Session: Data and 1/0O

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

DStore: A Fast, Tailless, and Quiescent-Free Object Store for
PMEM

Shashank Gugnani
The Ohio State University
gugnani.2@osu.edu

ABSTRACT

The advent of fast, byte-addressable persistent memory (PMEM)
has fueled a renaissance in re-evaluating storage system design. Un-
fortunately, prior work has been unable to provide both consistent
and fast performance because they rely on traditional cached or
uncached approaches to system design, compromising at least one
of the requirements. This paper presents DStore, a fast, tailless, and
quiescent-free object store for non-volatile memory. To fulfill all
three requirements, we propose a novel two-level approach, called
DIPPER, which fully decouples the volatile frontend and persistent
backend by leveraging the byte addressability and performance of
PMEM. The novelty of our approach is in allowing the frontend and
backend to operate independently and in parallel without affecting
crash consistency. This not only avoids the need to quiesce the
system but also allows for increased concurrency in the frontend
through the use of observational equivalency. Using this approach,
DStore achieves optimal scalability and low latency without com-
promising on crash consistency. Evaluation on Intel’s Optane DC
Persistent Memory Module (DCPMM) demonstrates that DStore
can simultaneously provide fast performance, uninterrupted ser-
vice, and low tail latency. Moreover, DStore can deliver up to 6x
lower tail latency service level objectives (SLO) and up to 5x higher
throughput SLO compared to state-of-the-art PMEM optimized
systems.

CCS CONCEPTS

+ Information systems — Storage class memory; Cloud based
storage.

KEYWORDS
Decoupled Persistence, PMEM, Object Store

ACM Reference Format:

Shashank Gugnani and Xiaoyi Lu. 2021. DStore: A Fast, Tailless, and Quiescent-
Free Object Store for PMEM. In Proceedings of the 30th International Sympo-
sium on High-Performance Parallel and Distributed Computing (HPDC °21),
June 22-25, 2021, Virtual Event, Sweden. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3431379.3460649

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPDC °21, June 22-25, 2021, Virtual Event, Sweden.

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8217-5/21/06...$15.00
https://doi.org/10.1145/3431379.3460649

31

Xiaoyi Lu
University of California, Merced
xiaoyilu@ucmerced.edu

1 INTRODUCTION

The emerging persistent memory (PMEM) technology offers un-
precedented high performance while supporting data persistence,
and has fueled a renaissance in re-evaluating the design of persis-
tent storage systems [8, 12, 15-17, 20, 23, 24, 51, 62, 64]. Consid-
ering the foreseeable trend of deploying PMEM in data centers,
this is high time to rethink the crucial features and design space
of PMEM-aware storage engines in modern I/O intensive systems
and applications, particularly for the applications in a cloud setting.
Hence, this paper takes up the challenge of designing a storage
system which is simultaneously fast, tailless, and quiescent-free.

Providing these three features is essential for predictable and
consistent performance, which is important in satisfying latency
and throughput service level objectives [38, 58]. Inconsistent user
experience has been shown to directly result in loss of revenue [29].
Several enterprise storage workloads have been shown to be read-
heavy [3, 9, 32]. Despite the small percentage of writes, write op-
erations significantly impact the overall system tail latency and
throughput. Our intention, in this paper, is to lower the impact of
write operations by hiding their persistence overhead, particularly
for ready-intensive HPC and cloud workloads.

Most file and database systems cache important data and em-
ploy a journal or write-ahead log (WAL) to support fault-tolerance.
Numerous studies [1, 6, 7, 19, 23, 36, 44, 49, 60, 67, 71] have focused
on providing PMEM-aware data structures and logging schemes to
reduce latency and guarantee failure recovery. These designs can
indeed provide much better performance than SSD- or disk-based
schemes, but they are unable to provide a performant quiescent-free
storage system, which means that users’ requests in the frontend
may have to wait for completion of data persistence activities in the
backend, particularly during checkpoints. The reason for this is that
the cache must be write-protected during checkpoints to ensure
that the persistent backend is updated in a consistent manner. This
limitation results in significant delay for requests arriving during
checkpoints. As a result, the system must either quiesce for a short
time or accept high tail latency.

On the other hand, the storage and memory like nature of PMEM
has spawned a new class of storage systems that place and access
data in-place [7, 12, 15, 16, 19, 20, 30, 51, 60-62, 64, 71]. Such sys-
tems unburden themselves from the limitations of checkpoints
since data is always persistent. However, the challenge in designing
such systems is that updates to PMEM must be done in a crash-
consistent manner. This is further complicated by the fact that data
in CPU caches is not persistent and cache lines can be evicted im-
plicitly. Ensuring consistency requires explicit cache flushes and
store fences, while ensuring atomicity requires the use of trans-
actions or journaling. Any practical solution on PMEM must deal

https://doi.org/10.1145/3431379.3460649
https://doi.org/10.1145/3431379.3460649

Session: Data and 1/0O

with both atomicity and consistency issues. This requires expen-
sive, and often complex, protocols to be used which significantly
lower end-to-end performance [22, 47]. The high cost of atomic
data persistence compromises performance.

In this paper, we propose a new approach for storage system
design, called Decoupled, In-memory, and Parallel PERsistence
(DIPPER) that exploits the byte addressability of PMEM to efficiently
achieve the decoupling of system and checkpoint spaces. The sys-
tem space to store data structures is entirely in DRAM while the
checkpoint space (including an operation log) is entirely in PMEM.
The novelty of DIPPER is in its fully decoupled architecture. The
key idea is to let the frontend operate independently on DRAM
while recording logical operations in the log and applying these
updates to the backend asynchronously on an identical backend
in PMEM. Operations need not wait for the updates to be applied
to the backend to be considered durable. DIPPER ensures that the
log replay is deterministic, so the checkpoint space can be updated
in the background without involvement of the system space. The
frontend and backend are kept consistent by applying the concept
of observational equivalence [54]. The goal is to hide the latency of
persistence by using the volatile system space for all requests and
taking checkpoints in the background. This approach solves the
limitations of prior work — By keeping the frontend in fast DRAM,
and only recording operations in a log, the cost of persistence is
significantly lowered. In addition, the decoupled persistence pro-
cess prevents the need to quiesce the system and can deliver low
tail latency.

DIPPER can be used to design fast and crash-consistent storage
systems with PMEM. Our approach uses PMEM to store identical
persistent shadow copies of DRAM structures. We use shadow
updates for backend atomicity to avoid costly transactions and
cache flushes. This process is seamlessly handled by our PMEM
allocator. In this manner, the same code can be used to perform
operations on both structures and the need to serialize data is
avoided. This also simplifies the backend design and prevents the
need to hand-modify code to add cache flushes and transactions.
Our design not only increases productivity, but also makes the
process of keeping the volatile and persistent copies consistent
much easier. PMEM bandwidth (~30GB/s for read and ~10GB/s for
write on our cluster) is comparable to DRAM, which implies that
the checkpoint space can keep up with the system space.

We design a generic storage sub-system, called DStore, short
for Decoupled Store which uses DIPPER to implement its control
plane. We deploy DStore on a server with Intel Optane DCPMM.
With the aforementioned techniques, DStore can reduce software
overhead to ~10%. Experimental results demonstrate that DStore
can deliver up to 6x lower tail latency service level objectives (SLO)
and up to 5x higher throughput SLO compared to state-of-the-art
PMEM optimized systems like PMEM-RocksDB [52, 63], MongoDB-
PMSE [28], and NOVA [64, 65].

To summarize, we make the following contributions:

o DIPPER, a novel decoupled approach which utilizes the ad-
vantages of PMEM to provide low-overhead persistence and
quiescent-free checkpoints (§3)

32

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

e DStore, a high-performance userspace storage sub-system
designed using DIPPER and its quiescent-free checkpoint
architecture (§4)

e Extensive evaluation clearly demonstrating that DStore out-
performs state-of-the-art PMEM optimized systems on sev-
eral metrics (§5)

The rest of this paper is organized as follows. §2 describes back-
ground and motivation. §3 presents the architecture and design of
DIPPER. §4 discusses the design and implementation of DStore. §5
presents a comprehensive experimental analysis of our design, §6
discusses related work and finally, §7 concludes the paper.

2 BACKGROUND AND MOTIVATION

PMEM allows applications to use standard load and store instruc-
tions to access data that is persistent across power cycles. PMEM
has three orders of magnitude better latency and an order of mag-
nitude better bandwidth as compared to SSD [45, 66]. It is evident
that PMEM is a practical option for compact logical logs. Given that
PMEM is an emerging technology and its cost is much higher than
SSD [35], we do not expect PMEM to replace SSD as primary stor-
age media in the foreseeable future. Instead, we expect that PMEM
available in next generation systems will be utilized for special
purposes, such as latency critical logging and metadata storage.

Despite its performance benefits, PMEM is hard to program with.
Accessing persistent data in-place means that any update must
be done in a crash-consistent manner. This is further complicated
by the fact that data in CPU caches is not persistent, atomicity
of writes is only at 8B granularity, and cache lines can be evicted
implicitly. Ensuring consistency requires explicit cache flushes and
store fences, while ensuring atomicity requires the use of transac-
tions or journaling. Both atomicity and consistency issues must
be dealt with for any practical solution, which requires non-trivial
effort.

