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Abstract— We present a speech-based approach to recognize 

team activities in the context of trauma resuscitation. We first 
analyzed the audio recordings of trauma resuscitations in terms of 
activity frequency, noise-level, and activity-related keyword 
frequency to determine the dataset characteristics. We next 
evaluated different audio-preprocessing parameters (spectral 
feature types and audio channels) to find the optimal 
configuration. We then introduced a novel neural network to 
recognize the trauma activities using a modified VGG network 
that extracts features from the audio input. The output of the 
modified VGG network is combined with the output of a network 
that takes keyword text as input, and the combination is used to 
generate activity labels. We compared our system with several 
baselines and performed a detailed analysis of the performance 
results for specific activities. Our results show that our proposed 
architecture that uses Mel-spectrum spectral coefficients features 
with a stereo channel and activity-specific frequent keywords 
achieve the highest accuracy and average F1-score. 

Keywords—activity recognition, keyword, audio classification, 
speech processing, trauma resuscitation 

I. INTRODUCTION 
 Activity recognition of a dynamic medical process such as 

trauma resuscitation is challenging because of fast and 
concurrent work as well as a noisy environment. There are 
several current research approaches that rely on video, RFID, 
and signals from medical devices to identify the medical activity 
type and its stages [1]–[3]. However, to our knowledge, there 
have been no approaches that rely on the speech from verbal 
communication of the team. Video and RFID data cannot 
provide information to recognize certain activities. For instance, 
in the trauma resuscitation, Glasgow coma score calculation 
(GCS) and airway assessment (AA) activities rely on visual 
examination or talking to the patient and can be recognized only 

based on verbal communication. We asked three medical 
experts to rate different modalities (speech, video and RFID-
tagged object) as the best source for recognizing different 
ongoing resuscitation activities. In Table I, we averaged their 
ratings for four activities for which speech was rated the highest 
as a prediction source had they been asked to do activity 
recognition. In addition, a study [4] found that medical experts 
can predict resuscitation activities with 87% accuracy using only 
the verbal communication transcripts. Furthermore, previous 
studies showed that fusing the speech with the video, RFID or 
transcripts increases activity recognition accuracy [5], [6]. 

We present a speech-based activity recognition design for 
dynamic medical teamwork and empirical evaluation. Our 
approach is based on using one representative keyword from the 
input utterance to the activity recognition network, in addition 
to the audio stream. This keyword belongs to the most frequent 
words list that has been calculated for each activity type. In 
addition, to determine the challenges related to system design 
and dataset limitations, we determined the dataset characteristics 
related to the activities (e.g. activity frequency, noise-level and 
word frequency for each activity). Then, we analyzed different 
audio preprocessing parameters, such as feature types and input 
channels to find the best input feature setup. Using these 
findings, we designed an audio classification network based on 
the VGG model [7]. We evaluated our audio network and 

TABLE I.      ACTIVITIES FOR WHICH THREE MEDICAL EXPERTS RATED 
HIGHEST SPEECH AS THE MODALITY FOR ACTIVITY RECOGNITION 

Activity Audio (%) Video (%) RFID tag 
GCS Calculation 80 7.5 Non 

Airway Assessment 80 20 Non 
Medications 80 20 Partial 

CPR 65 45 Partial 

978-1-7281-5382-7/20/$31.00 ©2020 IEEE 

20
20

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 H

ea
lth

ca
re

 In
fo

rm
at

ic
s (

IC
H

I) 
| 9

78
-1

-7
28

1-
53

82
-7

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
H

I4
88

87
.2

02
0.

93
74

37
2

Authorized licensed use limited to: Rutgers University. Downloaded on October 15,2021 at 15:49:05 UTC from IEEE Xplore.  Restrictions apply.



compared its performance with several state-of-the-art 
classification networks using the trauma resuscitation dataset. 
Finally, we evaluated our keyword-based network design using 
different settings for the network layers. We found that a 
keyword-based approach to activity recognition performed 
better than relying on manually-generated transcripts. The 
results show that our new keyword-based design increased the 
accuracy and the average F1-score by 3.6% and 0.184 
respectively compared to our audio network alone. Our 
contributions are: 

 An analysis of trauma resuscitation dataset 
characteristics to determine the constraints related to 
speech-based activity recognition. 

 Audio preprocessing analysis to find the optimal 
parameters for designing the network. 

