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Abstract— We present a speech-based approach to recognize
team activities in the context of trauma resuscitation. We first
analyzed the audio recordings of trauma resuscitations in terms of
activity frequency, noise-level, and activity-related keyword
frequency to determine the dataset characteristics. We next
evaluated different audio-preprocessing parameters (spectral
feature types and audio channels) to find the optimal
configuration. We then introduced a novel neural network to
recognize the trauma activities using a modified VGG network
that extracts features from the audio input. The output of the
modified VGG network is combined with the output of a network
that takes keyword text as input, and the combination is used to
generate activity labels. We compared our system with several
baselines and performed a detailed analysis of the performance
results for specific activities. Our results show that our proposed
architecture that uses Mel-spectrum spectral coefficients features
with a stereo channel and activity-specific frequent keywords
achieve the highest accuracy and average F1-score.

Keywords—activity recognition, keyword, audio classification,
speech processing, trauma resuscitation

I. INTRODUCTION

Activity recognition of a dynamic medical process such as
trauma resuscitation is challenging because of fast and
concurrent work as well as a noisy environment. There are
several current research approaches that rely on video, RFID,
and signals from medical devices to identify the medical activity
type and its stages [1]-[3]. However, to our knowledge, there
have been no approaches that rely on the speech from verbal
communication of the team. Video and RFID data cannot
provide information to recognize certain activities. For instance,
in the trauma resuscitation, Glasgow coma score calculation
(GCS) and airway assessment (AA) activities rely on visual
examination or talking to the patient and can be recognized only
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based on verbal communication. We asked three medical
experts to rate different modalities (speech, video and RFID-
tagged object) as the best source for recognizing different
ongoing resuscitation activities. In Table I, we averaged their
ratings for four activities for which speech was rated the highest
as a prediction source had they been asked to do activity
recognition. In addition, a study [4] found that medical experts
can predict resuscitation activities with 87% accuracy using only
the verbal communication transcripts. Furthermore, previous
studies showed that fusing the speech with the video, RFID or
transcripts increases activity recognition accuracy [5], [6].

We present a speech-based activity recognition design for
dynamic medical teamwork and empirical evaluation. Our
approach is based on using one representative keyword from the
input utterance to the activity recognition network, in addition
to the audio stream. This keyword belongs to the most frequent
words list that has been calculated for each activity type. In
addition, to determine the challenges related to system design
and dataset limitations, we determined the dataset characteristics
related to the activities (e.g. activity frequency, noise-level and
word frequency for each activity). Then, we analyzed different
audio preprocessing parameters, such as feature types and input
channels to find the best input feature setup. Using these
findings, we designed an audio classification network based on
the VGG model [7]. We evaluated our audio network and

TABLEL  ACTIVITIES FOR WHICH THREE MEDICAL EXPERTS RATED
HIGHEST SPEECH AS THE MODALITY FOR ACTIVITY RECOGNITION

Activity Audio (%) Video (%) RFID tag
GCS Calculation 80 7.5 Non
Airway Assessment 80 20 Non
Medications 80 20 Partial
CPR 65 45 Partial
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compared its performance with several state-of-the-art
classification networks using the trauma resuscitation dataset.
Finally, we evaluated our keyword-based network design using
different settings for the network layers. We found that a
keyword-based approach to activity recognition performed
better than relying on manually-generated transcripts. The
results show that our new keyword-based design increased the
accuracy and the average Fl-score by 3.6% and 0.184
respectively compared to our audio network alone. Our
contributions are:

e An analysis of trauma resuscitation dataset
characteristics to determine the constraints related to
speech-based activity recognition.

e Audio preprocessing analysis to find the optimal
parameters for designing the network.

e Design of an audio classification network and
comparison of its performance to the state-of-the-art
classification models using a trauma resuscitation audio
dataset.

e A new keyword-based neural network for activity
recognition that combines the audio stream and the most
frequent words from the input transcript.

The rest of the paper is organized as follows: Section II
analyzes the dataset attributes. We describe the audio
preprocessing in Section III and describe the model design in
detail in Section IV. The experimental setup and the results are
presented in Section V. We review the related work in Section
VI. We conclude and propose future work in Section VII.