2.1 Limitations of Existing Approaches

In this section, we discuss why existing systems are unable to
provide low tail latency, fast performance, and quiescent freedom
simultaneously. Storage systems can be broadly classified into three
types — cached, uncached, and decoupled.

In a cached system, a volatile cache is used to improve perfor-
mance by caching a part of the persistent data. This cache is tightly
coupled with the persistent backend, i.e., the cache is needed to
update the backend. A logical or physical log is used to ensure atom-
icity and durability of operations. Traditional systems used physical
logging which suffered from the large size of log records. To im-
prove logging performance, recent systems [24, 34,42,51, 55, 64, 65]
have moved to logical or operation logging. Usually, both the cache
and the log have limited space. Therefore, checkpoints are neces-
sary to cleanup space in the log, or cache, or both. Herein lies the
major problem with cached systems. Data from the cache is used
to update the persistent backend and since the backend must be
updated atomically, the cached pages cannot be modified until they
are made persistent. As a result, during checkpoints the system
either becomes temporarily unavailable or clients experience intol-
erable delay. This compromises tail latency or quiescent freedom,
and sometimes both.

Session: Data and 1/0O

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

System Persistence Technique Type Low Tail Latency Fast Performance Quiescent Freedom
MongoDB-PM [46], sqlite [51] Periodic Async Checkpoint Cached X X v
PMEM-RocksDB [52, 63] Continuous Async Checkpoint ~ Cached X X X
NOVA [65], Pronto [44] Copy on Write (CoW) Cached X v v
MongoDB-PMSE [28] Inline Persistence Uncached 4 X v
DudeTM [39], NV-HTM [4] Decoupled Durability + HTM ~ Decoupled 4 X 4
DStore (proposed) Parallel Decoupled Checkpoint Decoupled v v v

Table 1: Comparison of related work

To demonstrate the weaknesses of cached systems, we conduct
an experiment to compare the performance of two popular PMEM-
optimized NoSQL storage engines, PMEM-RocksDB [52, 63] and
MongoDB-PM (WiredTiger) [46] with and without checkpoints.
PMEM-RocksDB is an optimized version of the log-structured
merge (LSM) tree-based vanilla RocksDB [18] and uses a PMEM
resident log to improve performance. MongoDB-PM uses an op-
timized WiredTiger engine with the index and journal placed in
a DAX filesystem formatted on PMEM. We also implement the
copy-on-write (CoW) checkpoint scheme used in NOVA [65] and
Pronto [44] in DStore and perform the same experiment. We com-
pare the tail latency of writes for a full-subscription (28 core) 50%
read, 50% write workload. Figure 1 shows the result of this analy-
sis!. We observe that by disabling checkpoints, all systems show
lower tail latency, particularly for p999 and p9999. PMEM-RocksDB
uses an LSM tree with level 0 placed in DRAM. Therefore, during
checkpoints, the level 0 files must be locked until they have been
compacted and merged into the next level. Similarly, MongoDB-PM
uses a btree with a DRAM-backed page cache. On checkpoint, the
page cache is locked until all pages are made durable. The need
to lock the frontend results in significant delay for requests arriv-
ing during checkpoints and consequently high tail latency. The
CoW checkpoint scheme has similar drawbacks. When cache space
needs to be cleared, volatile pages are marked as read only. When
a client tries to modify a read-only page, a page fault is triggered
and a handler copies the page to PMEM. Clients must wait until
the page is copied before making any modification which increases
tail latency.

In an uncached system, all data is immediately persistent and
nothing is cached. To ensure atomic updates, transactions are used.
Since data is immediately persistent, checkpoints are not required.
While uncached systems were considered impractical with disks
and SSDs because of their slow write performance, they are gaining
popularity in recent times due to the advent of PMEM. The fast
performance of PMEM makes uncached systems practical in pro-
duction scenarios. Unfortunately, the overhead of transactions to
atomically update data in PMEM is too high, resulting in perfor-
mance being compromised. The main reason for this, as mentioned
earlier, is that the CPU caches are not persistent and cache lines can
be implicitly evicted. To ensure correct ordering of updates, explicit
cache flushes and store fences are needed. By avoiding the need
for checkpoints, uncached systems can attain low tail latency and

!Note that DStore with DIPPER does not suffer from the tail latency overhead of
checkpoints

33

quiescent freedom but at the cost of performance. The overhead of
transactions and cache flushes have been well studied [22, 47].

Table 1 presents a comparison of related work with DStore. Note
that none of the existing PMEM systems are able to satisfy all
desirable characteristics. This paper proposes a new decoupled
approach to storage system design, which can provide all desired
features. By keeping the frontend in DRAM, our design achieves fast
performance. In addition, by effectively decoupling the frontend
and backend and allowing them to operate in parallel, our design
provides tailless and quiescent-free performance. The next section
discusses the proposed design in more detail.

Like DStore, DudeTM [39] and NV-HTM [4] are two systems
for PMEM that have explored a decoupled approach. These sys-
tems rely on expensive physical logging, as opposed to the more
efficient logical logging used in DStore. Further, they require spe-
cial hardware support for consistency — hardware transactional
memory (HTM). Therefore, we believe that these systems are nei-
ther performant nor widely applicable. Like DStore, Bullet [24]
separates volatile and persistent domains and proposes a cross-
referencing technique to keep the two consistent. However, Bullet
requires both the key and value to be added to the log. In contrast,
DStore’s design allows values to be omitted from the log and be
placed only in persistent storage. Furthermore, DStore’s DIPPER is
more generic than Bullet’s cross-referencing logs in that it can be
applied to any storage system and not just key-value stores. This is
because Bullet uses per-thread logging and adds cross references be-
tween the logs to track operation dependencies. This is practical for
key-value based data structures but becomes non-trivial for other
data structures, where complex dependencies may exist between
operations, making the process of cross referencing impractical
and slow. Finally, Bullet requires complex transactions to update
its backend but DStore avoids this by using shadow updates which
are seamlessly handled by its memory allocator?. Persimmon [69]
is another system which proposes a decoupled design, however it
does not provide any concurrency.

3 DIPPER DESIGN

Motivated by the above observations, this paper proposes a new
approach, called Decoupled, In-memory, and Paralle] PERsistence
(DIPPER) that fully decouples the frontend and backend. We com-
pare DIPPER with existing approaches in Table 1.

2We were unable to compare with Bullet since its source code is unavailable

Session: Data and 1/0O

O _]
—~ —&— PMEM-RocksDB
g -8- PMEM-RocksDB (no chkpt)
~ —A— MongoDB-PM
&~] -4- MongoDB-PM (no chkpt)
GC) —— DStore-CoW
= DStore—CoW (no chkpt)
-1 ©
K
o

p999

p9999

Figure 1: Tail latency overhead of checkpoints

3.1 Key Ideas

We present DIPPER as an approach on PMEM to make a set of
DRAM data structures persistent by only logging information nec-
essary to perform an operation on this set. DIPPER generates a
linear order for all operations, preserved in the log, and operates
deterministically on the data structures, according to this linear
order. In case of recovery from failure, this linear order, as preserved
in the log, can be easily recovered and the same scheme can be used
to reconstruct the state of DRAM data structures by treating all
operations in the log as new requests. To be applicable in practical
scenarios, DIPPER must solve two challenges. First, deterministic
operation on data structures should not pose as a scalability bot-
tleneck. Second, DIPPER must provide an atomic quiescent-free
checkpoint solution to ensure uninterrupted service to end-users.

To solve these challenges, DIPPER fully decouples volatile system
space and persistent checkpoint space both logically and physically.
The system space to store data structures is entirely in DRAM while
the checkpoint space (including the log) is entirely in PMEM. When
a checkpoint is triggered, the checkpoint space is updated using the
operations recorded in the log. Since the log replay is deterministic,
the checkpoint space can be updated in the background without
affecting the system space. The main idea is to hide the latency
of persistence by using the volatile system space for all requests
and taking checkpoints in the background. In this manner, requests
operate directly on the volatile version and experience DRAM-like
latency, though write operations will experience a minor overhead
for operation logging. The expectation is that the rate of write
requests is low enough that the persistent shadow copy can be
updated quickly and kept consistent with the volatile version. This
is generally true since most requests arriving at storage systems are
read requests [3, 9, 32]. Furthermore, write rates vary hugely, with
some periods of low activity and some periods of bursty traffic [32,
33]. The volatile frontend can absorb bursty traffic easily and the
persistent backend can then be updated during the periods of low
activity in the background.

Our approach reduces the size of each log record, since only
high-level operations and their parameters need to be logged. This
reduces the log fill up rate. Further, the high bandwidth of PMEM
lowers checkpoint cost and improves the rate of log clean up. DIP-
PER works with a PMEM backend and not SSD or disk backend,
because only then is the rate of log fill up lower than the rate of
the log cleanup (checkpoint). Thus, the checkpoint process can be
completely overlapped with system operation.

34

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

Request 1 Request 2 Request n Request Request Request

1 1
1 1
g 1 n+l n+2 n 1
O - 1 1
S 1
e E srare 1|ofstate 2 - i [store | [stere State | 1
5 & [state ate 2(..., |Staten ™ 1 hbd | eeeeeeeeeeiiiiiiii | !
IS . '
I volatile data structures : volatile data structures I
R, T T goe
§ Active Log Arfh"‘v) Archived Log persistent shadow data structures :
o 1
& =
A [T 1B T] N
52 | i
33 1 T T Pray waL g
e Request l~Requestn TiRequest 1 Request @ a
t 1 Requestn _ZRequest 1 Requestn 5
0 copy older~gaves = Re 1 R t2 Re t
2 \ N equest 1 Reques equest n |
i il e :
L

entry entry entry

Figure 2: DIPPER and its atomic quiescent-free checkpoint
architecture. Pattern filled states represent a checkpoint.

