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Abstract—We introduce a video-based system for
concurrent activity recognition during teamwork in a clinical
setting. During system development, we preserved patient and
provider privacy by pre-computing spatio-temporal features.
We extended the inflated 3D ConvNet (i3D) model for
concurrent activity recognition. For the model training, we
tuned the weights of the final stages of i3D using back-
propagated loss from the fully-connected layer. We applied
filtering on the model predictions to remove noisy predictions.
We evaluated the system on five activities performed during
trauma resuscitation, the initial management of injured
patients in the emergency department. Our system achieved
an average value of 74% average precision (AP) for these five
activities and outperformed previous systems designed for the
same domain. We visualized feature maps from the model,
showing that the system learned to focus on regions relevant to
performance of each activity.
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I INTRODUCTION

We introduce a video-based activity recognition system
for recognizing concurrent activities during clinical
teamwork (Fig. 1). Following the success of deep learning in
image recognition [1][2][3][4], deep neural networks have
been applied to the problem of recognizing activities from
videos [5][6][7][8]. Requirements of an activity recognition
system in this domain are different from general systems in
four aspects. First, the system should give real-time
predictions during a relatively long interval that contains
many activities, instead of providing a single classification
for each video. Second, the system needs to be privacy
preserving because RGB videos contain faces of the patients
and providers. Third, the model should produce multi-label
outputs for the simultaneously performed activities. Finally,
the system needs to perform well in a noisy setting in which
the participants or objects may be intermittently occluded.
The noise in the predictions needs to be removed to merge
the correct predictions into activity segments. We solved the
first two problems using transfer learning and by segmenting
the long video into several clips and feeding these clips into a
pre-trained inflated 3D ConvNet (i3D) network [5], a 3D
structure for extracting spatio-temporal features. We
exported the pre-computed spatio- temporal features from the
third stage output of the i3D for further analysis (Fig.1 left
side). These features were used for model training. Feature
extraction is irreversible, allowing privacy preservation. For
concurrent activity recognition, we modified the output
activation function to enable the model for the multi-label
output. To eliminate noisy predictions (Fig. 1, right side), we
applied a filtering algorithm that averages the values in a
moving window to smooth out the predictions.
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Fig. 1. System overview. The feature pre-computing module extracts
spatio-temporal features from the video inputs. The activity prediction
module uses the extracted features to make concurrent activity
predictions. A prediction filtering module finally smoothens the model
predictions. The example frame is from an actual trauma resusciation
with faces blured for privacy.

We evaluated our system on five activities during trauma
resuscitation. Trauma is the leading cause of mortality in
children and young adults. The initial resuscitation of injured
patients is critical for identifying and managing life-
threatening injuries. To reduce errors in this setting, real time
decision support has been evaluated as a method for reducing
errors. Automatic activity recognition is needed to align this
support with current task performance. The system that we
developed for activity recognition achieved an average of
74% mAP on these five trauma resuscitation activities. This
result was better than achieved in previous activity
recognition systems in this domain. Our contributions are
summarized as:

e We extended the an activity recognition algorithm
(i3D) [5] to solve the four problems in our domain
(real-time prediction, privacy preservation, concurrent
activities, and noisy predictions).

e We evaluated our activity recognition system on
using actual videos of trauma resuscitation, showing
better performance than previous systems.

The rest of the paper is organized as follows. Section II
reviews related work. Section III describes our system.
Section IV presents the data collection and implementation
details. Section V analyzes the experimental results. Section
VI concludes the paper and includes proposed future work.

II.  RELATED WORK

Medical Activity Recognition using Wearable
Sensors: Activity recognition system in healthcare has been
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studied for several decades. Some systems have used
wearable sensors [9][10][11]. For example, information from
3 axial accelerometers has been used as features to recognize
activities in the operating room [9][10]. Surgical activities
also have been recognized using the locations of objects and
medical providers using RFID tags [11]. Sensor-based
systems faces challenges for tracking medical workflow
because sensors may interfere with work and require
maintenance and operation by providers. The additional time
required for placing sensors before starting the work may be
unacceptable in time-sensitive settings. The position or
properties of sensors also may interfere with the performance
of clinical activities.

