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Abstract

In this paper, we establish a binary fluid surfactant model by coupling two mass-conserved Allen–Cahn equations and the
avier–Stokes equations and consider numerical simulations of the developed model. Due to a large number of nonlinear and
onlocal coupling terms in the model, it is very challenging to design an efficient and accurate numerical scheme, especially
he full decoupling scheme with second-order time accuracy. We solve this challenge by developing a novel fully-decoupled
pproach, where the key idea achieving the full decoupling structure is to introduce an ordinary differential equation to
eal with the nonlinear coupling terms that satisfy the so-called “zero-energy-contribution” property. In this way, we can

easily discretize the coupled nonlinear terms in a fully explicit way, while still maintaining unconditional energy stability. By
combining with the projection type method and quadratization approach, at each time step, we only need to solve several
fully-decoupled linear elliptic equations with constant coefficients. We strictly prove the solvability of the scheme, prove that
the scheme satisfies the unconditional energy stability, and give various 2D and 3D numerical simulations to show its stability
and accuracy numerically. As far as the author knows, this is the first fully-decoupled and second-order time-accurate scheme
of the flow-coupled phase-field type model.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The earliest modeling work on binary fluid surfactants using the phase-field method can be traced back to the
ioneering work of Laradji et al. [1,2], in which two phase-field variables are used to describe the local density
f the fluid and the local concentration of the surfactant, respectively. Since the volume (or mass) of the two
uid components does not change with time, the Cahn–Hilliard dynamics (or H−1 gradient flow method), due

o its conservation property, is usually used to derive the entire system containing two highly coupled nonlinear
ahn–Hilliard equations. The free energy of the system needs to be able to describe the hydrophilic–hydrophobic

nteraction of the fluid and the interfacial absorption characteristics caused by the amphiphilic molecules of the
urfactant. Then, the system is derived by using the energetic variational approach. Moreover, if it is expected that
he model can simulate the dynamics related to fluid flow, such as droplets coalescence/non-merging phenomena
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under the shear flow [3,4], then the Navier–Stokes equations need to be combined with the phase-field system
through the surface tension and advection derived using the Fick’s law. For modeling/analysis/simulation work on
the phase-field surfactant system, we refer to [5–11].

In this paper, we consider the numerical approximations of the hydrodynamics coupled binary surfactant model.
nlike the traditional way of using the Cahn–Hilliard dynamics (usually fourth-order system) to derive the model,
e use the second-order Allen–Cahn dynamics (or L2 gradient flow method) to establish a new model. This is
ecause the Allen–Cahn system is relatively easier to solve numerically since it is usually second-order less than
he Cahn–Hilliard system. We know that the inherent bottleneck of using the Allen–Cahn model is that it cannot
onserve the volume over time. To solve this problem, we modify the model by adding a nonlocal Lagrangian
ultiplier to each phase-field equation. This term helps to maintain the law of energy and accurately retain

he volume conservation. For the new model, we aim to develop effective numerical schemes that can have the
ully-decoupled feature, unconditional energy stability, and second-order accuracy.

It is worth noting that although there exist many effective numerical schemes to simulate the phase-field
inary fluid surfactant model, see [3,12–14], however, as far as the author knows, for the full flow coupling
ystem, there is currently no successful method that can achieve the second-order accuracy in time and completely
ndependent calculation of all variables (that is, a fully-decoupled scheme). The main difficulty is that the velocity
eld and phase-field variables are tightly coupled by the nonlinear surface tension and advection terms, and we

ack efficient numerical tools to decouple them while preserving the unconditional energy stability. Therefore,
ven though both the fluid equations and the Cahn–Hilliard equations have many effective schemes, for example,
he projection method [15–22], the linear stabilization [23–25], convex splitting [26–30], quadratization (IEQ
31–34] and SAV [35–37]), nonlinear derivative [38], nonlinear quadrature [39–41] methods, etc., after coupling
hese two types of equations, the processing of coupling terms by conventional simple explicit or implicit methods
ill inevitably lead to fully coupled or energy unstable schemes. To the best of the author’s knowledge, the only

ully-decoupled scheme that can achieve unconditional energy stability is developed in [42] which is obtained by
dding a stabilization term to the advective velocity. However, the scheme is only first-order accurate in time and it is
ery difficult to generalize a similar idea to the second-order version to achieve the full decoupling and unconditional
nergy stability. Moreover, although the scheme given in [42] is fully-decoupled, its computational cost is high
ecause it needs to solve the phase-field equation with variable coefficients at each time step.

Therefore, for the new Allen–Cahn type conserved flow-coupled binary surfactant model, this paper attempts to
onstruct a novel method to achieve the characteristics of linearity, full decoupling, unconditional energy stability,
nd second-order accuracy in time. To this goal, when developing numerical algorithms, we turn our attention
o using the well-known but often overlooked “zero-energy-contribution” property satisfied by the advection and
urface tension terms. That is, when deducing the energy law, after applying the inner products of some appropriate
unctions, the resulting terms generated by these two terms will completely cancel out. Thus, using this property, we
ntroduce a nonlocal variable and design an ordinary differential equation (ODE) associated with it, which contains
he inner products of the advections and surface tensions with some specific functions. This ODE is trivial at the
ontinuous level because all the terms in it are zero. But after discretization, it can help eliminate all the troublesome
onlinear terms to obtain unconditional energy stability. Meanwhile, the introduction of the nonlocal variable can
ecompose each discrete equation into multiple sub-equations that can be solved independently, thereby obtaining
fully-decoupled structure.
By combining this novel method with the existing proven effective methods (including the projection method

or the Navier–Stokes equations, and the SAV method that linearizes the nonlinear energy potential), we obtain
he desired scheme which is unconditionally energy stable, linear, fully-decoupled, second-order time-accurate. It
hould be emphasized that this technique of achieving the fully-decoupled scheme can be used in many complex
oupled models as long as the coupling terms satisfy the so-called “zero-energy-contribution” characteristic. In
ther words, if the nonlinear coupling terms contained in the model do not have any contribution to the total free
nergy after taking the inner products with certain test functions when deriving the PDE energy law, this method is
lways applicable. The implementation of the scheme is very simple. At each time step, one only needs to solve a
ew fully-decoupled linear elliptic equations with constant coefficients. We strictly prove the unconditional energy
tability of the scheme and then give many 2D and 3D numerical simulations to prove its stability and accuracy
umerically.

The rest of the paper is organized as follows. In Section 2, we establish the conserved Allen–Cahn type
ydrodynamics coupled binary fluid surfactant model and derive its energy structure. In Section 3, we construct
2
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a second-order fully-decoupled numerical scheme and describe its implementations in detail. The unconditional
energy stability is proved rigorously as well. In Section 4, numerous accuracy/stability tests and simulations in
2D and 3D are performed to demonstrate the effectiveness of the developed model and scheme. Some concluding
remarks are presented in Section 5.

2. Governing system

We now develop the volume-conserved, hydrodynamically coupled Allen–Cahn type phase-field model for the
inary surfactant system. Suppose Ω ∈ Rd with d = 2, 3 is a smooth, open, bounded, connected domain, two

local variables φ(x, t) and ρ(x, t) are used to simulate the dynamics in a binary fluid-surfactant system, where φ
s defined to represent the density (or volume fraction) of the two fluids, e.g., water and oil, i.e.,

φ(x, t) =

{
1 fluid I,
−1 fluid II,

(2.1)

with a thin, smooth transition region with a width O(ϵ); and ρ is introduced to represent the local concentration
of surfactants. The interface of the fluid mixture is described by the zero level set given by Γt = {x : φ(x, t) = 0}.

ence, we consider the total free energy as follows [3,4,7,8],

E(φ, ρ,u) =

∫
Ω

{1
2
|u|

2
+ λ1(

1
2
|∇φ|

2
+

1
ϵ2 F(φ)) + λ2(

γ

2
|∇ρ|

2
+

1
η2 G(ρ)) + W (φ, ρ)

}
dx (2.2)

here u is the average velocity field,⎧⎨⎩ F(φ) =
1
4

(φ2
− 1)2, W (φ, ρ) = −

θ1

2
ρ|∇φ|

2
+
θ2

2
ρφ2

+
ζ

4
|∇φ|

4,

G(ρ) = α4ρ
4
+ α3ρ

3
+ α2ρ

2
+ αρ, (α1, α2, α3, α4) = (3.62,−7.25, 7.30,−3.68),

(2.3)

and λ1, λ2, ϵ, γ, η, θ1, θ2, ζ are all positive parameters. We note that the total free energy includes four parts. The first
art is the kinetic energy. The second part includes the hydrophilic (gradient)-hydrophobic (double-well) tendency
f the phase-field variable φ where the parameter ϵ represents the width of the binary fluid interface. The third
art is the hydrophilicity (gradient)-hydrophobic (quartic polynomial G) tendency of the concentration variable ρ

where η is the penalty parameter. The fourth part is the coupling item between the surfactant and the fluid interface,
where the θ1 term controls the degree of the effect of the surfactant on the fluid interface, θ2 term guarantees a low
concentration of surfactant in the bulk phase, and the ζ term (ζ ≪ 1) is used to ensure that the total free energy is
bounded from below, see [4].