The background checkpoint process does not compromise crash
consistency for two reasons. First, the system logs all updates and
log records are not discarded until a checkpoint is complete. Second,
the checkpoint process is designed to be completely atomic. In this
manner, we achieve quiescent-free checkpoints while maintaining
fault-tolerance.

3.2 Architecture and Abstraction

Figure 2 shows the architecture of DIPPER. Three simple steps are
involved in DIPPER: (1) log all logical operations in a persistent
log, @ archive the log when it is full, and (3) update backend by
applying operations in the archived log. Note that frontend oper-
ation can proceed in parallel to (3). DIPPER relies on the concept
of observational equivalence to allow concurrency while guaran-
teeing determinism and correctness (see §3.7). DIPPER treats the
set of DRAM data structures as a black box, logging only logical
operations performed on this box and the input required from out-
side the box. To achieve fault-tolerance, DIPPER proposes a novel
abstraction of shadow persistent data structures (or simply shadow
copies) in PMEM, that represent a shadow copy of the volatile
system space located in the persistent checkpoint space. We call
these shadow copies because their state lags behind their volatile
counterparts. These represent a snapshot of the system at a partic-
ular point in time and are only used for recovery in case of failure.
During normal operation, the system operates purely on DRAM
data structures while logging operations in the log. Each logical
operation translates to a set of functions to be performed on each
data structure. This mapping needs to be statically defined as it will
be used by the recovery logic to update the shadow copies. During
background checkpoints, taken in parallel to frontend operation,
the operations in the log are applied to the persistent backend.

DIPPER is a derivative of logical logging. However, DIPPER
differs from prior algorithms utilizing logical logging in one criti-
cal aspect. DIPPER leverages its determinism property along with
byte addressable PMEM to decouple normal system operation from
checkpointing. This allows DIPPER to provide fault-tolerance while
allowing requests to only operate on DRAM data structures. This
is in stark contrast to other systems [23, 44, 46, 52] that only cache
pages in memory that are eventually persisted.

3.3

Memory management is an important component of our design.
We delegate several important functions to the memory allocator

Memory Management

Session: Data and 1/0O

| LSN | length |op| op param(s) |commif|

Figure 3: DIPPER log record: LSN is log sequence number,
length is length of log record, op is operation type, and com-
mit is committed flag. The generic nature of the record al-
lows any arbitrary operation to be captured in the log.

to make it easy for DIPPER to be applied to any data structure.
Our backend design uses shadow updates for atomicity, so the
PMEM allocator need not be crash consistent itself. This means
that DIPPER can work with any off-the-shelf DRAM allocator. The
same allocator can be used for both DRAM and PMEM manage-
ment. Keeping both allocator designs the same makes it easier to
reconstruct the volatile space from the persistent space in the event
of a crash. We expect the allocator to implement two additional
functions - one to iterate over all allocated memory regions and
flush them to PMEM and the other to create a copy of the allocator
state. The first function is used to ensure durability at the end of a
checkpoint. The second function is used to for two purposes. The
first is to avoid persistent memory leaks. During a checkpoint, a
copy of the PMEM allocator is created along with copies of other
data structures for recovery in the event of a crash. The second is
to recover volatile space from the persistent space after a crash. In
addition, to allow the data structures to be seamlessly copied and
work in spite of PMEM address space relocation, we use relative
pointers and pointer swizzling [11, 56] for both DRAM and PMEM
structures. This means that we store offsets to the base address
instead of pointers. On each pointer de-reference, the base address
is added to the offset to obtain the actual pointer to data.

3.4 Logging on PMEM

DIPPER relies on a PMEM resident log to record all processed
operations. We exploit the byte addressability of PMEM to access
log records in-place. Figure 3 shows the structure of a DIPPER log
record. We capture each operation and its parameters within the
log record. The log sequence number (LSN) is used to verify the
validity of log records. Consequentially, the LSN must be persisted
atomically. With PMEM, only single word writes (usually 8B) are
atomic. Furthermore, spurious cache line evictions can change the
order in which portions of a log record are made persistent. To
ensure that the LSN is persisted atomically, we flush cache lines
containing each log record in the reverse order. We write and flush
the LSN only after all other cache lines in the log record have been
persisted. LSN is the first field in the log record. Thus, the log record
will only be considered valid once the first cache line containing
the LSN is flushed as the last step of the log write. Cache lines
are flushed by calling c1flushopt or clwb, followed by a store
fence. Note that this is just one possible implementation for the
log. DIPPER can work with any log implementation as long as
arbitrary operations can be added to the log and records can be
written atomically to PMEM.

3.5 Atomic Quiescent-Free Checkpoint

To prevent the log from growing without end, checkpoints are
triggered once the free space in the log fall below a pre-defined
threshold. As shown in Figure 2, the checkpoint process begins by

35

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

swapping the active and archived logs (this is fast and only involves
a pointer swap), and moving any uncommitted log records to the
new active log. Once this process is complete, frontend operations
can proceed on DRAM data structures and the checkpoint is pro-
cessed asynchronously. The checkpoint procedure involves playing
committed records from the archived log on the shadow copies. A
dedicated checkpoint thread pool is responsible for operating on
the persistent backend in parallel with the frontend.

We leverage the byte addressability of PMEM to reuse the func-
tions defined for each DRAM data structure operation. In this man-
ner, the shadow copies iterate through the same states that the
volatile copies went through. We guarantee durability by flush-
ing all modified cache lines upon completion of the checkpoint
process. This is done by iterating over all allocated pages in the
PMEM allocator (including the allocator state) and flushing each
cache line in the page to PMEM. Once all operations in the log
have been processed, the shadow copies will have the same state
as the DRAM structures had at the start of a checkpoint. Thus, the
state of the shadow copies at the end of a checkpoint represents the
checkpoint image. Correctness is guaranteed by leveraging the de-
terminism property of DIPPER. To guarantee idempotency during
a checkpoint, we always create a new copy of the shadow copies.
In case of a crash during a checkpoint, the recovery logic uses the
old persistent versions for recovery. A root object, placed in a well
known offset in PMEM contains pointers to current and old copies
of the shadow copies as well as the current state of the checkpoint
process. Our PMEM allocator is responsible for flushing cache lines
to ensure durability and creating copies of backend structures to
ensure atomicity.

Finally, to achieve atomicity, we update the locations of shadow
copies in the root object atomically and only upon successful com-
pletion of the checkpoint process. As is evident, checkpoints are
processed in the background without significant impact on system
throughput. Our evaluation (see §5.3) verifies this claim.

This approach for implementing the backend has several bene-
fits. First, since the representations of the DRAM and PMEM data
structures are the same, the same code can be used for both. Further,
by using shadow updates to maintain backend atomicity, the cost
of consistency is significantly lowered. There is no need to ensure
that data structures are updated in a consistent and durable man-
ner for each operation. Therefore, complicated techniques, such as
transactions, which are often employed to attain atomicity are not
required. This simplifies the implementation of the backend and
allows code written for volatile structures to be used as is for the
persistent structures.

3.6 Idempotent System Recovery

DStore provides complete crash consistency because it records all
operations in a persistent log and it can recover volatile state by
replaying these operations from the log. Our recovery protocol
guarantees crash safety for both possible failure scenarios — failure
during a checkpoint and failure outside a checkpoint. For recovery,
the root object provides pointers to the data structures and the state
of the checkpoint process. If we detect that the system crashed
during a checkpoint, we first need to reconstruct the latest versions
of the shadow copies (this step is skipped if the crash was not during

Session: Data and 1/0O

a checkpoint). This is done by playing records from the archived
log on the old copies of the shadow copies. Essentially, we redo the
checkpoint procedure ongoing at the time of crash. This ensures
that we operate on a consistent checkpoint image in the next step.
Next, we recover the volatile state. This involves replicating the
PMEM allocator state in the DRAM allocator and copying pages
from PMEM to DRAM. Finally, we replay log records in the active
log on the data structures to restore system state to what it was
before the crash.

After recovery is complete, the system state is restored and new
requests can be accepted. During recovery, we only play commit-
ted log records on the shadow copies. So, there is no need to log
undo operations since the shadow copies represent a consistent
checkpoint image (or in database terms, a transaction consistent
checkpoint [53]). Hence, DIPPER can be thought of as a redo-only
logging algorithm. The state of the system is defined exclusively
by volatile structures which means that the recovery process is
guaranteed to be idempotent.