 Design of an audio classification network and 
comparison of its performance to the state-of-the-art 
classification models using a trauma resuscitation audio 
dataset. 

 A new keyword-based neural network for activity 
recognition that combines the audio stream and the most 
frequent words from the input transcript. 

The rest of the paper is organized as follows: Section II 
analyzes the dataset attributes. We describe the audio 
preprocessing in Section III and describe the model design in 
detail in Section IV. The experimental setup and the results are 
presented in Section V. We review the related work in Section 
VI. We conclude and propose future work in Section VII. 

II. RELATED WORK 
In recent years, activity recognition for medical purposes 

has been growing quickly. Most of the current research relies 
on the sensors and visual modalities such as the passive RFID 
and the videos, and there are few works based on audio and 
verbal information. 

RFID-based activity recognition considered an object-use 
detection problem. Early work compared different machine 
learning approaches as a binary classifier to predict the medical 
object motion that related to certain activities [8]. A different 
strategy to place the RFID tags showed an improvement in the 
activity recognition accuracy [9], [10]. Recently, employing a 
convolutional neural network (CNN) as a multi-class classifier 
outperformed the previous approaches [2]. Although, RFID has 
advantages such as being small, cheap and battery-free, its 
accuracy and scalability is limited by the radio noise and the 
limited number of activities that use taggable objects. 

Visual-based activity recognition exploits the visual data 
from RGB or depth camera to map the medical team movement 
and actions into activities. Early research used a single camera 
video recording with the Markov Logic Network model to 
predict the activities [1]. Recently, deep learning has been 
applied to visual-based activity recognition. The convolutional 
neural network has been applied for video classification using 
time-stacked frames with a slow fusion network to process the 
short-range temporal association of activities [11]. To address 
the short-range temporal limitation, a long short term memory 

network (LSTM) has been integrated with the VGG network 
with a region-based technique to generate an activity mask [12]. 
Despite the decent progress in utilizing virtual data, it has 
several limitations. The RBG camera raises the issue of patient 
privacy and, as with the RFID, not all activities can be predicted 
by visual tracking the medical team movement and actions. 

Text-based activity recognition employed the transcript of 
the verbal communication between the medical team to predict 
the activity type. Recent research applied a multi-head attention 
architecture [13] to predict a speech-reliant activity from the 
transcripts and the environmental sound [6]. The drawback in 
this approach is that obtaining the text requires additional 
automatic speech recognition (ASR). 

The audio modality was used as an auxiliary to other 
modalities in works [5], [6]. These papers analyzed the audio 
ability to improve the accuracy of the activity recognition. In [5], 
the authors built a multimodal system to recognize concurrent 
activities by using multiple data modalities: depth camera video, 
RFID sensors and audio recordings. Each modality processed 
and the features extracted by a separate convolutional neural 
network (CNN), and then all of them fused using Long Short-
Term Memory (LSTM) network to the final decision layer. They 
did not provide quantitative analysis to distinguish the 
difference between each modality performance. In [6], the 
authors created a multimodal transformer network to process the 
transcribed spoken language and the environmental sound to 
predict the trauma activities. The quantitative analysis showed 
the average accuracy 36.4 when using only audio, and the 
accuracy increased to 71.8 when using both modalities. 

III. DATASET COLLECTION AND CHARACTERISTICS 
 The dataset was collected during 86 trauma resuscitations in 

the emergency room at a pediatric teaching hospital in the U.S. 
Mid-Atlantic region between December 2016 and May 2017. 
We obtained approvals from the hospital’s Institutional Review 
Board (IRB) before the study. All data generated during the 
study were kept confidential and secure in accordance with IRB 
policies and Health Insurance Portability and Accountability Act 
(HIPAA). The audio data was recorded using two fixed NTG2 
Phantom Powered Condenser shotgun microphones. These 
microphones pointed in two locations where the key members 
of a trauma team normally stand. The recordings were manually 
transcribed and each sentence was assigned the activity label by 
trauma experts. In this section, we present an analysis of the 
following three characteristics of the dataset that can affect the 
activity recognition outcome: activity frequency, noise level and 
words frequency for each activity.   