Remark 2.1. Note in many works, the hydrophobic potential for ρ is set to be the Flory–Huggins logarithmic type
that reads as G̃(ρ) = ρ ln ρ + (1 − ρ) ln(1 − ρ), see [4,7,8]. In this paper, we use a new quartic function G(ρ) to
eplace it and G(ρ) is obtained from the following relationship G(0) = 0,G( 1

4 ) = G̃( 1
4 ),G( 1

2 ) = G̃( 1
2 ),G( 3

4 ) =

G̃( 3
4 ),G(1) = 0. The reasons for using this simple quartic polynomial include, (i) from Fig. 2.1, we can see that

G(ρ) and G̃(ρ) are very consistent; (ii) the domain of logarithmic potential is an open interval (0, 1), so it must
be strictly ensured that the calculated value is in this range, otherwise, the calculation is easy to overflow, but
this requirement is quite difficult to realize; (iii) the main purpose of this article is to give a simple and easy to
calculate binary surfactant model, just like we use the second-order Allen–Cahn model to replace Cahn–Hilliard
dynamics, a relatively simple fourth-order polynomial potential G(ρ) is more preferred from the same reason; and
(iv) the numerical results obtained using the two models are compared in Section 4 and the equilibrium solutions
are essentially the same.

Then, by using the Allen–Cahn type (L2-gradient flow) relaxation kinetics for φ and ρ, and assuming that the
uid is incompressible and follows the generalized Fick’s law, that is, the mass flux is proportional to the gradient
f the chemical potential, we get the hydrodynamics coupled binary surfactant model which reads as:

φt + ∇ · (uφ) = −M1

(
µ−

1
|Ω |

∫
Ω

µdx
)
, (2.4)

µ =
δE

= λ1(−∆φ +
1

f (φ)) + Wφ, (2.5)

δφ ϵ2

3
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Fig. 2.1. The comparisons of the potential G(φ) using the quartic polynomial form and the Flory–Huggins logarithmic form.

ρt + ∇ · (uρ) = −M2

(
ω −

1
|Ω |

∫
Ω

ωdx
)
, (2.6)

ω =
δE
δρ

= λ2(−γ∆ρ +
1
η2 g(ρ)) + Wρ, (2.7)

ut + (u · ∇)u + ∇ p − ν∆u + φ∇µ+ ρ∇ω = 0, (2.8)

∇ · u = 0, (2.9)

where⎧⎪⎪⎨⎪⎪⎩
Wφ =

δW (φ, ρ)
δφ

= θ1∇ · (ρ∇φ) + θ2ρφ − ζ∇ · (|∇φ|
2
∇φ),

Wρ =
δW (φ, ρ)

δρ
= −

θ1

2
|∇φ|

2
+
θ2

2
φ2, f (φ) = F ′(φ) = φ(φ2

− 1), g(ρ) = G ′(ρ),
(2.10)

where M1,M2 are two mobility parameters, ν is the fluid viscosity, p is the pressure, and two nonlinear terms φ∇µ

and ρ∇ω are surface tensions.
In this paper, we consider the following two kinds of boundary conditions:

(i) all variables are periodic; or (2.11)

(i i) u|∂Ω = 0, ∂nφ|∂Ω = ∂nρ|∂Ω = 0, (2.12)

where n is the unit outward normal on the boundary ∂Ω . The initial conditions read as

(u, p, φ, ρ)|t=0 = (u0, p0, φ0, ρ0). (2.13)

By taking the L2 inner product of (2.4) with 1, and of (2.6) with 1, one can see the total mass of local density
variable φ and concentration variable ρ are conserved accurately, i.e.,

d
dt

∫
Ω

φdx = 0,
d
dt

∫
Ω

ρdx = 0. (2.14)

It is straight forward to obtain the PDE energy law for the system (2.4)–(2.9) from the following process. By
aking the inner product of (2.4) by µ in L2, we get

(φt , µ) = −M1

µ−
1

|Ω |

∫
Ω

µdx
2

−

∫
Ω

∇ · (uφ)µdx  , (2.15)
I

4
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(µ−
1

|Ω |

∫
Ω

µdx, µ)

= (µ−
1

|Ω |

∫
Ω

µdx, µ−
1

|Ω |

∫
Ω

µdx) + (µ−
1

|Ω |

∫
Ω

µdx,
1

|Ω |

∫
Ω

µdx)

=

µ−
1

|Ω |

∫
Ω

µdx
2
.

(2.16)

By taking the inner product of (2.5) with −φt in L2 and using integration by parts, we get

− (µ, φt ) = −
d
dt

∫
Ω

λ1(
1
2
|∇φ|

2
+

1
ϵ2 F(φ))dx −

∫
Ω

Wφφt dx. (2.17)

Taking the inner product of (2.6) by ω in L2 and using integration by parts, we obtain

(ρt , ω) = −M2

ω −
1

|Ω |

∫
Ω

ωdx
2

−

∫
Ω

∇ · (uρ)ωdx  
II

, (2.18)

Taking the inner product of (2.5) with −ρt in L2 and using integration by parts, we get

− (ω, ρt ) = −
d
dt

∫
Ω

λ2(
γ

2
|∇ρ|

2
+

1
η2 G(ρ))dx −

∫
Ω

Wρρt dx. (2.19)

Taking the inner product of (2.8) with u in L2, and using integration by parts and (2.9), we obtain

d
dt

∫
Ω

1
2
|u|

2dx + ν∥∇u∥
2

= −

∫
Ω

φ∇µ · udx  
III

−

∫
Ω

ρ∇ω · udx  
IV

−

∫
Ω

(u · ∇)u · udx  
V

.
(2.20)

Combining the above five equations, we derive the energy law as follows:

d
dt

E(φ, ρ,u) = − M1

µ−
1

|Ω |

∫
Ω

µdx
2

− M2

ω −
1

|Ω |

∫
Ω

ωdx
2

− ν∥∇u∥
2, (2.21)

here terms I and III, II and IV are canceled after using integration by parts, term V vanishes due to the divergence
ree condition of u. The three negative terms on the right end of (2.21) specify the diffusion rate of the total free
nergy E(φ, ρ,u).

emark 2.2. We notice that in the process of deriving the law of energy (2.21), the three nonlinear terms of
dvection and surface tensions are all canceled after taking the inner product with some specific functions. In
ther words, these three terms do not contribute to the total free energy or energy diffusion rate. Therefore, in
he next section, we will use such a unique “zero-energy-contribution” feature behind these terms to develop a
ully-decoupled scheme.

. Numerical scheme

In this section, we design a novel method to obtain a linear, stable, fully-decoupled scheme with second-order
ccuracy. In addition to the projection method (for Navier–Stokes) and the SAV method (for nonlinear potential), the
ain novelty is the introduction of an ordinary differential equation to achieve explicit processing of the coupling

erms. The detailed procedure is as follows.
First, we introduce a nonlocal variable Q(t) and an ODE system related to it that reads as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Qt =

∫
Ω

(
∇ · (uφ)µ+ (φ∇µ) · u + ∇ · (uρ)ω + (ρ∇ω) · u + (u · ∇)u · u

)
dx,

∇ · u = 0,
Q|(t=0) = 1,

(3.1)
u|∂Ω = 0 or all variables are periodic.
5
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Using integration by parts, it is easy to derive that the ODE (3.1) is equivalent to a trivial ODE (Qt = 0, Q|(t=0) = 1)
hich has the solution of Q(t) = 1.
Second, we define another nonlocal variable U (t) as

U =

√∫
Ω

Z (φ, ρ)dx + B, (3.2)

here Z (φ, ρ) = λ1
F(φ)
ϵ2 + λ2

G(ρ)
η2 + W (φ, ρ), B is a constant to guarantee the radicand always be positive. We

can always find such a constant B since the nonlocal term in the radicand is always bounded from below. (It is
easy to see that −

θ
2ρ|∇φ|

4
≤

ζ

4 |∇φ|
4
+ cρ2 for some constant c, and cρ2 can be always bounded by G(ρ). Similar

erivation also applies to the θ2 term.)
Then, by combining the two nonlocal variables Q and U , and the trivial evolution equation (3.1), we rewrite the

ystem (2.4)–(2.9) to the following equivalent form:

φt + Q∇ · (uφ) = −M1

(
µ−

1
|Ω |

∫
Ω

µdx
)
, (3.3)

µ = −λ1∆φ + HU, (3.4)

ρt + Q∇ · (uρ) = −M2

(
ω −

1
|Ω |

∫
Ω

ωdx
)
, (3.5)

ω = −λ2γ∆ρ + RU , (3.6)

