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Abstract—Emerging SSDs with NVMe-over-Fabrics (NVMf)
support provide new opportunities to significantly improve the
performance of IO-intensive HPC applications. However, state-
of-the-art parallel filesystems can not extract the best possible
performance from fast NVMe SSDs and are not designed for
latency-critical ephemeral IO tasks, such as checkpoint/restart. In
this paper, we propose a powerful abstraction called microfs to
peel away unnecessary software layers and eliminate namespace
coordination. Building upon this abstraction, we present the
design of NVMe-CR, a scalable ephemeral storage runtime for
clusters with disaggregated compute and storage. NVMe-CR pro-
poses techniques like metadata provenance, log record coalescing,
and logically isolated shared device access, built around the
microfs abstraction, to reduce the overhead of writing millions
of concurrent checkpoint files. NVMe-CR utilizes high-density all-
flash arrays accessible via NVMf to absorb bursty checkpoint
IO and increase the progress rates of applications obliviously.
Using the ECP CoMD application as a use case, results show
that our runtime can achieve near perfect (> 0.96) efficiency at
448 processes and reduce checkpoint overhead by as much as 2x
compared to state-of-the-art storage systems.

Index Terms—Checkpoint/Restart, NVMe, NVMf, Exascale

I. INTRODUCTION

With enormous compute power, upcoming exascale sys-
tems [1] will bring with them crippling frequencies of system
failure. Prior work estimates that their mean time between
failure (MTBF) will be less than 30 minutes [2]. Exascale
applications must protect themselves from unavoidable failures
by checkpointing internal state to persistent storage. System-
level checkpoint dumps on existing multi-petaflop systems
have been shown to have significant overhead [3]. This prob-
lem will be exacerbated on exascale systems as not only will
checkpoint time increase, but checkpoint frequency will also
increase to account for the decrease in MTBF. The IO runtime
must bear the burden of storing vast amounts of data in as
little time as possible. Consequently, the storage components
of exascale systems must be redesigned.

Newly introduced NVMe SSDs based on flash and 3D-
XPoint memory offer unprecedented performance and concur-
rency. For example, new SSDs offer write bandwidth up to
2.5GB/s [4], an order of magnitude faster than SATA SSDs.
These devices are ideal for use in HPC systems to build high
density storage arrays. These arrays can be stacked together
to build a disaggregated storage cluster. With the introduction
of the NVMe-over-Fabrics (NVMf) standard [5], low latency
remote access to these arrays can be effectively provided. The

*This work was supported in part by NSF research grant CCF #1822987.

Figure 1: Weak scaling checkpoint bandwidth on local cluster com-
pute nodes (see §IV-A for configuration). Note the gap between the
OrangeFS and GlusterFS peak and available hardware IO bandwidth.

NVMf standard can take advantage of fast Remote Direct
Memory Access (RDMA) enabled networks in HPC systems
to reduce the network overheads of remote access. Guz et
al. [6] have shown that at the application level, NVMf only
has ∼10% overhead compared to local IO.

A. Challenges and Motivation
In a disaggregated HPC cluster setup, the most common

form of storage runtime provided is a Parallel File System
(PFS), such as Lustre [7]. In recent years, several distributed
filesystems [8], [9], [10], [11], [12], [13] have been proposed
to alleviate the bottlenecks in PFS. However, we find that these
systems are still not ideal for highly concurrent checkpoint IO.
To demonstrate the shortcomings of existing filesystems, we
measure the sustained bandwidth of checkpoint IO on NVMe
SSDs while varying the number of concurrent application
processes.

Figure 1 shows the checkpoint bandwidth for OrangeFS [9]
and GlusterFS [11] with the ECP CoMD application [14].
At best, OrangeFS and GlusterFS can only achieve 41% and
84% of the peak hardware bandwidth, respectively. There
are two primary reasons for this. First, these storage sys-
tems overlay multiple software layers over POSIX filesystems
which decrease the peak attainable bandwidth. Second, these
filesystems expose significant overhead at high concurrency,
which is because the strict POSIX semantics require open
and creat syscalls to be atomic. The need for operation
atomicity and metadata consistency requires complicated dis-
tributed synchronization mechanisms which suffer from scala-
bility limitations [15], [16]. We further experimentally verified
the performance impact of these two problems (shown in
Figures 7(c) and 8(b)). Note that at lower process counts,
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GlusterFS is unable to deliver their peak bandwidth. This is
because GlusterFS uses consistent hashing to distribute files
between storage devices which has high standard deviation of
load under low concurrency, as shown in [17].

