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Abstract

Generating quality body-fitting meshes for complex composite microstructures is a non-trivial task. In par-
ticular, micro-CT images of composites can contain numerous irregularly-shaped inclusions. Among the methods
available, immersed boundary methods that discretize bodies independently provide potential for tackling these
types of problems since a matching discretization is not needed. However, these techniques still entail the explicit
parameterization of the interfaces, which may be considerable in number. In this work, immersed volumetric
Nitsche methods are developed in order to avoid the difficulty of generating body fitting meshes for composite ma-
terials with complicated microstructures, and overcome the issues in the surface-type methods. These approaches
are developed using Nitsche’s techniques to enforce volumetric continuity between the inclusion and background
domains. It is shown that the proposed weak forms are fully consistent with the strong form of the composite
problem. The present approach permits C° approximations for the foreground discretization, and C' approxi-
mations for the background. The effectiveness of these methods is demonstrated by solving homogeneous and
inhomogeneous composite benchmark problems, where it is shown that the non-symmetric version of Nitsche’s
approach is the most robust in all settings.
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1 Introduction

Composite analysis is an important class of problems in solid mechanics. For problems involving a great number
of inclusions with irregular geometry, such as the CT-scan of a composite microstructure shown in Figure 1, it is
time-consuming and difficult to construct a high quality body-fitting mesh for the traditional finite element method
(FEM). On the other hand, non-body-fitting frameworks such as the immersed class of methods do not require a
conforming discretization and therefore alleviate these difficulties.

The continuity condition at the inclusion interface in these methods can be imposed weakly by utilizing the
Lagrange multiplier method [1-4], or Nitsche’s method [5-11]. These approaches involve an interface contour integral
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(a) Raw image (b) Segmentation

Figure 1: Micro-CT of a polymer-ceramic composite specimen.

and are herein termed surface-type. In [1,2], the Lagrange multiplier method was employed for the Dirichlet condition
on the interface for the fictitious domain type approach. Hansbo et al. [3] introduced Lagrange multipliers for non-
conforming finite element discretizations, and this was further developed as an interior penalty method for the
purpose of stabilization [4]. Hansbo et al. [6,7] also developed a Nitsche method-based unfitted finite element method
for the discontinuous problem. The method captures the interface by enforcing the jump condition. A robust
Nistche formulation was proposed by Annavarapu et al. [8]. A weighting parameter was introduced to address the
instability in the classical variational form of Nitsche’s method for interface problems, and this approach was further
extended to frictional sliding cases [9,10]. A Nitsche embedded-mesh method was introduced by Sanders et al. [11]
for embedded finite element constraints, which alleviates mesh locking in the traditional mortar type approach. Li
et al. [12] introduced the Cartesian grid method for the interface problem, which allows for both conforming and
non-conforming meshes in FEM.

Enforcing the continuity condition or jump condition via traditional methods can still suffer from instabilities [13].
In [13], several traditional surface-type methods were studied, where the Lagrange multiplier method and penalty
method were found to exhibit issues with both stability and accuracy. For stabilization in interface problems,
Burman [14] developed a ghost penalty concept to enhance the robustness of the fictitious domain method, which is
a commonly used technique for interface problems. A jump-stabilized Lagrange multiplier method with penalty-type
stabilization was discussed by Burman et al. [4] for elliptic interface problems.

While many of these methods have shown to be effective, all of these methods fall into the class of surface-type,
and for complicated composite topology such as the CT-scan shown in Figure 1, significant effort is still required to
parameterize the interfaces between the inclusion and matrix domains.

Generalized FEM [15,16], or more generally, the class of partition of unity (PU) methods [17], are able to embed
arbitrary enrichment functions extrinsically into a formulation such as FEM when solution features are known a
priori, such as singularities, discontinuities, etc. This provides flexibility in constructing approximation functions
relatively independent of a mesh, and can capture the interface conditions in inhomogeneous problems. Based on
the concept of PU methods, the extended finite element method (XFEM) [18-20] considers local enrichment of the
solution with the functions only embedded where special physical behavior exists. Arbitrary discontinuities can also
be captured without remeshing, and the computational cost is not significantly increased due to the locally enriched
shape functions [18,21]. Nevertheless, the class of PU methods with enrichments still requires special techniques to
deal with issues such as quadrature, stability, blending, and time integration [22-25]. Meanwhile, these approaches
still require parameterization of the interfaces at hand.

Although developed for fluids, among the methods which can avoid explicit definition of interfaces, the immersed
boundary method (IBM) [26,27], which discretizes bodies independently without any conforming requirements, pro-
vides great potential for realizing the desired framework of effortless analysis of composites with arbitrarily complex
microstructures. In the original immersed boundary method [26], the immersed body was assumed to be a volumeless
fiber-like material that obtains its deformation by interpolating the velocity field of the fluid, exerting a force via an
approximate Dirac delta function. The immersed concept was further developed into the immersed finite element
method (IFEM) [28], where the immersed solid body is allowed to occupy a finite domain, and the interaction force



is given by the difference of the residual of the linear momentum equation in the immersed solid and background
fluid, and the reproducing kernel was employed rather than the original approximate delta function to allow more
complex interface geometries. IFEM has been further improved to consider the deformation in the immersed solid
body instead of passively being displaced by the fluid velocity field [29]. In [30], the authors derived a new system
of equations based on a weak form for IFEM, which avoids the adoption of an approximate Dirac delta function.
Nevertheless, only theoretical work was provided in the paper without numerical examples.

Still under the general IBM framework, in [31] the continuity condition was approximately ensured by interpolating
the velocity unknowns in the solid in terms of the background fluid using shape functions. As a result, however, the
condition is only met at the solid’s node positions unless a conforming mesh is used throughout the immersed domain.
In [32] using meshfree methods for composite solids, the continuity condition across the interface was ensured at nodal
positions by constructing convex generalized meshfree approximations that possess the Kronecker-delta property.
Using this approach, the condition is also only met at nodal positions, and this method is also fairly complicated in
implementation.

A volumetric-type constraint has been proposed by Blanco et. al. in [33] using Lagrange multipliers, and unlike
IBM methods, this approach is mathematically well-justified by the fact that the weak form attests to the strong form
of the problem. The surface continuity conditions are replaced by volumetric continuity in the overlapping domains.
Due to the relative regularity of the approximations required in the weak formulation, the surface compatibility
conditions are satisfied. However, extra degrees of freedom are introduced, and this method suffers from possible
Ladyzhenskaya-Babuska-Brezzi (LBB) instabilities. Still within the volumetric continuity scope, the Arlequin method

[34-37] considers the superposition of domains and the different domains are gluing together through the overlap-
ping area. The total energy is conserved by the use of weighting parameter with the partition of unity feature. The
volumetric continuity in the overlapped domain are enforced by using the Lagrange multiplier. In [38], Nguyen et. al.
developed diffuse Nitsche method by converting the surface integral to the diffuse volumetric format under the stan-
dard Nitsche framework with the aid of phase field gradients. The normal vector appears in many interface integrals
is approximated by the implicit phase field representation, which finally lead the weak form to be an approximate
version.

In summary, the difficulties that remain an open problem in composite micro-structural analysis which the authors
wish to address in this work are: (1) body-fitting meshes for conforming approaches; (2) parameterizing multiple and
complex inclusion boundaries for surface-type and enriched approaches; (3) IBM methods which are not generally
grounded in weak-form principles; and (4) The volumetric approach with associated LBB stability condition. Thus,
a framework which can avoid the relative shortcomings of each of these classes of methods is highly desirable.

Based on the volumetric Lagrange multiplier approach in [33], in order to tackle the problem of simulating
complicated composite inclusion problems, volumetric Nitsche methods are developed in this work as an effective
solution to address the previously discussed difficulties. That is, within the general immersed framework, these
methods work on non-body-fitting meshes and provide extreme flexibility in discretization necessary for relatively
effortless model development of complex microstructures. The key idea of the proposed work is to first identify the
weak form that attests to the strong form of the composite problem, with the continuity condition satisfied over
the whole inclusion domain rather than at the interface. Then, the physical meaning of the Lagrange multiplier is
identified following the Nitsche concept, which is then employed in the weak form to avoid extra degrees of freedom,
and a penalty term is added for stability. The non-symmetric version of this method is also then developed. As will
be seen, the proposed volumetric Nitsche/non-symmetric Nitsche methods require a background approximation space
with C'! continuity, which can be easily accomplished using meshfree [39], or isogeometric [40] approaches. Meanwhile,
the method is also developed to allow C° continuity in the foreground to yield flexibility for the inclusion discretization.
Because of the consistency of the weak forms developed, the resulting formulations are termed consistent immersed
volumetric Nitsche (CIVN) methods in this work.