3.7 Observational Equivalence & Concurrency

Supporting concurrent operations is a must for any practical solu-
tion. DIPPER supports concurrency through the notion of obser-
vational equivalence [54]. Using this notion, we can state that two
data structure states are observationally equivalent if they both
give the same answer to any observation from a prespecified set.
Two operations on a data structure are said to be commutative or
non-conflicting if reordering the operations results in observation-
ally equivalent states. Commutative operations are permitted to
operate concurrently on a data structure. The use of commutativity
for concurrency is not new and has been widely studied [10, 57].
However, applying it to logical logging has been problematic. This
is because if the volatile and persistent domains are not fully de-
coupled, then different portions of the persistent backend must
be updated atomically since the log only contains operations and
not actual data. Concurrent modification of data structures could
lead to an inconsistent backend. Prior work [41] has shown how a
write graph can be used to delay the persistence of data objects and
increase concurrency. Nevertheless, this solution requires costly
maintenance of the write graph state. Further, concurrency is lim-
ited when data are being made persistent. DIPPER overcomes these
challenges by fully decoupling volatile and persistent domains. The
volatile structures do not need to be involved to update the persis-
tent backend. Therefore, commutativity can be fully exploited to
increase concurrency. For instance, operations on distinct keys in a
hashtable are non-conflicting and can be executed in parallel. The
hashtable must, of course, support concurrency and avoid concur-
rent modification of a single bucket. In DIPPER, the implication
is that log records are not required to be in serialized order but
only conflicting order. So, not only can a single data structure be
updated concurrently, by non-conflicting requests but different data
structures can also be operated on in parallel. In case of recovery
after a crash the exact representations of the data structures will
not be the same as those before crash, but the observable state of
the data structures will be the same. This guarantee is sufficient to
ensure correctness of the system [54].

36

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

“‘m O

® metadata @ ©) @ @ =
<

@Iog record @ block pool md pool o
md s

zone]

=

log biree | block pool md pool 3

a

n

7]

super block

data

Figure 4: DStore layout and steps followed by a write request

4 DSTORE

In this section, we present the design and implementation of DStore
and its integration with DIPPER.

4.1 API and Semantics

To demonstrate the effectiveness and efficiency of DIPPER, we
propose a new fast and durable object storage sub-system, called
DStore. DStore is designed with the goal of being a generic fault-
tolerant embedded storage sub-system.

We do not opt for POSIX compliance so as to avoid the short-
comings of POSIX IO [2, 68]. The growing popularity of simpler
cloud services which offer access to objects instead of files needs
to be recognized. As a consequence, we propose a new set of APIs
to provide scalable access to objects. Table 2 lists the main API
for accessing DStore. The API and semantics of DStore have been
specifically constructed to handle a wide variety of use cases and
requirements. We provide both key-value and filesystem style APIs
while storing the data as objects. Unlike object stores such as Open-
Stack Swift [50], DStore treats objects as modifiable entities. The
primary difference between the key-value and filesystem API is
statefulness. The key-value API does not require an object handle,
releasing DStore of the arduous task of tracking open handles. This
allows applications to achieve much higher scalability.

The oopen, oclose, oread, and owrite primitives are semantically
related to their filesystem counterparts. The oget and oput primi-
tives are derivatives of the standard kev-value functions, get and
set. Each thread submitting IO needs to initialize a context for sub-
mitting requests using ds_init. For concurrency control, olock and
ounlock primitives are provided to specify complex dependencies
between objects. Concurrency control for a single object is implic-
itly handled by DStore.

4.2 Data Layout

DStore distributes data and internal structures between DRAM,
PMEM, and SSD (see Figure 4). Data are stored purely on SSD be-
cause of its capacity and non-volatility. SSD pages are grouped into
blocks which are the unit of data allocation in DStore. The first
block is reserved for the superblock, which contains relevant re-
covery information about the system. Most importantly, it contains
the PMEM root object which is required for recovery in case of
failure. A block pool is used to manage the SSD blocks. To store
metadata pages, a metadata zone is used along with a metadata

Session: Data and 1/0O

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

API Function Type Description

ds_ctx_t* ds_init() environment Initialize context for application thread
void ds_finalize(ds_ctx_t* ctx) environment Terminate context

OBJECT* oopen(ds_ctx_t” ctx, char* name, size_t size, op_t op) filesystem Open an object for reading, writing, or both
void oclose(OBJECT™ object) filesystem Close an object

ssize_t oread(OBJECT™ object, void™ buf; size_t size, off_t offset) filesystem Partial reads on object

ssize_t owrite(OBJECT™ object, void™ buf;, size_t size, off _t offset) filesystem Partial writes on object

ssize_t oget(ds_ctx_t” ctx, char* key, void™ value) key-value Get value for key

ssize_t oput(ds_ctx_t* ctx, char™ key, void* value, size_t size) key-value Set value for key

int odelete(ds_ctx_t* ctx, char* name) key-value Delete object or key

int olock(ds_ctx_t* ctx, char” name)
int ounlock(ds_ctx_t” ctx, char* name)

concurrency control
concurrency control

Acquire lock on object
Release lock on object

Table 2: DStore Interface Overview

pool to allocate free entries in the metadata zone. The metadata and
block pools are circular buffers containing free blocks and metadata
pages. A PMEM-based log is used for recovery in case of failure.
For maintaining an index of objects in the system, we utilize a btree.
All data structures including the metadata and btree are stored
in DRAM with their shadow copies stored in PMEM. Essentially,
DStore implements its control plane using DIPPER, with the fron-
tend in DRAM and backend in PMEM, while the data plane is placed
on a high-capacity SSD.

We use a DAX filesystem formatted on PMEM for space man-
agement. We directly map a part of PMEM into the address space
of the system by using mmap on a file located on the filesystem. To
allocate memory for shadow copies, we use a simple slab-based
memory allocator. This allocator uses the mmaped memory and
creates slabs in different size classes that are a power of two. For
DRAM management, we use a similar slab-based allocator but with
slabs allocated from the volatile heap.

DStore does not utilize a write cache, but writes directly to the
internal DRAM-based write cache in SSDs, providing significant
data transfer time savings. We find that SSDs with internal DRAM
have enhanced power-loss data protection [27]. In the event of
power failure, device capacitors will assist in flushing write cache
data to non-volatile storage. DStore transparently leverages device
capacitance to reduce the overhead of crash consistency.

4.3 Exploiting DIPPER in DStore

DStore uses DIPPER to make all DRAM structures shown in Figure 4
persistent. Data are updated in-place and are thus omitted from
the log. We write log records for oopen, owrite, oput, and odelete
operations. Log records for oopen and owrite are only written if
they modify any metadata. The input parameters (excluding data)
for all operations are stored in the log record. In our design, the
size of each log record is just 32B plus the object name. In practice,
we expect most log records to fit within a single cache line.

In DIPPER, a write operation works as follows (see Figure 4): (D
Lock the block and metadata pool, (2) allocate and write the log
record, (3) allocate blocks from block pool, (@) allocate pages from
metadata pool, (5) unlock the block and metadata pool, (6) write
metadata with allocated blocks in metadata zone, (7) write btree
record to memory, (8) write data to SSD, and (9) commit and flush
log record to PMEM. Steps B), @, ©, and (7) are responsible for

37

constructing a metadata and btree entry. Exactly the same set of
steps is used to reconstruct metadata and btree state upon recovery
from failure.

As we can infer from the description above, the btree and meta-
data zone are updated in parallel outside the synchronous region.
This parallelism is achieved by using the observational equivalency
property of DIPPER. Our concurrency control algorithm (see §4.4)
ensures that log records are added in conflicting order to maintain
correctness.

4.4 Concurrency Control

We propose a concurrency control (CC) algorithm, which forwards
information readily available in the PMEM log to determine con-
currently executing operations. Our goal while designing this al-
gorithm is to minimize additional memory usage and keep the
latency for detecting conflicting requests minimal. Most systems
use per-object locks to provide concurrency control which increase
linearly with the number of live objects in the system. In contrast,
our CC algorithm embeds a lock flag within the log records for each
request. The number of locks is therefore limited by the size of the
log. Conflicting requests do not use a hold and wait approach, but
rather spin on dedicated flags corresponding to their conflict.
Write-Write Conflicts. The log contains records of all operations
currently in execution. When a new request arrives, we scan the
log to check if any operations in execution are operating on the
same object. If so, we spin on the committed flag of the conflicting
record until the operation finishes. This ensures that we do not have
two concurrently executing requests on the same object. However,
scanning the complete log to check for conflicts is inefficient and
unnecessary. Scanning from the first uncommitted record until the
end of the log enables us to detect conflicting operations without
adding significant overhead.

Read-Write Conflicts. Since read requests are not added to the
log, read-write request conflicts can still occur. For resolving read-
write concurrency, we introduce a new in-memory hash table that
maps object names to their current read count. The read count is
updated using the atomic fetch-and-add instruction to ensure
consistent count values during parallel operation by threads. By
looking at the read count at the start of a write request, we can be
sure that no request is reading that object at that time. In case the
read count is non-zero, we simply poll on it until it is zero.

Session: Data and 1/0O

4.5 Additional Design Considerations

In this subsection, we discuss some of the additional considerations
that were made while designing DStore.

Inter-Object Dependencies. Having the ability to specify com-
plex inter-object dependencies is invaluable for many applications.
For example, in a filesystem, dependencies between a file and its
directory are captured by locking the directory before modifying
the file. Such cases can be handled by using the olock and oun-
lock primitives to lock objects. To implement these primitives we
introduce a novel NOOP log operation. This operation represents
a NOOP on the DRAM data structures and is ignored by DIPPER
recovery logic. The olock primitive places a NOOP record in the log
and ounlock marks this record as committed. Thus, a log scan can
correctly identify locked objects as conflicts.

Durability and Consistency. DStore writes data directly to stor-
age device-level RAM (if available, otherwise to non-volatile media).
In the event of an unexpected crash, device capacitors will safely
flush data to non-volatile media. By eschewing buffering, DStore
provides strong guarantees of data durability. Further, DStore only
marks log records as committed once data is made durable. This
implies that metadata will always be consistent, i.e., objects can
never contain garbage data.