The fine-grained activities have been grouped into 30 high-
level categories. Different categories occurred with different 
frequencies, which is the total number of utterances that include 
a given activity category for the 86 resuscitations cases (Table 
II). As seen, the activities are not distributed uniformly over the 
dataset utterances. Some activities occurred very frequently, 
while others were rare. There are several reasons for this 
variation. First, the length of conversation between the medical 
team is different for each activity. Some activities require 
several inquiries and reports, while other activities may have a 
single sentence to report the patient's status. Second, each patient 
required different evaluation and management activities based 
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on the patient injury, demographics and medical context. 
Finally, as mentioned above, the activity categories are a high-
level groups that sometimes include several low-level activities 
(Table III). Hence, when an activity group (e.g. Extremity 
Assessment) has several low-level activities, this tends to 
correspond to increased verbal communication of the medical 
team. As a result of this non-uniform activity distribution, it is 
hard to train a neural network model for the activities that had 
associated least-frequent utterances, even for activities that 
cannot be recognized from other modalities (e.g. Airway 
Assessment), because of insufficient data to train and evaluate 
the model. Therefore, we chose the top five activities that had 
associated highest-frequency utterances in Table II for the 
purpose of our experiments: Extremity, Back, GCS Calculation, 

Face, and Circulation Control. All other utterances that do not 
belong to these activity categories are assigned to the “OTHER” 
category. 

The second important dataset parameter that can influence 
the recognition performance is the ambient noise. The 
resuscitation environment presents several challenges to speech-
based activity recognition. Concurrent speakers (“cocktail 
party” problem), rapid speech and ambient noise adversely 
affect the speech quality and reduce activity recognition 
accuracy. To estimate the clarity of the medical team speech, we 
performed a subjective evaluation of the trauma resuscitation 
dataset. In this evaluation, we categorized the noisiness of audio 
recordings into three levels based on the human ability to 
understand the reports of patient vital signs and examination 
results. Three medical experts worked on this assessment 
listening to the 86 resuscitation cases. Each case had been 
labeled with one of the three noise categories (low, medium and 
high) and the average is shown in Table IV. As seen, about 65% 
of cases were labeled as low-noise, while about 19% and 16% 
were labeled as a medium- and high-level, respectively. Thus, 
about 35% in our dataset are either unintelligible or it is hard to 
understand what the medical team said during the resuscitation, 
which is challenging for the neural network performance. To 
study the effect of the ambient noise on the recognition of our 
selected activities, we calculated the number of noisy cases for 
each chosen activity (Fig.1). Fig. 1 shows the fraction of the 
resuscitation cases by their noise level for each activity. As seen, 
the noise is distributed almost uniformly among the activities in 
our experiment. Therefore, it is not expected to affect some 
activities more than others in terms of prediction accuracy. 

The keywords about patient medical status are the most 
important information of the team verbal communication in the 
trauma resuscitation, which sometimes indicates the activity 
explicitly (e.g. GCS in Fig. 2). To find the priority of the 
keywords with respect to the related activities, we first filtered 
most of the stop words. Then, we calculated the most-frequent 
words for each activity (Fig. 2). As seen, most of the shown 
keywords either have a direct relationship with the activity (e.g. 
“spine” for BACK) or have indirect meaning such as the body 
position (e.g. right or left for extremity). Also, we can see that 
there are several words that have no relationship with the 
activities, but they frequently occur as a part of the inquiry 
response (e.g. “okay”) or just part of a repeated sentence (e.g. 
“get”). However, our intuition is that as long as these words 
occur frequently during certain activity then these words are 
valuable for the neural network to predict the correct activity. 
Hence, our hypothesis is that these keywords can be combined 
with the audio stream and fed into the neural network to increase 
the activity recognition accuracy. Extracting these keywords can 
be done automatically using a word-spotting model. We believe 
that extracting such keywords is easier and more efficient than 

TABLE III.       FOUR HIGH-LEVEL ACTIVITIES AND THEIR RELATED LOW-
LEVEL ACTIVITES 

High-Level Activity Low-level Activity 

GCS Calculation 

Verbalized 
Motor Assess 
Verbal Assess 

Eye Assess 

Extremity Assessment 

Right Upper 
Left Upper 

Right Lower 
Left Lower 

Medications Medications 
Airway Assessment  Airway Assessment_ 

CPR 

Chest comp 
Shock 

Defib pads 
ID 

TABLE II.      RESUSITATION ACTIVITIES WITH MOST UTTERANCES  

# Activity Code Utterances 
1 Extremity E 836 
2 Back BK 701 
3 GCS Calculation GCS 610 
4 Face F 514 
5 Circulation Control CC 407 
6 Log Roll LOG 389 
7 C-Spine CS 380 
8 Medications MEDS 358 
9 Pulse Check PC 289 