This paper is organized as follows. The strong form of the problem, and the weak form using the volumetric
immersed approach are discussed in Section 2. The volumetric penalty approach and the proposed Nitsche/non-
symmetric Nitsche approaches are then introduced in Section 3 and Section 4, respectively. In Section 5, discretized
forms of these methods using the meshfree reproducing kernel approximation are presented. Numerical results are
given in Section 6 to demonstrate the effectiveness of the proposed method, followed by conclusions and a discussion
in Section 7.



2 Strong and weak form of composite inclusion problems

2.1 Strong form

Following the immersed framework, as shown Figure 2, the domains involved in the problem at hand are defined
as follows: Qg is the background domain consisting of the total space occupied by both the matrix and inclusions,
with boundary I'y =I'g UT,, and I'g N T, = 0, where I'y and I'y are the essential boundary, and natural boundary,
respectively; Qp C Qp is the immersed foreground domain; the physical matrix domain is defined by the compliment
Qp\Qr, and the interface between the two domains is denoted I'y. In this work, the subscript of field variables are
used to denote where the variable is defined: ”B” denotes background, ”F” denotes foreground and ”I” denotes the
interface.

Here the background domain is a conceptually constructed domain for computational purposes, containing the
entire physical space of the problem, with the material properties of the matrix.
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Figure 2: Two-dimensional illustration of the computational composite domain.

Without loss of generality, we have considered a single inclusion completely surrounded by a matrix, as illustrated
in Figure 2. That is, Qp is completely immersed in the computational domain Qp yielding I'; NT'; = @. In addition,
linear elastostatic problems are considered, which can later be extended to nonlinear or dynamic problems if desired.
The corresponding strong form at hand is:

V-op+bg=0 inQp\Qp (1la)
up=u onl, (1b)
n-op=t onl, (1c)
V-op+br=0 inQp (1d)
nr-(ocp—op)=0 only (Le)
up =up on [; (1f)

where op = Cp : eg and o = Cp : ep are the Cauchy stress tensors in the background domain Qg and foreground
domain Qp, respectively; eg = V°up and ep = V®up are the associated strain tensors and Cp and Cp are the
associated elasticity tensors; bp and by are the body force vectors in Qg and Qg respectively, ug and up are the
displacement vectors for the background and foreground domains respectively, w is the prescribed displacement on
the essential boundary I'g, ¢ is the given traction on the natural boundary I't, and n; denotes the outward normal
vector of the inclusion domain Q.

Egs. (1a) and (1d) state the equilibrium equations of two domains, while the corresponding boundary conditions
are specified in Egs. (1b) and (1c). The compatibility conditions of traction and displacement are described in Egs.
(Le) and (1f), respectively.

2.2 Weak form

Following the key idea in [33] to apply the Lagrange multiplier in the immersed domain to enforce volumetric
displacement compatibility rather than surface compatibility on the contour I';, the variational formulation of a
linear elastostatic composite inclusion problem defined by equations (la) — (1f) is augmented, which leads to the
following weak formulation: Find ug € Hg1 (Qp), ur € Hg1 (QF), and X € H=! (QF), such that for all wg € HE (Qp),



wr € H' (QF) and v € H™! (QF), the following equation holds [33]:

/ Viwpg : opd) — wpg - bpd + Viwp : (O'F—O'B)dQ— wp~(bF—bB)dQ
Qp Qp Qp Qp (2)
— wB-de—i-/ 'y-(uF—uB)dQ+/ (wp —wp)-AdQ2 =0
Ft QF QF

where A is the Lagrange multiplier with test function « defined in the inclusion domain Qr, which enforces the
continuity condition. Comparing the first and third terms, and the second and fourth terms, it can be seen that
this form follows the immersed strategy, where the quadrature can be carried out on independent domains with
independent quadrature rules without computing any intersections.

After performing integration by parts on the energy terms in Eq. (2), one obtains:

7/ wg - (V-op+bp)dQ+ wp:(n-op—t)dl — wg - (V-op+bg+A)dQ
Qp\QF Ty Qp

- 'wF'[(V~¢7F+bp)*(V~03+b3)*>\]d9+/ wp - [ng - (0p —op)]dl (3)
Qp Ly

+/ v (wp —wp)dQ =0.
Qp

Thus, from the above, the following strong form is recovered:

wp is arbitrary in Qp\Qr = V-op+bp =0 in Qp\Qp
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wp is arbitrary in Qr = V:-ep+bg+A=0 in Qp
wy is arbitrary in Qp = (V-op+bp)—(V-op+bp)—A=0 in Qp

wy is arbitrary on 'y = ny-(op—0or)=0 on Iy
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~ is arbitrary in Qp = up =up in Qp.

It is obvious that equations (4a), (4b), and (4e) are nothing but equation (1a), (1c), and (le). Here equation (4f
implies that up = up on the interface (i.e. Eq. (1f) is satisfied). Finally, subtracting equation (4c) from (4d) indicates
(1d) is met, which completes the proof of equivalence of Eqs. (4a)-(4f) and (1a)-(1f), provided that up € H} (Qp).
Note that this particular weak form directly embeds the traction compatibility condition without additional effort or
explicit description of the interface.

~—

Remark 1 It appears that the form of Eq. (2) cannot be derived from a variational viewpoint. That is, there
is apparently no potential associated with Eq. (2). In [33], the constrained variational equation with Lagrange
multiplier was augmented with additional terms after-the-fact, which enables Eq. (2) to recover (la)-(1f). In other
words without this augmentation of the variational equation, which does not appear to be obvious, the strong form
is not recovered.

Although no contour integral terms are introduced, the two main concerns about the Lagrange multiplier approach,
introducing extra degrees of freedom, and potentially suffering from LBB instability, remain to be addressed, which
motivates the derivation of the formulations in the following sections.

3 Immersed volumetric penalty method

To eliminate the additional degrees of freedom caused by the Lagrange multiplier, one strategy could be to directly
replace the Lagrange multiplier terms by a penalty constraint leading to the following form:

Viwpg : opd) — wpg -bpd) + Viwp : (O'F—O'B)dQ— wF~(bF—bB)dQ
Qp Qp Qp Qp (5)

—/ 'wadF—i—ﬁ (wB—wF)-(uB—uF)szo.
Ty Qp

That is, the last term in Eq. (5) is equivalent to taking the variational derivative of the penalty-type residual

Rﬁzﬁ/2‘/ﬂ (’U,B—’U,F)(UB—UF)dQ (6)

5



To examine if the weak form with a volumetric penalty constraint is equivalent to the strong form, one can perform
integration by parts on Eq. (5) and obtain:

7/ wB'(V~0'B+bB)dQ+ w3~(n'0'Bff)dF+/ wp~[n1-(o'p—aB)]dF
QB\QF FI

It

(7)

A wp-[(V-o5+bp)+ Slur —up)]d + A wp - [V- (6 —or)+ (bp —bp) + Bur —up)]dQ = 0.

Based on Eq. (7), the following strong form is found:

wp is arbitrary in Qp\Qr = V-op+bp =0 in Qp\Qp (8a)
wpg is arbitrary on I, = m-op=1%t on I, (8b)
wp is arbitrary in Qp = V-op+bg+B(urp —ug)=0 in Qp (8¢)
wy is arbitrary in Qp = — (V-orp+br)+ (V-o5+bp)+PB(ur—up)=0 in Qp (8d)
wy is arbitrary on I'y = ny-(ep—0op)=0 onI'. (8e)
The combination of Egs. (8¢) and (8d) immediately gives:
V-orp+br=0 in QF. (9)

Egs. (8a)-(8b) and (8e)-(9) take the same form as the strong form found by Lagrange multiplier. However, for the
compatibility condition of displacement described in Eq. (4f), Eq. (8c) implies:

1
B
which means, as § — oo, up — up. When f is small, the compatibility condition of displacement cannot be
recovered, which leads to the derivation of the immersed volumetric Nitsche methods in the next section.

Up =up — (V~O'B—|—bB) (10)

4 Consistent immersed volumetric Nitsche methods

This section develops a volumetric Nitsche method to eliminate the aforementioned underlying issues with the La-
grange multiplier and penalty approaches. The strategy to achieve this is first to determine the physical quantity
that the volumetric Lagrange multiplier represents and use this quantity to replace it in the original weak form such
that no additional degrees of freedom are introduced. A penalty term is then added to ensure coercivity, which is
similar to the surface-type Nitsche method for enforcing essential boundary conditions [41]. Since these methods are
derived from the Lagrange multiplier approach which has shown to be consistent with the strong form, the proposed
Nitsche method will inherit the consistency.