CoW Design. To enable fair comparison of DIPPER with CoW
checkpoints used in related work, we implement CoW in DStore.
This works as follows. When a checkpoint is triggered, all volatile
pages in the frontend are marked as read only. As soon this is done,
the frontend can process write operations again. When a client
tries to modify a read-only page, a page fault is triggered and a
handler copies the page to PMEM. Clients can assist in this copying
process, but must wait until the page is copied before making any
modification to it.

5 EXPERIMENTAL ANALYSIS

In this section, we present the evaluation of DStore. Our goal was
to find answers to the following questions:

e Is DStore fast? If so, why? (§5.2)

e Is DStore quiescent-free? If so, why? (§5.3)

o Is DStore tailless? If so, why? (§5.4)

o How long does DStore take to recover? (§5.5)
e What is the storage footprint of DStore? (§5.6)

We first describe our experimental testbed and methodology
before considering each of the questions listed above.

5.1 Experimental Testbed

Our experimental testbed consists of a Linux (3.10) server equipped
with two Cascade lake CPUs (8280L@2.70GHz), 384GB DRAM (2 x
6 x 32GB DDR4 DIMMs), and 6TB PMEM (2 x 6 x 512GB DCPMMs)
configured in App Direct mode, and a 750GB Intel P4800X NVMe
drive. Each CPU has 28 cores (with hyperthreading disabled) and
38.5MB of L3 cache (LLC). All available PMEM is formatted as two
xfs-DAX filesystems, each utilizing the memory of a single CPU
socket as a single interleaved namespace.

All code was compiled using gec 9.2.0. PMDK [26] 1.8 was used
across all evaluations to keep comparisons fair. Hardware counters
were obtained using a combination of Intel VTune Profiler [25]

38

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

PMEM-RocksDB

— MongoDB-PM
43 B MongoDB-PMSE
= DStore (CoW)
CC’ DStore
Q 7
58 B

N = I AV

A/Update A/Read B/Update B/Read
Workload/Operation
Figure 5: YCSB Operation Latency

S @ XFS-DAX
%) — ext4—DAX
= o A NOVA
>
5 M DStore
C ©—
9]
™ ¥
T .

- 70 [

Figure 6: Metadata Overhead

and Linux iostat utility. DCPMM hardware counters were collected
using the ipmwatch utility, a part of the VTune Profiler.

We compare performance with at least one system from each
category in Table 1. We directly compare DStore with three popular
PMEM-optimized NoSQL storage systems, PMEM-RocksDB [52, 63],
MongoDB-PM [46], and MongoDB-PMSE [28]. PMEM-RocksDB is
an optimized version of the log-structured merge (LSM) tree-based
vanilla RocksDB [18] and uses a PMEM resident log to improve per-
formance. MongoDB-PM uses an optimized btree-based WiredTiger
engine with the btree index and journal placed in a DAX filesys-
tem formatted on PMEM to improve performance. MongoDB-PMSE
uses PMEM optimized data structures to store data in-place and uses
PMDK’s pmemobj-cpp library for crash consistency. We also imple-
ment the copy-on-write checkpoint scheme used in NOVA [65] and
Pronto [44] in DStore for comparison purposes. We also compare
metadata overhead with the Linux direct-access (DAX) filesystems
xfs [59], ext4 [43], and NOVA [64]. Finally, we indirectly compare
with DudeTM [39] and NV-HTM [4] by incorporating the physical
logging design used in them in DStore. We were unable to compare
with Bullet since its source code is unavailable.

We primarily use 4KB sized operations for experiments. This is to
conform with the SSD hardware block size. Smaller sized operations
will result in write amplification and their throughput will match
that of 4KB operations. Larger operations will be limited by SSD
bandwidth, so we do not focus on them in our evaluation.

5.2 Is DStore Fast?

To evaluate DStore performance, we measure the average latency
of 4KB read and update operations at full-subscription (28 cores)
with YCSB [13] workloads A (50% read, 50% write) and B (95% read,
5% write). We compare DStore latency with that of other PMEM-
optimized systems. From Figure 5, we can observe that DStore
provides the best latency in all cases, up to 4x lower than other
systems. The reason for this is that metadata requests experience
ultra-low latency since the frontend is entirely in DRAM. In contrast,
other systems must access persistent storage for metadata updates,
which increases latency. For instance, MongoDB-PMSE must update
both data and metadata in PMEM for each operation. This is also

Session: Data and 1/0O

[Size [Time [NVMe Write | BTree | Metadata | Log Flush [Total
Time (cycles) 24029 [789 307 1663 | 27288

4KB Time (ns) 8899.63 | 298.89 292.22 615.93 | 10106.67

% of Total 88.06 | 296 2.89 6.09 100

Time (cycles) 108844 | 1284 789 1945 | 112862

16KB Time (ns) 40312.60 | 475.56 292.22 720.38 | 41800.74
% of Total 944 | 114 0.70 172 100

Table 3: Time breakdown of write requests

the reason that we see higher improvement for update than read
operations. In general, update latency is lower for workload B
compared to A for all systems because the high read:write ratio
implies that the cost of persistence can be more easily overlapped
with updates to the volatile cache. Finally, we also observe that
DStore with copy-on-write checkpoints provides nearly the same
latency as DStore. This is because checkpoint design only impacts
tail latency and not average latency.

We also compare with PMEM-optimized DAX filesystems (x£fs-

DAX, etx4-DAX, and NOVA) to evaluate the filesystem interface
of DStore. Since these filesystems place data in PMEM while DStore
does so in SSD, we were unable to make a direct comparison. In-
stead, we measure the metadata overhead of 4KB writes to a file for
each system. Figure 6 shows this comparison. Just like the previous
experiment, we find that DStore is the fastest in terms of updates to
metadata. This is because updating metadata only requires making
changes to in-memory data structures and recording the operation
in the log. In contrast, other systems need to update changes to
PMEM because their volatile and persistent domains are not decou-
pled. For instance, NOVA must update the file’s inode as well as
add the operation to the inode’s log, both of which must be made in
PMEM for durability. xfs-DAX and ext4-DAX suffer from similar
limitations. Overall, we find that by keeping metadata in DRAM
and using compact logical logging, DStore significantly reduces op-
eration latency compared to other systems. Through experimental
analysis, we also discover that our userspace run-to-completion
pipeline is successful in avoiding context switches in the critical
path, which also contributes to latency reduction.
Why is DStore Fast? To better understand why DStore is fast,
we analyze its write pipeline in more detail. Table 3 shows the
latency breakdown of 4KB and 16KB writes. The time spent in each
component is given in cycles, nanoseconds, and as a percentage of
total time. The right-most column shows the total time for the write
request. Metadata indicates the time required to allocate blocks and
update the corresponding metadata. Log flush represents time spent
in flushing the log record to PMEM. What stands out the most is the
percentage of time spent doing NVMe writes. This indicates that we
are successfully able to reduce software overhead to ~10% of total
time. We also observe that a log flush takes less than 2000 cycles
(or 740 ns), minimizing the impact of logging on write performance.
This also indicates that 3D-XPoint technology provides extremely
low latency for a single cache line flush. Finally, we find that the
metadata and log flush overheads are similar for both IO sizes. This
is because the use of logical logging in DIPPER leads to request-size-
agnostic software overhead. Therefore, we conclude that having a
DRAM frontend with the entire metadata in the reason for DStore’s
fast performance.

39

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

5.3 Is DStore Quiescent-Free?

To measure the effects of checkpoints on system throughput, we
conduct an experiment with a full-subscription (28 cores) 50% read,
50% write workload. We measure the aggregate throughput overa 1
minute window. We chose a 1 minute window because it was long
enough for each system to trigger a checkpoint at least once. The
first row of graphs in Figure 7 shows the result of this analysis. We
can clearly observe that DStore is able to sustain higher through-
put than other systems for the entire time window. The troughs
in the graph represent periods of checkpoint. DStore throughput
drops slightly during a checkpoint because of the impact of back-
ground threads applying operations to the backend. Nevertheless,
even the lowest throughput achieved is greater than the highest of
any other system, i.e. DStore is able to satisfy a high throughput
SLO. Importantly, the system never fully quiesces for both read
and write operations. Other systems are unable to achieve high
throughput because of the reasons discussed earlier (see §5.2). Apart
from MongoDB-PMSE, all systems experience throughput drops
during checkpoints. MongoDB-PMSE uses inline persistence, so no
checkpoints are required and the throughput is consistent over time.
Despite this, the overheads of cache flushes and transactions pre-
vent it from achieving good performance even though it places data
on PMEM. DStore delivers 15% higher throughput SLO compared
to MongoDB-PMSE and is more cost effective because it places data
on SSD. Another observation we make is that the copy-on-write
design significantly lowers throughput during checkpoints. This is
because client threads need to block and wait until the pages they
want to modify are made durable. Finally, we find that the contin-
uous background compaction in RocksDB prevents the frontend
from achieving consistent throughput. In fact, for a short duration,
it was unable to serve any update requests, violating quiescent
freedom.