Ut =
1
2

∫
Ω

(Hφt + Rρt )dx, (3.7)

ut + Q(u · ∇)u + ∇ p − ν∆u + Qφ∇µ+ Qρ∇ω = 0, (3.8)
∇ · u = 0, (3.9)

Qt =

∫
Ω

(
∇ · (uφ)µ+ (φ∇µ) · u + ∇ · (uρ)ω + (ρ∇ω) · u + (u · ∇)u · u

)
dx, (3.10)

here

H (φ, ρ) =
λ1

f (φ)
ϵ2 + Wφ√∫

Ω Z (φ, ρ)dx + B
, R(φ, ρ) =

λ2
g(ρ)
η2 + Wρ√∫

Ω Z (φ, ρ)dx + B
. (3.11)

The transformed system (3.3)–(3.10) satisfies the following initial conditions,

(u, p, φ, ρ)|t=0 = (u0, p0, φ0, ρ0),U |t=0 =

√∫
Ω

Z (φ0, ρ0)dx + B, Q|t=0 = 1. (3.12)

Note the new system (3.3)–(3.10) is equivalent to the original PDE system (2.4)–(2.9) because nonlinear integrals
n (3.10) are just zero, which means Q ≡ 1. Meanwhile, the new transformed system (3.3)–(3.10) also follows an
nergy dissipative law which can be derived by a similar procedure to obtain (2.21). We present the detailed process
ince the energy stability proof in the discrete level follows the same line.

We multiply the inner product of (3.3) by µ in L2 and use integration by parts to obtain

(φt , µ) = −M1

µ−
1

|Ω |

∫
Ω

µdx
2

− Q
∫
Ω

∇ · (uφ)µdx  
I

. (3.13)

Taking the inner product of (3.4) with −φt in L2, we get

− (µ, φt ) = −
d
dt

∫
Ω

λ1

2
|∇φ|

2dx − U
∫
Ω

Hφt dx. (3.14)

Taking the inner product of (3.5) by ω in L2, we obtain

(ρt , ω) = −M2

ω −
1

|Ω |

∫
Ω

ωdx
2

− Q
∫
Ω

∇ · (uρ)ωdx   . (3.15)
II

6
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Taking the inner product of (3.6) with −ρt in L2, we get

− (ω, ρt ) = −
d
dt

∫
Ω

λ2γ

2
|∇ρ|

2dx − U
∫
Ω

Rρt dx. (3.16)

By multiplying (3.7) with 2U , we obtain
d
dt

|U |
2

= U
∫
Ω

Hφt dx + U
∫
Ω

Rρt dx. (3.17)

Taking the inner product of (3.8) with u in L2, and using integration by parts and (3.9), we obtain
d
dt

∫
Ω

1
2
|u|

2dx + ν∥∇u∥
2

= −Q
∫
Ω

φ∇µ · udx  
III

− Q
∫
Ω

ρ∇ω · udx  
IV

− Q
∫
Ω

(u · ∇)u · udx  
V

.
(3.18)

By multiplying (3.10) with q, we obtain
d
dt

(1
2
|Q|

2
)

= Q
∫
Ω

∇ · (uφ)µdx  
I1

+ Q
∫
Ω

∇ · (uρ)ωdx  
II1

+ Q
∫
Ω

φ∇µ · udx  
III1

+ Q
∫
Ω

ρ∇ω · udx  
IV1

+ Q
∫
Ω

(u · ∇)u · udx  
V1

.

(3.19)

Combining all obtained equalities and noticing all nonlinear coupled terms labeled with Greek letters are
anceled, we obtain the energy law described as follows:

d
dt

E(u, φ, ρ,U, Q) = −ν∥∇u∥
2
− M1

µ−
1

|Ω |

∫
Ω

µdx
2

− M2

ω −
1

|Ω |

∫
Ω

ωdx
2

, (3.20)

here

E(u, φ, ρ,U, Q) =

∫
Ω

(
1
2
|u|

2
+
λ1

2
|∇φ|

2
+
λ2γ

2
|∇ρ|

2
)

dx + |U |
2
+

1
2
|Q|

2
− B. (3.21)

Remark 3.1. The derivation of the law of energy shows the advantage of adding an extra ODE for q to the
system. In the original formulation (2.4)–(2.9), the advection term (e.g. term I in (2.15)) and the surface tension
term (e.g. term III in (2.18)), cancel each other out. Hence, when designing the algorithm, these two items need to
use the same discretization method that leads the coupling type scheme. But in the new formulation, the new terms
contained in the q equation can help cancel the original advection and surface tensions, for example, the term I
can be canceled by term I1, term III can be canceled by term III1. This will give us more degrees of freedom to
deal with the coupling terms, to get a fully-decoupled scheme. In addition, since the model is modified to a new
form, the discrete energy law will be based on the modified model.

3.1. Numerical scheme

Now, we are ready to develop a numerical scheme. Using the second-order backward differentiation formula
(BDF2), a time marching scheme to discretize the new system (3.3)–(3.10) reads as follows.

We compute ũn+1,un+1, pn+1, φn+1, µn+1, ρn+1, ωn+1,U n+1, Qn+1 by

aφn+1
− bφn

+ cφn−1

2δt
+ Qn+1

∇ · (u∗φ∗) = −M1

(
µn+1

−
1

|Ω |

∫
Ω

µn+1dx
)
, (3.22)

µn+1
= −λ1∆φ

n+1
+

S1

ϵ2 (φn+1
− φ∗) + H∗U n+1, (3.23)

aρn+1
− bρn

+ cρn−1

2δt
+ Qn+1

∇ · (u∗ρ∗) = −M2

(
ωn+1

−
1

|Ω |

∫
Ω

ωn+1dx
)
, (3.24)

ωn+1
= −λ2γ∆ρ

n+1
+

S2 (ρn+1
− ρ∗) + R∗U n+1, (3.25)
η2

7



X. Yang Computer Methods in Applied Mechanics and Engineering 373 (2021) 113502

w

a

R
b
(
e

R
e
i
w

R
r
a
M
t

3

(

aU n+1
− bU n

+ cU n−1
=

1
2

∫
Ω

(H∗(aφn+1
− bφn

+ cφn−1) + R∗(aρn+1
− bρn

+ cρn−1))dx, (3.26)

aũn+1
− bun

+ cun−1

δt
+ Qn+1(u∗

· ∇)u∗
+ ∇ pn

− ν∆ũn+1 (3.27)

+Qn+1φ∗
∇µ∗

+ Qn+1ρ∗
∇ω∗

= 0,
1

2δt
(aQn+1

− bQn
+ cQn−1) =

∫
Ω

(
∇ · (u∗φ∗)µn+1

+ (φ∗
∇µ∗) · ũn+1

+ ∇ · (u∗ρ∗)ωn+1 (3.28)

+(ρ∗
∇ω∗) · ũn+1

+ (u∗
· ∇)u∗

· ũn+1
)

dx,

and
a

2δt
(un+1

− ũn+1) + ∇(pn+1
− pn) = 0, (3.29)

∇ · un+1
= 0, (3.30)

here⎧⎪⎪⎪⎨⎪⎪⎪⎩
a = 3, b = 4, c = 1,

u∗
= 2un

− un−1, φ∗
= 2φn

− φn−1, ρ∗
= 2ρn

− ρn−1,

µ∗
= 2µn

− µn−1, ω∗
= 2ωn

− ωn−1,

H∗
= H (φ∗, ρ∗), R∗

= H (φ∗, ρ∗),

(3.31)

nd S1 and S2 are two pre-specified positive stabilization parameters.
The boundary conditions are either periodic or the following

ũn+1
|∂Ω = 0,un+1

· n|∂Ω = ∂nφ
n+1

|∂Ω = ∂nρ
n+1

|∂Ω = 0. (3.32)

emark 3.2. The initialization of the second-order scheme requires all values at t = t1, which can be obtained
y constructing the first-order scheme based on the backward Euler method. In the above second-order scheme
3.22)–(3.30), as long as we set a = 2, b = 2, c = 0, ψ∗

= ψ0 for any variable ψ , the first-order solution can be
asily obtained. Moreover, by induction, it is easy to derive that the following volume conservation property holds∫

Ω

φn+1dx =

∫
Ω

φndx = · · · =

∫
Ω

φ0dx,
∫
Ω

ρn+1dx =

∫
Ω

ρndx = · · · =

∫
Ω

ρ0dx. (3.33)

emark 3.3. The second-order pressure correction method is adopted here to deal with the Navier–Stokes
quations. This method effectively separates the calculation of pressure from that of the velocity field. The scheme
s second-order accurate for the velocity but only first-order accurate for pressure, cf. [43]. To obtain the pressure,
e just apply the divergence operator to (3.29) and then obtain the following Poisson equation for pn+1, i.e.,

− ∆pn+1
= −

3
2δt

∇ · ũn+1
− ∆pn. (3.34)

Once pn+1 is computed from (3.34), we update un+1 by using (3.29), i.e.,

un+1
= ũn+1

−
2δt
3

∇(pn+1
− pn). (3.35)

emark 3.4. In the two Allen–Cahn equations of φ and ρ, we add two second-order linear stabilization terms
elated to Si , i = 1, 2 in (3.23) and (3.25) to improve energy stability. Numerical experiments in Section 4 (Figs. 4.2
nd 4.3) show that these two stabilizers can effectively improve energy stability when large time steps are used.
oreover, although these two additional stabilizers increase the splitting errors, the increased error is comparable

o the error caused by the extrapolation to the nonlinear terms f (φ) and g(ρ).