4.1 Immersed volumetric Nitsche method

Following the derivation in section 2.2, the following physical quantities associated with the Lagrange multiplier are
apparently:

)\:—(V'G’B—FbB) in QF (11&)

)\:(V'O'F—i-bF)—(V'O'B-i-bB) in Qp. (11b)

As discussed previously, a solution to these two equations can be found by subtracting one from another:
V'O’F+bF:0 iHQF (12)

which is the equilibrium of the inclusion in the inclusion domain. Using this result, it seems that both Eq. (1la)
and Eq. (11b) indicate that the physical meaning of Lagrange multiplier is the (negative) residual of the background
domain in the foreground.

However, we posit that a convex linear combination of the two meanings can be taken, similar to the Nitsche
methods employed for surfaces in [11], and later verify the consistency between weak and strong form:

A=(1-a)(V-op+br)—(V-o5+bp)—a(V-0op+bp)

=(1-a)[r(ur) —r(upy)] — ar(ug) (13)
=1 —a)r(up) —r(up)



where r(u) = V- o + b denotes the residual of the equilibrium equations. Using this notation, one may write Eq. (3)
as:

—/ wp-(V-op+bp)dQ+ | wp-(n-op—t)dl — wpg - (r(ug) + A)dQ
Qp\QF Ty Qp

- wp - [r(up)—r(uB)—)\]dQ—i-/ wp - [nr - (6p —op)]dl’ (14)
Qp Ty

+/ v (wp —wp)dQ =0.
QF

Then with Eq. (13) in hand, we have for Eq. (14):

—/ wp-(V-op+bp)dQ+ | wp-(n-op—1)dl — (1 —«) wp - r(up)dQ
QB\QF Ft QF

(15)
-« wr - r(up)dQ —l—/ wp - [y (6 —op)]dl —I—/ [(1-a)r(wr)—r(wp)] - (up —up)d =0.
Qp r, Qp
So, in place of Egs. (4c) and (4d):
wp is arbitrary in Qp = (1 —a)r(urp) =0 in Qp\Qr (16a)
wy is arbitrary in QF = ar(ur) =0 in Qp\QF. (16b)

Adding the above, we have r(up) = 0 which shows that the convex combination of (11a) and Eq. (11b) attests to the
strong form. Thus the choice of « is arbitrary, at least in the continuous sense. In this work, we consider the choice
of @ =1 (that is Eq. (11a)), as it keeps the formulation as simple as possible, and so that the resulting formulation
admits CY approximations (such as finite elements) for the foreground (in contrast to the choice of Eq. (11b), which
would require higher-order continuity for both the foreground and background).

The essential idea of Nitsche’s method is to use this physical meaning of the Lagrange multiplier to eliminate the
extra variable, while adding a penalty term associated with the constraint, to ensure coercivity. With Eq. (2) and
(13) in hand, and a penalty term in the form of 3 [, (wp —wr) - (up —ur)dQ added, and a volumetric Nitsche
immersed formulation is obtained as: Find up € HZ (Qp) and up € H' (QF), such that for all wp € Hg (Qp) and
wp € H' (QF), the following equation holds:

/ Viwpg : ogdf) — wpg - bgdQ) + Viwpg : (O'F—O'B)dQ— wp(bp—bB)dQ
Qp Qp QF Qp

— [ wp-tdl — V. o(wg) (up —up)dQ — (wp —wp) - (V-op+bp)dQ2 (17)
Ty QF QF

+5 ; (wp —wp) - (up —up)dQ =0.

Note that the background approximation in this weak form involves a residual-type term, and requires higher-order
regularity than usually employed. A few possibilities are quadratic C' B-splines [40], or meshfree approximations [39].

Remark 2 Since the formulation does not emanate from a potential as mentioned previously, the derivation of
Eq. (17) from a weighted residual viewpoint is provided in the Appendix, in order to provide generality and ground
the method in weak-form principles. Then later, the proposed method can be developed for problems such as fluid-
structure interaction using the weighted residual formulation.

Now, to prove consistency with the strong form of the proposed formulation, an integration by parts of Eq. (17)
yields:

7/ wg - (V-op+bp)dQ+
QB\QF

wg-(n-op ff)dI‘Jr/ wr - [nr - (6p —op)|dl’
Ty r,

— o wF[(VO'F"FbF)—Fﬂ(UB—’U,F)]dQ— 0 VO'(’LUB)-(UF—UB)CIQ (18)

+8 wp - (up —up)dQ = 0.
QpF



The associated strong form based on Eq. (18) is then:

wp is arbitrary in Qp\Qr = V-ep+bp =0 in Qp\Qp (19a)

wp is arbitrary on 'y = m-op =t on T, (19Db)

wp is arbitrary in Qp = V-op+bp+ 8(up—ur)=0 in Qp (19c¢)

wy is arbitrary on 'y = ny-(op—0orp)=0 on Iy (19d)

wpg is arbitrary in Qp = up —up =0 in Qp (19e)

o(wpg) is arbitrary in Qp = up —up =0 in Qp. (19f)

It is easy to observe that the combination of Egs. (19¢) and (19e) yields:

V-orp+br=0 in QF. (20)

Therefore the proposed weak form is fully consistent with the strong form of the composite problem (1). As such,
the proposed formulation (17) is termed a consistent immersed volumetric Nitsche formulation.

4.2 Immersed volumetric non-symmetric Nitsche method

Alternatively, the formulation of a so-called non-symmetric Nitsche method can be obtained by changing the sign of
the volumetric constraint term in Eq. (17), which yields:

/ VS’U)B : O'BdQ - wpg - deQ+/ VS'IUF : (O'F 70‘3)(107 wrpg - (bF — bB)dQ
QB QB Qp Qp
- 'wB~t_dF+/ V~o‘(w3)‘(uF7uB)de/ (wp —wpg) - (V- -op+bp)dQ (21)
Ty QF QF

+p A (wp —wp) - (up —up)dQ =0.

It can be shown that the weak form defined in Eq. (21) is still equivalent to the strong form following previous
derivations. The non-symmetric Nitsche formulation can be derived from the weighted residual formulation as well,
the details are provided in the Appendix.

Remark 3 Although the formulation is the so called non-symmetric version, the final assembled global matrix is
non-symmetric for both volumetric approaches, which will be discussed in the next section.

5 Discretization

5.1 Reproducing kernel approximation

In this work, the meshfree reproducing kernel (RK) approximation [42] is used to discretize the Galerkin form of the
newly derived weak forms, due to the regularity required in the present Nitsche formulations. The RK approximation
u”(zx) of a vector function u(x) using a set of NP nodes in two dimensions is:

u'(@) = Y U (@)d; (22)

I€S,

where U (x) and d; are the shape function and the generalized displacement for the Ith node, respectively, and
Sz = {I|¥;(x) # 0}. The shape function is constructed as a correction to the kernel function ¢,(z — ;) with a
compact support a:

V() = H' (z — 1)b(z)da(x — 27) (23)

where H(x) = [ 1, z, vy, z2, -, y" }T is a column vector of complete nth order monomials, b(x) is a
column vector containing all the associated unknown coefficients of each component in H, and ¢,(x — @) is the
kernel function which defines the locality and order of smoothness in the approximation. The cubic spline kernel
function is employed in this work, which possesses C? continuity:

1
2
r<1 (24)
1



where r = || — x1|| /a is a normalized relative distance. The unknown coefficient vector b(x) is determined by
enforcing the nth order reproducing conditions:

> W()rpy) =2ty i+j=0,1,--,n (25)
I€S,

which is equivalent to the following matrix form:

> Uy(@)H (& — ;) =H'(0). (26)
IeS;

Substituting Eq. (23) into Eq. (26) yields:

b(x) = M~ '(x)H(0) (27)
where M(z) = Y. H(x —x;)H"(x — x1)¢o(x — 1) is the so-called moment matrix. Using Eq. (27), the RK
I1€S,
shape function is obtained:
U, (x)=H (0O)M Y (x)H(x — x;)¢,(x — x1). (28)

Note that the order of smoothness of ¥, () is inherited by the kernel function ¢,(x — x;). Since the cubic spline
kernel function employed is C? continuous, the shape function is also C?, which is sufficient for the proposed weak
forms in Egs. (17) and (21).