There has been work [18], [19] to alleviate these bottlenecks
by reducing or eliminating the need for synchronous names-
pace (or directory hierarchy) access. Unfortunately, these
works are unable to extract the best possible performance
from fast NVMe devices. Control and data operations have
to trap into the OS and go through multiple software layers,
negating the benefits of using low latency NVMe devices. As
such, these storage systems are only suitable for storing long-
lived input and output data and not latency critical ephemeral
checkpoint data. The characteristics of checkpoint IO are
different. The data is ephemeral and the IO bandwidth required
depends on the job scale. Therefore, for storing checkpoint
data, we need a storage runtime which can be configured
during a job’s runtime based on its load factor. The runtime
itself must be ephemeral and should terminate with the job.
To the best of our knowledge, no storage runtime is available
in the HPC community yet, which can offer direct access to
storage using NVMf as well as synchronization-free control
and data planes. Therefore, there is a clear need to design a
coordination free storage runtime for checkpoint/restart, which
can provide low latency direct access to remote SSDs using
NVMf. In this paper, we attempt to design such a runtime. An
ephemeral storage runtime for checkpoint data must satisfy
three requirements: (1) full utilization of available bandwidth,
(2) high resiliency of data, and (3) support for large number
of concurrent clients.

B. Contribution
In this paper, we present the design of NVMe-CR, a scalable

ephemeral userspace storage runtime for storing checkpoint
data with NVMf. The design of NVMe-CR can be summarized
by three main principles: unprivileged userspace direct device
access for low latency, uncoordinated control and data planes
for scalability, and logical isolation with shared device access
for concurrency and security. To achieve these, we manifest
our vision as a design template for coordination-free filesys-
tems, called microfs. Microfs is an abstraction which allows
for synchronization-free control and data planes and userspace
access to storage devices. Building upon this abstraction,
NVMe-CR enables userspace direct access to storage devices
and handles data distribution and load balancing on a per-job
basis. The runtime mirrors the lifespan of the application and
can be configured to run on any number of storage devices.

Evaluation with the ECP CoMD application shows that
NVMe-CR can achieve greater than 96% efficiency at 448 pro-
cesses. Our analysis shows that current-generation filesystems
(such as Lustre [7], GlusterFS [11], and OrangeFS [9]) are
unable to handle the highly concurrent nature of application-
level checkpointing. This leads to sub-optimal progress rates1,

1Application progress rate is an important metric for measuring the effi-
ciency of large scale systems. It is defined as the ratio of application time
spent in compute to total application time.
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Figure 2: Existing application-oblivious approach to access remote
storage using NVMf. The entire data plane lies in the kernel space.

decrease in efficiency, and increase in total cost of ownership
(TCO) of the system. Compared to these state-of-the-art sys-
tems, NVMe-CR can reduce checkpoint overhead by as much
as 2x. Furthermore, through increased efficiency and low soft-
ware overhead, our runtime can lower the required hardware
IO bandwidth (and the overall TCO as a consequence) by as
much as 2x.

The rest of this paper is organized as follows. We discuss the
background and related work in §II and present the NVMe-CR
design in §III. §IV presents a comprehensive experimental
analysis of our designs and §V concludes the paper.

II. BACKGROUND AND RELATED WORK

We present recent trends in NVMf-based storage systems
and related work on optimizing checkpoint IO in this section.

A. NVMf-based Storage and Application-Level Checkpointing
The NVMe-over-Fabrics (NVMf) standard is an extension

of the NVMe standard to allow remote access to SSDs using
fast RDMA-enabled networks. The ability to provide low
latency access to remote SSD devices with NVMf support
is a great incentive to deploy high-density all-flash arrays on
next-generation HPC clusters. While there have been several
works [8], [20] which utilize NVMf to speed up data storage
for Big Data applications, the same is not fully embraced
yet for HPC applications requiring checkpoint/restart (C/R).
For applications to transparently take advantage of NVMf,
the common approach is to leverage existing kernel modules.
Figure 2 shows the flow of the kernel based approach. From
the application perspective, the remote access is transparent
and it operates under the illusion that the filesystem is backed
by a local SSD. Internally, the kernel handles the remote access
via RDMA using the nvme_rdma and nvmet_rdma modules.
As is clear from the figure, the entire data plane resides within
the kernel, which negates the benefits of user-level RDMA
protocols, such as low latency and high bandwidth.

Application-level checkpointing is a common approach
taken to provide insulation from inevitable system failures.
In a disaggregated storage setup, NVMf can be used to
reduce checkpoint overhead. However, to take full advantage
of this new standard, a new approach is required which
is not only transparent but is also able to expose the raw
NVMf performance to end applications. This approach must
reconsider the need to trap into the OS for every operation,
instead providing unprivileged userspace storage access. It is
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thus important to design userspace storage runtimes which can
take advantage of these resources and transparently improve
application performance.

B. Related Work
There have been several works which focus on reducing

the overheads of application checkpointing. CRUISE [21] is
a userspace filesystem backed by DRAM to enable fast
checkpoints. Zest [22] uses a log structured design with a
burst buffer layer to reduce checkpoint overhead. CRFS [23]
improves checkpoint IO by aggregating small IO operations
into larger operations which are written asynchronously to
disk. PLFS [24] is another filesystem aims at optimizing
checkpoints which follow the N-1 pattern. Other works like
PapyrusKV [25], UnifyCR [12], and BurstFS [13] present
a burst buffer design using node local storage to accelerate
C/R IO as opposed to NVMe-CR that is targeted towards
a disaggregated setup. Storage systems like Hermes [26],
DDN IME [27], Cray DataWarp [28], GlusterFS [11], and
OrangeFS [9] overlay multiple software layers on kernel
filesystems to access data. While these works have improved
checkpoint overhead, they suffer from two basic limitations.
First, these filesystems still suffer from the use of POSIX
filesystems to access devices. Direct userspace access to
devices via NVMf, as achieved by our proposed NVMe-CR,
is not supported. Second, serialization of metadata operations
and synchronization between clients could prevent applications
from fully utilizing available IO bandwidth. BSCFS [10] and
Crail [8], [29] do support an NVMf-based data plane, however,
both require applications to be modified to use their specific
non-POSIX API. BLCR [30] is an orthogonal approach for
system-level C/R as opposed to application C/R, which we
focus on.
NVMe-CR’s microfs abstraction is most related to the