II. RELATED WORK

In recent years, activity recognition for medical purposes
has been growing quickly. Most of the current research relies
on the sensors and visual modalities such as the passive RFID
and the videos, and there are few works based on audio and
verbal information.

RFID-based activity recognition considered an object-use
detection problem. Early work compared different machine
learning approaches as a binary classifier to predict the medical
object motion that related to certain activities [8]. A different
strategy to place the RFID tags showed an improvement in the
activity recognition accuracy [9], [10]. Recently, employing a
convolutional neural network (CNN) as a multi-class classifier
outperformed the previous approaches [2]. Although, RFID has
advantages such as being small, cheap and battery-free, its
accuracy and scalability is limited by the radio noise and the
limited number of activities that use taggable objects.

Visual-based activity recognition exploits the visual data
from RGB or depth camera to map the medical team movement
and actions into activities. Early research used a single camera
video recording with the Markov Logic Network model to
predict the activities [1]. Recently, deep learning has been
applied to visual-based activity recognition. The convolutional
neural network has been applied for video classification using
time-stacked frames with a slow fusion network to process the
short-range temporal association of activities [11]. To address
the short-range temporal limitation, a long short term memory

network (LSTM) has been integrated with the VGG network
with a region-based technique to generate an activity mask [12].
Despite the decent progress in utilizing virtual data, it has
several limitations. The RBG camera raises the issue of patient
privacy and, as with the RFID, not all activities can be predicted
by visual tracking the medical team movement and actions.

Text-based activity recognition employed the transcript of
the verbal communication between the medical team to predict
the activity type. Recent research applied a multi-head attention
architecture [13] to predict a speech-reliant activity from the
transcripts and the environmental sound [6]. The drawback in
this approach is that obtaining the text requires additional
automatic speech recognition (ASR).

The audio modality was used as an auxiliary to other
modalities in works [5], [6]. These papers analyzed the audio
ability to improve the accuracy of the activity recognition. In [5],
the authors built a multimodal system to recognize concurrent
activities by using multiple data modalities: depth camera video,
RFID sensors and audio recordings. Each modality processed
and the features extracted by a separate convolutional neural
network (CNN), and then all of them fused using Long Short-
Term Memory (LSTM) network to the final decision layer. They
did not provide quantitative analysis to distinguish the
difference between each modality performance. In [6], the
authors created a multimodal transformer network to process the
transcribed spoken language and the environmental sound to
predict the trauma activities. The quantitative analysis showed
the average accuracy 36.4 when using only audio, and the
accuracy increased to 71.8 when using both modalities.

III. DATASET COLLECTION AND CHARACTERISTICS

The dataset was collected during 86 trauma resuscitations in
the emergency room at a pediatric teaching hospital in the U.S.
Mid-Atlantic region between December 2016 and May 2017.
We obtained approvals from the hospital’s Institutional Review
Board (IRB) before the study. All data generated during the
study were kept confidential and secure in accordance with IRB
policies and Health Insurance Portability and Accountability Act
(HIPAA). The audio data was recorded using two fixed NTG2
Phantom Powered Condenser shotgun microphones. These
microphones pointed in two locations where the key members
of a trauma team normally stand. The recordings were manually
transcribed and each sentence was assigned the activity label by
trauma experts. In this section, we present an analysis of the
following three characteristics of the dataset that can affect the
activity recognition outcome: activity frequency, noise level and
words frequency for each activity.

The fine-grained activities have been grouped into 30 high-
level categories. Different categories occurred with different
frequencies, which is the total number of utterances that include
a given activity category for the 86 resuscitations cases (Table
II). As seen, the activities are not distributed uniformly over the
dataset utterances. Some activities occurred very frequently,
while others were rare. There are several reasons for this
variation. First, the length of conversation between the medical
team is different for each activity. Some activities require
several inquiries and reports, while other activities may have a
single sentence to report the patient's status. Second, each patient
required different evaluation and management activities based
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TABLEII.  RESUSITATION ACTIVITIES WITH MOST UTTERANCES