5.2 Matrix form

We choose to formulate the framework in two-dimensional space in this work, which can be extended to the three-
dimensional case without any special considerations. The trial and test function spaces of the weak forms in Egs. (5),
(17) and (21) are discretized by applying the RK approximation in the background domain Qp and the immersed
foreground domain Qp:

r ok
up, () }
up(x) = x = Npgd 29a,
B( ) I u’,};y(w) B&p ( )
roh
wp, () }
wh(x) = z = Npc 29b
B( ) I w%y(w) Btp ( )
ul (x
up(x) = ugzgw; ] = Npdp (29c¢)
[ wh (x
wp(x) = wgzgwg } = Nrcp (294d)
L y
with:
Y, 0 9, 0 - Uyp 0
N=l'g o, 0 w, -« 0 0y (302)
T
d= [ dlr dly d2m d2y T dNPx dNPy } (30b)
T
c_[wlm Wiy Woy Way ~° Wnpy wNPy] (30c)

where the subscripts are implied in the above.
Substituting the approximation for the test and trial functions (29) into the weak forms in Egs. (5), (17) and
(21), the following matrix forms are obtained:

(K + K”)d = FT for penalty (31a)
(K + K’ + K" + (KN)")d = F" for Nitsche (31b)
(K + K’ + KN — (KN)")d = F" for non-symmstric Nitsche (31c)



where:

_[ds
d= | dr ] (32a)
[ Kgg O
K = 32b
| Krp Krr } (32D)
r K° K
KP=| BB "CBF } (32¢)
| Krp Kpp
~_ | Kgs 0O
KN = Rep 0 (32d)
p_ | FE
FF = B (32¢)
v_ [ EY
FN = F (32f)
with the entries in the above given as:
Kpp = BLCyzBpdQ (33a)
QB
Krp=— | BLCzBpdQ (33b)
QF
Kpp = BlC.BrdQ (33c)
QpF
Kl =3[ NENgdQ (33d)
Qp
K}p=-8[ NENRQ (33e)
Qp
Kl,=—-3[ NINgdQ (33f)
Qp
Ri,=p [ NINpao (33g)
QF
Kpp = NLCpDpdQ (33h)
Qp
Krp=— | NLCpDgdQ (33i)
QF
FF = | NitdU + [ NEbpdQ (33)
Ft QB
FE = N} (bp — bp)dQ (33k)
Qp
FYy= | NEtdr+ | NZLbpdQ - / NELbpdQ (331)
Iy Qp (973
FY = NbrdQ (33m)
QpF

where the Ith components of B and D are:

T
_ \IJI@ 0 \I/I’y
BI |: 0 \I/I,y \IJIJ :| (34a)
T
_ \IJI Tx \Ijl,ry \I’I’yy 0 0 0
DI B |: 0 0 0 \III,xw \Ill,wy \IJLZ/Z/ (34b)
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Furthermore, the material matrices are given by the following:

= 1 7 0
E
C = T2 v o1 0 (35a)
o 0 (1-0))/2
. E 1 0 (1-17)/2 0 (1+7)/2 0
c= 1— 2 [ 0 (1+70)/2 0 (1-1)/2 0 1 (35b)
where:
= E for plane stress
E= { E/(1—v?) for plane strain (36a)
_ v for plane stress
= { v/(1 —v) for plane strain (36b)

in which E and v are Young’s modulus and Poisson’s ratio of the material respectively.

In the matrix form, the stiffness matrix K comes from the change of the Lagrange multiplier to its physical
meaning. Meanwhile, K# is a result of the penalty terms in both formulations. A special component in the stiffness
matrix K common to all formulations is K g, which works as a natural coupling matrix that builds the connection
between domains via the consistent weak enforcement of the traction compatibility. Thus the additional off-diagonal
coupling terms enforce displacement capability; the terms absent from the penalty method in K~ are required for
consistency of the strong form.

Remark 4 Both Nitsche formulations contain K%, which is not symmetric. Therefore the change of sign in the
”non-symmetric” version of Nitsche’s method does change the symmetry of the formulation, and nothing is lost by
this change of signs in terms of the symmetry of the global system.

Remark 5 To evaluate the matrix forms for the immersed method, numerical quadrature needs to be carried out
for Egs. (33a) - (33m). Since the weak forms proposed have been derived from (2), which has followed the immersed
strategy, one can generate two sets of independent quadrature points for the domain integrals, and there is no need
to compute the intersections of the integration cells.

Remark 6 The coercivity of immersed volumetric Nitsche and non-symmetric Nitsche methods are achieved by
adding the penalty type term 3 [, (wp — wr) - (up — up)dQ2. From the discretized matrix formulations in Eq. (31),
the penalty type term will eventually be formed a positive definite matrix K? in Eq. (32c) to increase the positive
definiteness of the solution.

Remark 7 The choice of 8 has the effect on both accuracy and stability of the numerical solution. As the component
of matrices N ~ 1, B ~ 1/h and D ~ 1/h?, the integrands of matrices K and K" are not at the same order with
K?#, where h is the nodal spacing. Therefore, in this paper, the normalized 8" = 3/h2, 8 € [EE, E¥'] is employed
to replace the original fixed 8 to avoid the overlarge or small penalty matrix, which can cause the inaccurate and
unstable simulation results, where EZ and EF represent the Young’s modulus in matrix and inclusion domains,
respectively.

6 Numerical examples

In this section, several benchmark problems are tested to evaluate the effectiveness of the proposed methods of im-
mersed Nitsche and immersed non-symmetric Nitsche, which are compared to the pure penalty method. The essential
boundary conditions are enforced using the traditional Nitsche’s method. All penalty parameters are normalized by
the nodal spacing h as h~2. Unless otherwise stated, linear basis in the RK approximation is employed, along with
cubic spline kernels. The error in the Ly norm, H' semi-norm (denoted Hy;), and energy norm used to evaluate the
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methods are defined as follows:

1/2
Ly error = (/ (ug —ulk) - (up —uy)dQ Jr/ (up —ul) - (up — u})dQ) (37a)
Qp\QF Qp
1/2
Hg error = / V& (ug —ub)]: Ve (ug —u%))dQ +/ V& ((up—ub): [V (up —uk)dQ
Qp\QF QF
(37b)
1/2
Energy error — ( / (ep—eb): (op— oh)d0+ / (€p—eh): (op— d;)d@) (37¢)
QB\QF QF

which are evaluated by 20-point Gaussian quadrature in 1D and 5 x 5 point Gaussian quadrature in 2D.

6.1 1D bi-material elastic bar problem

Analogous to the 1D example in [43], consider a 1D inhomogeneous bar with length L = 1 with a hard inclusion in
the middle, as shown in Figure 3. A distributed body force acts on the entire bar. The governing equation of this
problem reads: }
LB +b(@) =0 10, L]
u(0) =0 (38)
uw(l)=1u

where E is Young’s modulus taking the following form:

E= EM® else (39)

_ { E® € [L/3,2L/3]

To study the effectiveness of proposed methods, the material constant in the matrix domain is selected as E(1) = 1,
while the inclusion material property E(? is varied to yield different cases. The bar is subject to two essential boundary
conditions u(0) = 0 and w(L) = 4. The analytical solution can be obtained by integrating the governing equation
(3). With the aid of the left boundary condition, the analytical solution can be found as:

u(z) = /0 w% [co— /O t b(T)dT] dt (40)

where ¢g is an integration constant that can be determined by the second boundary condition u(L) = @. Since ¢y and
@ are related, in this problem, we manufacture @ by setting ¢yo = 1. Three meshfree discretizations are constructed
as shown in Figure 4 for analysis. Here, non-conforming background and foreground domain discretizations are first
considered. Linear basis and a normalized support size of 1.8 are taken in the meshfree approximation.

b(x)
e i
x:TL/3 ngL/3
| . |

Figure 3: Description of inhomogeneous 1D bar problem.
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Inclusion domain

Figure 4: Non-conforming meshfree discretization for 1D bar problem: (a) 15 particles; (b) 31 particles; (c) 54
particles.

6.1.1 Piece-wise linear displacement in bar

First, a body force of zero is considered, i.e., b(x) = 0, which is can be considered a linear patch test for both
homogeneous and inhomogeneous problems, depending on the ratio of moduli.

