers. For our DNN, we have considered

BS3 as the transmitter and the users (1000 - 1025 rows) from

User grid 1 as receivers, which is 185 users in total. For each

user, the channel response is generated as follows:

hb,u
k =

L∑
l=1

√
ρl
K

ej(ϑ
b,u
l + 2πk

K τb,u
l B)a(φb,u

az , φ
b,u
el ) , (1)

where hb,u
k is the channel response vector at BS b from the UE

u for subcarrier k. The ρl, ϑl, τl, φaz, φel are the RSS, Doppler

frequency, TOA, AOA (azimuthal and elevation), respectively.

The number of MPCs is denoted by L.

III. DEEP NEURAL NETWORK PRELIMINARIES

In this section, we discuss some preliminaries and the

overall architecture of the considered DNN.

A. Input Features

As discussed earlier, the input features depend on the

approach. For both approaches, we use the combination men-

tioned in Section II with appropriate normalization to the data

set. An illustration of Approach 1 is shown in Fig. 3.

1https://www.deepmimo.net/

Fig. 3: Illustration of DNN for approach 1.

B. Output Labels

The Cartesian coordinates x and y of the location are

considered as the output labels. The z coordinates are ignored

since all the users are in same plane.

C. Hidden Layers and Hyper-parameters

Two hidden layers, as shown in the Fig. 3, are considered

in this model. The other hyper-parameters, such as number

of nodes in each hidden layer, learning rate and activation

function, are optimized using the Bayesian optimization tech-

nique by calculating the mean square error (MSE). The grid

of hyper-parameters used while training the DNN model are

shown in Table I.

TABLE I: Hyper-parameters and their range.

Range
Number of Nodes 4 to 50

Learning Rate 1e-3 to 1e-1

Activation Functions tansig, logsig, purelin (linear), poslin
(positive linear), radial basis (radbas)

D. Objective Function

The objective of a supervised learning process is to min-

imize a loss function. An example of a loss function is the

binary cross-entropy in classification and the mean square

error (or the quadratic loss) in regression type problems.

We used the mean square error as the loss function in this

study. We predict the location as a learning-based optimization

problem, as shown in (??). The goal of the optimization

problem is to learn the mapping F , such that the MSE between

the known output and the estimated output is minimized:

min
F

||F(features)− output labels||2 . (2)

The DNN model has been designed using MATLAB’s deep

learning toolbox. Given enough training data, the DNN can be

trained well enough to learn complicated functions using the

back-propagation algorithm.

IV. SIMULATION RESULTS

In this section, we discuss the simulation setup and the

results obtained. For Approach 1, we divided the localization
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TABLE II: Frequency bands used in ray tracing simulations.

Frequency Type of path Inputs Number of
nodes in hidden

layer 1

Number of
nodes in hidden

layer 2

Learning Rate Activation
Function

5 GHz

LOS
AOA 40 50 0.9078 logsig

AOA + RSS 8 25 0.0010027 logsig
AOA + RSS + TOA 4 50 0.0011179 tansig

NLOS
AOA 40 38 0.40981 radbas

AOA + RSS 42 50 0.1957 tansig
AOA + RSS + TOA 29 31 0.93405 tansig

28 GHz

LOS
AOA 50 41 0.97691 tansig

AOA + RSS 8 46 0.0012802 tansig
AOA + RSS + TOA 15 46 0.8885 logsig

NLOS
AOA 34 50 0.0010755 radbas

AOA + RSS 9 50 0.9795 tansig
AOA + RSS + TOA 35 35 0.32042 logsig
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(a) Actual and predicted location using only AOA.
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(b) Actual and predicted location using AOA and RSS.
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(c) Actual and predicted location using AOA, RSS and TOA.
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(d) CDF plot.

Fig. 4: Location and CDF plot at 5 GHz (LOS).

problem into two cases, LOS-based and NLOS-based local-

ization. Apriori, we know that all of the UEs in receiver

grid 2 are in LOS and thus, possess a strong direct LOS

signal component. Whereas, the UEs in receiver grid 3 are in

NLOS. The total number of UEs for the LOS and NLOS cases

are 990 and 540 user points, respectively. We performed the

simulations at both 5 GHz and 28 GHz bands. For Approach 2,

the considered region is located within the LOS area and has

a total of 185 users.

For both approaches, the entire dataset is used for both

training and testing purposes. The final hyper-parameters are

obtained by performing Bayesian optimization. The trained

model is used for testing the accuracy of proposed localization

approaches. For Approach 1, location maps and the CDF plots

are generated for two different frequencies. For Approach 2,

only the location map is included. In our preliminary results

in this paper, we consider a high-SNR regime, and ignore the

effects of noise for the sake of simplicity. We will explore the

performance of the proposed techniques at different SNRs in

our future work.
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(a) Actual and predicted location using only AOA.
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(b) Actual and predicted location using AOA and RSS.
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(c) Actual and predicted location using AOA, RSS and TOA.
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(d) CDF plot.

Fig. 5: Location and CDF plot at 5 GHz (NLOS).
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(a) Actual and predicted location using only AOA.
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(b) Actual and predicted location using AOA and RSS.
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(c) Actual and predicted location using AOA, RSS and TOA.
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Fig. 6: Location and CDF plot at 28 GHz (LOS).
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(a) Actual and predicted location using only AOA.
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(b) Actual and predicted location using AOA and RSS.
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(c) Actual and predicted location using AOA, RSS and TOA.
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Fig. 7: Location and CDF plot at 28 GHz (NLOS).