design of DeltaFS [18]. DeltaFS does not expose a single
namespace, but a collection of snapshots that can be used
by applications to construct their own namespace view. This
provides the ability to execute large numbers of parallel meta-
data operations with minimal coordination. Microfs extends
this idea to completely remove coordination requirements for
both metadata and data operations. It assumes the complete
absence of a global namespace and partitions SSDs between
processes to achieve logical isolation. To reduce the amount
of data to be checkpointed, techniques such as incremental
checkpointing [31], cooperative checkpointing [32], multi-level
checkpointing [33] and data compression [34] have been pro-
posed. While these approaches reduce checkpoint overhead,
they still rely on existing inefficient IO subsystems. Thus, these
works are complementary to the designs proposed in this paper
and can be combined for improved performance.

III. NVME-CR DESIGN

In this section, we present the design of NVMe-CR.

A. The microfs Abstraction
We introduce micro filesystem (or simply microfs) as a

powerful design template for ephemeral distributed filesystems

that wish to provide the minimal functionalities expected
of a storage system. Microfs is designed to peel off the
unnecessary software layers that hinder performance and allow
applications to directly access storage devices. As opposed
to conventional kernel filesystems, microfs runs purely in
userspace which allows it to bypass the kernel virtual filesys-
tem (VFS) and block driver, eliminating the need to trap into
the kernel for every operation. Furthermore, microfs abstains
from providing a shared namespace, instead only providing a
private one for each application process. It is this choice which
obviates the requirement to synchronize across all microfs
instances, a common challenge for user-level filesystems. With
this observation, we present microfs as a high-performance
alternative for storing ephemeral application data.

To attain the goals of microfs, we formulate the following
design principles.
Principle 1: Direct userspace access to storage devices.
To enable unprivileged userspace access to devices, microfs
uses the vfio kernel module. IO operations can then be
submitted using memory mapped IO and completed by issuing
DMA operations purely in userspace. This allows for bypass-
ing the kernel VFS and block driver while also providing
fine-grained control over the IO pipeline. We expect microfs
instances to implement a run-to-completion request pipeline
(by avoiding locks and using polling instead of interrupts) to
reduce IO latency.
Principle 2: Maintaining storage device integrity. Storage
devices are shared across several microfs instances. Integrity
is maintained by logically and physically partitioning the
device between the instances. This partitioning is done at
initialization time using a shared communication runtime. We
create group communicators for processes sharing hardware
to enable coordinated access to storage devices. Once the
partitioning is complete, each runtime instance can access its
portion of the device without any need for coordination. In this
manner, unprivileged direct access to storage can be provided
efficiently.
Principle 3: Synchronization-free control and data planes.
Data plane operations are designed to be synchronization-
free by allocating a separate hardware IO queue for each
microfs instance. This enables parallel IO by exploiting
the large number of queues in modern storage devices. For
example, the Intel Optane P4800X SSD controller can support
up to 32 hardware queues. The use of a single IO queue per
instance guarantees that IO operations are completed in the
order they are received. Control plane (metadata) operations
are synchronization-free since no inter-microfs coordination
is required, by definition.
Principle 4: Data and metadata durability. Traditional
kernel filesystems rely on an OS-level cache to buffer IO, jour-
naling both data and metadata to maintain durability. Instead,
microfs writes data directly to device-level RAM and trans-
parently leverages device capacitance to guarantee durability.
Metadata consistency is maintained using lightweight oper-
ation logging. Furthermore, the runtime periodically check-
points internal filesystem states to the storage device to prevent
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Figure 3: NVMe-CR Runtime Architecture. Each runtime instance
directly accesses its own remote SSD partition via NVMf.

the log from growing without end.

B. Architecture
NVMe-CR is a storage runtime designed for scalable C/R

capabilities using the emerging NVMf protocol. NVMe-CR is
built upon the microfs abstraction to enable low latency IO.
The goal of NVMe-CR is to provide C/R support for systems
with disaggregated storage. NVMe-CR does not provide a global
namespace but only private per-process namespaces. This
is a conscious design decision to eliminate synchronization.
Figure 3 shows the architecture of NVMe-CR. Each application
process runs its own storage runtime which is mapped to a
single partition of a remote SSD, connected using NVMf. Each
runtime instance implements three critical functionalities – the
control plane, data plane, and storage balancer. The control
plane is responsible for creating and storing metadata of files
and directories. The data plane provides a block device like
interface to access the remote SSD partition using NVMf. The
storage balancer partitions available storage devices between
compute processes and provides a conflict free many-to-one
mapping. These three components work in tandem to expose
an ephemeral storage runtime to disaggregation oblivious
applications. The sub-sections that follow provide a detailed
description of the working of these components.