Taking the homogeneous case, i.e., E(?) / EW =1, which is the standard (homegenous) linear patch test, the results
for the displacement and strain with varying S are shown in Figures 5 and 6, respectively, for the finest discretization
in Figure 4(c). It can be seen that when the penalty parameter is zero, the penalty method yields spurious results
in the displacement field. However, the strain field is close to exact. Recall that for all three methods, the traction
compatibility is consistently weakly enforced, but the displacement compatibility is only consistently enforced for
the Nitsche methods. For all other cases, all other methods yield acceptable results and the patch test is essentially
passed. Importantly, this also serves as a verification that the Nitsche methods do in fact attest to the strong form
of the composite problem.

1.2 12 12
—— 5-100 — 3= 100 — 3= 100
lf=——8=1 1= 8=1 H—s5=1
—5-01 — B=0.1 — B=0.1
08— #=0 08 p=0 08 p=0
= =Exact solution = =Exact solution = =Exact solution

0.6

-0.2 0.2 0.2
0.4 04 04
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) penalty method (b) Nitsche’s method (¢) non-symmetric Nitsche’s method

Figure 5: Displacement results for the 1D bi-material bar problem with zero body force, E() / EW =1.
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— $=100 — =100 — 3= 100
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— 3=0.1 — 3=0.1 — (#=0.1
— 3=0 — =0 — =0
= =Exact solution = _=Exact solution = =Exact solution

0.5 0.5 0.5
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X X
(a) penalty method (b) Nitsche’s method (¢) non-symmetric Nitsche’s method

Figure 6: Strain results for the 1D bi-material bar problem with zero body force, E®) /E™) = 1.

Next, the inhomogeneous case is tested for the discretization in Figure 4(c) with E @) / EM =100, with comparisons
of displacement and strain shown in Figures 7 and 8, respectively. Due to the inhomogeneity, the exact solution is
piece-wise linear in the displacement field and is discontinuous in the strain field. The solution via the penalty method
is strongly dependent on the penalty parameter. The proposed Nitsche methods agree well with the analytical solution
in both displacement and strain, even when the penalty parameter is relatively small. In addition, the solutions are
not strongly dependent on the choice of parameter overall.

0.7 0.7 0.7
— 4~ 100 — - 100 - 100
06— B8=1 06— 6-1 06— B=1
—p-01 — 3-0.1 — o1
—8=0 — -0 — -0
051|= =Exact solution 05 = =Exact solution 0571— =Exact solution
04 04
=03 s 03 =
0.2 0.2
0.1 0.1
0 0
0.1 -0.1 0.1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X X
(a) penalty method (b) Nitsche’s method (¢) non-symmetric Nitsche’s method

Figure 7: Displacement results for the 1D bi-material bar problem with zero body force, F(?) / EM = 100.

1.5 1.5 1.5
1 \ 1 1
. 0.5 . 05 . 05
2 2 2
0 0 0
— 3=100 — =100
— B=1 — 5=1
— B-01 — =01
05 05 — 5o 05 -0
= =Exact solution = =Exact solution = _=Exact solution
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X X
(a) penalty method (b) Nitsche’s method (c) non-symmetric Nitsche’s method

Figure 8: Strain results for the 1D bi-material bar problem with zero body force, E??)/EM) = 100.

6.1.2 High-order displacement in bar

To further study the effectiveness of the proposed method, a cubic body force of b(z) = 1+ 25z — 102 + 23, is
considered to provide a convergence analysis, since now the highest order of polynomials in the true solution is 5,
while linear basis is employed.

First, a homogeneous material is considered to assess the convergence of the proposed methods in problems
sufficiently regular that yield the standard error estimate i.e., with optimal convergence rates associated with the
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order of approximation employed. The corresponding convergence studies for different penalty parameters are given in
Figures 9 and 10 for the displacement and strain respectively. From the results, the optimal second-order convergence
rates in the Ly norm and first-order rate in the Hg; can be obtained by the proposed Nitsche methods when the
material is homogeneous. The error in the solution is relatively insensitive to the value of the parameter, and the
optimal rate is obtained in all cases. In contrast, the penalty method is slightly more sensitive to the value of the
parameter, and does not converge in the displacement for 5 = 0.

1 1 1

0 0 0

logm(L7 Error)
S kN

logm(L7 Error)
[\ -

[

\ \

'

L

logm(L7 Error)
S o

X\

3 .- 3 & 3 4 .
———————— i/,.—-—"" g
g4t e P i P i
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-7 -16 -15 -14 -13 -12 -11 -1 -7 -16 -15 -14 -13 -12 -L.1 -1 -7 -16 -15 -14 -13 -12 -1.1 -1
logmh logmh logmh
(a) penalty method (b) Nitsche’s method (¢) non-symmetric Nitsche’s method

Figure 9: Convergence comparison of Ly error norm for the 1D bi-material bar problem with different penalty
parameters, £ /E1) = 1.
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Figure 10: Convergence comparison of Hgy error norm for the 1D bi-material bar problem with different penalty
parameters, £ /E1) = 1.

Next, E®) / EM =100 is chosen, and the rate of convergence drops by half as the regularity of the true solution
is decreased, as shown in Figures 11 and 12. Both figures indicate that a lower penalty parameter will lead to
the inaccurate solution for the penalty method, and in this case the solution is highly sensitive to the value of the
parameter. However, both Nitsche and non-symmetric Nitsche’s method enable a much more flexible choice of penalty
parameter, with solutions either converging at either half optimal rate as expected, or in some cases exhibiting super
convergence. Likely, an optimal value can be obtained using a related eigenvalue analysis [44], but this is considered
beyond the scope of this work.
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Figure 11: Convergence comparison of Lo error norm for the 1D bi-material bar problem with different penalty
parameters, £ /E®) = 100.
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Figure 12: Convergence comparison of Hg; error norm for the 1D bi-material bar problem with different penalty
parameters, £ /E® = 100.

A comparison of the distribution of displacement and strain are shown in Figures 13 and 14 respectively, for the
finest discretization shown in Figure 4(c). It can be seen that the solution of the pure penalty method is sensitive
to the penalty parameter, and that a sufficiently large value is necessary for good accuracy. Meanwhile, the Nitsche
methods are not sensitive to the parameter, and yield solutions which are accurate across the range of values chosen.
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Figure 13: Displacement results comparison for the 1D bi-material bar problem with cubic body force and different
penalty parameters, E(Q)/E(l) = 100.
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Figure 14: Strain results comparison for the 1D bi-material bar problem with cubic body force and different penalty
parameters, £ /E® = 100.

6.1.3 High-order displacement in bar with only foreground refinement

In contrast to the previous convergence comparison, in this subsection, the consistency of proposed methods is further
studied. The Ly error comparisons are provided in Table 1 and Table 2 for homogeneous and inhomogeneous problems
under the only foreground refinement as depicted in Figure 15, respectively. As can be noticed from the tables, since
the discretization in background is fixed, the global Lo error norm is influenced by the error from background, even
the foreground discretization is sufficient fine. For the homogeneous case in Table 1, the error starts to decrease under
the first refinement (from discretiation 1 to discretization 2) but remains same after the second refinement (from
discretiation 2 to discretization 3). For the inhomogenous case in Table 2, the result does not converge. Both Ly error
results indicate that the foreground and background solutions are coupled through the coupling terms.
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(a)

(b)

Inclusion domain

Figure 15: Non-conforming meshfree discretization for 1D bar problem with the only refinement on inclusion domain:
(a) 15 particles; (b) 18 particles; (c) 24 particles.

Table 1: Ly error norms for the 1D bi-material under the refinement from Figure 15 with 8 = E(), E(Q)/E(l) =1.

Discretization 1  Discretization 2  Discretization 3

Penalty method 3.102E-3 1.988E-3 1.978E-3
Nitsche’s method 4.746E-3 2.055E-3 2.074E-3
Non-symmetric Nitsche’s method 4.439E-3 2.110E-3 2.109E-3

Table 2: Ly error norms for the 1D bi-material under the refinement from Figure 15 with 8 = EM | E®?) /EM = 100.

Discretization 1  Discretization 2  Discretization 3

Penalty method 1.469E-1 1.469E-1 1.469E-1
Nitsche’s method 9.707E-2 9.702E-2 9.702E-2
Non-symmetric Nitsche’s method 9.776E-2 9.783E-2 9.784E-2

6.1.4 High-order displacement in bar with conforming domains

Since both Nitsche methods outperform the penalty method so far and yield similar results, a conforming discretiza-
tion as shown in Figure 16 is next considered to compare the two methods’ robustness. Here, the position of the
boundary nodes of the immersed domain are coincident with nodal locations in the background domain. A cubic body
force is again considered with the inhomogeneous case of E(2)/E(1) = 100. As seen in Figure 17 and 18, inaccurate
results are observed for the standard volumetric Nitsche’s method, with solutions sensitive to the value of the penalty
parameter. In particular, when low penalty parameters are employed, the solution is extremely inaccurate. This
issue can be solved by using the non-symmetric Nitsche’s method, where the solution is consistently accurate across
all values.
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Figure 16: Conforming meshfree discretization with 49 background particles and 25 foreground particles.
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Figure 17: Displacement comparisons for the 1D bi-material bar problem with different penalty parameters and
conforming meshfree discretization, F(2) / EM = 100.
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Figure 18: Gradient comparisons for the 1D bi-material bar problem with different penalty parameters and conforming
meshfree discretization, £(?)/E®M) = 100.