10 Blood Pressure BP 256 
11 Ear Assessment EAR 246 
12 Eye Assessment EY 246 
13 Exposure Control EC 220 
14 Abdomen Assessment A 208 
15 Breathing Assessment BA 206 
16 Airway Assessment AA 197 
17 Head H 175 
18 Exposure Assessment EA 174 
19 CPR CPR 160 
20 Chest Palpation CP 150 
21 Breathing Control BC 137 
22 Pelvis Assessment PE 122 
23 LEADS LEADS 116 
24 Endotracheal Tube Endorsement ET 109 
25 Neck Assessment NECK 96 
26 Intubation I 50 
27 Genital Assessment G 44 
28 NGT NGT 30 
29 Bolus B 18 
30 Relieve Obstruction RO 13 
 Total activity-labeled utterances  7457 

TABLE IV.      A SUBJECTIVE EVALUATION OF NOISE FOR ALL 86 
RESUSCITATION CASES BY THREE RATERS 

Noise Level Number of Cases 
High 14 

Medium 16 
Low 56 
Total 86 
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recognizing the whole utterances using an ASR system. In this 
work, we evaluated the concept of combining given text 
keywords and the audio stream to improve activity recognition 
performance. Although evaluating a word-spotting model is not 
part of this work, we will consider that in our future research. 

IV. DATA PREPROCESSING AND CONFIGURATION 
Our main input data is the utterance-level audio stream. In 

addition, we considered using one keyword from the most-
frequent words list as an additional input. The keyword input is 
encoded as a one-hot one-dimensional vector, and the audio 
stream is converted into a spectrogram. Spectrogram 
representation reduces the dimension of the data and provides 
better information representation [14]. This section describes the 
data preprocessing and an analysis of two parameters variation 
effect on the activity recognition outcomes: feature type and 
input channels.  

 The keyword feature represented as a one-hot vector of size 
78 to represent the total 60 words list (10 keywords per activity). 
The one-hot vector size had been incremented by 0.3 to reduce 
the one-hot hash function collision probability. The audio 
recordings were sampled at 16MHz. We used 40 filter banks for 
the short-time Fourier transform with a 2048 window, 25% 
overlap and Hann window type. The audio stream utterances had 
different time lengths (Fig. 3). The average utterance time 
duration was 2.42 seconds with a standard deviation of 2.28. Our 
neural network required a fixed input length, which can be 
implemented in several ways. First, we could choose a small 
input size that most of the utterences have such as 1-2 sec or 2-
3 sec, but this would reduce the total number of samples. 
Second, we could specify a fixed length such as the average 
value and then truncate all the longer utterances, but our 
experiments showed that the lost information would 
significantly reduce the performance. Therefore, we resized all 
the utterance lengths to be 20 seconds by zero-padding the 
beginning and end of each utterance. The final feature map 

length was 600. Following the work [6], we segmented the input 
feature map into 10 frame sub-maps to avoid processing distant 
audio frames. The input sample shape for every single channel 
was (60, 40, 10). 

We tried two types of audio spectrogram feature: Mel-
frequency cepstral coefficients (MFCC) and Mel-frequency 
spectral coefficients (MFSC). MFCC feature extraction has been 
successfully applied in speech recognition [15] and audio 
classification [16]. However, MFCC includes the discrete cosine 
transform (DCT), which can compromise the locality, especially 
for the convolutional neural network (CNN) [17]. Therefore, 
several audio classification works used MFSC instead [18]. 
Furthermore, we analyzed the effect of adding the dynamic 
features: the first and second temporal derivatives (delta and the 
delta-delta coefficients, respectively). Adding the dynamic 
features can increase the accuracy and the robustness of speech 
recognition [19]. Table V shows the evaluation results for both 
feature types and their derivatives. The results show that MFSC 
features dominante over the MFCC with and without their 
derivatives. The reason is the locality issue introduced by DCT 
of MFCC transform mentioned above. Also, we noticed that 
adding the derivatives to the MFCC feature type slightly 
increased the accuracy, while adding the derivatives for the 
MFSC degraded the accuracy. Therefore, we concluded that the 
static MFSC is the best feature type for our dataset and 
architecture, and we used it in the next experiments. 