A. Bayesian Optimization Results

The optimization procedure starts with a random combina-

tion of predefined range of hyper-parameters given in Table

I. The function ’bayseopt’ calculates the cost function and

accordingly chooses the next combination. We used mean

squared error as the loss function and calculated the the total

cost adding up all loss values as (2). After trying 30 different

combinations, it picks the best combination to train the actual

DNN. Table II illustrates the best hyper-parameters obtained

for different experiments. It is obvious from the table that the

choice of hyper-parameters depends on the combination of

input, scenarios, and frequency.

B. Approach 1 Results

Fig. 4 (a), (b), (c) give the location mappings for LOS users

(Receiver grid 2) at 5 GHz. At this scenario, considering only

AOA gives the worst results. When RSS is given as input along

with AOA, the accuracy of the model increases significantly.

Adding TOA with the previous two features improves the

model but not as much as it does when RSS is added. This

is because RSS and TOA are somewhat correlated. For a user

far from the BS, TOA will be greater, and RSS will be lower,

and vice versa. Hence, in Fig. 4 (d), the CDF for AOA + RSS

and AOA+RSS+TOA curves are almost overlapping. On the

other hand, the error is less than 0.1 for 90% of the users,

which is quite acceptable.

Fig. 5 (a), (b), (c) give the location mappings for NLOS

users (receiver grid 3) at 5 GHz2. For NLOS case, the location

mapping is not as accurate as it is for LOS scenario. In Fig.

5 (a), we observe that when only considering AOA, the error

can be a maximum of 10 meters. However, as we increase

the number of features i.e. adding RSS, and TOA, for 90%
of the users, the error becomes less than 1 meter. For NLOS

scenario at this frequency, the combination of RSS, TOA, and

AOA gives better results than the combination of RSS and

AOA, since more than one MPCs are considered. Adding an

extra degree of freedom improves the results.

Fig. 6 (a), (b), (c) give the LOS location mappings at

28 GHz. The trend of the results is similar to 5 GHz case.

This time, adding TOA to the model as the third parameter

does not increase the accuracy much. In Fig. 6 (d), the CDF

plot shows that almost all users are having an error of less

than 0.1 meter when all three channel parameters are used.

As expected, in the case of NLOS users at this frequency, the

results are not as good as the LOS case. The model gives

2Few predicted points that are outliers and significantly outside of the
receiver grid have been ignored for the location maps for better visualization,
but are included in the CDF plots.
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the best estimations when all three parameters are considered.

90% of the users are having an error of less than 1 meter in

that case.

Comparing the CDF curves for LOS and NLOS scenarios

for both frequencies, it is observed that the curve is flatter

in NLOS cases because the variation in error is higher. The

performance of the DNN model towards NLOS points can be

improved using more MPCs.

Comparing the results of 5 GHz and 28 GHz, one can

observe the difference in the DNN performance. According to

[16], it is expected to have a significant angular congruency

between different frequency bands. In other words, the AOA

and the AOD is expected to be close for the corresponding

MPCs in two bands. Intuitively, both the 5 GHz and 28 GHz

cases should yield similar results especially for the DNN based

on AOAs only. However, our results do not align with this

intuition.

One possible explanation for this could be the Bayesian

optimization procedure, which starts the optimization with

randomly chosen hyper-parameters that can be different in

each training, even with the same inputs. As a result, the

optimized final hyper-parameters can be different. Second, the

angular congruency may not hold at 5 GHz and 28 GHz. In

our ray tracing simulations, we limited the number of features

to 3, and these are based on the 3 most dominant MPCs

arranged in descending order with respect to their powers.

Thus, even though there exist significant angular congruency

across the bands, the 3 chosen MPCs based on the dominant

power might have mismatch in the AOAs. One explanation

to this could be that, the diffraction gets less effective as

the frequency increases, therefore it is more likely for a

diffracted signal to be more powerful than reflected ones at

5 GHz band. We also see that 28 GHz frequency works better

than sub-6 GHz band in NLOS scenarios and performance

of the models do not differ much in LOS cases. We think

that the resolution of the model should be better with smaller

wavelenghts, thus it is expected to have more accurate results

at mmWave frequencies. However, in LOS cases, information

provided by the existing features are representative enough to

estimate the location of the UEs such that the difference in

resolution cannot be observed.

C. Approach 2 Results

When the DNN is trained using a channel vector response,

it cannot predict the location as expected (Fig. 8). The actual

spacing between the users is about 1 meter. Since the users

are closely located, there is not much difference in the channel

response. Hence, the DNN fails to train itself properly. This

problem can be solved by the feature transform technique

used in [17]. Using this technique, the input features can be

sparsely distributed so that the DNN can easily differentiate

between two users, in terms of their channel response. The

implementation of a feature transform is considered as a future

work.
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Fig. 8: Actual and predicted locations for approach 2 Deep-

MIMO dataset.

V. CONCLUSION AND FUTURE WORK

This work gives an idea of implementing DNN in local-

ization providing a comparison between mmWave and sub-

6 GHz bands, LOS and NLOS scenarios as well as two

different approaches, considering a high-SNR regime. Using

three channel parameters for fixed number of (three) MPCs

that are used in the DNN, the location of a UE can be predicted

with very high accuracy. On the other hand, the presumption

of using only three MPCs can be overcome using channel

response with feature transform as the input.

The DNN is trained using supervised learning techniques

in this work, which is possible for synthetic data. Getting

sufficient real data, which is costly, could make it possible to

train the DNN using semi-supervised or unsupervised learning

techniques. In that case, derived features could be used rather

than the raw features. We considered a static scenario in

both of the approaches. In order to make the simulation

environment more realistic, a more dynamic scenario should

be considered, which will be tackled as future work along

with performance evaluation at various different SNRs. We

also plan to implement this technique to a 3D scenario to

localize aerial users such as unmanned aerial vehicles (UAVs)

in urban, sub-urban and rural areas.
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