Medical Activity Recognition using Fixed Sensors: To
address the issues of wearable sensors, some systems rely on
fixed sensors. For example, medical activities have been
tracking by using passive RFID tags on the medical tools,
using the received signal strength indication (RSSI) collected
from the RFID readers as features for activity prediction
[13][14]. Speech obtained from fixed microphone also has
been used as input for recognizing trauma activities [15].
These systems rely on fixed position detectors in the room
and do not require the actions of providers but have
limitations on achievable performance. RFID-based systems
may require prior tagging of medical tools and cannot be
used for activities that do not involve using taggable objects.
The use of speech for activity recognition is promising but
limited by the cost and time associated with manually
generating training transcripts and has challenges for
implementation in noisy settings [15]. Extracting
representative features from raw data remains an important is
challenge for these systems using fixed sensors.

Medical Workflow Analysis using Vision: Several
systems have used video for recognizing medical workflow.
For example, laparoscopic and ocular surgical videos have
been used for recognizing surgical phases [23][25][26].
These previous works used videos focused only on specific
regions (e.g., laparoscopic view, microscope view) in which
the background was usually stationary. In contrast to activity
recognition during trauma resuscitation, these models focus
on localized regions. During trauma resuscitation, more than
ten providers are moving in the scene and performing
different activities. A model for trauma resuscitation needs to
extract features correlated to these activities in a noisy
environment.

General Activity Recognition: Activity recognition
systems have proliferated in recent years because of the
availability of deep learning algorithms and a growing
experience in their application for image recognition. Many
systems have applied deep neural network to the problem of
general activity recognition (e.g., Kinetics-400 [16], UCF-
101 [17], and Something-Something [18]). For example, the
inflated 3D ConvNet (i3D) [5] and the non-local neural
network [6] use spatio-temporal structures that have achieved
state-of-the-art performance on Kinetics-400, a large scale
video sets includes 400 daily life and sports activities.
Temporal segment networks (TSN) [7] and temporal-spatial
mapping (TSM) [8] have been used on Something-
Something, a large collection of videos shows human
performing actions using everyday objects. These networks
randomly segment the videos and extracting the long-range
spatio-temporal features by fusing the branches from
different video segments. These systems work on general

activity recognition and cannot be directly used for medical
activity recognition because of the challenges of real-time
prediction, privacy concerns, concurrent activities, and noisy
data. Depth videos have been used instead of RGB videos to
address privacy concerns but achieved only moderate
performance because the depth videos are gray-scale videos
and lack sufficient features for recognizing complex
activities [27].

[II. METHODOLOGY

Given a video of a trauma resuscitation case, our system
recognizes medical activities in three steps:

e A feature pre-computing (Fig. 2, left) module
extracts spatio-temporal features by feeding the video
clips into a pre-trained i3D network and yielding the
output from the third stage of i3D.

e An activity prediction (Fig. 2 middle) module uses
the last two stages of the i3D network that takes the
pre-computed features for extracting high-level
features and tunes the weights back-propagated from
the fully-connected layer for making activity
predictions.

e A prediction filtering (Fig. 2 right) module smooths
the model outputs to eliminate the noisy predictions.

A. Feature Pre-computing

Videos of trauma resuscitation includes the faces of
patients and providers. Feature pre-computing is used to
remove identifying facial information before training and
testing the model. We feed the videos into the inflated 3D
ConvNet (i3D) [5] pre-trained on Kinetics-400 data [16] and
obtain the third stage’s output of the i3D as the feature
representation of the video frames. This method further
improves the model by loading the pre-trained weights from
a large-scale activity recognition dataset instead of training
only on available data.

1) Video Pre-processing: Before feeding the videos into
the i3D network for feature pre-computing, we pre-
processed the videos to obtain the required input dimensions
of the i3D network. The required dimension for the i3D
input are “64x224x224x3”  which takes 64 continuous
frames as an input instance with each frame being
€224 x224x3.” We segmented the video for each case into
clips of 64 contiguous frames and resized the frames to the
dimensions required by the i3D.