.2. Implementation process

It appears that all unknown variables are nonlocally coupled together, and thus the developed scheme

3.22)–(3.30) is not the fully-decoupled scheme that we expect. This reminds us that we cannot use the direct

8
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U

w

U

H

iteration method to solve it because doing so will cause a lot of time consumption. Next, we detail the
implementation process, in which we make full use of the nonlocal characteristics of the two addition variables
, q , as shown below.
First, we rewrite (3.26) to the following form

U n+1
=

1
2

∫
Ω

(H∗φn+1
+ R∗ρn+1)dx + gn, (3.36)

here

gn
=

bU n
− cU n−1

a
−

1
2

∫
Ω

(H∗
bφn

− cφn−1

a
+ R∗

bρn
− cρn−1

a
)dx. (3.37)

sing (3.36), the system (3.22)–(3.25) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
2M1δt

φn+1
+

1
M1

Qn+1
∇ · (u∗φ∗) = −

(
µn+1

−
1

|Ω |

∫
Ω

µn+1dx
)

+
bφn

− cφn−1

2M1δt
,

µn+1
=

(
−λ1∆ +

S1

ϵ2

)
φn+1

+
1
2

H∗

∫
Ω

(H∗φn+1
+ R∗ρn+1)dx +

(
gn H∗

−
S1

ϵ2 φ
∗

)
,

a
2M2δt

ρn+1
+

1
M2

Qn+1
∇ · (u∗ρ∗) = −

(
ωn+1

−
1

|Ω |

∫
Ω

ωn+1dx
)

+
bρn

− cρn−1

2M2δt
,

ωn+1
=

(
−λ2γ∆ +

S2

η2

)
ρn+1

+
1
2

R∗

∫
Ω

(H∗φn+1
+ R∗ρn+1)dx +

(
gn R∗

−
S2

η2 ρ
∗

)
.

(3.38)

Second, we use the nonlocal scalar variable Qn+1 to split (φ, ρ, µ, ω)n+1 into a linear combination that reads as{
φn+1

= φn+1
1 + Qn+1φn+1

2 , µn+1
= µn+1

1 + Qn+1µn+1
2 ,

ρn+1
= ρn+1

1 + Qn+1ρn+1
2 , ωn+1

= ωn+1
1 + Qn+1ωn+1

2 .
(3.39)

ence the system (3.38) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
2M1δt

(φn+1
1 + Qn+1φn+1

2 ) +
1

M1
Qn+1

∇ · (u∗φ∗)

= −

(
µn+1

1 + Qn+1µn+1
2 −

1
|Ω |

∫
Ω

(µn+1
1 + Qn+1µn+1

2 )dx
)

+
bφn

− cφn−1

2M1δt
,

µn+1
1 + Qn+1µn+1

2 =

(
−λ1∆ +

S1

ϵ2

)
(φn+1

1 + Qn+1φn+1
2 )

+
1
2

H∗

∫
Ω

(H∗(φn+1
1 + Qn+1φn+1

2 ) + R∗(ρn+1
1 + Qn+1ρn+1

2 ))dx

+

(
gn H∗

−
S1

ϵ2 φ
∗

)
,

a
2M2δt

(ρn+1
1 + Qn+1ρn+1

2 ) +
1

M2
Qn+1

∇ · (u∗ρ∗)

= −

(
ωn+1

1 + Qn+1ωn+1
2 −

1
|Ω |

∫
Ω

(ωn+1
1 + Qn+1ωn+1

2 )dx
)

+
bρn

− cρn−1

2M2δt
,

ωn+1
1 + Qn+1ωn+1

2 =

(
−λ2γ∆ +

S2

η2

)
(ρn+1

1 + Qn+1ρn+1
2 )

+
1
2

R∗

∫
Ω

(H∗(φn+1
1 + Qn+1φn+1

2 ) + R∗(ρn+1
1 + Qn+1ρn+1

2 ))dx

+

(
gn R∗

−
S2
ρ∗

)
.

(3.40)
η2
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According to Qn+1, the linear system (3.40) can be decomposed into two sub-systems as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
2M1δt

φn+1
1 = −

(
µn+1

1 −
1

|Ω |

∫
Ω

µn+1
1 dx

)
+ A1,

µn+1
1 =

(
−λ1∆ +

S1

ϵ2

)
φn+1

1 +
1
2

H∗

∫
Ω

(H∗φn+1
1 + R∗ρn+1

1 ) + B1,

a
2M2δt

ρn+1
1 = −

(
ωn+1

1 −
1

|Ω |

∫
Ω

ωn+1
1 dx

)
+ C1,

ωn+1
1 =

(
−λ2γ∆ +

S2

η2

)
ρn+1

1 +
1
2

R∗

∫
Ω

(H∗φn+1
1 + R∗ρn+1

1 )dx + D1,

(3.41)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
2M1δt

φn+1
2 = −

(
µn+1

2 −
1

|Ω |

∫
Ω

µn+1
2 dx

)
+ A2,

µn+1
2 =

(
−λ1∆ +

S1

ϵ2

)
φn+1

2 +
1
2

H∗

∫
Ω

(H∗φn+1
2 + R∗ρn+1

2 )dx + B2,

a
2M2δt

ρn+1
2 = −

(
ωn+1

2 −
1

|Ω |

∫
Ω

ωn+1
2 dx

)
dx + C2,

ωn+1
2 =

(
−λ2γ∆ +

S2

η2

)
ρn+1

2 +
1
2

R∗

∫
Ω

(H∗φn+1
2 + R∗ρn+1

2 )dx + D2,

(3.42)

where Ai , Bi ,Ci , Di , i = 1, 2 are given explicit forms that read as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A1 =
1

2M1δt
(bφn

− cφn−1), B1 = gn H∗
−

S1

ϵ2 φ
∗,

C1 =
1

2M2δt
(bρn

− cρn−1), D1 = gn R∗
−

S2

η2 ρ
∗,

A2 = −
1

M1
∇ · (u∗φ∗), B2 = 0,C2 = −

1
M2

∇ · (u∗ρ∗), D2 = 0.

he boundary conditions of the two sub-systems (3.41) and (3.42) are either periodic or satisfy

∂n(φn+1
1 , ρn+1

1 , φn+1
2 , ρn+1

2 )|∂Ω = 0. (3.43)

Although the two independent subsystems (3.41) and (3.42) are linear, they are not easy to solve due to the
onlocal nature. Note that the two subsystems (3.41) and (3.42) have the same form except for the explicit source
erms (A, B,C, D)i , i = 1, 2, so we only need to introduce a method to solve any one of them, the other follows
he same process.

We choose the first subsystem (3.41) as an example to show how to obtain fast calculations. By taking the L2

nner product with 1 for the first and third equations in (3.41) and using (3.33), we derive∫
Ω

φn+1
1 dx =

∫
Ω

φndx = · · · =

∫
Ω

φ0dx,∫
Ω

ρn+1
1 dx =

∫
Ω

ρndx = · · · =

∫
Ω

ρ0dx.
(3.44)

imilarly, from (3.42), we derive∫
Ω

φn+1
2 dx = 0,

∫
Ω

ρn+1
2 dx = 0. (3.45)

We combine the first two equations and the last two equations in the system (3.41) separately to obtain the
ollowing form:⎧⎪⎪⎨⎪⎪⎩

P(φn+1
1 ) +

1
2

H̄∗

∫
Ω

(H∗φn+1
1 + R∗ρn+1

1 )dx = χ1,

Q(ρn+1
1 ) +

1
R̄∗

∫
(H∗φn+1

1 + R∗ρn+1
1 )dx = χ2,

(3.46)
2 Ω

10
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where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(φ) =
a

2M1δt
φ − λ1∆φ +

S1

ϵ2 φ,

Q(ρ) =
a

2M2δt
ρ − λ2γ∆ρ +

S2

η2 ρ,

H̄∗
= H∗

−
1

|Ω |

∫
Ω

H∗dx, R̄∗
= R∗

−
1

|Ω |

∫
Ω

R∗dx,

χ1 = gn H∗
−

1
|Ω |

∫
Ω

gn H∗dx −
S1

ϵ2 φ
∗
+

1
2M1δt

(bφn
− cφn−1),

χ2 = gn R∗
−

1
|Ω |

∫
Ω

gn R∗dx −
S2

η2 ρ
∗
+

1
2M2δt

(bρn
− cρn−1).

