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ABSTRACT

Most current speech enhancement models use spectrogram features
that require an expensive transformation and result in phase
information loss. Previous work has overcome these issues by using
convolutional networks to learn the temporal correlations across
high-resolution waveforms. These models, however, are limited by
memory-intensive dilated convolution and aliasing artifacts from
upsampling. We introduce an end-to-end fully recurrent neural
network for single-channel speech enhancement. The network
structured as an hourglass-shape that can efficiently capture long-
range temporal dependencies by reducing the features resolution
without information loss. Also, we use residual connections to
prevent gradient decay over layers and improve the model
generalization. Experimental results show that our model
outperforms state-of-the-art approaches in six quantitative
evaluation metrics.

Index Terms— Speech enhancement, speech denoising,
recurrent neural network, waveform, residual connection

1. INTRODUCTION

Speech enhancement has important applications in voice
communication, hearing aids, and automatic speech recognition.
Speech enhancement removes background noise from noisy speech
signals, increasing speech quality and intelligibility [1], [2]. Early
research used non-trainable statistical approaches on spectrograms,
such as spectral subtraction [3], Wiener filter [4], statistical model-
based methods [5], the subspace method [6], minimum mean-square
error estimator, and optimally-modified log-spectral amplitude [7],
[8]. These methods showed limited performance on speech with
non-stationary noise, which is common in real-life environments.
Non-negative matrix factorization has later been widely used for
speech separation and enhancement [9], [10].

Recently, deep neural networks have been employed to
overcome the non-stationary condition and have improved speech
quality and intelligibility. Early models used mapping-based
methods, where the enhanced signal is directly predicted from the
noisy one. Several such deep learning models have been developed,
including denoising autoencoders [11] (using fully-connected
layers), recurrent neural networks (RNN) [12] and convolutional
neural networks (CNN). Later, a masking-based method was
introduced to enhance the signal by applying the noisy signal to the
predicted mask [13]-[16].

Most of these methods use time-frequency (T-F) spectrogram
features instead of time-domain waveform, since T-F has a reduced
resolution. Spectrogram features, however, have certain limitations.
First, the pre- and post-processing operations such as discrete
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Fourier transform and its inverse are computationally expensive, and
cause artifacts in the output signal [1], [2]. Second, these approaches
usually only estimate the magnitude, and use the noisy phase to
produce the enhanced speech. Research has shown that the phase
can enhance the speech quality [17]. Recent research has considered
predicting the phase and the magnitude at the cost of model
complexity, such as adding special model for phase component [18].

Recently, several studies proposed overcoming previous
limitations by working directly on the waveform. Fu et al. [19]
compared fully-convolutional networks with fully-connected
networks. Pascual et al. [20] implemented a generative adversarial
network for speech enhancement (SEGAN), using strided
convolutions, residual connections, and an encoder-decoder
architecture. Later, a text-to-speech model called Wavenet [21]
directly synthesized raw waveforms. Qian et al. [22] and Rethage et
al. [23] presented a modified version of WaveNet for speech
denoising. The former integrated a Bayesian framework WaveNet,
while the latter used a non-causal dilated convolution with residual
connections. Germain et al. [24] presented dilated convolutions
combined with a feature loss network. Stroller et al. [25] adapted the
U-Net [26] model for source separation using dilated convolutions
and linear interpolation instead of transposed convolution for
upsampling. All these methods used convolutional neural networks
due to their ability to capture the samples’ dependencies better than
fully-connected networks. Because waveform is a sequential
datatype, it requires a temporal context as well. Recurrent neural
networks are known to capture the long-range temporal sequence
information [27] and are used in many sequential applications such
as speech recognition, neural machine translation, and spectrogram-
based speech enhancement. To our knowledge, only [28] and [29]
have applied RNN to process waveform signals. The first one used
RNN to denoise a non-speech waveform, while the latter used RNN
for speech bandwidth extension, but no one has used it for
waveform-based speech enhancement. The reason is that the high
resolution of waveforms requires more expensive, deeper, and wider
networks. It is difficult to build a deep RNN because of saturating
activation function, which causes gradient decay over layers. Also,
we found empirically that RNNs sufficiently wide to process the
high-resolution waveforms exceeded the available memory
capacity. Therefore, we introduce our residual hourglass recurrent
neural network for waveform-based single-channel speech
enhancement. Our model overcomes the RNN limitations by
introducing two techniques. First, the network architecture has an
hourglass shape; the layers in the lower pyramid reduce the number
of time-steps and increases the number of units (width), while the
upper pyramid does the reverse. This architecture allows the RNN
to handle high-resolution waveform features without memory
overflow. Second, using residual connections between the same-
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Fig. 1. Our proposed RNN architecture. Seven stacked RNN layers
with the numbers on the left representing the number of time steps
and the number of units in each layer. Wider layers have fewer units
and vice versa. The two bold arrows on the right represent the
residual connections.