# Activity Code | Utterances
1 Extremity E 836
2 Back BK 701
3 GCS Calculation GCS 610
4 Face F 514
5 Circulation Control CC 407
6 Log Roll LOG 389
7 C-Spine CS 380
8 Medications MEDS 358
9 Pulse Check PC 289
10 Blood Pressure BP 256
11 Ear Assessment EAR 246
12 Eye Assessment EY 246
13 Exposure Control EC 220
14 Abdomen Assessment A 208
15 Breathing Assessment BA 206
16 Airway Assessment AA 197
17 Head H 175
18 Exposure Assessment EA 174
19 CPR CPR 160
20 Chest Palpation CP 150
21 Breathing Control BC 137
22 Pelvis Assessment PE 122
23 LEADS LEADS 116
24 | Endotracheal Tube Endorsement ET 109
25 Neck Assessment NECK 96
26 Intubation 1 50
27 Genital Assessment G 44
28 NGT NGT 30
29 Bolus B 18
30 Relieve Obstruction RO 13
Total activity-labeled utterances 7457

on the patient injury, demographics and medical context.
Finally, as mentioned above, the activity categories are a high-
level groups that sometimes include several low-level activities
(Table III). Hence, when an activity group (e.g. Extremity
Assessment) has several low-level activities, this tends to
correspond to increased verbal communication of the medical
team. As a result of this non-uniform activity distribution, it is
hard to train a neural network model for the activities that had
associated least-frequent utterances, even for activities that
cannot be recognized from other modalities (e.g. Airway
Assessment), because of insufficient data to train and evaluate
the model. Therefore, we chose the top five activities that had
associated highest-frequency utterances in Table II for the
purpose of our experiments: Extremity, Back, GCS Calculation,

TABLEIIl.  FOUR HIGH-LEVEL ACTIVITIES AND THEIR RELATED LOW-

LEVEL ACTIVITES

High-Level Activity | Low-level Activity
Verbalized
Motor Assess
Verbal Assess
Eye Assess
Right Upper
Left Upper
Right Lower
Left Lower
Medications Medications
Airway Assessment | Airway Assessment
Chest comp
Shock
Defib pads
1D

GCS Calculation

Extremity Assessment]

CPR

Face, and Circulation Control. All other utterances that do not
belong to these activity categories are assigned to the “OTHER”
category.

The second important dataset parameter that can influence
the recognition performance is the ambient noise. The
resuscitation environment presents several challenges to speech-
based activity recognition. Concurrent speakers (“cocktail
party” problem), rapid speech and ambient noise adversely
affect the speech quality and reduce activity recognition
accuracy. To estimate the clarity of the medical team speech, we
performed a subjective evaluation of the trauma resuscitation
dataset. In this evaluation, we categorized the noisiness of audio
recordings into three levels based on the human ability to
understand the reports of patient vital signs and examination
results. Three medical experts worked on this assessment
listening to the 86 resuscitation cases. Each case had been
labeled with one of the three noise categories (low, medium and
high) and the average is shown in Table IV. As seen, about 65%
of cases were labeled as low-noise, while about 19% and 16%
were labeled as a medium- and high-level, respectively. Thus,
about 35% in our dataset are either unintelligible or it is hard to
understand what the medical team said during the resuscitation,
which is challenging for the neural network performance. To
study the effect of the ambient noise on the recognition of our
selected activities, we calculated the number of noisy cases for
each chosen activity (Fig.1). Fig. 1 shows the fraction of the
resuscitation cases by their noise level for each activity. As seen,
the noise is distributed almost uniformly among the activities in
our experiment. Therefore, it is not expected to affect some
activities more than others in terms of prediction accuracy.

The keywords about patient medical status are the most
important information of the team verbal communication in the
trauma resuscitation, which sometimes indicates the activity
explicitly (e.g. GCS in Fig. 2). To find the priority of the
keywords with respect to the related activities, we first filtered
most of the stop words. Then, we calculated the most-frequent
words for each activity (Fig. 2). As seen, most of the shown
keywords either have a direct relationship with the activity (e.g.
“spine” for BACK) or have indirect meaning such as the body
position (e.g. right or left for extremity). Also, we can see that
there are several words that have no relationship with the
activities, but they frequently occur as a part of the inquiry
response (e.g. “okay”) or just part of a repeated sentence (e.g.
“get”). However, our intuition is that as long as these words
occur frequently during certain activity then these words are
valuable for the neural network to predict the correct activity.
Hence, our hypothesis is that these keywords can be combined
with the audio stream and fed into the neural network to increase
the activity recognition accuracy. Extracting these keywords can
be done automatically using a word-spotting model. We believe
that extracting such keywords is easier and more efficient than