Why is DStore Quiescent-Free? To understand our observations
further, we measured the SSD and PMEM bandwidth during the ex-
periment. The SSD bandwidth for PMEM-RocksDB and MongoDB-
PM clearly show the activity of the asynchronous checkpoints,
which explains the dips in throughput during them. MongoDB-
PMSE does not use the SSD at all as it places all data in PMEM.
Interestingly, for DStore (including CoW case), the SSD bandwidth
curve mirrors the throughput curve. This is because data is directly
updated in the SSD for each request and metadata is only placed
in DRAM/PMEM. If we look at the PMEM bandwidth, we notice
that except DStore, other systems utilize only a small percentage of
available bandwidth. The reason for this is that their throughput is
limited by other factors, such as checkpoints or transactions. These
systems are unable to effectively utilize the byte-addressability and
performance of PMEM. Even CoW does not utilize PMEM effec-
tively because pages are flushed individually when page faults are
triggered and not in batches. DStore is able to better exploit its
performance by using shadow updates for the backend. In this man-
ner, the backend throughput is not limited since transactions are
not needed. We also observe that the PMEM backend is not always
active which indicates that DStore can handle workloads with an
even higher write:read ratio without quiescing. Our analysis shows
that only workloads having more than 70% writes will lead to back-
logging. This is sufficient, as most enterprise workloads have been

Session: Data and 1/0O

150 250 350
L1
150 250 350
L
Throughput (Kops)
150 250 350
L

Throughput (Kops)
50

50
Throughput (Kops)

0 50

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

150 250 350
T T T S B |

150 250 350
T T T S R B

Throughput (Kops)

Throughput (Kops)
50

0 50

0
0

2
2
o

SSD Bandwidth (GB/s)
1
|
SSD Bandwidth (GB/s)
SSD Bandwidth (GB/s)
1
|

0

60

2
2

SSD Bandwidth (GB/s)
1
|

SSD Bandwidth (GB/s)

2 3 4 0
L

PMEM Bandwidth (GB/s)

PMEM Bandwidth (GB/s)
PMEM Bandwidth (GB/s)

0 1

PMEM Bandwidth (GB/s)
PMEM Bandwidth (GB/s)

30
Time (s)

o

Time (s)

(a) PMEM-RocksDB (b) MongoDB-PM

Time (s)

(c) MongoDB-PMSE

30
Time (s) Time (s)

(d) DStore (w/ CoW chkpt) (e) DStore

Figure 7: System throughput and storage bandwidth over a 1 minute window for a full-subscription (28 cores) 50% read, 50%

write workload

@ o] © w
= a7 o PMEM-RocksDB - -
£ E A MongoDB-PM E E
= <~ | + MongoDB-PMSE =~ =2
2. | 2 x DStore (CoW) 2 2
% ¥ % DStore % %
= Jo - aN ~ 4w
8 & & &

o A o - o - il & o

I T T T I T T T
p90 p99 p999 p9999 p90 p99 p999 9999 p90 p99 p999 p9999 p90 p99 p999 p9999

(a) Workload A Read Tail Latency (b) Workload A Update Tail Latency

(c) Workload B Read Tail Latency (d) Workload B Update Tail Latency

Figure 8: Tail latency curves at full-subscription (28 cores) for YCSB A (50% read, 50% write) and B (95% read, 5% write)

o
/af_r baseline
2 + logical log
33 + DIPPER
g m +OE
=]
o

o) [

(a) average

Figure 9: Effect of optimizations on write latency

shown to have less than 50% writes [3, 9, 32]. We conclude that log-
ical and physical decoupling of normal operation and checkpoints
allows them to be completely overlapped. As a result, DStore can
provide uninterrupted service to end users.

Is DStore Scalable? DStore uses atomic operations for generatic
LSNs and locks for allocating blocks and metadata pages. However,
we do not find their use to be a scalability bottleneck. We compare
performance at full-subscription (28 cores) with other systems and
outperform all of them (see Figure 7). In addition, from Figure 3, we
can see that work done while holding a lock (for metadata) takes
less than 300 ns and is not a bottleneck.

5.4 1Is DStore Tailless?

We measure the tail latency of 4KB read and update operations at
full-subscription (28 cores) with YCSB workloads A (50% read, 50%
write) and B (95% read, 5% write). Figure 8 shows the tail latency
curves for both operations. Overall, DStore has flatter tail latency
curves and also the lowest latency values for all cases, up to 6x

40

lower than other systems. The reason for this trend is the decoupled
design, which is successful in hiding the latency of persistence. In
contrast, other systems have longer tails because of the effects of
checkpoints on client requests. Requests arriving during check-
points must wait for data to be persisted, resulting in this trend. We
already verified and discussed this reason in Figure 1. Some other
interesting observations we make are as follows. CoW shows high
P9999 latency for the update-heavy workload A but close to DStore
latency for the read heavy workload B. This is due to a reduction
in the frequency of checkpoints for workload B as compared to
A. We find that read tail latency is also worse for other systems
as compared to DStore. This implies that checkpoints impact both
read and write requests. Finally, we observe that MongoDB-PMSE
has high p999 and p9999 latency despite using an uncached design.
We believe this trend is because of the high tail latency of PMEM
itself and not the software design. The high tail latency of Optane
DCPMM has been verified in [66].

Why is DStore Tailless? For improving write latency, we pro-
posed effective optimizations, including PMEM-based logical log-
ging, decoupled persistence (DIPPER), and observational equiv-
alency (OE). To determine the impact of these optimizations on
system performance, we first evaluate the baseline design, adding
optimizations one-by-one and measuring performance again. The
naive baseline uses ARIES-style physical logging [21], used in NV-
HTM and DudeTM, with CoW checkpoints. Figure 9 gives us an idea
of the impact of optimizations on both average and p9999 latency at

Session: Data and 1/0O

System Shutdown Type Metadata Replay Total Time
PMEM-RocksDB clean 0 156 156
MongoDB-PM clean 474 139 613
MongoDB-PMSE clean 985 0 985
DStore clean 846 841 1687
PMEM-RocksDB crash 5013 150 5163
MongoDB-PM crash 7525 12786 20311
MongoDB-PMSE crash 1708 0 1708
DStore crash 11580 861 12441

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

7l SSD PMEM DRAM
PMEM-RocksDB [/ /v 7777777/
MongoDB-PM [/ N
MongoDB-PMSE [N v
Dstore [NN\ /)
10 15 20
Storage Footprint (GB)

Figure 10: Storage footprint with 2M 4KB objects

Table 4: System recovery time (in ms): metadata is time to
recover metadata and replay is time to replay log records.

full-subscription. The naive design has the worst performance. This
is due to the high log write latency and overhead of CoW check-
points. Moving from physical to compact logical logging improves
average latency by 21% and tail latency by 15%. Incorporating DIP-
PER (+DIPPER) on top of this improves tail latency significantly
(~7.6x). DIPPER impacts tail and not average latency because it
only improves response times for requests during a checkpoint.
Finally, adopting OE completely removes any synchronization over-
head, further improving average and p9999 latencies by 9% and 2%,
respectively. OE particularly helps at high concurrency by allowing
parallel operation on the btree and metadata zone. We conclude
that logical logging is the most beneficial for average latency while
DIPPER is the most beneficial for tail latency.

5.5 Recovery Performance

To test recovery performance, we evaluate two cases: one with a nor-
mal shutdown and the other with an unexpected crash just before
the checkpoint process is complete (the worst possible failure point).
We simulate system failure by forcing a hard shutdown (SIGKILL)
and restarting the process. For this experiment, we load two million
4KB objects into each system. Table 4 shows average system recov-
ery times for both cases mentioned earlier. When recovering from a
clean shutdown, DStore must reconstruct its volatile space from the
persistent space. Other systems do not have this overhead because
they only bring data into the cache on-demand. For this reason,
recovery from a clean shutdown takes longer for DStore. In case of
failure during a checkpoint, all systems take longer to recover. This
is because any operations in-flight need to be re-executed and lost
data must be reconstructed using the log. For DStore, the ongoing
checkpoint process during a crash must be redone upon recovery
in addition to the normal recovery process. MongoDB-PM and
PMEM-RocksDB must recover any lost volatile data by replaying
records from the log. All three have a similar recovery procedure
and therefore show similar performance. MongoDB-PMSE only
needs to re-execute in-flight operations using transaction data and
recovers the fastest. In general, the two-level design prevents in-
stant recovery for DStore. Since recovery is not the common case,
we believe that the current design provides adequate recovery times
but leaves room for improvement in the future.

5.6 Storage Footprint

DStore maintains two copies of metadata (in DRAM and PMEM) and
uses shadow updates for the PMEM copy. We consider it important

41

System Throughput p9999 Lat. Recovery Lat. Space Ampl.
MongoDB-PM 106704 IOPS 5439 us 20311 ms 2.47
MongoDB-PMSE 219221 IOPS 12119 us 1708 ms 1.36
PMEM-RocksDB 47532 IOPS 6055 us 5163 ms 1.97
DStore (CoW) 119685 IOPS 16863 us 12441 ms 1.86
DStore 252832 IOPS 2665 us 12441 ms 1.86

Table 5: Summary of achievable service level objectives

to measure the storage overhead and compare it with other systems.
To evaluate the physical storage footprint, we load two million
objects into the system and then measure the total space (DRAM,
PMEM, and SSD) consumed by each system. Figure 10 shows the
result of this analysis. Default settings are used for all systems.
Interestingly, we find that all systems have similar storage footprint.
Overall, DStore only consumes more space than MongoDB-PMSE.
MongoDB-PMSE consumes the least space because it does not
require a volatile cache. While the actual data storage footprints for
all systems are virtually the same, the metadata overheads differ
significantly. Both PMEM-RocksDB and MongoDB-PM reserve a
large chunk of DRAM as their cache space but only actually utilize
a small portion of it. For this reason, both have a higher storage
footprint than DStore. In the worst case, DStore may need space for
three copies of metadata. However, since the space is allocated ad-
hoc, this overhead is kept to a minimum. Further, the performance
benefits of the decoupled approach far outweigh the drawbacks of
additional PMEM usage.