C. Application Obliviousness
One of the primary goals we want to achieve is portabil-

ity, i.e., enhancing the storage runtime without application
modification. We use the common approach of symbol in-
terception provided by the GNU ld linker to achieve this. We
intercept all the standard POSIX IO library calls and redirect
them to the NVMe-CR runtime. NVMe-CR implements all of
the IO library calls while remaining purely in userspace by
following the design principles of microfs. For management
of the NVMe-CR runtime, we also intercept the MPI_Init and
MPI_Finalize calls. Runtime initialization and finalization
is handled by these wrappers. Internally, we leverage the
MPI runtime for coordination between multiple instances as
well as for identification purposes. It should be noted that
coordination is only necessary in the initialization routine.
Subsequent control and data plane requests are not required to
synchronize with other runtime instances. By using the symbol
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Figure 4: NVMe-CR application-oblivious approach to access remote
storage using SPDK and NVMf. The entire data plane lies in
userspace, a stark contrast from the approach in Figure 2.

interception method, we can efficiently separate the filesystem
API from remote data storage and run unmodified application
binaries over NVMe-CR.

D. Data Storage using NVMf – Data Plane
NVMe-CR can transparently leverage NVMf as the data plane

conduit to access the high density storage arrays. Currently,
our implementation uses the RDMA transport for data ex-
change. Figure 4 shows how the data conduit is built. Note
the direct contrast between this approach and Figure 2. The
entire software stack is shifted to userspace from the kernel.
To enable userspace access to remote SSDs via NVMf we use
Intel’s SPDK library [35]. We chose SPDK as opposed to other
systems like NVMeDirect [36], and libaio [37] because it is
the current state-of-the-art solution. Further, it has negligible
software overhead and its NVMf server is multi-tenant. SPDK
NVMf server daemons are deployed on each storage node
for handling client NVMe requests. SPDK NVMf clients,
embedded within the NVMe-CR runtime are responsible for
communication with server daemons. In this manner, all data
plane operations are internally translated into NVMf requests
and handled by the NVMe-CR runtime.
Data Durability. NVMe-CR eschews buffering write re-
quests, instead writing data directly to internal device-level
RAM, if available. Otherwise, it is directly written to flash
memory. Flash devices with RAM usually support enhanced
power-loss data protection [38]. In the event of power failure,
device capacitors will safely flush volatile data to non-volatile
flash memory. Writing to device RAM does not limit the
overall data storage capacity but only improves performance
in cases where data fits within device RAM. If data does
not fit in RAM, performance gets limited to SSD bandwidth.
By avoiding data buffering, we assure that data is always
persistent and can survive temporary power failures. This
design choice was made based on the observation that buffered
IO reduces overall application progress rate.

E. Metadata Management – Control Plane
The control plane is responsible for metadata management,

including block allocation, data and metadata consistency,
and exposing a POSIX compatible interface. Its goal is to
eliminate the need for complex distributed synchronization
and minimize network IO. NVMe-CR’s control plane design

���

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:49:19 UTC from IEEE Xplore.  Restrictions apply. 



has several advantages. First, by exposing only private names-
paces, metadata operations never have to coordinate across
processes. In contrast, other systems must use distributed
locking algorithms for each metadata operation to maintain
a consistent global namespace. Second, metadata is entirely
maitained in DRAM with lightweight operation logging used
for consistency and durability. The only network IO involved is
for reading/writing file data and writing compact log records.
Other systems must trasmit additional data over the network
(such as inodes and large sized physical log records), reducing
overall system efficiency. In addition, the control plane uses
a combination of several techniques and designs to maximize
performance. These are explained in detail below.
Hugeblocks. For space management, we divide the SSD
into blocks, the smallest unit of storage allocation. Given that
checkpoint files are several MBs, if not GBs, we allow files
to be managed in large block sizes. We call these hugeblocks
because of their similarity to hugepages. In this paper, we use
a hugeblock size of 32KB as opposed to kernel filesystems
which support block sizes only up to 4KB. We use a circular
block pool for O(1) hugeblock allocation. The use of huge-
blocks significantly lowers the amount of information that must
be kept to track file blocks, which not only reduces the space
overhead but also makes the process of block allocation faster.
Further, we submit NVMf IO requests in hugeblock units
as well, which allows us to attain peak hardware bandwidth
regardless of the number of clients sharing an SSD. The reason
for this is that NVMe SSDs internally break up large IO
requests into several smaller (usually hardware block sized)
requests which can then be split across the available flash
channels for highly parallel IO. The entire SSD bandwidth can
then exploited even if there is only a single client accessing
the device.
POSIX Semantics. By using SPDK for remote IO, we can
indeed bypass the kernel, but we need to provide a POSIX
filesystem like interface to applications. NVMe-CR implements
wrappers for commonly used POSIX IO syscalls. For provid-
ing a filesystem like runtime with POSIX semantics, we bor-
row several conventional filesystem concepts and techniques,
such as inodes to store file metadata and directory files to store
directory entries. The control plane handles failure recovery
using a write-ahead log. All metadata operations executed
during the following functions are logged: mkdir, open,
write, and unlink. The log is flushed before a subsequent
operation is processed. Since we do not buffer writes and we
journal metadata operations for open and write, our runtime
provides stronger data durability guarantees than required by
POSIX. As a consequence, metadata will always be consistent,
even with unexpected failures. This is an important property
because it guarantees that a completely written checkpoint file
will never hold corrupted data and can safely be used for
recovery.
Per-process Private Namespace. If we take a look at
common checkpointing patterns used by applications, we find
that two patterns are prevalent – N-1 and N-N [24]. In the
N-1 pattern, processes write to a single shared file, whereas in