shaped layers from the lower pyramid to the upper one prevents
gradient decay over layers and improves the model generalization.
Advantages of our model:

e Uses a raw waveform, without any transformation or
handcrafted features.

e Does not need any linear interpolation method for upsampling,
which can lose useful information.

e [s a simple end-to-end design that outperforms several more
complex neural network approaches.

e We think that this deep RNN architecture can be applied for
regression problems other than speech enhancement, which
has long-term dependency and high-resolution data.

We evaluated our model using six objective metrics,
demonstrating its ability to significantly enhance speech quality and
intelligibly. The next section reviews the model architecture.
Section 3 describes the dataset we used and the preprocessing
operations. Section 4 presents the experimental setup and discusses
the results. Section 5 concludes and suggests future work.

2. MODEL ARCHITECTURE

Our model includes seven GRU layers with two residual
connections. The first six layers are bidirectional and the last one is
a single GRU (Figure 1). The goal of our speech enhancement
network is to learn non-linear relationships, so that noisy speech
x(t) can be translated into clean speech y(t):

Upper Bi-GRU (6th and 5th layers) |

N 1
A hy

Lower Bi-GRU (2nd and 3rd layers) |

Fig. 2. A high-level view highlighting the residual connections in
our proposed model from Figure 1.

y(@) = f(x(®)) (M

The input vector X = (xq,...,xy) represents a T-seconds wide
segment from a noisy audio waveform signal.

RNNSs can efficiently realize temporal features in sequential data, so
they have been used widely to process speech data either for speech
recognition or enhancement. We chose gated recurrent units (GRU)
instead of long short-term memory units (LSTM) or vanilla RNN.
Both GRU and LSTM outperform vanilla RNN [28], but GRUs have
a simpler structure and train faster than LSTMs. In addition, we
chose bidirectional RNNs since in speech enhancement each
predicted sample can depend on future as well as past noisy samples.
The stacked GRU increases the capacity of the network by sharing
the hidden states not only from the same layer but also from the
lower layers as well. The stacked bidirectional RNNs share their
hidden states, so that the hidden state (hl) of a bi-GRU unit in layer

[ attime ¢ is obtained by concatenating its forward (h%) and backward

((h_é) hidden states, which depend on the lower layer /-1 at time ¢ and
this layer at time 7—1:

hf =GRU (h{"",h}_,) @)
ht = GRU(hI, hi_y) 3)
ht = conc(ﬁ, E) 4)

The two pyramids of our hourglass architecture keep the
number of trainable parameters within the memory constraints. the
bottom pyramid decreases the number time steps while increasing
the number of GRU units per layer, and the top pyramid does the
reverse. this approach allows for deeper networks. we did not use
upsampling techniques, such as linear interpolation, because the
information can be lost. instead, we reshape the RNN output to the
desired fewer time steps. reshaping the layer output to decrease and
increase the time steps prevents losing data, and allows the RNN to
have a sufficient size of units. however, while stacking RNNs can
increase the capacity of the network, deeper RNNs usually have
gradient decay issues due to their saturating activation functions. to
address this issue, we used residual connections between the lower
and upper layers (figures 1 and 2). the residual connections facilitate
training the deep RNN, and provide better generalization by
combining the low-level features with the high-level ones in the
upper layers. in figure 2, the hidden states of the lower layer (ht)
and those of the upper layer before the residual connection (h} ™) are
combined to produce the residual output:
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Table 1. Evaluation results of our proposed model compared with other state-of-the-art research work using six objective metrics on the
same dataset [30]. Higher scores are better, and the highest scores are boldfaced.