As mentioned in Section II, our audio data were recorded 
using two microphones. As a consequence, each audio recording 
included two channels. We combined the two channels in five 
different configurations (Table VI). In the first two 
configurations, we used only one of the channels. In the third 
setup, we doubled the dataset by feeding both channels as a 
distinct samples. In the last two setups, we used both channels 
together either by summing them up and averaging into a single 
channel, or by feeding them as a two-channels. Table VII shows 
the accuracy and the average F1-score for each configuration. 
The accuracy of the last two setups, when the two channels are 
combined, is higher than the first three setups when the input is 

 
Fig. 3.  Utterance-level audio length distribution. 
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Fig. 2.  The most frequent unique words for each activity.  
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TABLE V.       THE ACCURACY AND AVERAGE F1-SCORE FOR DIFFERENT 
FEATURES TYPES 

Feature type Accuracy Average F1-Score 

MFCC  Static 26.0 0.162 
 27.7 0.200 

MFSC  Static 30.8 0.231 
) 30.0 0.210 

 
Fig. 1.  Cases noise-level distribution for each activity. 
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one channel only. The reason is that the labels were transcribed 
based on both channels, so when one of input channels is 
omitted, some utterances may have wrong labels and 
consequently the neural network failed to predict the activity on 
the evaluation dataset. Combining the two-channels achieved 
higher accuracy. However, the average of the two channels had 
slightly lower accuracy than including both channels. Thus, in 
the next evaluation experiments, we considered the 
configuration that used the static MFSC feature type and feeding 
the network with both channels. 

V. MODEL ARCHITECTURES 
We considered the speech-based activity recognition as a 

multi-class classification problem. This section first presents a 
modified VGG [7] network for the audio branch, which we used 
to evaluate the configurations described in Section III. Then, we 
introduced a new architecture that fuses the output of the 
proposed audio network with the keyword network to predict the 
activities. 

A.  The Audio Network 
Previous neural network architectures designed for image 

processing have been adjusted successfully to work on audio 
processing [18], [20] such as VGG [7], ResNet [21] and 
DenseNet [22]. The VGG network shows a better performance 
compared to other architectures for audio classification 
applications [18], [23]. Because deeper CNN networks often do 
overfitting on small size datasets, we adapted the VGG network 
based on the trauma dataset (Fig. 4). Our modification included 
adding a batch normalization [24] to the convolutional neural 
networks (CNN) to speed up the training operation and assist 
the regularization. We also used the dropout [25] and Gaussian 
noise to prevent overfitting and increase generalization. For the 
activation function, we used rectified linear units (ReLUs) and 
the last classification layer included the global average pooling 
followed by a softmax activation function to calculate the 
prediction probabilities. 

B. Keyword and Fusion Networks 
As shown in Fig 5, we designed an architecture that consists 

of a keyword network, an audio network, and a fusion network. 
We used a fully-connected network (FCN) layer with the ReLU 
activation function to generate the keyword feature 
representation. We empirically evaluated different sizes and 

number of layers to find the optimal network configuration 
(Table VIII). The results show that using a single FCN layer 
with size 128 achieved the best performance. Increased number 
of FCN layers (deeper) or the number of FCN layer units 
(wider) decreased the performance. The fusion network 
concatenated the audio network output features (a) and the 
keyword module outputted features (w) into one vector (y): 

 y =  (1) 

where  and  are the fully connected network layers (FCN), 
and y is the output of the fusion, which includes another FCN 
and ReLU activation function to generate the high-level feature 

TABLE VI.      INPUT CHANNEL CONFIGRATION 

Input Configuration Number of Samples Input Dimension 
CH1 only 3557 (60, 40, 10) 
CH2 only 3557 (60, 40, 10) 

Unite CH1 with CH2 3557×2 (60, 40, 10) 
(CH1 + CH2)/2 3557 (60, 40, 10) 

Combine CH1 & CH2  3557 (60, 40, 20) 

Input 60 × 40 × 20 
5 × 5 CNN(128) + BN + ReLU 
3 × 3 CNN(128) + BN + ReLU 

2 × 2 Max-Pooling 
Gaussian-Noise(1.0) 