2) Inflated 3D ConvNet (i3D): Inflated 3D ConvNet
(13D) is a structure for extracting spatio-temporal features,
which works on video understanding tasks, e.g., activity
recognition and video classification [5]. The main idea of
the i3D is to extend an existing 2D image recognition model
with the time dimension for successive frames using a 3D
ConvNet. The i3D model extended the inception vl [3] 2D
recognition model as:

fo(i)) = ZnZwx( + b i+ w) - Wepa(h,w) (1
f3(kl l,]) = ZchZWx(k + t!j + h'l + W) ' Wc3d(tJ h,W) (2)
where f,(i,j) denotes each feature element after the 2D

convolution filter W,,, is applied on the input frame. After
extension to the 3D ConvNet, f5(k, i, j) denotes each feature
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Fig. 2. Detailed composition of each module. The pre-computing module extracts features using the first three stages from the pre-trained i3D
network. The "“incept" element in the diagram is the inception block in Inception v1 [3] after extended into 3D. The pre-computed features are then fed
into the last two stages in the i3D and the fully-connected layer for activity prediction. The prediction filtering module applied an average filter to

smooth the model predictions.

element produced by applying 3D convolution filter W34 on
the input video clip. The spatio-temporal features extracted
by 3D ConvNet represent salient motion in the input clip of
the region that is representative of each activity.

The feature pre-computing used this i3D model that was
pre-trained on Kinetics-400 [16], a large-scale activity
recognition dataset that includes more than 200,000 videos.
Each video clip was fed into the pre-trained i3D. The output
of the third stage was exported for training and evaluating
the model. The features from the third stage contain less
information than those from lower stages (first and second
stage) because of information loss in the max-pooling layer
at the end of each stage. We chose the third stage features
because they require less memory storage during the
exporting process and do not lead to performance loss. Our
system is privacy-preserving by using these pre-computed
features instead of the original videos because the
convolution operations and nonlinear functions in i3D model
are irreversible. The output from the third stage of the i3D
has already passed more than 15 convolution and nonlinear
functions.

B. Activity Prediction

We next applied the last two stages of the i3D (Fig. 2,
Stages 4 and 5) that takes the pre-computed features as the
input for extracting high-level features corresponding to each
activity. The weights of these i3D stages can be tuned with
the loss propagated from the fully-connected layer (Fig. 2, fc)
that is applied on the output of the pooling layer (Fig. 2,
Stage 5). The fully-connected layer is represented as:

YOut(i:j) = O-(de ' ch + b) 3)

where y,,,; is the output of our model for activity prediction
and o is the activation function. Wy, and b are the weights
and bias of the fully-connected layer, respectively.
Reviewing the ground truth data (activity labels), we found
that the team activities frequently overlapped and that several
activities were performed concurrently. To enable the model
provide multi-label outputs, we used the “sigmoid” function,
which constrains the values of the output neurons to the
range [0, 1]. We did not use the “softmax” function because
it normalizes the neuron output values to sum to one. With

this function, the strongest-predicted activity would exclude
any concurrent activities for which the predictions are
weaker.

C. Prediction Filtering

After the model made activity predictions for all the
video clips, we compared the results to the ground truth and
found that the model predictions were noisy and incorrect
during some intervals. These errors were mainly caused by
visual occlusion, when the individuals or objects related to
the activity were blocked from view. When the coders are
labeling the ground truth, their knowledge of the process is
used to code despite these occlusions. A solution was needed
that did not depend on this human interaction. To eliminate
these errors, we applied a filtering algorithm that smooths the
model results by averaging the point-predictions of each
activity over a moving window as:

Ng
’ 1 -2
Yout (c,a) = N_azni_ﬁ)’out(c +n,a) 4)
2

where y,,,;' (¢, a) is the smoothed prediction for activity a in
the ¢t" video clip and N, is the size of the moving window.
Each activity was smoothed using different window sizes.
We used the average duration of each activity from the
ground truth to set the size for each moving window (Table
I). We used the average duration of the activity as its window
size to ensure that the activity prediction continues at its
specific duration. The evaluation results errors were
eliminated achieved around 7% mean average precision
(mAP) enhancement (Table II, last row).