Model Features type SSNR PESQ STOI CSIG CBAK COVL
No Enhancement (Noisy) - 1.68 1.97 0.820 3.35 2.44 2.63
SEGAN, 2017 [20] waveform 7.73 2.16 0.93 3.48 2.94 2.80
CNN-GAN, 2018 [14] spectrogram - 2.34 0.93 3.55 2.95 2.92
Wavenet, 2018 [23] waveform - - - 3.62 3.23 2.98
MMSE-GAN, 2018 [16] spectrogram - 2.53 - 3.80 3.12 3.14
DFL, 2019 [24] waveform - - - 3.86 3.33 3.22
(Our model) waveform 14.71 3.20 0.98 4.37 4.02 3.82
overlap during the evaluation. We did not use any other
o}t = PReLU (hé + h‘t") %) preprocessing, such as pre-emphasis.

where PReLU is the parametric rectified linear unit activation
function. Finally, we use a single forward GRU to output the
enhanced speech with the same size of the input vector:

ni = GRU (hf%, ki) ©)

Therefore, the output will be created by combining the hidden states
for each input segment:

Y = (1], .., h]) (7)

where Y denotes the enhanced signal output and h? denotes the
hidden state of the last (seventh) layer.

3. DATASET AND PREPROCESSING

The dataset used for training and evaluating our model has been set
up in [30]. We chose this dataset because it is large, has different
types of non-stationary noise, and is public so that we can compare
our results with other published work. This dataset is an excerpt of
the Voice Bank corpus [31] with 28 speakers (14 male and 14
female) of the same accent region (England) and another 56 speakers
(28 male and 28 female) of other accent regions (Scotland and
United States).

The noisy data used for training are two artificially generated
(speech shaped noise and babble) and eight real noise recordings
from the Demand database [32]. The noises are from different
environments such as kitchens, offices, public spaces, transportation
stations, and streets. The training set includes 11,572 utterances with
four signal-to-noise (SNR) values: 15 dB, 10 dB, 5 dB, and 0 dB.
The noisy data used for testing include two other speakers of the
same corpus from England (a male and a female), and five other
noises from the Demand database. The chosen noises include a
living room, an office, a bus, and street noise. The testing set
includes 824 utterances with four SNR: 17.5 dB, 12.5 dB, 7.5 dB
and 2.5 dB. We downsampled the audio signals to 16kHz, getting a
reasonable dataset size for recognizing speech. Our preprocessing
included slicing both noisy and clean speech signals into 1024
samples (~64 ms) with 25% overlap during training and without

Uhttps://www.crepress.com/downloads/K14513/K 14513 _CD _Files.zip

4. EXPERIMENT SETUP AND RESULTS

Our architecture uses seven GRU layers. The first six are bi-
directional, while the last one is single-directional to produce the
enhanced signal (Figure 1). The number of units per layer are: 2,
128, 256, 512, 256, 128, and 1; the size of the time steps per layer
are: 1024, 512, 256, 128, 256, 512, and 1024. Two residual
connections link the second and third layers with the sixth and fifth,
respectively. The PReLU activation function is used with residual
connections, as it does not saturate the negative values compared to
Leaky-ReLU and has been shown to improve model fitting [33]. The
model has 2 million trainable parameters, which is small with
respect to Wavenet which has 6.3 million. We use the Xavier normal
initializer [34] for the kernel weights, with zero-initialized biases.
Xavier initialization keeps the values of the weights in a reasonable
range, preventing the inputs from shrinking or growing more than
needed through the layers. It determines the initialization values
with respect to the number of input and output neurons. The
initializer for the recurrent states is a random orthogonal matrix [35],
which helps the RNN stabilize by avoiding vanishing or exploding
gradients. The stability occurs because the orthogonal matrix has an
absolute eigenvalue of one, which avoids the gradients from
exploding or vanishing due to repeated matrix multiplication.