(3.47)

We define the linear operator P−1 and Q−1 such that for any function v1, v2 ∈ L2(Ω ),

u1 = P−1(v1) : P(u1) = v1;

u2 = Q−1(v2) : Q(u2) = v2.
(3.48)

y applying P−1 and Q−1 to the two equations in (3.46) respectively, we derive⎧⎪⎪⎨⎪⎪⎩
φn+1

1 +
1
2
P−1(H̄∗)

∫
Ω

(H∗φn+1
1 + R∗ρn+1

1 )dx = P−1(χ1),

ρn+1
1 +

1
2
Q−1(R̄∗)

∫
Ω

(H∗φn+1
1 + R∗ρn+1

1 )dx = Q−1(χ2).
(3.49)

fter multiplying the L2 inner product with H∗ and R∗ for the above two equations respectively, we derive the
ollowing linear system[

1 + α α

β 1 + β

] [ ∫
Ω H∗φn+1

1 dx∫
Ω R∗ρn+1

1 dx

]
=

[ ∫
Ω H∗P−1(χ1)dx∫
Ω R∗Q−1(χ2)dx

]
, (3.50)

here

α =
1
2

∫
Ω

H∗P−1(H̄∗)dx, β =

∫
Ω

R∗Q−1(R̄∗)dx. (3.51)

he determinant of the 2 × 2 matrix in (3.50) is 1 + α + β which can be verified to be non-zero by the following
rocess. Suppose ψ = P−1(H̄∗), then ψ satisfies

P(ψ) = H̄∗. (3.52)

By taking the L2 inner product of (3.52) with 1, we obtain∫
Ω

ψdx = 0. (3.53)

Furthermore, by taking the L2 inner product of (3.52) with ψ and using (3.53), we derive

α =

∫
Ω

H∗ψdx =

(
a

2M1δt
+

S1

ϵ2

)
∥ψ∥

2
+ λ1∥∇ψ∥

2
≥ 0. (3.54)

Similarly, we also have β ≥ 0. This implies the matrix system (3.50) is uniquely solvable. After obtaining the two
nonlocal terms

∫
Ω H∗φn+1

1 dx and
∫
Ω R∗ρn+1

1 dx from (3.50), we can obtain φn+1
1 and ρn+1

1 from (3.49). By using
he similar process to the linear system (3.42), one can obtain φn+1

2 and ρn+1
2 .

Third, for the velocity field ũn+1,un+1 and the pressure pn+1 in the scheme (3.27) and (3.29)–(3.30), we also
se the nonlocal variable Qn+1 to split them as the following linear combinations:⎧⎪⎨⎪⎩

ũn+1
= ũn+1

1 + Qn+1ũn+1
2 ,

un+1
= un+1

1 + Qn+1un+1
2 ,

n+1 n+1 n+1 n+1

(3.55)
p = p1 + Q p2 .

11
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By replacing these variables ũn+1, un+1, pn+1 in the scheme (3.27) and (3.29)–(3.30), and then splitting the obtained
equations according to Qn+1, we arrive at a system that includes two sub-equations for each variable. More precisely,
from (3.27), the two split variables ũn+1

i , i = 1, 2 follow the equations:⎧⎪⎨⎪⎩
a

2δt
ũn+1

1 − ν∆ũn+1
1 = σ1,

a
2δt

ũn+1
2 − ν∆ũn+1

2 = σ2,
(3.56)

here

σ1 = −∇ pn
+

bun
− cun−1

2δt
, σ2 = −(u∗

· ∇)u∗
− φ∗

∇µ∗
− ρ∗

∇ω∗, (3.57)

are all explicit forms. Similarly, from (3.29)–(3.30), the two split variables un+1
i , pn+1

i , i = 1, 2 follow the equations:

⎧⎪⎨⎪⎩
3

2δt
(un+1

1 − ũn+1
1 ) + ∇ pn+1

1 = Υ1, ∇ · un+1
1 = 0,

3
2δt

(un+1
2 − ũn+1

2 ) + ∇ pn+1
2 = Υ2, ∇ · un+1

2 = 0,
(3.58)

here Υ1 = ∇ pn and Υ2 = 0 are explicit forms as well. We request the four split variables ũn+1
i ,un+1

i , i = 1, 2
ollow the boundary conditions described in (3.32), i.e, they are either periodic or satisfy:

ũn+1
i |∂Ω = 0,un+1

i · n|∂Ω = 0. (3.59)

Fourth, we solve the auxiliary variable Qn+1. Using the split form for the variables µn+1, ωn+1, ũn+1, one can
ewrite (3.28) as the following form:

(
a

2δt
− ϑ2)Qn+1

=
1

2δt
(bQn

− cQn−1) + ϑ1, (3.60)

where

ϑi =

∫
Ω

(
∇ · (u∗φ∗)µn+1

i + (φ∗
∇µ∗) · ũn+1

i

+ ∇ · (u∗ρ∗)ωn+1
i + (ρ∗

∇ω∗) · ũn+1
i + (u∗

· ∇)u∗
· ũn+1

i

)
dx, i = 1, 2.

(3.61)

We need to verify whether (3.60) is solvable or not. By multiplying the L2 inner product of the second equation
n (3.56) with ũn+1

2 , we get

−

∫
Ω

(
(u∗

· ∇)u∗
· ũn+1

2 + (φ∗
∇µ∗) · ũn+1

2 + (ρ∗
∇ω∗) · ũn+1

2

)
=

a
2δt

∥ũn+1
2 ∥

2
+ ν∥∇ũn+1

2 ∥
2

≥ 0.
(3.62)

By taking the L2 inner product of the first equation in (3.42) with M1µ
n+1
2 , of the second equation with −

a
2δt φ

n+1
2 ,

of the third equation with M2ω
n+1
2 , of the fourth equation with −

a
2δt ρ

n+1
2 , and combining all obtained equations,

e derive

−

∫
Ω

(∇ · (u∗φ∗)µn+1
2 + ∇ · (u∗ρ∗)ωn+1

2 )dx

=M1

µn+1
2 −

1
|Ω |

∫
Ω

µn+1
2 dx

2

+ M2

ωn+1
2 −

1
|Ω |

∫
Ω

ωn+1
2 dx

2

+
a

2δt
λ1∥∇φ

n+1
2 ∥

2
+

aS1

2δtϵ2 ∥φn+1
2 ∥

2
+

a
2δt

λ2γ ∥∇ρn+1
2 ∥

2
+

aS2

2δtη2 ∥ρn+1
2 ∥

2

+
1
2

(∫
Ω

H∗φn+1
2 dx +

∫
Ω

R∗ρn+1
2 dx

)2

≥ 0.

(3.63)

his implies −ϑ2 ≥ 0 and the solvability of (3.60) is verified.
Finally, we update φn+1, ρn+1, µn+1, ωn+1 from (3.39), ũn+1, un+1, and pn+1 from (3.55), and U n+1 from (3.36).
12
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In summary, the scheme (3.22)–(3.30) can be implemented in the following way:

• Step 1: Compute
∫
Ω H∗φn+1

1 dx,
∫
Ω R∗ρn+1

1 dx from (3.50), and
∫
Ω H∗φn+1

2 dx,
∫
Ω R∗ρn+1

2 dx from another
similar matrix system derived from (3.42);

• Step 2: Update φn+1
1 , ρn+1

1 from (3.49); and update φn+1
2 , ρn+1

2 from another similar equality derived from
(3.42);

• Step 3: Compute ũi , i = 1, 2 from (3.56);
• Step 4: Compute ui and pi , i = 1, 2 from (3.58) (see Remark 3.3);
• Step 5: Compute Qn+1 from (3.60);
• Step 6: Update φn+1, ρn+1, µn+1, ωn+1 from (3.39), ũn+1, un+1, and pn+1 from (3.55), and U n+1 from (3.36).

ence, the total cost of solving the (3.22)–(3.30) at each time step includes the six independent linear elliptic
quations in Step 1 (P−1(χ1), Q−1(χ2), P−1(H̄∗), Q−1(R̄∗) and other two derived from (3.42)), two elliptic type
quations in Step 3, and two other Poisson type equations in Step 4. All these equations have constant coefficients
nd are completely decoupled, which means very effective calculations in practice.