To conclude, in these one dimensional examples, the penalty method performs relatively poorly and necessitates
a large penalty parameter to yield reliable results. The non-symmetric Nitsche method is able to provide expected
convergence rates and solutions that are not sensitive to the value of the penalty parameter, regardless of whether
a conforming or non-conforming discretization is employed. This phenomenon is consistent with the one discussed
by Burman in [45]. Since the choice of penalty parameter is not sensitive in non-symmetric Nitsche approach, this
allows us for the choice without penalty term in the non-symmetric framework. The standard Nitche method performs
equally well, but only as long as the discretization is non-conforming. Therefore the non-symmetric version should
be the method of choice based on these examples.

6.2 Inhomogeneous heat conduction

Next, consider the inhomogeneous heat conduction problem shown in Figure 18, which is governed by the following
strong form:
~V - (kVu) +m?>r™ 2 =01in Q
Vu-n=tonTl} (41)
u=1uonly

with r the distance to the origin and

(2)
|k r € [0,70)
r= { ey else ' (42)

The exact solution corresponding to Eq. (41) is [12]:

rm/ k@ r <719
v= { /D 4+ (1/6@) = 1/kW)rr > 1 (43)
The boundary conditions in (41) are straightforwardly obtained from the above solution. Here, the free parameter
m is set to three.

The three meshfree discretizations are plotted in Figure 19, which are utilized to perform a convergence study.
Linear basis functions with a normalized support size of 1.3 are adopted. The mesh shown is not used for the con-
struction of the approximation, but rather to clearly depict the relationship between the background and foreground
domains.

20



L

Figure 19: Problem description for the 2D inhomogeneous heat conduction problem.
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Figure 20: Meshfree discretizations for the 2D inhomogeneous heat conduction problem: (a)146 particles; (b) 522
particles; (¢)1970 particles.

First, the convergence comparisons of volumetric penalty and Nitsche methods with different conductivity ratios
are given in Figures 21 and 22, where the penalty parameter used in the simulation is selected as x(?). From the
figures, both Ly and Hg; norms yield convergent results under the volumetric framework. For the case when ratio
is 1, which means the problem is no longer inhomogeneous, the solution will posses sufficient regularity for optimal
convergence rates. As the ratio increases, the rate is decreased to the expected rate of half the optimal. Among the
methods tested, the penalty method and non-symmetric Nitsche’s method preform the most consistently.
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Figure 21: Convergence comparison of Ly error norm for the 2D inhomogeneous heat problem with different ratios
of conductivity, 8 = k(2.
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Figure 22: Convergence comparison of Hg; error norm for the 2D inhomogeneous heat problem with different ratio
of conductivity, 8 = k(2.

To further examine the performance of these methods, convergence comparisons varying the penalty parameters
are shown in Figures 23 and 24. The results are consistent with the bar example: the error in the penalty method
is seen to be highly sensitive to the penalty value. Meanwhile, the Nitsche methods are relatively insensative, with
the non-symmetric version yielding the most consistent results. Here, superconvergence is again observed in the
derivatives of the solution.
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Figure 23: Convergence comparison of Ly error norm for the 2D inhomogeneous heat problem with different penalty
parameters, ) /x(1) = 100.
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Figure 24: Convergence comparison of H,; error norm for the 2D inhomogeneous heat problem with different penalty
parameters, £ /x(1) = 100.

6.3 Inhomogeneous cell with multiple inclusions subject to tension loading

Consider the two-dimensional plane strain unit cell subject to tension loading shown in Figure 25. The cell is loaded
on the top edge with a vertical displacement of 0.0lm. The two immersed circular inclusion domains have the
same material properties of Young’s modulus E() = 100.0 MPa and Poisson’s ratio »(®) = 0.3, while the matrix
has different material properties of Young’s modulus E() = 0.1 MPa and Poisson’s ratio (') = 0.3. The material
parameters, non-symmetric locations and varying sizes of the two inclusions are designed to create a complex solution

field to further evaluate the proposed methods.
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Figure 25: Schematic of unit cell with two inclusions subject to tension loading; units are m. Problem taken from [32].

Due to the complexity of the problem, there is no analytical solution available, so an FEM solution using a fine
conforming mesh with 75,950 nodes and 75,449 elements (shown in Figure. 26) is utilized as a reference solution. Lo
convergence studies based on this solution are performed using the discretizations shown in Figure 27. Comparing
Figures 26 and 27, it can be noticed that the conforming discretization yields highly non-uniform mesh near the
interface, and as a result, the accuracy of simulation is decreased. Meanwhile, due to the process of conforming
discretization, the efficiency modelling is decreased as well. On the contrary, the proposed algorithm allows non-con-
forming discretization (shown in Figure. 27), which can yield relatively uniform discretization in the background and
foreground domain respectively.

Figure 26: Conforming discretization of the unit cell with two inclusions: 75,950 nodes and 75,449 elements
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Figure 27: Non-conforming discretization of the unit cell with two inclusions: (a) 547 particles; (b) 2051 particles;
(c) 7939 particles.

First, the average of the two Young’s moduli is taken as the penalty parameter, and the results are shown in
Table 3. Here, the error in the Ly norm for all three approaches are comparable, consistent with previous results. It
can be seen that the error is reduced by roughly half with each refinement, and the solution converges. This reduction
in error corresponds to a rate of one as expected.

Table 3: Ly error norms for the 2D inhomogeneous elasticity problem with g = (E(™) 4 E(®))/2.

Discretization 1  Discretization 2  Discretization 3

Penalty method 2.107E-2 1.119E-2 5.109E-3
Nitsche’s method 4.260E-2 4.315E-2 5.138E-3
Non-symmetric Nitsche’s method 2.109E-2 1.120E-2 5.114E-3

Next, 8 = EW is selected, and the error norms are given in Table 4. Consistent with previous results, the non-
symmetric volumetric Nitsche method yields the best performance. The error is decreased by roughly half, which
indicates the expected convergence rate of one in the Ly norm. In contrast, the penalty method and standard Nitsche
method do not converge at this rate, and the Nitsche method is noticeably worse than the non-symmetric version.

The contours of the displacement magnitude of the reference and numerical solutions by using 547 meshfree
particles are given in Figure 28, where the non-symmetric Nitsche’s method yields the best displacement result
among three methods.

Table 4: Lo error norms for the 2D inhomogeneous elasticity problem with g = E().

Discretization 1  Discretization 2  Discretization 3

Penalty method 5.659E-2 3.190E-2 1.686E-2
Nitsche’s method 4.260E-2 4.315E-2 8.717E-3
Non-symmetric Nitsche’s method 2.848E-2 1.445E-2 8.089E-3
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Figure 28: Contour of the effective displacement for the 2D inhomogeneous elasticity problem with 8 = E(!) using

549 particles: (a) penalty method; (b) Nitsche’s method; (¢) non-symmetric Nitsche’s method; (d) reference solution
by FEM.
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6.4 CT scan of a composite microstructure

The last example involves segmented CT scans of a composite microstructure, shown in Figure 29, as a demonstration.
2D slices of the reconstructions are used to analyze the mechanical behavior of the composite. The matrix is polymer
epoxy (EPO-TEK 203, Epoxy Technology Inc., Billerica, MA) with Young’s modulus E = 3.2Gpa and Poisson’s’
ratio ¥ = 0.4. The inclusions in the matrix are Alumina (Saint-Gobain, Malvern, PA) with a very different Young’s
modulus of F = 380Gpa, and Poisson’s ratio v = 0.3. Two meshfree discretizations of 2D slices of the segmented
micro-CT are shown in Figure 30(a) and Figure 31(a), where again a mesh is shown for visualization of the domains.
A roller boundary condition is applied at the bottom of the models, with a pin support at the center. A prescribed
displacement corresponding to 10% tensile engineering strain is applied to the top of the model. The non-symmetric
Nitsche method is selected for analysis based on the previous results.