We use the log-cosh loss function, a regression loss function
that takes on the behavior of squared-loss when the loss is small, and
absolute loss when the loss is large; this reduces the influence of
wrong predictions. The optimization algorithm used is RMSprop
[36], which helps the training of large neural networks on large
redundant datasets. In addition, Keras [37] documentation
recommends using this algorithm with RNN. We trained the model
until the validation loss converged with a batch size of 512, using
two NVIDIA GTX-1080 GPUs. We used different learning rates
during training, starting at 10 and gradually decreasing to 105, The
library used to implement this work was Keras with TensorFlow
[38] as a backend. The training process took about 20 hours for 50
epochs. To evaluate our model, we computed six objective metrics
using an open-source implementation'?:

e Segmental signal-to-noise ratio (SSNR) [1]: computed by
dividing the clean and enhanced signals into segments and

2 http://ceestaal.nl/stoi.zip
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Fig. 3. An illustration of speech enhancement using our model using speech samples with SNR = 2.5 dB and duration of 50 msec from the
test dataset. (a) The sample number 232 052. The blue lines represent the clean speech and the red lines represent the noisy speech. (b) The
corresponding enhanced speech (red line) compared with the clean input speech (blue line).

computing the segment energies and SNRs, and then returning
the mean segmental SNR (dB). The values range from -10 to 35.

e Perceptual evaluation of speech quality (PESQ) [1]: a more
complex metric to capture a wider range of distortions. PESQ is
the most common metric to evaluate the speech quality,
calculated by comparing the enhanced and clean speech. The
values range -0.5 to 4.5.

e Short-time objective intelligibility (STOI) [39]: reflects the
improvement in speech intelligibility with a score range from 0
to 1.

e Three objective version of mean opinion scores (MOSs): CSIG
for signal distortion evaluation, CBAK for noise distortion
evaluation, and COVL for overall quality evaluation. We used
their mathematical representations, and their scores range from 1
to 5[1].

For all these metrics, higher values mean better performance.
Two speech test samples (small segment 50 ms) are illustrated in
Figure 3. Both samples include non-stationary noise with people
talking in background (“cocktail party”) and music playing. For
each segment, the foreground speaker talks (high frequency) in the
first half, while foreground speaker stops talking (low frequency) in
the second half. The enhanced speech signal tracks the clean in both
cases, which shows the model ability to capture the clean speech in
all speaker events.

Table 1 shows the metrics scores for our model with respect to
the other architectures. The comparison results with several current
architectures such as SEGAN [20], Mask-based GAN model (CNN-
GAN) [14], wavenet model for denoising [23], another masking-
based GAN model [16] and finally the speech denoising with deep
feature losses (DFL) [25]. All these architectures use the same
dataset and the metrics that we used to train and evaluate our model.
Therefore, their results are taken directly from their above work. In
this results, our model decrease the speech degradation (CSIG) by
13.2% and decrease the background noise intrusiveness (CBAK) by
20.7%, and increase the overall signal quality (COVL) by 18.6%
with respect to the best previous architecture DFL [24]. Also, the
speech quality is increased by 26.5% with respect to the masking-
based GAN model [16].

5. CONCLUSION

We introduced a novel end-to-end fully-recurrent neural network for
single-channel speech enhancement. Our recurrent layers are
designed in an hourglass shape to reduce the speech signal
dimension and assist recognition of the long-term dependencies. The
results show that our simple and efficient model outperforms most
of the current approaches with more complex architectures. We will
evaluate this model with other datasets and apply to other sequential
applications.
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