The following theorem ensures that the developed scheme (3.22)–(3.30) satisfies the energy stability uncondi-
ionally.

heorem 3.1. The following discrete energy dissipation law holds for the scheme (3.22)–(3.30),

1
δt

(En+1
− En−1) ≤ − ν∥∇ũn+1

∥
2
− M1

µn+1
−

1
|Ω |

∫
Ω

µn+1dx
2

− M2

ωn+1
−

1
|Ω |

∫
Ω

ωn+1dx
2

≤ 0,

(3.64)

here

En+1
=

1
2

(1
2
∥un+1

∥
2
+

1
2
∥2un+1

− un
∥

2
)

+
λ1

2
(
1
2
∥∇φn+1

∥
2
+

1
2
∥2∇φn+1

− ∇φn
∥

2)

+
λ2γ

2
(
1
2
∥∇ρn+1

∥
2
+

1
2
∥2∇ρn+1

− ∇ρn
∥

2) + (
1
2
|U n+1

|
2
+

1
2
|2U n+1

− U n
|
2
)

+
1
2

(
1
2
|Qn+1

|
2
+

1
2
|2Qn+1

− Qn
|
2
) +

δt2

3
∥∇ pn+1

∥
2

+
S1

2ϵ2 ∥φn+1
− φn

∥
2
+

S2

2η2 ∥ρn+1
− ρn

∥
2.

(3.65)

Proof. We multiply the inner product of (3.27) with 2δt ũn+1 in the L2 space, we obtain

(3ũn+1
− 4un

+ un−1, ũn+1) + 2νδt∥∇ũn+1
∥

2
+ 2δt(∇ pn, ũn+1)

+ 2δt Qn+1
∫
Ω

(u∗
· ∇)u∗

· ũn+1dx + +2δt Qn+1
∫
Ω

φ∗
∇µ∗

· ũn+1dx

+ 2δt Qn+1
∫
Ω

ρ∗
∇ω∗

· ũn+1dx = 0.

(3.66)

From (3.29), for any variable v with ∇ · v = 0, we have

n+1
˜

n+1
(u , v) = (u , v). (3.67)

13
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w

We derive following equality

(3ũn+1
− 4un

+ un−1, ũn+1)

= (3ũn+1
− 4un

+ un−1,un+1) + (3ũn+1
− 4un

+ un−1, ũn+1
− un+1)

= (3un+1
− 4un

+ un−1,un+1) + (3ũn+1, ũn+1
− un+1)

= (3un+1
− 4un

+ un−1,un+1) + 3(ũn+1
− un+1, ũn+1

+ un+1)

=
1
2

(
∥un+1

∥
2
− ∥un

∥
2
+ ∥2un+1

− un
∥

2
− ∥2un

− un−1
∥

2

+ ∥un+1
− 2un

+ un−1
∥

2
)

+3(∥ũn+1
∥

2
− ∥un+1

∥
2),

(3.68)

here we use the following identity

2(3a − 4b + c, a) = a2
− b2

+ (2a − b)2
− (2b − c)2

+ (a − 2b + c)2. (3.69)

We reformulate the projection step (3.29) as

3
2δt

un+1
+ ∇ pn+1

=
3

2δt
ũn+1

+ ∇ pn. (3.70)

By taking the square of both sides of the above equation, we get

9
4δt2 ∥un+1

∥
2
+ ∥∇ pn+1

∥
2

=
9

4δt2 ∥ũn+1
∥

2
+ ∥∇ pn

∥
2
+

3
δt

(ũn+1,∇ pn). (3.71)

Hence, by multiplying 2δt2/3 of the above equation, we derive

3
2

(∥un+1
∥

2
− ∥ũn+1

∥
2) +

2δt2

3
(∥∇ pn+1

∥
2
− ∥∇ pn

∥
2) = 2δt(ũn+1,∇ pn). (3.72)

By taking the inner product of (3.29) with 2δtun+1 in the L2 space, we have

3
2

(∥un+1
∥

2
− ∥ũn+1

∥
2
+ ∥un+1

− ũn+1
∥

2) = 0. (3.73)

We combine (3.66), (3.68), (3.72), and (3.73) to obtain

1
2

(∥un+1
∥

2
− ∥un

∥
2
+ ∥2un+1

− un
∥

2
− ∥2un

− un−1
∥

2
+ ∥un+1

− 2un
+ un−1

∥
2)

+
3
2
∥un+1

− ũn+1
∥

2
+

2δt2

3
(∥∇ pn+1

∥
2
− ∥∇ pn

∥
2) + 2νδt∥∇ũn+1

∥
2

+ 2δt Qn+1
∫
Ω

(u∗
· ∇)u∗

· ũn+1dx + 2δt Qn+1
∫
Ω

φ∗
∇µ∗

· ũn+1dx

+ 2δt Qn+1
∫
Ω

ρ∗
∇ω∗

· ũn+1dx = 0.

(3.74)

Computing the inner product of (3.22) with 2δtµn+1 in the L2 space, we have

(3φn+1
− 4φn

+ φn−1, µn+1) + 2δt Qn+1
∫
Ω

∇ · (u∗φ∗)µn+1dx

+ 2δt M1

µn+1
−

1
|Ω |

∫
Ω

µn+1dx
2

= 0.
(3.75)

Computing the L2 inner product of (3.23) with −(3φn+1
− 4φn

+ φn−1), we find

−(µn+1, 3φn+1
− 4φn

+ φn−1) + λ1(∇φn+1,∇(3φn+1
− 4φn

+ φn−1))

+ U n+1
∫
Ω

H∗(3φn+1
− 4φn

+ φn−1)dx

+
S1 (φn+1

− φ∗, 3φn+1
− 4φn

+ φn−1) = 0.

(3.76)
ϵ2

14
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Computing the inner product of (3.24) with 2δtωn+1 in the L2 space, we have

(3ρn+1
− 4ρn

+ ρn−1, ωn+1) + 2δt Qn+1
∫
Ω

∇ · (u∗ρ∗)ωn+1dx

+ 2δt M1

ωn+1
−

1
|Ω |

∫
Ω

ωn+1dx
2

= 0.
(3.77)

Computing the L2 inner product of (3.25) with −(3φn+1
− 4φn

+ φn−1), we find

−(ωn+1, 3ρn+1
− 4ρn

+ ρn−1) + λ2γ (∇ρn+1,∇(3ρn+1
− 4ρn

+ ρn−1))

+ U n+1
∫
Ω

R∗(3ρn+1
− 4ρn

+ ρn−1)dx

+
S2

η2 (ρn+1
− ρ∗, 3ρn+1

− 4ρn
+ ρn−1) = 0.

(3.78)

By multiplying (3.26) with 2U n+1 and using (3.69), we obtain

|U n+1
|
2
− |U n

|
2
+ |2U n+1

− U n
|
2
− |2U n

− U n−1
|
2
+ |U n+1

− 2U n
+ U n−1

|
2

= U n+1
∫
Ω

(H∗(3φn+1
− 4φn

+ φn−1) + R∗(3ρn+1
− 4ρn

+ ρn−1))dx.
(3.79)

By multiplying (3.28) with 2δt Qn+1 and using (3.69), we obtain

1
2

(
|Qn+1

|
2
− |Qn

|
2
+ |2Qn+1

− Qn
|
2
− |2Qn

− Qn−1
|
2
+ |Qn+1

− 2Qn
+ Qn−1

|
2
)

= 2δt Qn+1
∫
Ω

∇ · (u∗φ∗)µn+1
+ 2δt Qn+1

∫
Ω

(φ∗
∇µ∗) · ũn+1dx

+ 2δt Qn+1
∫
Ω

∇ · (u∗ρ∗)ωn+1dx + 2δt Qn+1
∫
Ω

ρ∗
∇ω∗

· ũn+1dx

+ 2δt Qn+1
∫
Ω

(u∗
· ∇)u∗

· ũn+1dx.

(3.80)

Hence, by combining (3.74)–(3.80), we arrive at

1
2

(∥un+1
∥

2
− ∥un

∥
2
+ ∥2un+1

− un
∥

2
− ∥2un

− un−1
∥

2)

+
2δt2

3
(∥∇ pn+1

∥
2
− ∥∇ pn

∥
2)

+
λ1

2
(∥∇φn+1

∥
2
− ∥∇φn

∥
2
+ ∥∇(2φn+1

− φn)∥2
− ∥∇(2φn

− φn−1)∥2)

+
λ2γ

2
(∥∇ρn+1

∥
2
− ∥∇ρn

∥
2
+ ∥∇(2ρn+1

− ρn)∥2
− ∥∇(2ρn

− ρn−1)∥2)

+ (|U n+1
|
2
− |U n

|
2
+ |2U n+1

− U n
|
2
− |2U n

− U n−1
|
2
)

+
1
2

(|Qn+1
|
2
− |Qn

|
2
+ |2Qn+1

− Qn
|
2
− |2Qn

− Qn−1
|
2
)

+
S1

ϵ2 (∥φn+1
− φn

∥
2
− ∥φn

− φn−1
∥

2) +
S2

η2 (∥ρn+1
− ρn

∥
2
− ∥ρn

− ρn−1
∥

2)

+

{ 1
2
∥un+1

− 2un
+ un−1

∥
2
+

3
2
∥un+1

− ũn+1
∥

2

+
λ1

∥∇(φn+1
− 2φn

+ φn−1)∥2
+
λ2γ

∥∇(ρn+1
− 2ρn

+ ρn−1)∥2
2 2
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W
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W
T
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d
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f