TABLEIV. A SUBJECTIVE EVALUATION OF NOISE FOR ALL 86
RESUSCITATION CASES BY THREE RATERS

Noise Level Number of Cases
High 14
Medium 16
Low 56
Total 86
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recognizing the whole utterances using an ASR system. In this
work, we evaluated the concept of combining given text
keywords and the audio stream to improve activity recognition
performance. Although evaluating a word-spotting model is not
part of this work, we will consider that in our future research.

IV. DATA PREPROCESSING AND CONFIGURATION

Our main input data is the utterance-level audio stream. In
addition, we considered using one keyword from the most-
frequent words list as an additional input. The keyword input is
encoded as a one-hot one-dimensional vector, and the audio
stream is converted into a spectrogram. Spectrogram
representation reduces the dimension of the data and provides
better information representation [14]. This section describes the
data preprocessing and an analysis of two parameters variation
effect on the activity recognition outcomes: feature type and
input channels.

The keyword feature represented as a one-hot vector of size
78 to represent the total 60 words list (10 keywords per activity).
The one-hot vector size had been incremented by 0.3 to reduce
the one-hot hash function collision probability. The audio
recordings were sampled at I6MHz. We used 40 filter banks for
the short-time Fourier transform with a 2048 window, 25%
overlap and Hann window type. The audio stream utterances had
different time lengths (Fig. 3). The average utterance time
duration was 2.42 seconds with a standard deviation of 2.28. Our
neural network required a fixed input length, which can be
implemented in several ways. First, we could choose a small
input size that most of the utterences have such as 1-2 sec or 2-
3 sec, but this would reduce the total number of samples.
Second, we could specify a fixed length such as the average
value and then truncate all the longer utterances, but our
experiments showed that the lost information would
significantly reduce the performance. Therefore, we resized all
the utterance lengths to be 20 seconds by zero-padding the
beginning and end of each utterance. The final feature map

ARM |59 RIGHT |55 RIGHT |31 OKAY |38 GONNA |20

HURT |62 HURT |57 VERBAL |35 HEAD ['39  LINE |26

EXTREMITY | 64 OFFS |57 HAND |35 CLEAR |39 GOT |27

UPPER |67 STEP | g5 OPENING |36 STABLE |41 OKAY |31

KNEE | 68 OPEN |40 NARES |42  LEFT |35

LOWER |71 BACK 1769 OKAY |40 LEFT | 46 GET |'39

LEG |n75 YES [F907 qoupEZE |48 UH |47 RIGHT |42
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LEFT 158 SPINE |93 EYES |89 MOUTH |71 10 |65
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Fig. 2. The most frequent unique words for each activity.
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Fig. 3. Utterance-level audio length distribution.

length was 600. Following the work [6], we segmented the input
feature map into 10 frame sub-maps to avoid processing distant
audio frames. The input sample shape for every single channel
was (60, 40, 10).

We tried two types of audio spectrogram feature: Mel-
frequency cepstral coefficients (MFCC) and Mel-frequency
spectral coefficients (MFSC). MFCC feature extraction has been
successfully applied in speech recognition [15] and audio
classification [16]. However, MFCC includes the discrete cosine
transform (DCT), which can compromise the locality, especially
for the convolutional neural network (CNN) [17]. Therefore,
several audio classification works used MFSC instead [18].
Furthermore, we analyzed the effect of adding the dynamic
features: the first and second temporal derivatives (delta and the
delta-delta coefficients, respectively). Adding the dynamic
features can increase the accuracy and the robustness of speech
recognition [19]. Table V shows the evaluation results for both
feature types and their derivatives. The results show that MFSC
features dominante over the MFCC with and without their
derivatives. The reason is the locality issue introduced by DCT
of MFCC transform mentioned above. Also, we noticed that
adding the derivatives to the MFCC feature type slightly
increased the accuracy, while adding the derivatives for the
MFSC degraded the accuracy. Therefore, we concluded that the
static MFSC is the best feature type for our dataset and
architecture, and we used it in the next experiments.

