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Fig.�1. System�overview.�The�feature�pre­computing�module�extracts�
spatio­temporal�features�from�the�video�inputs.�The�activity�prediction�
module� uses� the� extracted� features� to� make� concurrent� activity�
predictions.�A�prediction�filtering�module�finally�smoothens�the�model�
predictions.�The�example�frame�is�from�an�actual�trauma�resusciation�
with�faces�blured�for�privacy.�
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Abstract We� introduce� a� video­based� system� for�
concurrent�activity� recognition�during� teamwork� in�a� clinical�
setting.�During�system�development,�we�preserved�patient�and�
provider� privacy� by� pre­computing� spatio­temporal� features.��
We� extended� the� inflated� 3D� ConvNet� (i3D)� model� for�
concurrent� activity� recognition.� For� the� model� training,� we�
tuned� the� weights� of� the� final� stages� of� i3D� using� back­
propagated� loss� from� the� fully­connected� layer.�We� applied�
filtering�on�the�model�predictions�to�remove�noisy�predictions.�
We� evaluated� the� system� on� five� activities� performed� during�
trauma� resuscitation,� the� initial� management� of� injured�
patients� in� the� emergency�department.� �Our� system� achieved�
an�average�value�of�74%�average�precision�(AP)�for�these�five�
activities�and�outperformed�previous�systems�designed�for�the�
same� domain.�We� visualized� feature� maps� from� the� model,�
showing�that�the�system�learned�to�focus�on�regions�relevant�to�
performance�of�each�activity.�

Keywords concurrent activity recognition, clinical
teamwork, video understanding

I. INTRODUCTION�
We� introduce� a�video­based� activity� recognition� system�

for� recognizing� concurrent� activities� during� clinical�
teamwork�(Fig.�1).�Following�the�success�of�deep�learning�in�
image� recognition� [1][2][3][4],� deep� neural� networks� have�
been� applied� to� the� problem� of� recognizing� activities� from�
videos� [5][6][7][8].�Requirements�of�an�activity� recognition�
system� in� this�domain�are�different�from�general�systems� in�
four� aspects.� First,� the� system� should� give� real­time�
predictions� during� a� relatively� long� interval� that� contains�
many� activities,� instead� of� providing� a� single� classification�
for� each� video.� Second,� the� system� needs� to� be� privacy�
preserving�because�RGB�videos�contain�faces�of�the�patients�
and�providers.�Third,� the�model� should�produce�multi­label�
outputs�for� the�simultaneously�performed�activities.�Finally,�
the�system�needs�to�perform�well�in�a�noisy�setting�in�which�
the� participants� or� objects�may� be� intermittently� occluded.�
The�noise� in� the�predictions�needs� to�be� removed� to�merge�
the�correct�predictions�into�activity�segments.�We�solved�the�
first�two�problems�using�transfer�learning�and�by�segmenting�
the�long�video�into�several�clips�and�feeding�these�clips�into�a�
pre­trained� inflated� 3D� ConvNet� (i3D)� network� [5],� a� 3D�
structure� for� extracting� spatio­temporal� features.� We�
exported�the�pre­computed�spatio­�temporal�features�from�the�
third� stage�output�of� the� i3D� for� further�analysis� (Fig.1� left�
side).�These� features�were�used� for�model� training.�Feature�
extraction� is� irreversible,�allowing�privacy�preservation.�For�
concurrent� activity� recognition,� we� modified� the� output�
activation� function� to� enable� the�model� for� the�multi­label�
output.�To�eliminate�noisy�predictions�(Fig.�1,�right�side),�we�
applied� a� filtering� algorithm� that� averages� the� values� in� a�
moving�window�to�smooth�out�the�predictions.��

We�evaluated�our�system�on�five�activities�during�trauma�
resuscitation.� Trauma� is� the� leading� cause� of�mortality� in�
children�and�young�adults.�The�initial�resuscitation�of�injured�
patients� is� critical� for� identifying� and� managing� life­
threatening�injuries.�To�reduce�errors�in�this�setting,�real�time�
decision�support�has�been�evaluated�as�a�method�for�reducing�
errors.�Automatic�activity�recognition�is�needed�to�align�this�
support�with� current� task�performance.�The� system� that�we�
developed� for� activity� recognition� achieved� an� average� of�
74%�mAP�on� these�five�trauma�resuscitation�activities.�This�
result� was� better� than� achieved� in� previous� activity�
recognition� systems� in� this� domain.� Our� contributions� are�
summarized�as:�

We� extended� the� an� activity� recognition� algorithm�
(i3D)� [5]� to� solve� the� four� problems� in� our� domain�
(real­time�prediction,�privacy�preservation,�concurrent�
activities,�and�noisy�predictions).�

We� evaluated� our� activity� recognition� system� on�
using�actual�videos�of� trauma� resuscitation,� showing��
better�performance�than�previous�systems.�

The� rest�of� the�paper� is�organized�as�follows.�Section� II�
reviews� related� work.� Section� III� describes� our� system.�
Section� IV�presents� the�data� collection� and� implementation�
details.�Section�V�analyzes�the�experimental�results.�Section�
VI�concludes�the�paper�and�includes�proposed�future�work.��

II. RELATED�WORK�
� Medical� Activity� Recognition� using� Wearable�
Sensors:�Activity�recognition�system� in�healthcare�has�been�
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studied� for� several� decades.� Some� systems� have� used�
wearable�sensors�[9][10][11].�For�example,�information�from�
3�axial�accelerometers�has�been�used�as�features�to�recognize�
activities� in� the�operating� room� [9][10].� �Surgical� activities�
also�have�been�recognized�using�the�locations�of�objects�and�
medical� providers� using� RFID� tags� [11].� � Sensor­based�
systems� faces� challenges� for� tracking� medical� workflow�
because� sensors� may� interfere� with� work� and� require�
maintenance�and�operation�by�providers.�The�additional�time�
required�for�placing�sensors�before�starting�the�work�may�be�
unacceptable� in� time­sensitive� settings.� The� position� or�
properties�of�sensors�also�may�interfere�with�the�performance�
of�clinical�activities.��

� Medical�Activity�Recognition�using�Fixed�Sensors:�To�
address�the�issues�of�wearable�sensors,�some�systems�rely�on�
fixed� sensors.� For� example,� medical� activities� have� been�
tracking� by� using� passive�RFID� tags� on� the�medical� tools,�
using�the�received�signal�strength�indication�(RSSI)�collected�
from� the� RFID� readers� as� features� for� activity� prediction�
[13][14].� Speech� obtained� from� fixed�microphone� also� has�
been� used� as� input� for� recognizing� trauma� activities� [15].�
These� systems� rely�on� fixed�position� detectors� in� the� room�
and� do� not� require� the� actions� of� providers� but� have�
limitations�on�achievable�performance.�RFID­based�systems�
may� require� prior� tagging� of�medical� tools� and� cannot� be�
used�for�activities�that�do�not�involve�using�taggable�objects.�
The�use�of� speech� for� activity� recognition� is�promising�but�
limited� by� the� cost� and� time� associated� with� manually�
generating� training� transcripts� and� has� challenges� for�
implementation� in� noisy� settings� [15].� Extracting�
representative�features�from�raw�data�remains�an�important�is�
challenge�for�these�systems�using�fixed�sensors.�

� Medical� Workflow� Analysis� using� Vision:� Several�
systems�have�used�video�for�recognizing�medical�workflow.�
For� example,� laparoscopic� and� ocular� surgical� videos� have�
been� used� for� recognizing� surgical� phases� [23][25][26].�
These�previous�works�used�videos�focused�only�on�specific�
regions�(e.g.,�laparoscopic�view,�microscope�view)�in�which�
the�background�was�usually�stationary.�In�contrast�to�activity�
recognition�during� trauma� resuscitation,� these�models� focus�
on�localized�regions.�During�trauma�resuscitation,�more�than�
ten� providers� are� moving� in� the� scene� and� performing�
different�activities.�A�model�for�trauma�resuscitation�needs�to�
extract� features� correlated� to� these� activities� in� a� noisy�
environment.�

� General� Activity� Recognition:� Activity� recognition�
systems� have� proliferated� in� recent� years� because� of� the�
availability� of� deep� learning� algorithms� and� a� growing�
experience� in� their�application� for� image� recognition.�Many�
systems�have�applied�deep�neural�network�to�the�problem�of�
general� activity� recognition� (e.g.,�Kinetics­400� [16],�UCF­
101�[17],�and�Something­Something�[18]).�For�example,�the�
inflated� 3D� ConvNet� (i3D)� [5]� and� the� non­local� neural�
network�[6]�use�spatio­temporal�structures�that�have�achieved�
state­of­the­art� performance� on� Kinetics­400,� a� large� scale�
video� sets� includes� 400� daily� life� and� sports� activities.�
Temporal�segment�networks�(TSN)�[7]�and� temporal­spatial�
mapping� (TSM)� [8]� have� been� used� on� Something­
Something,� a� large� collection� of� videos� shows� human�
performing� actions�using�everyday�objects.�These�networks�
randomly� segment� the�videos�and�extracting� the� long­range�
spatio­temporal� features� by� fusing� the� branches� from�
different� video� segments.� These� systems� work� on� general�

activity�recognition�and�cannot�be�directly�used�for�medical�
activity� recognition� because� of� the� challenges� of� real­time�
prediction,�privacy�concerns,�concurrent�activities,�and�noisy�
data.�Depth�videos�have�been�used�instead�of�RGB�videos�to�
address� privacy� concerns� but� achieved� only� moderate�
performance�because� the�depth�videos�are�gray­scale�videos�
and� lack� sufficient� features� for� recognizing� complex�
activities�[27].��

III. METHODOLOGY�
Given�a�video�of�a�trauma�resuscitation�case,�our�system�

recognizes�medical�activities�in�three�steps:�

A� feature� pre­computing� (Fig.� 2,� left)� module�
extracts�spatio­temporal�features�by�feeding�the�video�
clips� into�a�pre­trained� i3D�network�and�yielding� the�
output�from�the�third�stage�of�i3D.��

An�activity�prediction�(Fig.�2�middle)�module�uses�
the� last� two�stages�of� the� i3D�network� that� takes� the�
pre­computed� features� for� extracting� high­level�
features�and� tunes� the�weights�back­propagated�from�
the� fully­connected� layer� for� making� activity�
predictions.�

A�prediction�filtering�(Fig.�2�right)�module�smooths�
the�model�outputs�to�eliminate�the�noisy�predictions.�

A. Feature�Pre­computing�
Videos� of� trauma� resuscitation� includes� the� faces� of�

patients� and� providers.� Feature� pre­computing� is� used� to�
remove� identifying� facial� information� before� training� and�
testing� the�model.�We� feed� the�videos� into� the� inflated�3D�
ConvNet�(i3D)�[5]�pre­trained�on�Kinetics­400�data�[16]�and�
obtain� the� third� stage � output� of� the� i3D� as� the� feature�
representation� of� the� video� frames.� This� method� further�
improves�the�model�by�loading�the�pre­trained�weights�from�
a� large­scale� activity� recognition�dataset� instead�of� training�
only�on�available�data.�

1) Video�Pre­processing:�Before�feeding�the�videos�into�
the� i3D� network� for� feature� pre­computing,� we� pre­
processed�the�videos�to�obtain�the�required�input�dimensions�
of� the� i3D� network.� The� required� dimension� for� the� i3D�
input� ×224×224× which� takes� 64� continuous�
frames� as� an� input� instance� with� each� frame� being�

×224×3. We� segmented� the�video� for�each�case� into�
clips�of�64�contiguous�frames�and�resized� the�frames� to� the�
dimensions�required�by�the�i3D.��
2) Inflated� 3D� ConvNet� (i3D):� Inflated� 3D� ConvNet�

(i3D)� is� a� structure� for� extracting� spatio­temporal� features,�
which� works� on� video� understanding� tasks,� e.g.,� activity�
recognition� and� video� classification� [5].�The�main� idea� of�
the�i3D�is�to�extend�an�existing�2D�image�recognition�model��
with� the� time�dimension� for� successive� frames�using� a� 3D�
ConvNet.�The� i3D�model�extended� the� inception�v1�[3]�2D�
recognition�model�as:�

ଶ݂(݅, ݆) = ∑ ∑ ݆)ݔ + ℎ, ݅ + (ݓ ∙ ௖ܹଶௗ(ℎ,ݓ)௪௛
ଷ݂(݇, ݅, ݆) = ∑ ∑ ∑ ݇)ݔ + ,ݐ ݆ + ℎ, ݅ + (ݓ ∙ ௖ܹଷௗ(ݐ, ℎ,ݓ)௪௛௧
where� ଶ݂(݅, ݆) �denotes� each� feature� element� after� the� 2D�
convolution� filter� ௖ܹଶௗ�is� applied�on� the� input� frame.�After�
extension�to�the�3D�ConvNet,� ଷ݂(݇, ݅, ݆)�denotes�each�feature�
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Fig.�2. Detailed� composition� of� each�module.� The� pre­computing�module� extracts� features� using� the� first� three� stages� from� the� pre­trained� i3D�
network.�The�``incept''�element�in�the�diagram�is�the�inception�block�in�Inception�v1�[3]�after�extended�into�3D.�The�pre­computed�features�are�then�fed�
into� the� last� two� stages� in� the� i3D�and� the� fully­connected� layer� for�activity�prediction.�The�prediction� filtering�module� applied�an�average� filter� to�
smooth�the�model�predictions.�

i3D
Stage 1

Feature Pre-computing

fc

Prediction Filtering

Video Clip 7 x 7 x 7
Conv

1 x 3 x 3
Pool

1 x 1 x 1
Conv

3 x 3 x 3
Conv

1 x 3 x 3
Pool

1 x 3 x 3
Pool

InceptionInception

Inception Inception Inception

2 x 2 x 2
Pool Inception Inception

Inception Inception 2 x 7 x 7
Pool

filter prediction
i3D

Stage 2

i3D
Stage 3

i3D
Stage 4

i3D
Stage 5

Activity Prediction

element�produced�by�applying�3D�convolution�filter� ௖ܹଷௗ�on�
the� input�video� clip.�The� spatio­temporal� features� extracted�
by�3D�ConvNet�represent�salient�motion� in� the� input�clip�of�
the�region�that�is�representative�of�each�activity.�

The�feature�pre­computing�used�this�i3D�model�that�was�
pre­trained� on� Kinetics­400� [16],� a� large­scale� activity�
recognition�dataset� that� includes�more� than�200,000�videos.�
Each�video�clip�was�fed�into�the�pre­trained�i3D.�The�output�
of� the� third� stage�was� exported� for� training� and� evaluating�
the�model.� The� features� from� the� third� stage� contain� less�
information� than� those� from� lower� stages� (first� and� second�
stage)�because�of� information� loss� in� the�max­pooling� layer�
at� the� end�of� each� stage.�We� chose� the� third� stage� features�
because� they� require� less� memory� storage� during� the�
exporting�process�and�do�not� lead� to�performance� loss.�Our�
system� is� privacy­preserving� by� using� these� pre­computed�
features� instead� of� the� original� videos� because� the�
convolution�operations�and�nonlinear�functions�in�i3D�model�
are� irreversible.�The�output� from� the� third� stage�of� the� i3D�
has�already�passed�more� than�15�convolution�and�nonlinear�
functions.�

B. Activity�Prediction�
We� next� applied� the� last� two� stages�of� the� i3D� (Fig.�2,�

Stages�4�and�5)� that� takes� the�pre­computed� features�as� the�
input�for�extracting�high­level�features�corresponding�to�each�
activity.�The�weights�of� these� i3D�stages�can�be� tuned�with�
the�loss�propagated�from�the�fully­connected�layer�(Fig.�2,�fc)�
that� is� applied� on� the� output� of� the� pooling� layer� (Fig.� 2,�
Stage�5).�The�fully­connected�layer�is�represented�as:�

� � ,݅)௢௨௧ݕ ݆) = )ߪ ଷ݂ௗ ∙ ௙ܹ௖ + ܾ)� (3)�

whereݕ�௢௨௧ �is�the�output�of�our�model�for�activity�prediction�
andߪ��is� the� activation� function.� ௙ܹ௖ �and�ܾ �are� the�weights�
and� bias� of� the� fully­connected� layer,� respectively.�
Reviewing� the�ground� truth�data� (activity� labels),�we� found�
that�the�team�activities�frequently�overlapped�and�that�several�
activities�were�performed�concurrently.�To�enable�the�model�
provide�multi­label�outputs,�we�used�the� sigmoi �function,�
which� constrains� the� values� of� the� output� neurons� to� the�
range�[0,�1].� softmax �function�because�
it�normalizes� the�neuron�output�values� to� sum� to�one.�With�

this�function,� the�strongest­predicted�activity�would�exclude�
any� concurrent� activities� for� which� the� predictions� are�
weaker.��

C. Prediction�Filtering�
After� the� model� made� activity� predictions� for� all� the�

video�clips,�we�compared�the�results�to�the�ground�truth�and�
found� that� the�model� predictions�were� noisy� and� incorrect�
during� some� intervals.�These�errors�were�mainly�caused�by�
visual�occlusion,�when� the� individuals�or�objects� related� to�
the� activity�were�blocked� from� view.�When� the� coders� are�
labeling� the�ground� truth,� their�knowledge�of� the�process� is�
used�to�code�despite�these�occlusions.�A�solution�was�needed�
that�did�not�depend�on� this�human� interaction.�To�eliminate�
these�errors,�we�applied�a�filtering�algorithm�that�smooths�the�
model� results� by� averaging� the� point­predictions� of� each�
activity�over�a�moving�window�as:�

� ,ܿ)௢௨௧ᇱݕ ܽ) =  ଵேೌ ∑ ܿ)௢௨௧ݕ + ݊, ܽ)ಿమೌ௡ୀିಿమೌ � (4)�

whereݕ�௢௨௧ᇱ(ܿ, ܽ)�is�the�smoothed�prediction�for�activity�ܽ�in�
the�ܿ௧௛�video�clip�and� ௔ܰ�is� the�size�of� the�moving�window.�
Each� activity�was� smoothed� using� different�window� sizes.�
We� used� the� average� duration� of� each� activity� from� the�
ground� truth� to�set� the�size�for�each�moving�window�(Table�
I).�We�used�the�average�duration�of�the�activity�as�its�window�
size� to� ensure� that� the� activity� prediction� continues� at� its�
specific� duration.� The� evaluation� results� errors� were�
eliminated� achieved� around� 7%� mean� average� precision�
(mAP)�enhancement�(Table�II,�last�row).��

IV. DATA�COLLECTION�AND�IMPLEMENTATION�DETAILS�
To�develop�and�test�our�system,�we�used�videos�from�230�

trauma� resuscitation� cases:� 185� (80%)� for� training� and� 45�
(20%)�cases�for�evaluation.�The�videos�were�recorded�using�
a� recording� system� that� includes� a� camera�mounted�on� the�
ceiling� over� the� patient� bed.� The� system� starts� recording�
when�motion� is�detected� in� the�room.�The�videos�are�stored�
on� a� secure� server� in� the� hospital.� The� use� of� videos� for�
research� purposes� has� been� approved� by� the� Institutional�
Review�Board� at� the�hospital.�The� average� length� of� these�
video�was�25�minutes,� ranging� from�16� to�35�minutes.�The�
recording� speed� is� 30� frames� per� second� (fps)� with� a�

Authorized licensed use limited to: Rutgers University. Downloaded on October 13,2021 at 17:29:55 UTC from IEEE Xplore.  Restrictions apply.