+
2S1

ϵ2 ∥φn+1
− 2φn

+ φn−1
∥

2
+

2S2

η2 ∥ρn+1
− 2ρn

+ ρn−1
∥

2

+ |U n+1
− 2U n

+ U n−1
|
2
+

1
2
|Qn+1

− 2Qn
+ Qn−1

|
2

}
= −2δtν∥∇ũn+1

∥
2
− 2δt M1

µn+1
−

1
|Ω |

∫
Ω

µn+1dx
2

− 2δt M2

ωn+1
−

1
|Ω |

∫
Ω

ωn+1dx
2

,

(3.81)

where we use the following identity:

(3a − 4b + c)(a − 2b + c) = (a − b)2
− (b − c)2

+ 2(a − 2b + c)2. (3.82)

Finally, we obtain (3.64) from (3.81) after dropping the positive terms in { } and dividing both sides by 2. □

. Numerical simulations

In this section, we implement numerical examples to verify the accuracy and energy stability of the proposed
lgorithm (3.22)–(3.30). Numerical simulations including accuracy/stability tests, spinodal decomposition in 2D and
D, and collision of two droplets driven by the shear flow in 2D and 3D, are performed. In all numerical examples,
e set the computational domain to be the rectangular shape. For directions with periodic boundary conditions, the
ourier-spectral method is used for discretization. For directions with boundary conditions specified in (3.32), the
egendre–Galerkin method is adopted for discretization. The inf–sup stable pair (PN , PN−2) is used for the velocity

ũ and u) and pressure p, respectively, and PN is used for the phase-field variables φ, ρ.

.1. Accuracy and stability test

We first verify the accuracy and stability of the fully-decoupled scheme (3.22)–(3.30) using the scalar auxiliary
ariables (denoted by DSAV for short) by performing several convergence and stability tests. Assuming that the
xact solution of the system (2.4)–(2.7) are given as follows:⎧⎪⎨⎪⎩

φ(x, y, t) = sin x cos y cos t, ρ(x, y, t) = (0.5 + 0.1 sin x cos y) cos t,

u(x, y, t) = (u(x, y, t), v(x, y, t)) = (cos x sin(2y), sin x sin2 y) cos t,

p(x, y, t) = sin x sin y sin t.

(4.1)

e apply some suitable force fields so that the functions given in (4.1) can satisfy the system. The 2D computational
omain is set to be Ω = [0, 2π ]2, and the order parameters read as

M1 = M2 = 0.01, λ1 = λ2 = 0.01, ϵ = 0.1, η = 0.1,
θ1 = 0.1, θ2 = 0.1, ζ = 1e−5, ν = 1, S1 = S2 = 0.05.

(4.2)

e assume that the x-direction meets the periodic boundary conditions and use 129 Fourier modes for discretization.
he y-direction satisfies the boundary conditions given in (2.12) and is discretized by using the Legendre–Galerkin
ethod where the Legendre polynomials with degrees up to 128 are used. Such a fine mesh can make the spatial

iscretization error negligible compared with the time discretization error. In Fig. 4.1(a), we plot the L2 errors of
ll unknown variables between the numerical solution and the exact solution at t = 0.5 by varying the time step
rom δt = 0.01 to δt =

0.01
24 with a factor of 1/2. We observe that the DSAV exhibits perfect second-order accuracy

for φ, ρ and u = (u, v), first-order accuracy for p, as expected.
By performing more mesh refinement examples in time, we further test the convergence speed of the developed

solution DSAV. The calculation domain, boundary conditions, spatial discretization, and the number of grid points
are the same as the previous example. The initial conditions are set as follows (shown in the first subfigure of
Fig. 4.4),⎧⎪⎪⎨⎪⎪⎩

φ0(x, y) = 1 +

2∑
i=1

tanh(
ri −

√
(x − xi )2 + (y − yi )2

1.5ϵ
),

0 0

(4.3)
u (x, y) = 0, p (x, y) = 0,
16
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Fig. 4.1. Accuracy tests where (a) the presumed exact solutions are given in (4.1), and (b) mesh refinement in time with the initial solution
given in (4.3). In both subfigures, the L2 numerical errors of φ, ρ, u = (u, v), p, are computed by using the scheme DSAV with different
ime steps.

Fig. 4.2. (a) The comparison of accuracy computed by the scheme DSAV and SAV with various time steps and the given initial conditions
(4.3), where the L2 numerical errors of φ and ρ are plotted, and (b) the time evolution of the nonlocal variable Q.

here r1 = 1.4, r2 = 0.7, x1 = π − 0.8, x2 = π + 1.7, y1 = y2 = π . We set the parameters as

M1 = M2 = 20, λ1 = λ2 = 0.01, ϵ = 0.05, η = 0.005,
θ1 = 0.02, θ2 = 2, ζ = 1e−5, ν = 1, S1 = S2 = 0.05.

(4.4)

Since the exact solution is unknown, the numerical solution obtained by the scheme DSAV using a very small
ime step δt = 1e−9 will be treated as the exact solution to calculate the approximate errors. Then, we choose
= 0.5 and plot the L2 errors of all variables obtained by changing the time step from 0.01 to t = 0.01/210 with a

actor of 1/2. The convergence rate is shown in Fig. 4.1(b), where we find that the scheme DSAV always exhibits
lmost perfect second-order accuracy for φ, ρ,u = (u, v), and first-order accuracy for p.

Furthermore, we examine the effect of the added stabilizers S1, S2 on stability and accuracy. For simplicity, we
se SAV to represent the scheme in which S1 = S2 = 0. In Fig. 4.2(a), we compare the accuracy of DSAV and SAV
y plotting the L2 numerical errors of φ and ρ at t = 0.5 obtained by using different time steps. When the time
tep size is large (δt > 0.01

29 ), SAV overflows and the accuracy is lost. When the time step size is small (δt ≤
0.01
29 ),

it shows the second-order accuracy for φ and ρ. But DSAV always shows good second-order accuracy for all tested
17



X. Yang Computer Methods in Applied Mechanics and Engineering 373 (2021) 113502
Fig. 4.3. (a) The evolution of the total free energy (3.65) over time computed by using DSAV and different time steps. (b) The evolution
of the total free energy (3.65) over time computed by using DSAV with δt = 0.01/22 and SAV with δt = 0.01/29.

Fig. 4.4. Snapshots of the profiles of φ and ρ at various times with the initial conditions given in (4.3) computed by the scheme DSAV
with δt = 0.01/22.

time steps. If we compare the size of the error when δt ≤
0.01
29 , we find that the error obtained by SAV is smaller

than that obtained by DSAV. This is because the two extra stabilizers used in DSAV also increase some splitting
errors. In Fig. 4.2(b), we plot the evolution of the value of Q over time computed using different time steps is
plotted. We find that the value of Q has always been very close to 1. When the step size is small, it is almost equal
to 1.

Next, we use different time steps to perform energy stability tests. In Fig. 4.3(a), we plot six energy evolution
curves computed by using DSAV with time steps from δt = 0.01 to 0.01/25 with factor of 1/2. All obtained curves
show very good monotonic decay. When the time step is very large, such as δt = 0.01, the deviation between

the energy curve and other curves obtained with smaller steps is relatively large due to large computational errors.

18
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Fig. 4.5. 2D spinodal decomposition example, where snapshots of the profiles of φ and ρ are plotted at t = 1.5, 2, 5, 15, 35.

hen the step size is less than 0.01/22, all the energy curves are overlapped together, which represents that the
omputational results reach the expected degree. In Fig. 4.3(b), we plot two energy evolution curves, one of which is
alculated by SAV using a very small time step δt = 0.01/29. All calculations using SAV with large step sizes will
ventually overflow, therefore the energy evolution curves cannot be plotted, and the time step size δt = 0.01/29

sed in Fig. 4.3(b) is the maximum step size that SAV allows. At the same time, we also plot the energy curve
omputed by DSAV with δt = 0.01/22. It can be seen that the two curves are completely coincident, so we can say
hat the stabilized algorithm DSAV can use very large time steps. For this example, the step size used by DSAV
an be increased to 128 times than that of SAV.

Finally, we implement DSAV to the equilibrium state by using the time step size δt =
0.1
22 . Snapshots of the

rofile φ and ρ at various times are shown in Fig. 4.4, where we find that the small circle is absorbed into the large
ircle gradually under the effect of coarsening. Meanwhile, we can see that concentration is high around the fluid
nterfaces due to the coupling potential associated with θ1 and θ2.

.2. Spinodal decomposition in 2D and 3D

In this example, we set the initial conditions of the local density variable ρ to a homogeneous medium with
mall disturbances to study the phase separation (spinodal decomposition) process over time.