As mentioned in Section II, our audio data were recorded
using two microphones. As a consequence, each audio recording
included two channels. We combined the two channels in five
different configurations (Table VI). In the first two
configurations, we used only one of the channels. In the third
setup, we doubled the dataset by feeding both channels as a
distinct samples. In the last two setups, we used both channels
together either by summing them up and averaging into a single
channel, or by feeding them as a two-channels. Table VII shows
the accuracy and the average F1-score for each configuration.
The accuracy of the last two setups, when the two channels are
combined, is higher than the first three setups when the input is

TABLEV. THE ACCURACY AND AVERAGE F1-SCORE FOR DIFFERENT
FEATURES TYPES
Feature type Accuracy | Average F1-Score
MFCC | o (CRAT] 277 0200
MFSC [ Bnie (LA ]300 0210
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TABLE VL. INPUT CHANNEL CONFIGRATION
Input Configuration | Number of Samples | Input Dimension
CHI only 3557 (60, 40, 10)
CH2 only 3557 (60, 40, 10)
Unite CH1 with CH2 3557x2 (60, 40, 10)
(CHI1 + CH2)/2 3557 (60, 40, 10)
Combine CH1 & CH2 3557 (60, 40, 20)

Input 60 x 40 x 20

5 x5 CNN(128) + BN + ReLU
3 x 3 CNN(128) + BN + ReLU
2 x 2 Max-Pooling
Gaussian-Noise(1.0)

3 x 3 CNN(256) + BN + ReLU
3 x 3 CNN(256) + BN + ReLU
2 x 2 Max-Pooling

one channel only. The reason is that the labels were transcribed
based on both channels, so when one of input channels is
omitted, some utterances may have wrong labels and
consequently the neural network failed to predict the activity on
the evaluation dataset. Combining the two-channels achieved
higher accuracy. However, the average of the two channels had
slightly lower accuracy than including both channels. Thus, in
the next evaluation experiments, we considered the
configuration that used the static MFSC feature type and feeding
the network with both channels.

V. MODEL ARCHITECTURES

We considered the speech-based activity recognition as a
multi-class classification problem. This section first presents a
modified VGG [7] network for the audio branch, which we used
to evaluate the configurations described in Section III. Then, we
introduced a new architecture that fuses the output of the
proposed audio network with the keyword network to predict the
activities.

A. The Audio Network

Previous neural network architectures designed for image
processing have been adjusted successfully to work on audio
processing [18], [20] such as VGG [7], ResNet [21] and
DenseNet [22]. The VGG network shows a better performance
compared to other architectures for audio classification
applications [18], [23]. Because deeper CNN networks often do
overfitting on small size datasets, we adapted the VGG network
based on the trauma dataset (Fig. 4). Our modification included
adding a batch normalization [24] to the convolutional neural
networks (CNN) to speed up the training operation and assist
the regularization. We also used the dropout [25] and Gaussian
noise to prevent overfitting and increase generalization. For the
activation function, we used rectified linear units (ReLUs) and
the last classification layer included the global average pooling
followed by a softmax activation function to calculate the
prediction probabilities.

B. Keyword and Fusion Networks

As shown in Fig 5, we designed an architecture that consists
of a keyword network, an audio network, and a fusion network.
We used a fully-connected network (FCN) layer with the ReLU
activation function to generate the keyword feature
representation. We empirically evaluated different sizes and

TABLE VII. THE ACCURACY AND AVERAGE F1-SCORE FOR
DIFFERENT INPUT CHANNELS CONFIGURATIONS

Input channels Accuracy | Average Fl1-score
CHI only 222 0.106
CH2 only 22.9 0.121
United CH1 with CH2 22.6 0.115
(CHI1 + CH2)/2 30.2 0.217
Combined CHI & CH2 30.8 0.231

Gaussian-Noise(0.75)
3 x 3 CNN(512) + BN + ReLU
Dropout(0.3)
3 x 3 CNN(512) + BN + ReLU
Dropout(0.3)

3 x 3 CNN(512) + BN + ReLU
Dropout(0.3)