the N-N pattern each process writes to a unique file. Recent
work [39] has estimated that 90% application runs use the
N-N pattern. Due to this reason, the designs proposed in
this paper are specifically targeted towards the N-N pattern.
The concurrent creation of millions of files is a scalability
challenge for filesystems. The choice of private per-process
namespaces in NVMe-CR allows us to overcome the scalability
bottlenecks with the N-N pattern. Each runtime instance is
only tasked with the creation of a single file per checkpoint.
Each runtime instance exposes a private root directory which
is not accessible to other processes. The root directory is
a file which resides on the remote SSD partition for the
process. Since the root directory files are independent for
each process, the namespace exposed by them are private. The
directory hierarchy is constructed using a set of directory files
indexed by a DRAM resident B+Tree. The B+Tree contains
mappings of directory and file names to their root inode.
Any file manipulation operation (creat, open, unlink, read,
or write) is handled exclusively by the NVMe-CR runtime
associated with the originating process. Each runtime not
only handles the maintainance of the private namespace but
also block and inode allocation for files. In this manner, no
coordination is required for any operation.
Metadata Provenance. To ensure that checkpoint files
are available despite application failure, we must ensure that
metadata is safely made durable. A simple approach could
involve storing metadata on the remote SSDs and updating
it on each fsync or write call. This would lead to unnec-
essarily high remote IO operations over NVMf. To reduce
the metadata overhead imposed on each runtime instance, we
allow the control plane to store metadata (inodes, block pool,
and B+Tree) locally, within the memory of compute nodes.
To guarantee metadata durability and consistency, we journal
filesystem metadata operations using a compact operation log
stored on remote SSDs. Each syscall that modifies an inode
needs to be logged. Only the syscall type and its parameters
need to be added to the log. The use of operation logging
significantly reduces the amount of data that must be sent over
network to the remote SSDs. We call this approach metadata
provenance because we store every operation in the log, giving
us the ability to track fine-grained changes to metadata. During
recovery in the event of a crash, the runtime reconstructs
metadata by replaying operations recorded in the log. An in-
memory B+Tree is used to keep mappings of filenames to their
inodes allowing fast lookups of files. The state of the B+Tree
can also be reconstructed upon recovery from a crash.

To limit the size of the log, the runtime checkpoints in-
ternal DRAM state (which includes the inodes, block pool,
and B+Tree) to a reserved region on the remote SSD. To
ensure that checkpoints do not affect user IO requests, the
checkpoint process is overlapped with the application compute
phase. In this manner, the checkpoint process is completed in
the background using a dedicated checkpoint thread without
affecting application performance. The background thread can
exactly determine when the application checkpoint process
is complete by monitoring the number of open files. When
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Figure 5: Log Record Coalescing

the number of open files is zero and the number of free log
records is below a predefined threshold, the background thread
kickstarts the process of checkpointing internal volatile state.
Further, the checkpoint process is designed to be atomic. Log
records are only discarded once the checkpoint is complete.
A failure during checkpoint will not affect the durability and
consistency of data.
Log Record Coalescing. To reduce the number of log
records written, we propose a technique called log record
coalescing. In this technique, we take advantage of the se-
quential nature of checkpoint IO to combine near-adjacent
log records as long as they represent consecutive writes to
the same checkpoint file. Figure 5 shows how this process
works. Instead of adding new log records for each write, we
can simply update the log record for the previous write. We
use a sliding window to find the log record for the previous
write and update it accordingly. In this manner, the log fillup
rate is significantly lowered, which means that filesystem state
does not need to be checkpointed frequently to clean log space.
In addition, the number of records that must be replayed on
recovery is significantly lowered too, which provides near-
instantaneous recovery of the NVMe-CR runtime itself.

F. Load-aware IO – Storage Balancer
The storage balancer is responsible for both allocation

of storage nodes for a job and balancing IO load between
available storage devices. NVMe-CR considers two vital factors
while distributing data between remote SSDs – load balancing
and fault-tolerance. Load balancing is important to ensure that
we utilize all of the available IO bandwidth and all processes
get an equal distribution of the bandwidth. Fault-tolerance is
another important factor because we need to place checkpoint
data in a separate failure domain than what the process is in.
Otherwise, it is likely that failure of a process coincides with
loss of its checkpoint data. To account for both of these factors,
NVMe-CR uses a novel data distribution algorithm.