We first perform a 2D simulation with the computed domain [0, 2π ]2. The initial conditions are set as follows,

u0(x) = 0, p0(x) = 0, φ(x) = 0.5 + 0.001rand(x), ρ(x) = 0.2, (4.5)

here the rand(x) is the random number in [−1, 1] that follows the normal distribution. We assume periodic
oundary conditions and discretize the space by using 257 Fourier modes for each direction. We set the model
arameters as

M1 = M2 = 20, λ1 = λ2 = 0.01, ϵ = 0.05, η = 0.01, θ1 = 0.02,
θ2 = 1, ζ = 1e−5, ν = 1, S1 = S2 = 0.05, B = 1e5, δt = 0.001.

(4.6)

In Fig. 4.5, we plot snapshots of φ and ρ at different times. We observe that the final equilibrium solution of
he fluid interface exhibits a circular state, and the concentration variable ρ presents a relatively high value at the
uid interface.
19
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Fig. 4.6. 3D spinodal decomposition example, where snapshots of the isosurfaces of {φ = 0} (in the color red) and {ρ = 0.21} (in the color
ellow, 0.21 is near the maximum value of ρ) are plotted at t = 0.8, 1, and 5. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Fig. 4.7. Comparison of the total free energy in the original form (2.2) and modified form (3.65) computed by using the scheme DSAV for
he spinodal decomposition examples in 2D and 3D.

We use the same initial conditions given in (4.5) to perform a 3D simulation. The computational domain is
0, 2π ]3 and order parameters are the same as the 2D simulation. In Fig. 4.6, snapshots of the isosurfaces of {φ = 0}

and {ρ = 0.21} (near the maximum value of ρ) are plotted using different colors, red and yellow, respectively. We
nd that the dynamics of phase separation are similar to the 2D simulation, and the final steady-state appears to be
spherical phase. In Fig. 4.7, we plot the evolutions of the total free energy in the original form (2.2) and modified

orm (3.65) over time, all curves show a monotonic decaying structure.
Finally, in Fig. 4.8, we exhibit the equilibrium solutions of 2D and 3D spinodal decomposition examples obtained

sing the two models, the conserved Allen–Cahn model developed in this paper and the classical Cahn–Hilliard
odel [4,7,8] where the nonlinear potential G̃(ρ) is used. All other computational settings are the same. We can

see that although the models are different, the equilibrium phase obtained is the same.

4.3. Collision of two droplets driven by shear flow in 2D and 3D

In this example, we consider the motion of two closely deposited droplets under the action of an applied shear
flow. When the droplets are about to collide, there will be some differences between the surfactant and non-surfactant

cases.
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Fig. 4.8. Comparison of 2D and 3D equilibrium solution using the conserved Allen–Cahn system and the classical Cahn–Hilliard system
using the same model parameters and initial conditions.

We first perform 2D simulations and set the computed domain as Ω = [0, 2]2. We set the initial conditions as
follows.

φ0
=

2∑
i=1

tanh(

√
ri − (x − xi )2 − (y − yi )2

ϵ
) + 1, ρ0

= 0.2,

u0
= (−0.7(y − 1), 0), p0

= 0,

(4.7)

here (x1, y1, r1) = (0.8, 1.266, 0.28) and (x2, y2, r2) = (1.2, 0.734, 0.28). The periodic boundary conditions are
ssumed along the x-direction. The boundary conditions for the y-direction are set as follows,

u|(y=0) = 0.7, u|(y=2) = −0.7, v|(y=0,y=2) = 0, φy |(y=0,y=2) = ρy |(y=0,y=2) = 0. (4.8)

e use the Fourier-spectral method to discretize the x-direction and 257 Fourier modes are used. The spatial
iscretization for y-direction is based on the Legendre–Galerkin method and Legendre polynomials with degrees
p to 256 are used. We set the model parameters as

M1 = M2 = 1, λ1 = λ2 = 0.01, ϵ = 0.02, η = 0.005,
ζ = 1e−5, ν = 1, S1 = S2 = 0.5, B = 1e5, δt = 1e−3.

(4.9)

We first neglect the surfactant effects by setting the coupling parameter θ1 = θ2 = 0. In Fig. 4.9, snapshots of
he phase-field variable φ at different times are plotted. We observe that, under the action of the shear flow, the two
roplets start to move in the opposite direction. As time goes by, around t = 0.8, because the distance between
he two droplets is very close, they collide and then merge into a larger droplet. For comparison, we restore the
urfactant effects by setting the coupling parameter θ1 = 0.025, θ2 = 6 and all other model parameters are the
ame as the no-surfactant simulation. In Fig. 4.10(a) and (b), snapshots of φ and ρ at different times are shown,

espectively. We find that even when the two droplets are very close, they will not merge but slip away from each

21
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a

Fig. 4.9. Two 2D droplets driven by the shear flow without surfactant effects (θ1 = θ2 = 0), where the snapshots at t = 0, 0.8, 1, 1.35, 2,
nd 3 are taken for the phase-field variable φ.

Fig. 4.10. Two 2D droplets driven by the shear flow with surfactant effects (θ1 = 0.025, θ2 = 6). Snapshots of the phase-field variable φ
are taken at t = 0.2, 0.5, 1, 1.5, 2, 2.25, 2.5, 2.75, 3, 3.5.
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Fig. 4.11. Two 3D droplets driven by the shear flow without surfactant effects (θ1 = θ2 = 0). Snapshots of the isosurfaces of {φ = 0} are
aken at t = 0, 0.5, 1, 1.5, 1.75, 2, 2.5, and 3.5.

ther, which means that the role of the surfactant can overcome the coarsening effect. In [44–46], similar behaviors
ave also been experimentally observed, and similar 2D simulations were also reported in [3] by using an alternative
hase-field surfactant model.

We continue to perform 3D simulations. The computed domain is set as Ω = [0, 2] × [0, 0.7] × [0, 2], and the
initial conditions are set as follows.

φ0
=

2∑
i=1

tanh(

√
ri − (x − xi )2 − (y − yi )2 + (z − zi )2

ϵ
) + 1, ρ0

= 0.2,

u0
= (0.7(y − 1), 0, 0), p0

= 0,

(4.10)

here (x1, y1, z1, r1) = (0.8, 0.35, 1.272, 0.28) and (x2, y2, z2r2) = (1.2, 0.35, 0.728, 0.28). The periodic boundary
onditions are assumed for the x and y directions which are then discretized by using Fourier-Spectral method
ith 129 Fourier modes for each direction. The boundary conditions for the variables u = (u, v, w), φ, ρ along the

z-direction are set as follows,

u|z=0 = 0.7, u|z=2 = −0.7, (v,w, φy, ρy)|z=0,2 = 0. (4.11)

The spatial discretization for the z-direction is based on the Legendre–Galerkin method and Legendre polynomials
ith degrees up to 256 are used for discretization. The order parameters read as

M1 = M2 = 1, λ1 = λ2 = 0.01, ϵ = 0.015, η = 0.005,
ζ = 1e−5, ν = 1, S1 = S2 = 0.5, B = 1e5, δt = 1e−3.

(4.12)

Similar to the 2D case, the 3D simulations without surfactant effects (θ1 = θ2 = 0) are first simulated and
napshots of the interface {φ = 0} are plotted in Fig. 4.11. When the two droplets move to a very close distance,
he coarsening effect allows them to merge into a larger droplet. But after imposing the surfactant effects with
1 = 0.02, θ2 = 2, from the plots of isosurfaces of {φ = 0} and {ρ = 0.21} shown in Fig. 4.12(a) and (b),
espectively, we observe that the two droplets slide and finally depart from each other.

. Concluding remarks

We consider two things in this article. First, we replace the fourth-order Cahn–Hilliard model with the conserved

llen–Cahn equation and rebuild simpler hydrodynamics coupled binary fluid surfactant model. Second, in order
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Fig. 4.12. Two 3D droplets driven by the shear flow with surfactant effects (θ1 = 0.02, θ2 = 2). Snapshots of the isosurfaces of {φ = 0} (in
he color red) and {ρ = 0.21} (in the color yellow) are taken at t = 0.1, 1, 1.5, 2, 2.25, 2.5, 3, and 3.5. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)

o solve this model, we propose a novel fully-decoupled scheme with second-order accuracy in time. At each
ime step, we only need to solve several linear elliptic equations with constant coefficients to obtain second-order
ccurate numerical solutions. Moreover, we give a detailed practical implementation method and strictly prove the
nconditional energy stability of the scheme. Finally, through the implementation of a large number of numerical
xamples, the effectiveness of the model and numerical scheme are proved. As far as the author knows, this is
he first fully-decoupled and second-order time-accurate scheme of the flow-coupled phase-field type model. With
reat versatility and flexibility, the novel decoupling method designed in this paper can be combined with any
inear scheme of the flow-coupled phase-field model (e.g. the linear stabilization, IEQ, or SAV, etc.) to form a
ully-decoupled numerical scheme.
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