5.7 Evaluation Summary

To get a complete picture of how different systems might perform in
a cloud setting, we analyzed their achievable SLO. Table 5 provides
a summary of these for throughput, p9999 and recovery latency,
and space amplification®. These represent the worst case values we
obtained in our experiments. For each metric, the best values have
been highlighted. DStore achieves the best throughput and p9999
SLO. This is because the use of DIPPER prevents sudden drops
in throughput and keeps tail latency low, resulting in consistent
and predictable performance. For recovery and space amplification,
MongoDB-PMSE is able to deliver the best SLO. This is expected
because it does not utilize a cache and data is persisted inline.
Therefore, there is no storage overhead of the cache and recovery
can be near instantaneous. DStore (CoW) has the same recovery
and storage overhead as DStore because it uses the same recovery
and memory allocation design. However, the CoW design is unable
to deliver the same performance characteristics as DIPPER.

3We define space amplification as the ratio of size of application data to the size of
space utilized by the storage system across DRAM, PMEM, and SSD.

Session: Data and 1/0O

Key Takeaways. Our results indicate that using a decoupled de-
sign is better for throughput and latency SLO while an uncached
design is better for recovery and space SLO. Cached approaches can
provide fast performance, but because of inconsistent performance
during checkpoints, they are ineffective in providing reasonable
SLO. Depending on the required tradeoffs, a decoupled or uncached
design should be chosen for storage systems. Overall, we conclude
that DStore provides the best performance SLO, good space SLO,
and adequate recovery SLO and satisfies the three requirements we
set out to achieve.

6 RELATED WORK

Over the last decade, a significant body of work has attempted to
design transactional abstractions, persistent data structures, and
storage systems for PMEM. All of these systems can be classified
as either cached, uncached, or decoupled.

Cached Systems. Despite the byte-addressability and performance
benefits of PMEM, cached systems remain a popular class of storage
systems. Several cached systems [8, 14, 17, 23, 44, 46, 52, 63] have
been recently proposed to leverage PMEM. Despite differences
in the design and implementation of these systems, all of them
suffer from the same flaw. Clearing cache or log space is a costly
operation and typically requires the cache to be write-protected for
the duration of this operation. Ultimately, this design is unable to
provide consistent performance that is desired by cloud providers.
Uncached Systems. Several systems [7, 12, 15, 16, 19, 20, 31, 51, 60—
62, 64, 71] have been proposed to take advantage of the storage
and memory characteristics of PMEM to modify and access data
in-place. Unfortunately, ensuring crash consistency for updates
is non-trivial, requiring complicated transactional or journaling
algorithms to be used. It has been shown that durable transac-
tions have high overhead and significantly lower end-to-end per-
formance [22, 47]. iDO [40] is a recent compiler based technique
to reduce the overhead of persistence and crash consistency by
logging updates only at the granularity of idempotent code regions.
Although it outperforms several other uncached approaches, it still
relies on expensive physical logging.

Decoupled Systems. Some recent systems like DudeTM [39], NV-
HTM [4], and Bullet [24] have proposed partially or fully decoupling
operation and persistence phases to lower the cost of persistence
and improve performance. However, these systems still rely on
expensive physical logging which is particularly bad when the
working set of transactions is large. DudeTM and NV-HTM both
use HTM for atomicity. Unfortunately, HTM requires hardware sup-
port which limits their wide-scale applicability. Further, DudeTM
requires hardware changes to support its timestamp design, making
it incompatible with commodity HTM. In contrast, DStore does not
require special hardware support and uses more efficient logical
logging. DStore is similar in concept to Bullet, but as discussed in
Section 2, Bullet’s approach is not as generic and performant as
DStore.

Logical Logging. Some recent works [42, 51] have successfully
applied logical logging to database systems, while WAFL [34] and
NOVA [64, 65] have done the same to filesystems. However, unlike
DStore, these works do not provide a truly atomic quiescent-free
checkpoint solution.

42

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

Hand-Crafted Indexes. Recent work [5, 37, 48, 70] has proposed

highly-optimized hand-crafted indexes on PMEM which achieve
crash consistency by carefully and cleverly ordering and persist-
ing updates to PMEM rather than use logging. Although these
approaches offer good performance, the hand-crafted designs are
specific to a particular data structure, and thus, are not easily appli-
cable to other data structures.

7 CONCLUSION

In this paper, we presented the design and implementation of
DStore, a high-performance fault-tolerant userspace storage sub-
system. DStore provides fast performance, low tail latency, and qui-
escent freedom simultaneously through the proposed DIPPER ap-
proach which decouples system and checkpoint space. We showed
that by using PMEM to store the checkpoint space, we can lever-
age its performance to effectively overlap the operation of the two
spaces. The novelty of our approach was in the design of the back-
end, which allowed us to use the same code for both spaces and
provide low overhead persistence. Evaluation with Intel Optane
DCPMM demonstrates the clear superiority of DStore over other
state-of-the-art storage systems. In the future, we plan to extend
our designs to build a disaggregated storage system.

ACKNOWLEDGMENTS

We thank our anonymous reviewers and shepherd for their valu-
able feedback. We would also like to thank Tuong Nguyen, Abel
Gebrezgi, Jonathan Burton, and Timothy Witham from Intel for
their support and help in access to the test platform. This work was
supported in part by NSF research grant CCF #1822987.

REFERENCES

[1] Joy Arulraj, Andrew Pavlo, and Subramanya R Dulloor. 2015. Let’s Talk About
Storage and Recovery Methods for Non-Volatile Memory Database Systems. In
SIGMOD’15. 707-722.

Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu, Dimitris Mitropoulos, and

Jason Nieh. 2016. POSIX Abstractions in Modern Operating Systems: The Old,

the New, and the Missing. In EuroSys’16. 19.

[3] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. 2020. Characterizing,
Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook. In
FAST’20. 209-223.

[4] Daniel Castro, Paolo Romano, and Joao Barreto. 2019. Hardware Transactional

Memory meets Memory Persistency. J. Parallel and Distrib. Comput. 130 (2019),

63-79.

Hokeun Cha, Moohyeon Nam, Kibeom Jin, Jiwon Seo, and Beomseok Nam.

2020. B3-Tree: Byte-Addressable Binary B-Tree for Persistent Memory. ACM

Transactions on Storage (TOS) 16, 3 (2020), 1-27.

[6] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas:
Leveraging Locks for Non-volatile Memory Consistency. In OOPSLA’14. 433~
452.

[7] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D Viglas. 2015. REWIND:
Recovery Write-Ahead System for In-Memory Non-Volatile Data-Structures. In
PVLDB’15, Vol. 8. 497-508.

[8] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020.
FlatStore: An Efficient Log-Structured Key-Value Storage Engine for Persistent
Memory. In ASPLOS’20. 1077-1091.

[9] Yanpei Chen, Kiran Srinivasan, Garth Goodson, and Randy Katz. 2011. Design Im-

plications for Enterprise Storage systems via Multi-Dimensional Trace Analysis.

In SOSP’11. 43-56.

Austin T Clements, M Frans Kaashoek, Nickolai Zeldovich, Robert T Morris,

and Eddie Kohler. 2013. The Scalable Commutativity Rule: Designing Scalable

Software for Multicore Processors. In SOSP’13. 1-17.

[11] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,

Ranyjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making Persistent Objects
Fast and Safe with Next-generation, Non-volatile Memories. In ASPLOS’11. 105—
118.

[2

5

[10

Session: Data and 1/0O

[12]

[13

[14]

[15

[16]
[17]
[18

[19

[20]

[21]
[22]

[23

[24]

[25

[26]
[27]

[28]

™~
o

[30

[31

[32]

[33

[34]

[35

[36]

[37]

[38

[39]

[40]

Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O Through Byte-
Addressable, Persistent Memory. In SOSP’09. 133-146.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In SoCC’10. 143—
154.

Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor Zablotchi. 2018.
Log-Free Concurrent Data Structures. In USENIX ATC’18. 373-386.

Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen. 2019. Per-
formance and Protection in the ZoFS User-Space NVM File System. In SOSP’19.
478-493.

Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj
Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System Software for Persistent
Memory. In EuroSys’14. 15.

Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong,
Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. 2018. Reducing
DRAM Footprint with NVM in Facebook. In EuroSys’18. 42.

Facebook. 2012. RocksDB. https://rocksdb.org/ (accessed Aug. 2020).

Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. 2018. A
Persistent Lock-Free Queue for Non-Volatile Memory. In PPoPP’18. 28—40.
Yonatan Gottesman, Joel Nider, Ronen Kat, Yaron Weinsberg, and Michael Factor.
2016. Using Storage Class Memory Efficiently for an In-Memory Database. In
SYSTOR’16. 21.

Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts and Tech-
niques. Elsevier.

Swapnil Haria, Mark D Hill, and Michael M Swift. 2020. MOD: Minimally Ordered
Durable Data Structures for Persistent Memory. In ASPLOS’20. 775-788.