3 x 3 CNN(512) + BN + ReLU
Dropout(0.3)

2 x 2 Max-Pooling
Gaussian-Noise(0.75)

3 x 3 CNN(1024) + BN + ReLU
Dropout(0.5)

1 x 1 CNN(1024) + BN + ReLU
Dropout(0.5)

1 x 1 CNN(6) + BN + ReLU
Gaussian-Noise(1.0)
Global-Average-Pooling
6-way Softmax

Fig. 4. Our audio network architecture. BN: Batch Normalization, ReLU:
Rectified Linear Unit.

number of layers to find the optimal network configuration
(Table VIII). The results show that using a single FCN layer
with size 128 achieved the best performance. Increased number
of FCN layers (deeper) or the number of FCN layer units
(wider) decreased the performance. The fusion network
concatenated the audio network output features (a) and the
keyword module outputted features (w) into one vector (y):

y = y(concat(§(w), y(a))) M

where @, wand y are the fully connected network layers (FCN),
and y is the output of the fusion, which includes another FCN
and ReLU activation function to generate the high-level feature

Audio
Spectrogram

| g sppp——— | g g

|
Concatenate

|
|
v |
|
|

|
|
|
|| FON (32)+ReLU

FCN (6)
v

Softmax

Fig. 5. Final model architecture after adding the keyword features. FCN: Fully
Connected Network, ReLU: Rectified Linear Unit
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Fig. 6. Speech-based activity recognition proposed architectures. a. An architecture that uses the predicted transcripts from automatic speech recognition. b.
An architecture that predicts the activity type directly from the audio. c. Same as in (b) with an additional one keyword input obtained from word-spotting.

representation for the final softmax layer classification (Fig. 5).
We compared different fusion methods such as attention, but it
did not perform well due to audio and keyword missalignment
issues. This issue will be addressed in our future work.

VI. EXPERIMENTS SETUP AND RESULTS

We trained and evaluated the proposed model on the
trauma resuscitation dataset. We used the utterances from the
five most frequent activities and the total number of utterances
was 3557. The dataset was randomly shuffled and split into
80% and 20% as a training set and a testing set, respectively.
Each sample was considered independently, which contains an
utterance-level audio stream, the related one keyword, and the
correspondence activity label assigned by the trauma experts.
Due to the small data size, we applied the fivefold cross-
validation. We trained all networks together as end-to-end
using early fusion approach. We use Adam [26] optimization
with 0.001 as the learning rate and categorical crossentropy loss
function. Each experiment took about two hours. We
implemented all the experiments using Keras API of the
TensorFlow library [27] with two Nvidia GTX 1080 GPUs.

Fig. 6 shows the diagrams of possible architectures for
speech-based activity recognition. The first design (Fig. 6 (a))
integrates an automatic speech recognition (ASR) module with
a text-based activity recognition (TAR) module. The overall
performance of this design highly depends on both modules.
Although the previous TAR model [6] achieved 69.1 accuracy
and 0.67 average Fl-score on a resuscitation dataset, their
model used the human transcripts and assumed the ASR system
can achieve human parity. Unfortunately, our ASR
experimental results showed a high word error rate (WER) on
the resuscitation dataset using two different architectures:
attention-based seq2seq [28] and N-gram [29], which achieved

TABLE VIII.  RESULTS COMPARSION BETWEEN DIFFERENT
KEYWORKD AND FUSION MODULES LAYER STRUCTURE

Audio + Keyword Accuracy % | Average F1-Score
(1-layer, 64) 449 0.412
Deeper (2-layers, 64) 449 0.409
Deeper (2-layers, 128) 44.8 0.409
Wider (1layer, 256) 44.7 0.409
(1-layer, 128) 45.4 0.415

WER of 100.3 and 75.8, respectively. We believe that the poor
audio quality caused by the distant-talking, ambient noise, fast
speaking rate, and concurrent speakers reduced the overall
activity recognition performance, which made this model
infeasible. The second architecture predicts the activity type
directly from the audio (Fig. 6 (b)). Our evaluation result
showed that the model achieved 30.8% in accuracy and 0.231
in average Fl-score. Compared with the above two
architectures, the proposed model (shown in Fig. 6 (c))
achieved 45.4 in accuracy and 0.415 in Fl-score, which
outperformed the previous approaches that used the audio
directly or required the full utterance transcript. This
comparison result demonstrates the strength of using the
keyword as an additional feature to the speech-based activity
recognition architecture.