TABLE�I.� ACTIVITY�AVERAGE��DURATIONS�

Activity�Name�
Methods�&�AP�

i3D i3D + filter

c­spine�stabilization�(CS)� 0.88� 0.92�

manual�blood�pressure�(MBP)� 0.79� 0.85�

oxygen�administration�(OX)� 0.74� 0.82�

intravenous�catheter�placement�(IV)� 0.26� 0.35�

back�assessment�(BK)� 0.66� 0.75�

mean�average�precision�(mAP)� 0.67� 0.74�

TABLE�II.� MODEL�EVALUATION�IN�AVERAGE�PRECISION�

Activity�Name� Duration�(avg/std)� Freq�

c­spine�stabilization�(CS)� 248.6/127.2� 0.45�

manual�blood�pressure�(MBP)� 32.3/12.0� 0.02�

oxygen�administration�(OX)� 119.4/55.7� 0.09�

intravenous�catheter�placement�(IV)� 131.5/46.1� 0.07�

back�assessment�(BK)� 43.9/32.4� 0.06�

resolution� of� 640×480� pixels.� The� ground� truth� data� was�
labeled�using�manual�video�review.�Reviewers�are�trained�in�
ground� truth�coding,�only�coding�videos�used� for� this�study�
after� their� coding� performance� was� validated.� A� data�
dictionary� was� used� to� define� more� than� 200� activities�
relevant�to� trauma�resuscitation.� �For� this�study,�we�focused�
on�five�medical�activities� that�are� frequently�performed�and�
are�clinically�important�during�trauma�resuscitations:�cervical�
spine�(c­spine)�stabilization�(CS),�obtaining�a�manual�blood�
pressure� (MBP),�administration�of� face�mask�oxygen� (OX),�
placement�of�an�intravenous�catheter�(IV),�and�assessment�of�
the�back� for� injuries� (BK).�The� duration� of� these� activities�
varied�from�14�s�to�248�s�(Table�I).��

We�implemented�our�model�(Fig.�2)�using�Keras�with�the�
TensorFlow�backend.�The�i3D�network�[5]�was�implemented�
based� on� the� published� source� code� [19].�We� used� batch�
normalization� [20]� and� ReLU� activation� in� all� the�
convolution� layers.�We� used� binary� cross­entropy� loss� and�
the�SGD�optimizer�with�an�initial�learning�rate�(LR)�1e­4�and�
manually�decreased�the�LR�to�1e­5�after�the�training�loss�was�
saturated.�Dropout�was�used� after� the� fully­connected� layer�
to� avoid� overfitting� [21].�We� used� 12� video� clips� in� each�
batch� and� trained� the�model� using� 3� RTX� 2080� Ti�GPUs�
(four�for�each�GPU)�for�50k�iterations�(40k�with�LR�1e­4�and�
10k� with� LR� 1e­5).� The� model� took� about� 24� hours� to�
converge.�

V. EXPERIMENT�
We� evaluated� and� analyzed� the� performance� of� our�

system.�Medical�experts�evaluated�potential�sources�of�poor�
performance�by�reviewing�the�corresponding�source�videos.�
We� also� compared� our� system� performance� with� two�
systems�previously�developed�for�activity�during�recognition�
trauma�resuscitation�[14][15].�

A. Evaluation�Metrics�
Because� of� activity� concurrency,� we� used� average�

precision� (AP)� as� an� evaluation� metric� instead� of� other�
metrics,� such� as� accuracy,� precision,� recall,� and� F1� score.�
Accuracy� is�used�for�evaluating�category�classifiers,�but�our�
model� for� concurrent� activity� recognition� produces� multi­
label� outputs.� For� the� binary� evaluation�metrics� (precision,�
recall,� and� F1­score),� an� arbitrary� threshold� is� needed� to�
convert� the� predicted� probabilities� into� binary� predictions.�
We� used� average� precision� (AP)� because� it� has� good�
discrimination� and� stability� when� used� to� evaluate� multi­
label� classification� systems� without� using� arbitrary�
thresholds�[22].�The�AP�is�the�average�of�the�precision�values�
when�thresholding�the�predictions�using�the�confidence�score�
from�the�kth�sample�(ranked�by�confidence�score):ܲܣ�� =  ଵ|௒శ|∑ ௞∈௒శ (௞ܴ)݊݋݅ݏ݅ܿ݁ݎܲ � � (5)�

where�ܻା �is� the� number� of� positive� ground� truth� for� this�
activity�and�ܴ௞�is�predictions�based�on�a� threshold�using� the�
confidence�score�of�݇௧௛�sample.�
B. Results�Analysis�
� Based� on� the� AP� score� for� each� activity,� our� system�
perform�well�when�predicting�four�activities�(CS,�MBP,�OX�
and� BK)� because� the�model� can� capture� features� of� these�
objects� related� to� their� corresponding� activities� from� the�
RGB�videos.�For�example,�during�manual�BP�measurement,�
a�large�blood�pressure�measuring�instrument�was�placed�near�

Fig.�3).�When� the�activity�oxygen�was�administered,�a�non­�
rebreather�mask�
rectangle� in� the� top� third�diagram�of�Fig.�3).�These�objects�
are� accurately� detected� by� the�model.�C­spine� stabilization�
(CS)� achieved� the� best�AP� score� among� the� four� activities�
detected,�likely�because�of�a�high�frequency�of�performance.�
In� a� classification� problem,� classes� having� more� positive�
labels� will� usually� achieve� higher� AP� scores.� The�manual�
blood�pressure�(MBP)�achieved�better�performance� than� the�
other� two� activities� although� having� lower� frequency.� For�
this�activity,� the� tools�used� for�blood�pressure�measurement�
are� visually� obvious� and� seldom� occluded� in� the� video�
recordings.��

� Using�mAP�(Table�II,�last�row),�prediction�filtering�led�to�
a�7%�higher�AP�than�results�without�using�filtering�for�each�
activity.� We� reviewed� the� model� predictions� and� their�
corresponding� ground� truth.� Important� performance� gains�
resulted� from� eliminating� noisy� predictions.� The� model�
incorrectly�predicted�activities�when� the� relevant� regions�of�
the�video�were�occluded,�a�finding�discovered�by�reviewing�
corresponding� RGB� videos.� The� filter� that� averages� the�
predictions� in� a�moving�window� eliminated�most� of� these�
errors�unless�the�occlusion�was�long�(i.e.,�larger�than�half�of�
the�duration�of�the�activity�in�TABLE�I).�

� The� system� achieved� the� lowest� performance� for� IV�
placement.� We� reviewed� the� model� predictions� and� their�
corresponding� ground� truth� for� this� activity� and� found� that�
the�model�predictions�correctly�matched� the�ground� truth� in�
some� cases.�We� asked� coders� to� review� the� videos� in� the�
testing� cases� in� which� the� model� performed� well� to� find�
possible� explanations� for� these� results.� IV� placement�
instances� were� labeled� by� coders� as� starting� when� a�
tourniquet�was� placed� on�
when�the�tourniquet�is�removed.�The�model�did�not�perform�
well� on� in�most� of� the� cases� because� the� tourniquets�were�
occluded� by� the� providers blankets� covering�
the� patient� after� being� applied.� For� other� activity� types,�

Authorized licensed use limited to: Rutgers University. Downloaded on October 13,2021 at 17:29:55 UTC from IEEE Xplore.  Restrictions apply.



�

�

Fig.�3. Model�visualization.�Examples�of� feature�maps� from� the�output�of� the� last�convolution� layer�after� fine­tuningand� their�corresponding�video�
frames�for�the�five�activities�(using�abbreviations�of�the�activity�names).�The�faces�of�the�patients�and�medical�providers�are�blured�to�preserve�privacy.�
The�red�in�the�video�frames�(first�row)�are�the�regions�that�have�higher�values�(>0.5�after�normalized)�in�the�corresponding�feature�maps�(second�row).�

MBPCS BKCC-Bad CC-GoodBC

Video
Frames

Feature
Maps

TABLE�III.� PERFORMANCE�COMPARASION�WITH�OTHER�METHODS�

Activity�Name�
Methods�&�Acc.�

RFID [14] Speech [15] Ours

c­spine�stabilization�(CS)� ­� 0.67� 0.76�

manual�blood�pressure�(MBP)� 0.64� 0.77� 0.89�

oxygen�administration�(OX)� 0.54� 0.76� 0.80�

back�assessment�(BK)� ­� 0.68� 0.75�

relatively� large� objects� were� used� and� were� not� occluded�
during�activity�performance.�In�some�cases�of�IV�placement,�
the� providers� turned� off� the� lights� and� used� a� flashlight� to�

� to� better� visualize� the� vein.� In�
these� cases,� the� model� likely� performed� well� because� it�
learned� to� recognize� the� activity� based� on� differences� in�
illumination.�

� To�confirm�these�explanations,�we�visualized�the�learned�
feature�maps�from�the�output�of�the�last�convolution�layer�of�
our�model�(Fig.�3,�second�row).�We�normalized�the�values�of�
the� feature� maps� and� inserted� the� bounding� boxes� in� the�
original�video�frames�for�the�regions�where�the�feature�values�
in�the�maps�were�larger�than�0.5.��The�feature�maps�had�high�
values� in� the� regions�around� the�objects�or�human�gestures�
relevant� to� the�performed�activity.�For�example,� the� feature�
map� for� the� back� evaluation� (Fig.� 3,� bottom� last� map)�
highlights� this� activity� was�
performed.� The� feature� map� for� the� IV� placement� was�
highlighted� in� several�unrelated� regions,� suggesting� that� the�
model�did�not�always�extract�features�that�are�representative�
of�this�activity�(Fig.�3,�bottom�fourth�map).�When�the�model�
performed�well�for�IV�placement,�the�feature�map�sometimes�
highlighted�the�region�that�the�flashlight�illuminated�(Fig.�3,�
bottom�fifth�map).�These�visualized�feature�maps�support�the�
explanation�of�our�results.��

C. Comparasion�with�Existing�Systems�for�Activity�
Recognition�in�Trauma�Resuscitation�

� We�compared�our�system�with� two�previous�systems�for�
activity� recognition� during� trauma� resuscitation� [14][15].�
Four�of�the�activities�(CS,�MBP,�OX�and�BK)�detected�were�
also�detected�by� these� two� systems.�Because� these� systems�
were�not�able� to�recognize�concurrent�activities,�a�complete�

comparison� is�not�possible.�To�make�a� fair�comparison,�we�
removed�all� the�video�clips�with�concurrent�activities� in� the�

predictions�into�activity�categories.�Our�system�outperformed�
these� systems� on� the� four� shared� activities� (TABLE� III),�
likely� because� our� system� used� the� rich� features� extracted�
from� RGB� videos.� In� addition,� our� system� did� not� need�
human�effort�beyond�ground�truth�labeling.�One�system�used�
RFID�as�an�adjunct�sensor,�requiring�placement�of�RFID�tags�
on�objects�and�maintenance�of�an�ongoing� record�of� tag­to­
object� correspondence� [14].� The� second� system� required�
manual� transcriptions�of�verbal�communication�during� each�
resuscitation�[15].��

VI. CONCLUSION�AND�FUTURE�WORK�
�We� introduce�a�video­based�activity�recognition�system�

for� recognizing� concurrent� activities� during� clinical�
teamwork.�The�system�gives�concurrent�activity�predictions.�
Our� system� is� privacy­preserving� and� outperformed� other�
existing� activity� recognition� systems� designed� for� trauma�
resuscitation.�Our�system�has� two� limitations.�First,� the�pre­
computed� features� are� ten� times� larger� than� the� original�
videos,�making�additional� training�reliant�on� large�hardware�
capacity� for� storing� these� features.� Second,� the� system�
recognizes�activities�based�only�on�video.�Some�activities�in�
this� domain� cannot� be� recognized� using� videos� only.� For�
example,� verbal� reports� of� findings� for� which� observable�
activities�are�limited�will�need�to�rely�on�speech�recognition.�
Our�next�steps�will�be� to�develop�a�runtime� implementation�
of� these� models� to� assess� performance� in� a� real­world�
application.�We�will� also� develop� a�more� efficient�way� to�
store�pre­computed� features� and� build� a�network� that� fuses�
visual�features�and�other�modalities.�Finally,�we�will�develop�
an�efficient�approach�to�integrate�new�training�data�that�does�
not�rely�on�complete�model�retraining.��
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