IV. DATA COLLECTION AND IMPLEMENTATION DETAILS

To develop and test our system, we used videos from 230
trauma resuscitation cases: 185 (80%) for training and 45
(20%) cases for evaluation. The videos were recorded using
a recording system that includes a camera mounted on the
ceiling over the patient bed. The system starts recording
when motion is detected in the room. The videos are stored
on a secure server in the hospital. The use of videos for
research purposes has been approved by the Institutional
Review Board at the hospital. The average length of these
video was 25 minutes, ranging from 16 to 35 minutes. The
recording speed is 30 frames per second (fps) with a
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TABLE II MODEL EVALUATION IN AVERAGE PRECISION TABLE L ACTIVITY AVERAGE DURATIONS
Activity Name Duration (avg/std) Freq L. Methods & AP
Activity Name X .
c-spine stabilization (CS) 248.6/127.2 0.45 i3D i3D + filter
manual blood pressure (MBP) 32.3/12.0 0.02 c-spine stabilization (CS) 0.88 092
oxygen administration (OX) 119.4/55.7 0.09 manual blood pressure (MBP) 0.79 0.85
intravenous catheter placement (IV) 131.5/46.1 0.07 oxygen administration (OX) 0.74 0.82
back assessment (BK) 43.9/32.4 0.06 intravenous catheter placement (IV) 0.26 0.35
. . back assessment (BK 0.66 0.75
resolution of 640x480 pixels. The ground truth data was ®BK)
labeled using manual video review. Reviewers are trained in mean average precision (mAP) 0.67 0.74

ground truth coding, only coding videos used for this study
after their coding performance was validated. A data
dictionary was used to define more than 200 activities
relevant to trauma resuscitation. For this study, we focused
on five medical activities that are frequently performed and
are clinically important during trauma resuscitations: cervical
spine (c-spine) stabilization (CS), obtaining a manual blood
pressure (MBP), administration of face mask oxygen (0OX),
placement of an intravenous catheter (IV), and assessment of
the back for injuries (BK). The duration of these activities
varied from 14 s to 248 s (Table I).

We implemented our model (Fig. 2) using Keras with the
TensorFlow backend. The i3D network [5] was implemented
based on the published source code [19]. We used batch
normalization [20] and ReLU activation in all the
convolution layers. We used binary cross-entropy loss and
the SGD optimizer with an initial learning rate (LR) le-4 and
manually decreased the LR to le-5 after the training loss was
saturated. Dropout was used after the fully-connected layer
to avoid overfitting [21]. We used 12 video clips in each
batch and trained the model using 3 RTX 2080 Ti GPUs
(four for each GPU) for 50k iterations (40k with LR le-4 and
10k with LR 1le-5). The model took about 24 hours to
converge.

V.  EXPERIMENT

We evaluated and analyzed the performance of our
system. Medical experts evaluated potential sources of poor
performance by reviewing the corresponding source videos.
We also compared our system performance with two
systems previously developed for activity during recognition
trauma resuscitation [14][15].

A. Evaluation Metrics

Because of activity concurrency, we used average
precision (AP) as an evaluation metric instead of other
metrics, such as accuracy, precision, recall, and F1 score.
Accuracy is used for evaluating category classifiers, but our
model for concurrent activity recognition produces multi-
label outputs. For the binary evaluation metrics (precision,
recall, and Fl-score), an arbitrary threshold is needed to
convert the predicted probabilities into binary predictions.
We used average precision (AP) because it has good
discrimination and stability when used to evaluate multi-
label classification systems without using arbitrary
thresholds [22]. The AP is the average of the precision values
when thresholding the predictions using the confidence score
from the k' sample (ranked by confidence score):

AP = ﬁzkeﬁ Precision(Ry) (5)

where Y7 is the number of positive ground truth for this
activity and Ry, is predictions based on a threshold using the
confidence score of k" sample.

B. Results Analysis

Based on the AP score for each activity, our system
perform well when predicting four activities (CS, MBP, OX
and BK) because the model can capture features of these
objects related to their corresponding activities from the
RGB videos. For example, during manual BP measurement,
a large blood pressure measuring instrument was placed near
the patient’s bed (red rectangle in the top second diagram of
Fig. 3). When the activity oxygen was administered, a non-
rebreather mask (NRB) is placed on the patient’s face (red
rectangle in the top third diagram of Fig. 3). These objects
are accurately detected by the model. C-spine stabilization
(CS) achieved the best AP score among the four activities
detected, likely because of a high frequency of performance.
In a classification problem, classes having more positive
labels will usually achieve higher AP scores. The manual
blood pressure (MBP) achieved better performance than the
other two activities although having lower frequency. For
this activity, the tools used for blood pressure measurement
are visually obvious and seldom occluded in the video
recordings.

Using mAP (Table 11, last row), prediction filtering led to
a 7% higher AP than results without using filtering for each
activity. We reviewed the model predictions and their
corresponding ground truth. Important performance gains
resulted from eliminating noisy predictions. The model
incorrectly predicted activities when the relevant regions of
the video were occluded, a finding discovered by reviewing
corresponding RGB videos. The filter that averages the
predictions in a moving window eliminated most of these
errors unless the occlusion was long (i.e., larger than half of
the duration of the activity in TABLE I).