3 × 3 CNN(256) + BN + ReLU 
3 × 3 CNN(256) + BN + ReLU 

2 × 2 Max-Pooling 
Gaussian-Noise(0.75) 

3 × 3 CNN(512) + BN + ReLU 
Dropout(0.3) 

3 × 3 CNN(512) + BN + ReLU 
Dropout(0.3) 

 
3 × 3 CNN(512) + BN + ReLU 

Dropout(0.3) 
3 × 3 CNN(512) + BN + ReLU 

Dropout(0.3) 
2 × 2 Max-Pooling 

Gaussian-Noise(0.75) 
3 × 3 CNN(1024) + BN + ReLU 

Dropout(0.5) 
1 × 1 CNN(1024) + BN + ReLU 

Dropout(0.5) 
1 × 1 CNN(6) + BN + ReLU 

Gaussian-Noise(1.0) 
Global-Average-Pooling 

6-way Softmax 

Fig. 4. Our audio network architecture. BN: Batch Normalization, ReLU:
Rectified Linear Unit. 
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FCN (32)+ReLU

Softmax
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Audio 
Spectrogram

Keyword list 
(word-spotting) Audio Network

Fusion

Audiokeyword

 
 
Fig. 5.  Final model architecture after adding the keyword features. FCN: Fully
Connected Network, ReLU: Rectified Linear Unit 

TABLE VII.      THE ACCURACY AND AVERAGE F1-SCORE FOR 
DIFFERENT INPUT CHANNELS CONFIGURATIONS 

Input channels Accuracy Average F1-score 
CH1 only 22.2 0.106 
CH2 only 22.9 0.121 

United CH1 with CH2 22.6 0.115 
(CH1 + CH2)/2 30.2 0.217 

Combined CH1 & CH2 30.8 0.231 
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representation for the final softmax layer classification (Fig. 5). 
We compared different fusion methods such as attention, but it 
did not perform well due to audio and keyword missalignment 
issues. This issue will be addressed in our future work.  

VI. EXPERIMENTS SETUP AND RESULTS 
 We trained and evaluated the proposed model on the 

trauma resuscitation dataset. We used the utterances from the 
five most frequent activities and the total number of utterances 
was 3557. The dataset was randomly shuffled and split into 
80% and 20% as a training set and a testing set, respectively. 
Each sample was considered independently, which contains an 
utterance-level audio stream, the related one keyword, and the 
correspondence activity label assigned by the trauma experts. 
Due to the small data size, we applied the fivefold cross-
validation. We trained all networks together as end-to-end 
using early fusion approach. We use Adam [26] optimization 
with 0.001 as the learning rate and categorical crossentropy loss 
function. Each experiment took about two hours. We 
implemented all the experiments using Keras API of the 
TensorFlow library [27] with two Nvidia GTX 1080 GPUs.  

 Fig. 6 shows the diagrams of possible architectures for 
speech-based activity recognition. The first design (Fig. 6 (a)) 
integrates an automatic speech recognition (ASR) module with 
a text-based activity recognition (TAR) module. The overall 
performance of this design highly depends on both modules. 
Although the previous TAR model [6] achieved 69.1 accuracy 
and 0.67 average F1-score on a resuscitation dataset, their 
model used the human transcripts and assumed the ASR system 
can achieve human parity. Unfortunately, our ASR 
experimental results showed a high word error rate (WER) on 
the resuscitation dataset using two different architectures: 
attention-based seq2seq [28] and N-gram [29], which achieved 

WER of 100.3 and 75.8, respectively. We believe that the poor 
audio quality caused by the distant-talking, ambient noise, fast 
speaking rate, and concurrent speakers reduced the overall 
activity recognition performance, which made this model 
infeasible. The second architecture predicts the activity type 
directly from the audio (Fig. 6 (b)). Our evaluation result 
showed that the model achieved 30.8% in accuracy and 0.231 
in average F1-score. Compared with the above two 
architectures, the proposed model (shown in Fig. 6 (c)) 
achieved 45.4 in accuracy and 0.415 in F1-score, which 
outperformed the previous approaches that used the audio 
directly or required the full utterance transcript. This 
comparison result demonstrates the strength of using the 
keyword as an additional feature to the speech-based activity 
recognition architecture. 