First, we identify the failure domains for each node by using
the network topology. Nodes which share hardware are placed
in the same domain. For example, all nodes within a rack and
all nodes sharing a power distribution unit are placed in the
same domain. Next, we create partner failure domains, such
that nodes in both partners are in separate failure domains. For
each failure domain, we create a list of partner domains sorted
by the number of switch hops between them. Finally, we create
a mapping of processes and storage nodes, such that their
respective failure domains are partners and the load on each
storage node is as equal as possible. We construct the mapping
using a greedy algorithm to minimize communication cost.
Storage devices for a job are allocated on the closest (fewest
hops away) available partner domain. Processes within a job

P0 P1 P2 P3app process

MPI_Init

Process – SSD 
Mapping S0 S1

SSDs

MPI Processes

SSD = MPI rank % SSD count
SSD partition = MPI rank / SSD count

P0 P1 P0 P1

Figure 6: NVMe-CR Storage Allocation Process

are assigned to the allocated SSDs in a round robbin manner
to achieve load balancing. Once this mapping is defined, we
create an MPI communicator for all processes sharing an SSD,
called MPI_COMM_CR. The SSD is then partitioned between
processes in the associated communicator. Each process gets
a contiguous segment of the SSD based on the its rank and the
communicator size. Figure 6 shows how the available storage
is partitioned and allocated to MPI processes.
Security Model. To ensure device integrity despite
userspace access, we rely on the namespace feature in the
NVMe standard. All SSDs are divided into at least two
namespaces. The job scheduler assigns storage to jobs at
the granularity of an NVMe namespace. If there are no free
namespaces, new ones are created from unused SSD space.
Although the number of namespaces supported by each SSD
is limited, the number of concurrent jobs an SSD can support is
only limited by its bandwidth. This is because a few concurrent
jobs can easily saturate its bandwidth. This approach allows
SSDs to be shared between applications while relying on the
isolation property of namespaces to maintain security.

This enforcement requires integration with the cluster job
scheduler. In practice, we do not anticipate this to be a
problem. For example, by using Slurm’s generic resources
plugin [40], we were able to support this design on our
cluster easily. Further, NVMe-CR’s control plane acts as a
trusted intermediary between the application and SSD. The
control plane performs access control checks for file IO so
that POSIX permissions are respected and unauthorized users
cannot corrupt or read checkpoint data.

For each job, the user must specify the number of storage
devices required for checkpoint data. This number can be
determined by ensuring that the process:SSD ratio is in the
range 56–112. This is based on our experimental results
showing that at this ratio NVMe SSD bandwidth is utilized
to its maximum. The storage balancer works along with the
job scheduler to allocate SSDs based on allocated compute
nodes and the network topology, as explained earlier. The
load balancing does not require maintainance of additional
information because job schedulers already have topology in-
formation readily available. When the user runs an application,
the storage balancer is again invoked to partition the allocated
devices among the application processes. Once the partitioning
(which is done during runtime initialization) is complete, the
load balancer does not need to be involved during the lifetime
of the application.
Handling Cascading Failures. For NVMe-CR, our stor-

���

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:49:19 UTC from IEEE Xplore.  Restrictions apply. 



age balancer tries to keep application processes and their
checkpoint data on separate failure domains to minimize the
possibility of both failing. Although rare, cascading failures
can happen on large-scale clusters and must be handled to
protect checkpoint data. This is challenging because such
failures may disrupt the application and also availability of
its checkpoint data. To protect data despite cascading failures,
we use multi-level checkpointing [33]. In this solution, most
checkpoints are still handled by NVMe-CR, but every so often,
one checkpoint is put on a slower but more reliable parallel
filesystem, such as Lustre. Through redundancy mechanisms,
such as replication, such systems can guarantee that data is
available even with cascading failures. Therefore, performance
is not compromised because most checkpoints are handled by
the fast NVMe-CR runtime, and fault-tolerance to cascading fail-
ures is also not compromised by relying on the redundancy of
parallel filesystems. Our approach is complimentary to existing
multi-level checkpointing approaches for fault-tolerance.

IV. EXPERIMENTAL ANALYSIS

In this section, we present the evaluation of NVMe-CR.

A. Experimental Testbed
We consider a disaggregated cluster for our evaluation. Our

cluster has one storage rack with 8 nodes and one compute
rack with 16 nodes. Each node in the storage rack has a 28
core skylake (Gold 6132@2.6GHz) CPU with 192GB memory
running Linux 3.10 and an Intel P4800X Optane SSD. Each
node in the compute rack has a 28 core broadwell (E5-
2680v4@2.4GHz) CPU with 128GB memory running Linux
3.10. All nodes are equipped with Mellanox ConnectX-5
adapters and are connected using 100Gbps EDR InfiniBand.
Lustre is used as the PFS and is configured with 4 separate
storage servers, each using one 12Gbps RAID controller.