The system achieved the lowest performance for IV
placement. We reviewed the model predictions and their
corresponding ground truth for this activity and found that
the model predictions correctly matched the ground truth in
some cases. We asked coders to review the videos in the
testing cases in which the model performed well to find
possible explanations for these results. IV placement
instances were labeled by coders as starting when a
tourniquet was placed on the patient’s arm and as ending
when the tourniquet is removed. The model did not perform
well on in most of the cases because the tourniquets were
occluded by the providers’ arms and the blankets covering
the patient after being applied. For other activity types,
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Fig. 3. Model visualization. Examples of feature maps from the output of the last convolution layer after fine-tuningand their corresponding video
frames for the five activities (using abbreviations of the activity names). The faces of the patients and medical providers are blured to preserve privacy.
The red in the video frames (first row) are the regions that have higher values (>0.5 after normalized) in the corresponding feature maps (second row).

TABLE IIL. PERFORMANCE COMPARASION WITH OTHER METHODS
- Methods & Acc.
Activity Name
RFID [14] | Speech [15] Ours
c-spine stabilization (CS) - 0.67 0.76
manual blood pressure (MBP) | 0.64 0.77 0.89
oxygen administration (OX) 0.54 0.76 0.80
back assessment (BK) - 0.68 0.75

relatively large objects were used and were not occluded
during activity performance. In some cases of IV placement,
the providers turned off the lights and used a flashlight to
illuminate the patient’s arm to better visualize the vein. In
these cases, the model likely performed well because it
learned to recognize the activity based on differences in
illumination.

To confirm these explanations, we visualized the learned
feature maps from the output of the last convolution layer of
our model (Fig. 3, second row). We normalized the values of
the feature maps and inserted the bounding boxes in the
original video frames for the regions where the feature values
in the maps were larger than 0.5. The feature maps had high
values in the regions around the objects or human gestures
relevant to the performed activity. For example, the feature
map for the back evaluation (Fig. 3, bottom last map)
highlights the patient’s back when this activity was
performed. The feature map for the IV placement was
highlighted in several unrelated regions, suggesting that the
model did not always extract features that are representative
of this activity (Fig. 3, bottom fourth map). When the model
performed well for IV placement, the feature map sometimes
highlighted the region that the flashlight illuminated (Fig. 3,
bottom fifth map). These visualized feature maps support the
explanation of our results.

C. Comparasion with Existing Systems for Activity
Recognition in Trauma Resuscitation

We compared our system with two previous systems for
activity recognition during trauma resuscitation [14][15].
Four of the activities (CS, MBP, OX and BK) detected were
also detected by these two systems. Because these systems
were not able to recognize concurrent activities, a complete

comparison is not possible. To make a fair comparison, we
removed all the video clips with concurrent activities in the
ground truth and used the “argmax” function to convert the
predictions into activity categories. Our system outperformed
these systems on the four shared activities (TABLE III),
likely because our system used the rich features extracted
from RGB videos. In addition, our system did not need
human effort beyond ground truth labeling. One system used
RFID as an adjunct sensor, requiring placement of RFID tags
on objects and maintenance of an ongoing record of tag-to-
object correspondence [14]. The second system required
manual transcriptions of verbal communication during each
resuscitation [15].

VI. CONCLUSION AND FUTURE WORK

We introduce a video-based activity recognition system
for recognizing concurrent activities during clinical
teamwork. The system gives concurrent activity predictions.
Our system is privacy-preserving and outperformed other
existing activity recognition systems designed for trauma
resuscitation. Our system has two limitations. First, the pre-
computed features are ten times larger than the original
videos, making additional training reliant on large hardware
capacity for storing these features. Second, the system
recognizes activities based only on video. Some activities in
this domain cannot be recognized using videos only. For
example, verbal reports of findings for which observable
activities are limited will need to rely on speech recognition.
Our next steps will be to develop a runtime implementation
of these models to assess performance in a real-world
application. We will also develop a more efficient way to
store pre-computed features and build a network that fuses
visual features and other modalities. Finally, we will develop
an efficient approach to integrate new training data that does
not rely on complete model retraining.
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