Jian Huang, Karsten Schwan, and Moinuddin K Qureshi. 2014. NVRAM-aware
Logging in Transaction Systems. In PVLDB’14, Vol. 8. 389-400.

Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo Seltzer, Tim Harris, and
Steve Byan. 2018. Closing the Performance Gap Between Volatile and Persistent
Key-Value Stores Using Cross-Referencing Logs. In USENIX ATC’18. 967-979.
Intel. 2014. Intel VTune Profiler. https://software.intel.com/content/www/us/en/
develop/tools/vtune-profilerhtml (accessed Aug. 2020).

Intel. 2014. PMDK. https://github.com/pmem/pmdk (accessed Aug. 2020).

Intel. 2016. Enhanced Power-Loss Data Protection in the Intel Solid-State Drive
320 Series. Available at: https://newsroom.intel.com/wp-content/uploads/sites/
11/2016/01/Intel_SSD_320_Series_Enhance_Power_Loss_Technology_Brief.pdf
(accessed Aug. 2020).

Intel. 2016. Persistent Memory Storage
https://github.com/pmem/pmse (accessed Aug. 2020).
Jake Brutlag. 2009. Speed Matters. https://ai.googleblog.com/2009/06/speed-
matters.html (accessed Aug. 2020).

Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli,
and Vijay Chidambaram. 2019. SplitFS: Reducing Software Overhead in File
Systems for Persistent Memory. In SOSP’19. 494-508.

Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H Noh, and Young-ri
Choi. 2019. SLM-DB: Single-Level Key-Value Store with Persistent Memory. In
FAST. 191-205.

Anil Kashyap. 2018. Workload Characterization for Enterprise Disk Drives. ACM
Transactions on Storage (TOS) 14, 2 (2018), 1-15.

Swaroop Kavalanekar, Bruce Worthington, Qi Zhang, and Vishal Sharda. 2008.
Characterization of Storage Workload Traces from Production Windows Servers.
In IISWC’08. 119-128.

Ram Kesavan, Rohit Singh, Travis Grusecki, and Yuvraj Patel. 2017. Algorithms
and Data Structures for Efficient Free Space Reclamation in WAFL. In FAST’17.
1-14.

Hyojun Kim, Sangeetha Seshadri, Clement L Dickey, and Lawrence Chiu. 2014.
Evaluating Phase Change Memory for Enterprise Storage Systems: A Study of
Caching and Tiering Approaches. In FAST 14. 33-45.

Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and Youjip
Won. 2016. NVWAL: Exploiting NVRAM in Write-Ahead Logging. In ASPLOS’16.
385-398.

Wook-Hee Kim, Jihye Seo, Jinwoong Kim, and Beomseok Nam. 2018. clfB-tree:
Cacheline Friendly Persistent B-Tree for NVRAM. ACM Transactions on Storage
(TOS) 14, 1 (2018), 1-17.

Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolfgang Lehner. 2020. Enabling
Low Tail Latency on Multicore Key-Value Stores. Proceedings of the VLDB En-
dowment 13, 7 (2020), 1091-1104.

Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin
Zheng, and Jinglei Ren. 2017. DudeTM: Building Durable Transactions with
Decoupling for Persistent Memory. In ASPLOS’17. 329-343.

Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H Noh, and
Changhee Jung. 2018. iDO: Compiler-Directed Failure Atomicity for Nonvolatile
Memory. In MICRO. 258-270.

Engine for MongoDB.

43

~
5,

=
&

o g
A

‘o
&

=
2

o
S

o
2

[66

(67

[68

[69]

<
=

71

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

David Lomet and Mark Tuttle. 1999. Logical Logging to Extend Recovery to New
Domains. In SIGMOD’99. 73-84.

Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker.
2014. Rethinking Main Memory OLTP Recovery. In ICDE’14. 604-615.
Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex
Tomas, and Laurent Vivier. 2007. The new ext4 Filesystem: Current Status and
Future Plans. In Proceedings of the Linux Symposium, Vol. 2. 21-33.

Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. 2020. Pronto:
Easy and Fast Persistence for Volatile Data Structures. In ASPLOS’20. 789-806.
Sparsh Mittal and Jeffrey S Vetter. 2016. A Survey of Software Techniques for
Using Non-Volatile Memories for Storage and Main Memory Systems. IEEE
Transactions on Parallel and Distributed Systems 27, 5 (2016), 1537-1550.
MongoDB Inc. 2009. MongoDB. https://www.mongodb.com/ (accessed Aug.
2020).

Sanketh Nalli, Swapnil Haria, Mark D Hill, Michael M Swift, Haris Volos, and
Kimberly Keeton. 2017. An Analysis of Persistent Memory use with WHISPER.
In ASPLOS’17. 135-148.

Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H Noh, and Beomseok Nam.
2019. Write-Optimized Dynamic Hashing for Persistent Memory. In FAST. 31-44.
Gihwan Oh, Sangchul Kim, Sang-Won Lee, and Bongki Moon. 2015. SQLite
Optimization with Phase Change Memory for Mobile Applications. In PVLDB’15,
Vol. 8. 1454-1465.

OpenStack. 2010. Swift. http://swift.openstack.org/ (accessed Aug. 2020).
Jong-Hyeok Park, Gihwan Oh, and Sang-Won Lee. 2017. SQL Statement Logging
for Making SQLite Truly Lite. In PVLDB’17, Vol. 11. 513-525.

Peifeng Si. 2019. Persistent Memory Storage Engine for RocksDB.
https://github.com/pmem/pmem-rocksdb (accessed July 2020).

Slawomir Pilarski and Tiko Kameda. 1992. Checkpointing for Distributed
Databases: Starting from the Basics. IEEE Transactions on Parallel and Distributed
Systems 3, 5 (1992), 602-610.

Donald Sannella and Andrzej Tarlecki. 1985. On Observational Equivalence and
Algebraic Specification. In Colloquium on Trees in Algebra and Programming.
Springer, 308-322.

Mohit Saxena, Mehul A Shah, Stavros Harizopoulos, Michael M Swift, and Arif
Merchant. 2012. Hathi: Durable Transactions for Memory using Flash. In Da-
MoN’12. 33-38.

Steve Stargall. 2020. Programming Persistent Memory: A Comprehensive Guide for
Developers. Springer Nature.

Guy L Steele Jr. 1989. Making Asynchronous Parallelism Safe for the World. In
POPL’89. 218-231.

Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015. C3:
Cutting Tail Latency in Cloud Data Stores via Adaptive Replica Selection. In
NSDI'15. 513-527.

Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, and
Geoff Peck. 1996. Scalability in the XFS File System. In USENIX ATC 9. 1-14.
Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H
Campbell. 2011. Consistent and Durable Data Structures for Non-Volatile Byte-
Addressable Memory. In FAST’11, Vol. 11. 61-75.

Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne: Light-
weight Persistent Memory. In ASPLOS’11. 91-104.

Xiaojian Wu and AL Reddy. 2011. SCMFS: A File System for Storage Class
Memory. In SC’11. 39.

Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven Swanson. 2019. Finding
and Fixing Performance Pathologies in Persistent Memory Software Stacks. In
ASPLOS’19. 427-439.

Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In FAST’16. 323-338.

Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit
Borase, Tamires Brito Da Silva, Steven Swanson, and Andy Rudoff. 2017. NOVA-
Fortis: A Fault-Tolerant Non-Volatile Main Memory File System. In SOSP’17.
478-496.

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson.
2020. An Empirical Guide to the Behavior and Use of Scalable Persistent Memory.
In FAST’20. 169-182.

Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost for NVM-based Single
Level Systems. In FAST’15, Vol. 15. 167-181.

Erez Zadok, Dean Hildebrand, Geoff Kuenning, and Keith A Smith. 2017. POSIX
is Dead! Long Live... errr... What Exactly?. In HotStorage’17. 12-12.

Wen Zhang, Scott Shenker, and Irene Zhang. 2020. Persistent State Machines for
Recoverable In-memory Storage Systems with NVRam. In OSDI. 1029-1046.
Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-Optimized and High-Performance
Hashing Index Scheme for Persistent Memory. In OSDI. 461-476.

Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank.
2019. Efficient Lock-Free Durable Sets. In OOPSLA’19. 1-26.

https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://github.com/pmem/pmdk
https://newsroom.intel.com/wp-content/uploads/sites/11/2016/01/Intel_SSD_320_Series_Enhance_Power_Loss_Technology_Brief.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2016/01/Intel_SSD_320_Series_Enhance_Power_Loss_Technology_Brief.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Limitations of Existing Approaches

	3 DIPPER Design
	3.1 Key Ideas
	3.2 Architecture and Abstraction
	3.3 Memory Management
	3.4 Logging on PMEM
	3.5 Atomic Quiescent-Free Checkpoint
	3.6 Idempotent System Recovery
	3.7 Observational Equivalence & Concurrency

	4 DStore
	4.1 API and Semantics
	4.2 Data Layout
	4.3 Exploiting DIPPER in DStore
	4.4 Concurrency Control
	4.5 Additional Design Considerations

	5 Experimental Analysis
	5.1 Experimental Testbed
	5.2 Is DStore Fast?
	5.3 Is DStore Quiescent-Free?
	5.4 Is DStore Tailless?
	5.5 Recovery Performance
	5.6 Storage Footprint
	5.7 Evaluation Summary

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