We use ECP CoMD [14] as a representative HPC applica-
tion to show the practical benefits of our proposed NVMe-CR
runtime. Most applications in the ECP application suite,
including AMG, Ember, ExaMiniMD, and miniAMR have
similar behavior and are likely to show similar improvements
as CoMD. We compare NVMe-CR performance with OrangeFS,
GlusterFS, Crail [8], XFS, and ext4.

We only compare with Crail in a single server configuration
because its publicly available version only supports a single
NVMf server. Although we could not compare with Crail in
a multi-server setting, we expect it to perform worse than
NVMe-CR because Crail uses a single metadata server which
becomes a bottleneck at high-concurrency. We were also
unable to compare with DeltaFS; despite significant effort, we
were unable to run it on our cluster.

B. Optimal Hugeblock Size
Chosing an optimal hugeblock size is important for obtain-

ing the best performance. If the size is too small, metadata
overhead and IO request count will be high. On the other
hand, a large block size will increase the waiting time for each
hardware IO queue, reducing multi-process performance. To

determine the optimal hugeblock size, we measure the over-
head of writing 512MB checkpoint files for a full subscription
run. Results (see Figure 7(a)) show that 32KB is the optimal
size for achieving the lowest latency. Using a 32KB block
size instead of the standard 4KB delivers 7% improvement in
latency. It also results in an 8x reduction in the size of the
block pool and the number of inodes used. Henceforth, we
use a 32KB hugeblock size for all experiments.

C. Load Imbalance Evaluation
Load balancing is important to ensure that available hard-

ware resources are efficiently utilized. To measure load imbal-
ance for different storage systems, we compare the coefficient
of variation (ratio of standard deviation and mean) of load
(size of data stored) on each storage server. Figure 7(b) shows
the value of this coefficient when CoMD is run at different
process counts. GlusterFS uses a consistent hashing algorithm
to distribute data, which has been shown to have high standard
deviation at low concurrency [17], just as observed. OrangeFS
stripes file data across servers which works much better than
consistent hashing at low concurrency but has noticable over-
head at higher process counts. In contrast, NVMe-CR achieves
perfect load balancing regardless of the level of concurrency.
The reason for this is that our storage balancer creates a
mapping between processes and storage devices using a round-
robbin policy. Since each process creates a file of the same
size, the load on each server is then exactly equal. GlusterFS
and OrangeFS cannot achieve perfect load balancing because
they are not associated with a single application. A mapping
of processes to storage devices cannot be created since the
filesystem does not know which application each client be-
longs to.

D. Direct Access Evaluation
To quantify the benefits of direct access, we measure the

dump time for different checkpoint sizes using NVMe-CR,
XFS, ext4, and SPDK on a local NVMe SSD for a full
subscription (28 cores) run. Figure 7(c) shows the results
of this analysis. Checkpoint data is written using the write
system call and persistence is guaranteed by calling fsync.
We find that direct access is crucial in lowering the latency
for large sized checkpoints. For 512MB data, we see 19% and
83% improvement compared to XFS and ext4, respectively.
This improvement comes from the ability to bypass the kernel
as well as the use of hugeblocks and metadata provenance,
which significantly reduce metadata overhead. For example,
hugeblocks lowers the number of SSD blocks to be allocated
and tracked by 4x. Compared to SPDK, NVMe-CR has no
noticeable overhead. This clearly highlights the elimination
of software and metadata overheads. Note that SPDK alone
cannot handle all the IO challenges (POSIX compliance,
metadata management, and private namespace) of an NVMf-
enabled distributed storage system as we have discussed in
this paper. We also measure the percentage of benchmark
time spent in the kernel. By enabling userspace device access
in NVMe-CR, the benchmark only spends 10% of its time in
the kernel compared to 76.5% for XFS and 79% for ext4.
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Figure 7: (a) Checkpoint times for different hugeblock sizes, (b) Load imbalance for NVMe-CR, OrangeFS, and GlusterFS, (c) Full subscription
performance of NVMe-CR, ext4, XFS, and SPDK, and (d) Drilldown evaluation showing impact of optimizations.

This reduction is because all POSIX IO syscalls are now
resolved completely in userspace. NVMe-CR provides userspace
implementations of all IO syscalls. The 10% time spent in the
kernel is because of non-IO syscalls made by the benchmark
itself and during the initialization and finalization routines in
NVMe-CR (for example as a result of calling malloc). We
also note that on increasing data size, the performance gap
increases. This is because metadata overhead has a linear
correlation with file size.

E. Drilldown Evaluation
To understand the impact of the different optimizations

and designs in NVMe-CR, we measure the checkpoint time
with the CoMD application on a single node. We start with
a base design resembling a traditional kernel filesystem and
add optimizations one-by-one, measuring the checkpoint time
for each case. Figure 7(d) shows this analysis. Bypassing the
kernel and eliminating the global namespace provides up to
44% improvement compared to baseline. The improvement is
also higher at scale which is because the overheads of global
namespace synchronization are high. Metadata provenance
improves performance up to 17% (v/s + userspace & private
namespace) by lowering the size of log records. At low
concurrency it improves performance by reducing software
overhead while at high concurrency, it improves performance
by increasing the available data bandwidth. Finally, using
hugeblocks improves performance up to 62% (v/s + metadata
provenance). The improvement is mostly noticable at low
concurrency because performance is dictated more by software
overhead than IO bandwidth. Overall, we conclude that the
private namespace improves performance at high concurrency,
hugeblocks improves performance at low concurrency, and
metadata provenance improves performance in all cases. Com-
bining all three optimizations delivers the best performance at
all levels of concurrency.