The displacement magnitude and stress contours shown in Figures 30(b-c¢) and Figures 31(b-c), respectively,
exhibit the inhomogeneous response of composite solids: the displacement contours deviate from the linear distribution
expected from homogeneous material, and stress concentrations can be observed along the interface of inclusions,
particularly around rough geometry. Some other interesting features can be observed, such as much higher stress
magnitudes on the top right of Figure 30(c), and a force chain-like response in 31(c) with tensile stresses above
average continuously distributed down a line of inclusions near the middle-right.

3D reconstruction from X-ray micro-CT 2D slices of the segmented
X-ray micro-CT

Figure 29: Problem description of CT scanned composite.
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Figure 30: Meshfree simulation of CT scanned model with 2576 particles: (a) problem description and meshfree
discretization; (b) displacement magnitude; (c) oy,.
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(b) (c)

Figure 31: Meshfree simulation of CT scanned model with 10,592 particles: (a) problem description and meshfree
discretization; (b) displacement magnitude; (c) oy,.

7 Conclusions and discussion

In this work, consistent immersed volumetric Nitsche (CIVN) methods are developed by using the Nitsche approach
to enforce a volumetric continuity condition between the computational composite domains. The methods do not
require additional degrees of freedom, and the numerical simulations will not suffer from the LBB instability condition,
in contrast to the Lagrange multiplier method. The immersed volumetric Nitsche’s methods are shown to be fully
consistent with strong form. Due to the regularity of test and trial functions, these volumetric-type constraint
approaches remain consistent with the surface constraints in the original strong form of the composite problem.

By using the immersed volumetric approach, no contour integral at the interfaces is required nor computation
of cell intersections, which avoids computational complexity, the need for conforming meshes, and enables relatively
effortless analysis of composite problems with arbitrarily complicated geometry. The effectiveness of the proposed
CIVNs are demonstrated with several numerical examples, including real geometries of composite microstructures.

Consistent with earlier findings, Nitsche methods in the present context deliver more accurate results and exhibit
much less sensitivity to the choice of the penalty parameter. This makes the Nitsche approach more robust for
practical applications. In addition, when using the Nitsche technique, there is no need to select large values of the
penalty parameter to obtain accurate results, which improves conditioning of the left-hand-side matrices in implicit
calculations and increases the stable time-step size in explicit calculations.

A surprising finding of this work is that the non-symmetric Nitsche technique showed better accuracy and ro-
bustness than it’s symmetric counterpart. Symmetric Nitsche techniques, which require higher values of the penalty
parameter for stability than their non-symmetric counterparts, are nevertheless favored for more traditional applica-
tions (e.g., weak enforcement of essential boundary conditions for elliptic problems) because they preserve symmetry
of the system matrix and are adjoint-consistent, leading to optimal convergence in lower-order norms. In the present
case, however, adjoint consistency does not play an obvious role, and the non-symmetric Nitsche technique clearly
benefits from the additional stability brought about by the skew-symmetric form of the operator. In addition, the
symmetric Nitsche in this context does not lead to a symmetric system matrix anyway.

The proposed CIVN framework requires C! continuity of the background, but only C° continuity of the foreground.
In this work, meshfree approximations were utilized to satisfy these conditions. However, methods such as isogemetric
analysis (IGA) can also be utilized to satisfy the smoothness criteria. Thus, several combinations of methods are
possible for background-foreground discretizations, for instance: IGA-IGA, IGA-meshfree, IGA-FEM, meshfree-FEM,
etc.

A limitation of this method is the smoothness of the numerical solution; inherently, a smooth approximation
is required, and meanwhile the true solution in composite problems will not possess sufficient regularity to obtain
the standard optimal convergence rate. However, great flexibility is gained by this approach, and the solutions are
nonetheless convergent.

In future work, the CIVN approach will be applied to fluid-structure interaction problems involving material
failure, where the problem of parameterizing contours is severely compounded by continuously evolving topological
changes of the immersed solid domain.
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Appendix

In this appendix, the proposed weak forms are derived from a weighted residual point of view. A weighted residual
form of Egs. (1la)-(1e) can be stated as:

R= wB~(V-oB+bB)dQ— wB-(n~aB—t_;)dF
QB\QF Ft
+ ’UJF'<V'O'F+bF)dQ—/ wp~[n1-(a'p—0'B)]d1" (44)
QF r,
=0.
After integration by parts, we arrive at the following weak form:
RZ/ VSwBIO'BdQ—/ wB~deQ—/ 'wB-de
Qp\Qr Qp\Qp r,
+ VSwF 20’Fd97 wF~de97/ (wF7w3)~(n1~0'B)dF (45)
QF QF 1—‘1
=0.

From Eq. (45), one can see that this formulation still contains a contour integral on the interface. To eliminate this
term, first define the following:

R(l) = Véiwpg : o0 —wpg - bgdQ
- (46)

R® = Viwp :op — wp - bpdQ.
QF

Next, we modify Eq. (45) by adding and subtracting the terms in (91):
0=R+ (R —RW) 4+ (R® — R?)

= VSwBZO'B—’U}B~deQ—/UJB-EdF
Ft

Qp
g (47)
+ V"wFZ(O'F—O'B)—’wF-(bF—bB)dQ—/ (wp—wB)-(n1~0'B)dF
QF 1—‘I
- Viwpg : 0 —wg - bpdQ + Viwprg : o0 — wr - bgdfl.
S)p QF
An integration by parts on Eq. (47) directly eliminates the boundary integral:
0= szB:O'B—wB-deQ—/wB-de
QB Ft
+ VSwF: (UF—UB)—wF'(bF—bB)dQ (48)
Qp

—/Q ('wF—wB)-(V-a'B—i—bB)dQ.

From the derivation, the above weak form attests to Eqs. (1a)-(1le), yet the compatibility condition (1f) still needs
to be enforced.

Now, instead of enforcing compatibility on interface (1f), consider the following augmented weighted residual form
by enforcing ugp = up on Qp:

R=R+ w-(up —up)dQ =0 (49)
Qp
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in which a new test function is introduced. Usually, the selection of w should be arbitrary. Nevertheless, since it is
defined in Qp, w cannot be directly related to upr. Now, in order to derive the CIVNs from Eq. (49), one can select
w as follows:

w— { -V . o(wp) for Nitsche (50)

V-o(wg) for non - symmetric Nitsche

Finally, the volumetric immersed formulation is obtained from Eqs (48)-(50), with the addition of a penalty term:

Viwpg : ogd) — wpg - bpdQ + Viwrg : (O'F—O'B)dQ

Qp Qp Qr

— 'wF-(bF—bB)dQ— ’UJB't_dF— V-U(w3)~(uF—uB)dQ (51)
SZF Ft QF

—/ (wF—wB)~(V-UB+bB)dQ+B ('wB—'wF)-(uB—uF)dQ:0
QF QF

which is the same as the proposed formulation in Eq. (17). The derivation for the non-symmetric version follows
directly. Thus, although the proposed method cannot be obtained from a variational viewpoint, it can still be
grounded in the weighted residual formulation.
One final comment, consider the variational derivative of the Lagrange multiplier to enforce volumetric compati-
bility:
(5[(UF—’U,B)'A]Z((S’LLF—(SUB)~)\+5A'(’U/F—UB). (52)

Likewise, the terms in weak form (51) can be thought of as emanating from the following variational derivative:
d[(up —up)-(V-op+bp)=(dur —dup) - (V-op+bp)+ V- -dop- (up —up). (53)
Comparing Egs. (52) and (53), it is apparent that one has by analogy:
A=V .op+bg. (54)

Which also indicates that the constraint terms in the weak form (51) is equivalent to using the physical meaning of
the Lagrange multiplier to enforce the constraint. Finally, in a variational form, (51) with the aid of (54) can be
rewritten as follows:

VS(S’U,B IO'BdQ— 5uBdeQ+ VS(S’LLF : (O'F—O'B)dQ— 5UF~(bF—bB)dQ
Qp Qp Qp Qp
(55)
- (SUBEdF—F (SA(’U,F—’U,B)dQ—‘r/ ((S’U,F—(S’LLB)AdQ:O
Tt Qp Qp

which is identical to the form in [33], and demonstrates that the method can be grounded in weighted residual
principles.

References

[1] R. Glowinski, T.-W. Pan, J. Periaux, A fictitious domain method for dirichlet problem and applications, Com-
puter Methods in Applied Mechanics and Engineering 111 (3-4) (1994) 283-303.