We further compared our audio network with other state-of-
the-art classification architectures such as VGG16-19 [7],
DenseNet [22], ResNet [21] and NASNetMobile [30] (Table
IX). The result showed that our audio network outperformed
others in terms of accuracy and the average F1-score by a range
of 1.3% — 8.9% and 0.02 — 0.129, respectively. This is because
the general deep architectures usually suffer from overfitting
when applied to the audio processing [18].

We made a quantitative analysis by comparing the
performance of the three models using different inputs: audio-
only, keyword only, and both audio and keyword (Table X).
The result showed that using both audio and keyword features
outperformed using audio-only or keyword only, which
confirmed our hypothesis that keywords can boost the
performance of the audio-only model, but not to replace it.

Table XI shows the Fl-score for each activity by different
modalities. The audio network had better performance on

TABLE IX. RESULTS COMPARSION BETWEEN OUR NETWORK AND
OTHER CLASSIFICATION MODELS

Classification Models | Accuracy % | Average F1-Score
NASNetMobile [24] 21.9 0.102
VGG19 [14] 27.7 0.182
DensNet [17] 28.2 0.190
ResNet [16] 28.0 0.196
VGG16 [14] 29.5 0.211
Our Network 30.8 0.231
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TABLE X. RESULTS COMPARSION BETWEEN KEYWORD AND AUDIO

MODELS
Modality Type Accuracy % | Average Fl-score
Audio only 30.8 0.231
Keyword only 383 0.344
Audio + Keyword 45.4 0.415

Extremity and Back activity than GCS, Face and Circulation
Control. Different factors can cause these variations:
imbalanced dataset and the noise level. As seen in Table II, the
number of utterances that include each activity decreased by
100 from Extremity to Circulation Control revealing an unequal
distribution between the activities. This imbalance caused the
neural network classifiers to get biased towards the high-
frequency activities more than low-frequency activities. As for
the noise level, Fig. 1 shows that GCS and Face had relatively
higher noise than other activities, which may impact the
prediction performance. The third column of Table XI shows
the F1-scores of each activity for the final model that fuses both
the audio stream and keywords. The scores were boosted for
almost all activities.

VII. CONCLUSIONS AND FUTURE WORK

We introduced a novel model for speech-based activity
recognition and empirically evaluated it on a trauma
resuscitation dataset. In our design, we extend the input features
of the audio stream by integrating keywords—single-words
from the most frequent words list associated with each activity.
The new structure showed a substantial increase in the accuracy
and the average Fl-score 3.6% and 0.184, respectively,
compared to the audio network alone. Due to the high word
error rate of the ASR output caused by the fast speaking rate,
concurrent speakers, and high ambient noise, our approach that
relies single keywords instead of the entire ASR generated
utterances is more efficient. We also analyzed the trauma
resuscitation audio constraints, such as activity recurrence,
noise level and most frequent words. In the evaluation results,
we found that the imbalance of the activity frequencies in the
trauma resuscitation, as well as the noise, reduced the accuracy
of the audio network. Also, we explored audio stream
preprocessing factors, such as different ways of combining the
audio channels and features types. We found that the static
MFSC features and the stereo channel configuration had the
best performance. We introduce a new audio network based on
the VGG model and provided an evaluation comparison with
various classification architectures. Our model with relatively
few layers, outperformed other classifiers .

Introducing the keyword features is promising, but further
experiments on integrating the word-spotting models with the

TABLE XI.  THE F1-SCORE FOR EACH ACTIVITY FOR DIFFERENT
MODALITIES
.. Fl-score

Activity Audio | Keyword | Audio + Keyword
Extremity 0.366 0.532 0.524

Back 0.448 0.375 0.582

GCS Calculation 0.124 0.314 0.313

Face 0.054 0.389 0.385
Circulation Control | 0.045 0.242 0.255
OTHER 0.351 0.212 0.429

current architecture are needed for a more accurate evaluation.
Also, we will evaluate more architectures for the fusion and
keyword modules.
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