We further compared our audio network with other state-of-
the-art classification architectures such as VGG16-19 [7], 
DenseNet [22], ResNet [21] and NASNetMobile [30] (Table 
IX). The result showed that our audio network outperformed 
others in terms of accuracy and the average F1-score by a range 
of 1.3% – 8.9% and 0.02 – 0.129, respectively. This is because 
the general deep architectures usually suffer from overfitting 
when applied to the audio processing [18].  

We made a quantitative analysis by comparing the 
performance of the three models using different inputs: audio-
only, keyword only, and both audio and keyword (Table X). 
The result showed that using both audio and keyword features 
outperformed using audio-only or keyword only, which 
confirmed our hypothesis that keywords can boost the 
performance of the audio-only model, but not to replace it.  

Table XI shows the F1-score for each activity by different 
modalities. The audio network had better performance on 

TABLE IX.      RESULTS COMPARSION BETWEEN OUR NETWORK AND 
OTHER CLASSIFICATION MODELS 

Classification Models Accuracy % Average F1-Score 
NASNetMobile [24] 21.9 0.102 

VGG19 [14] 27.7 0.182 
DensNet [17] 28.2 0.190 
ResNet [16] 28.0 0.196 
VGG16 [14] 29.5 0.211 
Our Network 30.8 0.231 

Automatic Speech 
Recognition (ASR)

Text-Based 
Activity Recognition

Audio Stream

Activity Type

Speech-Based 
Activity Recognition

Audio Stream

Activity Type

Speech-Based 
Activity Recognition

Audio Stream

Activity Type

Keyword list 
(word-spotting)

a. b. c.  

Fig. 6. Speech-based activity recognition proposed architectures. a. An architecture that uses the predicted transcripts from automatic speech recognition. b. 
An architecture that predicts the activity type directly from the audio. c. Same as in (b) with an additional one keyword input obtained from word-spotting. 

TABLE VIII.      RESULTS COMPARSION BETWEEN DIFFERENT 
KEYWORKD AND FUSION MODULES LAYER STRUCTURE 

Audio + Keyword Accuracy %  Average F1-Score  
(1-layer, 64) 44.9 0.412 

Deeper (2-layers, 64) 44.9 0.409 
Deeper (2-layers, 128) 44.8 0.409 

Wider (1layer, 256) 44.7 0.409 
(1-layer, 128) 45.4 0.415 
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Extremity and  activity than GCS,  and 
. Different factors can cause these variations: 

imbalanced dataset and the noise level. As seen in Table II, the 
number of utterances that include each activity decreased by 
100 from Extremity to  revealing an unequal 
distribution between the activities. This imbalance caused the 
neural network classifiers to get biased towards the high-
frequency activities more than low-frequency activities. As for 
the noise level, Fig. 1 shows that GCS and  had relatively 
higher noise than other activities, which may impact the 
prediction performance. The third column of Table XI shows 
the F1-scores of each activity for the final model that fuses both 
the audio stream and keywords. The scores were boosted for 
almost all activities. 

VII. CONCLUSIONS AND FUTURE WORK 
We introduced a novel model for speech-based activity 

recognition and empirically evaluated it on a trauma 
resuscitation dataset. In our design, we extend the input features 
of the audio stream by integrating keywords—single-words 
from the most frequent words list associated with each activity. 
The new structure showed a substantial increase in the accuracy 
and the average F1-score 3.6% and 0.184, respectively, 
compared to the audio network alone. Due to the high word 
error rate of the ASR output caused by the fast speaking rate, 
concurrent speakers, and high ambient noise, our approach that 
relies single keywords instead of the entire ASR generated 
utterances is more efficient. We also analyzed the trauma 
resuscitation audio constraints, such as activity recurrence, 
noise level and most frequent words. In the evaluation results, 
we found that the imbalance of the activity frequencies in the 
trauma resuscitation, as well as the noise, reduced the accuracy 
of the audio network. Also, we explored audio stream 
preprocessing factors, such as different ways of combining the 
audio channels and features types. We found that the static 
MFSC features and the stereo channel configuration had the 
best performance. We introduce a new audio network based on 
the VGG model and provided an evaluation comparison with 
various classification architectures. Our model with relatively 
few layers, outperformed other classifiers .  

Introducing the keyword features is promising, but further 
experiments on integrating the word-spotting models with the 

current architecture are needed for a more accurate evaluation. 
Also, we will evaluate more architectures for the fusion and 
keyword modules. 
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