[2] F.P. Baaijens, A fictitious domain/mortar element method for fluid—structure interaction, International Journal
for Numerical Methods in Fluids 35 (7) (2001) 743-761.

[3] P. Hansbo, C. Lovadina, I. Perugia, G. Sangalli, A Lagrange multiplier method for the finite element solution of
elliptic interface problems using non-matching meshes, Numerische Mathematik 100 (1) (2005) 91-115.

[4] E. Burman, P. Hansbo, Interior-penalty-stabilized lagrange multiplier methods for the finite-element solution of
elliptic interface problems, IMA Journal of Numerical Analysis 30 (3) (2010) 870-885.

[5] J. Nitsche, Uber ein variationsprinzip zur losung von dirichlet-problemen bei verwendung von teilriumen, die
keinen randbedingungen unterworfen sind, in: Abhandlungen aus dem mathematischen Seminar der Universitat
Hamburg, Vol. 36, Springer, 1971, pp. 9-15.

[6] A. Hansbo, P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface
problems, Computer Methods in Applied Mechanics and Engineering 191 (47-48) (2002) 5537-5552.

30



[7]

8]

P. Hansbo, Nitsche’s method for interface problems in computational mechanics, GAMM-Mitteilungen 28 (2)
(2005) 183-206.

C. Annavarapu, M. Hautefeuille, J. E. Dolbow, A robust Nitsche’s formulation for interface problems, Computer
Methods in Applied Mechanics and Engineering 225 (2012) 44-54.

C. Annavarapu, M. Hautefeuille, J. E. Dolbow, A Nitsche stabilized finite element method for frictional sliding
on embedded interfaces. part I: Single interface, Computer Methods in Applied Mechanics and Engineering 268
(2014) 417-436.

C. Annavarapu, M. Hautefeuille, J. E. Dolbow, A Nitsche stabilized finite element method for frictional sliding on
embedded interfaces. part II: Intersecting interfaces, Computer Methods in Applied Mechanics and Engineering
267 (2013) 318-341.

J. D. Sanders, T. A. Laursen, M. A. Puso, A Nitsche embedded mesh method, Computational Mechanics 49 (2)
(2012) 243-257.

Z. Li, T. Lin, X. Wu, New Cartesian grid methods for interface problems using the finite element formulation,
Numerische Mathematik 96 (1) (2003) 61-98.

J. D. Sanders, J. E. Dolbow, T. A. Laursen, On methods for stabilizing constraints over enriched interfaces in
elasticity, International Journal for Numerical Methods in Engineering 78 (9) (2009) 1009-1036.

E. Burman, Ghost penalty, Comptes Rendus Mathematique 348 (21-22) (2010) 1217-1220.

T. Strouboulis, K. Copps, 1. Babuska, The generalized finite element method, Computer Methods in Applied
Mechanics and Engineering 190 (32-33) (2001) 4081-4193.

T. Strouboulis, I. Babuska, K. Copps, The design and analysis of the generalized finite element method, Computer
Methods in Applied Mechanics and Engineering 181 (1-3) (2000) 43-69.

J. Melenk, I. Babuska, The partition of unity finite element method: Basic theory and applications, Computer
Methods in Applied Mechanics and Engineering 139 (1-4) (1996) 289-314.

N. Moés, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, International
Journal for Numerical Methods in Engineering 46 (1) (1999) 131-150.

N. Sukumar, N. Moés, B. Moran, T. Belytschko, Extended finite element method for three-dimensional crack
modelling, International Journal for Numerical Methods in Engineering 48 (11) (2000) 1549-1570.

T. Belytschko, N. Moés, S. Usui, C. Parimi, Arbitrary discontinuities in finite elements, International Journal
for Numerical Methods in Engineering 50 (4) (2001) 993-1013.

T.-P. Fries, T. Belytschko, The extended/generalized finite element method: an overview of the method and its
applications, International journal for numerical methods in engineering 84 (3) (2010) 253-304.

P. Laborde, J. Pommier, Y. Renard, M. Salaiin, High-order extended finite element method for cracked domains,
International Journal for Numerical Methods in Engineering 64 (3) (2005) 354-381.

T.-P. Fries, A. Zilian, On time integration in the XFEM, International Journal for Numerical Methods in
Engineering 79 (1) (2009) 69-93.

K. Park, J. P. Pereira, C. A. Duarte, G. H. Paulino, Integration of singular enrichment functions in the gen-
eralized /extended finite element method for three-dimensional problems, International Journal for Numerical
Methods in Engineering 78 (10) (2009) 1220-1257.

J. Chessa, H. Wang, T. Belytschko, On the construction of blending elements for local partition of unity enriched
finite elements, International Journal for Numerical Methods in Engineering 57 (7) (2003) 1015-1038.

C. S. Peskin, Numerical analysis of blood flow in the heart, Journal of computational physics 25 (3) (1977)
220-252.

C. S. Peskin, The immersed boundary method, Acta Numerica 11 (2002) 479-517.

L. Zhang, A. Gerstenberger, X. Wang, W. K. Liu, Immersed finite element method, Computer Methods in
Applied Mechanics and Engineering 193 (21-22) (2004) 2051-2067.

31



[29]

[30]

[31]

X. Wang, L. T. Zhang, Modified immersed finite element method for fully-coupled fluid—structure interactions,
Computer Methods in Applied Mechanics and Engineering 267 (2013) 150-169.

W. K. Liu, D. W. Kim, S. Tang, Mathematical foundations of the immersed finite element method, Computa-
tional Mechanics 39 (3) (2007) 211-222.

H. Wang, J. Chessa, W. K. Liu, T. Belytschko, The immersed/fictitious element method for fluid—structure
interaction: volumetric consistency, compressibility and thin members, International Journal for Numerical
Methods in Engineering 74 (1) (2008) 32-55.

C. Wu, Y. Guo, E. Askari, Numerical modeling of composite solids using an immersed meshfree galerkin method,
Composites Part B: Engineering 45 (1) (2013) 1397-1413.

P. Blanco, R. Feijoo, E. Dari, A variational framework for fluid—solid interaction problems based on immersed
domains: theoretical bases, Computer Methods in Applied Mechanics and Engineering 197 (25-28) (2008) 2353—
2371.

H. B. Dhia, Multiscale mechanical problems: the arlequin method, Comptes Rendus de I’Academie des Sciences
Series IIB Mechanics Physics Astronomy 12 (326) (1998) 899-904.

H. B. Dhia, G. Rateau, Analyse mathématique de la méthode arlequin mixte, Comptes Rendus de I’Académie
des Sciences-Series I-Mathematics 332 (7) (2001) 649-654.

J. W. D. Fernandes, A. Barbarulo, H. B. Dhia, R. A. K. Sanches, A residual-based stabilized finite element for-
mulation for incompressible flow problems in the arlequin framework, Computer Methods in Applied Mechanics
and Engineering 370 (2020) 113073.

H. B. Dhia, G. Rateau, The arlequin method as a flexible engineering design tool, International journal for
numerical methods in engineering 62 (11) (2005) 1442-1462.

L. H. Nguyen, S. K. Stoter, M. Ruess, M. A. Sanchez Uribe, D. Schillinger, The diffuse nitsche method: Dirichlet
constraints on phase-field boundaries, International Journal for Numerical Methods in Engineering 113 (4) (2018)
601-633.

J.-S. Chen, M. Hillman, S.-W. Chi, Meshfree methods: progress made after 20 years, Journal of Engineering
Mechanics 143 (4) (2017) 04017001.

J. A. Cottrell, T. J. Hughes, Y. Bazilevs, Isogeometric analysis: toward integration of CAD and FEA, John
Wiley & Sons, 2009.

S. Fernandez-Méndez, A. Huerta, Imposing essential boundary conditions in mesh-free methods, Computer
Methods in Applied Mechanics and Engineering 193 (12-14) (2004) 1257-1275.

W. K. Liu, S. Jun, Y. F. Zhang, Reproducing kernel particle methods, International journal for numerical
methods in fluids 20 (8-9) (1995) 1081-1106.

H. Zhang, D. Wang, An isogeometric enriched quasi-convex meshfree formulation with application to material
interface modeling, Engineering Analysis with Boundary Elements 60 (2015) 37-50.

M. Griebel, M. A. Schweitzer, A particle-partition of unity method part V: boundary conditions, in: Geometric
analysis and nonlinear partial differential equations, Springer, 2003, pp. 519-542.

E. Burman, A penalty-free nonsymmetric nitsche-type method for the weak imposition of boundary conditions,
STAM Journal on Numerical Analysis 50 (4) (2012) 1959-1981.

32