F. NVMf Overhead
We measure the overhead of NVMf by comparing check-

point performance on a local and remote SSD for a full
subscription (28 cores) run. We also compare with Crail, a
userspace storage runtime which supports NVMf via SPDK.
The remote access is as demonstrated in Figure 4 over EDR
InfiniBand fabric. Results (see Figure 8(a)) show that there is
no noticable overhead in latency for writing checkpoints. In
fact, the maximum overhead we observe is below 3.5% and
is independent of the size of the checkpoint. The benefits of

Figure 8: (a) Full subscription performance of NVMe-CR on a local
and remote SSD, and (b) File create performance of NVMe-CR,
OrangeFS, and GlusterFS.

OrangeFS* GlusterFS* NVMe-CR#

2686.25 3.5 445.25

Table I: Metadata overhead with CoMD in MB. * per storage node
# per runtime

metadata provenance are clear when we compare NVMe-CR
and Crail. Even though both use SPDK for NVMf support,
NVMe-CR consistently provides up to 5-10% lower overhead
for remote access. There are two factors which contribute to
achieving negligible overhead. First, using the SPDK NVMf
driver instead of the kernel NVMf driver eliminates kernel
space overhead. Second, the use of metadata provenance
reduces the amount of additional data that must be sent
via NVMf, minimizing the overhead of metadata operations.
These results highlight the advantages of enabling userspace
remote access over fast RDMA networks. It is clear that the
proposed userspace data and control planes are successful in
creating a low latency pipeline.

G. Metadata Overhead
In the N-N checkpoint pattern, the number of files scales

linearly with the job size. The number of file creates that
a storage system can perform is an important metric for
checkpoint IO. We compare the create performance of stor-
age systems at different job scales to determine how well
they can perform under heavy load. Results are presented
in Figure 8(b). NVMe-CR provides 7x and 18x higher create
performance at 448 processes. The primary reason for this
is the absence of a global namespace. Each process can
create files in parallel and avoid serialization of operations.
For each file create, a corresponding entry must be added to
the directory file stored on the remote SSD. Hence, the file
create performance is only limited by hardware bandwidth and
not software latency. OrangeFS and GlusterFS use consistent
hashing to lower metadata overhead. Despite this optimization,
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Figure 9: Efficiency of storage systems during checkpoint and recovery of the CoMD application state. Efficiency of a storage system is
defined as the ratio of application perceived IO bandwidth and the hardware IO bandwidth.

both must add file entries to a single common directory
file which effectively serializes file creates, leading to poor
performance.

We also measure the storage overhead of metadata and
checkpoints compared to OrangeFS and GlusterFS. As we can
see from Table I, NVMe-CR requires ∼450MB storage per run-
time, OrangeFS requires ∼2.6GB, and GlusterFS only requires
3.5MB per storage node. The total overhead for NVMe-CR can
be calculated by multiplying this value with the number of
application processes. For high concurrency runs, the total
overhead for NVMe-CR is higher than both OrangeFS and
GlusterFS, but remains under acceptable limits. For instance,
on our cluster only 1.7% of SSD space is utilized for metadata
and checkpoint storage, in the worst case. We also measure
the DRAM footprint and find that NVMe-CR consumes less
than 512MB per-instance – 404MB for inodes and 102MB is
for B+Tree. This minor increase in metadata overhead can
be justified by the significant performance benefits of our
design. For GlusterFS, the overhead is minimal because it
uses consistent hashing which requires little metadata to be
maintained. On the other hand, OrangeFS has high overhead
as it needs to store both file metadata and striping information.

H. Application Evaluation
We measure the overhead of checkpointing the CoMD

application state under both weak and strong scaling configu-
rations. We compare checkpoint as well as recovery efficiency
with NVMe-CR, OrangeFS, and GlusterFS. We do not compare
with Crail because it currently only supports a single storage
server for its NVMf tier. We define the efficiency of a storage
runtime as the ratio of the peak IO bandwidth visible to
applications to the peak theoretical bandwidth offered by hard-
ware. Checkpoint performance is only dependent on overall
bandwidth of the storage system. Therefore we use efficiency
as a metric which allows us to compare the relative checkpoint
performance of different storage systems. For all cases we use
the aggregate SSD bandwidth as the hardware peak.
Strong Scaling. For strong scaling analysis, the problem
size is fixed to 16,384K atoms for a total fixed checkpoint
size of 86GB (for 10 checkpoints). Figures 9(a) and 9(b)
show the checkpoint and recovery efficiency for multi-node
full subscription runs. Overall, we find that NVMe-CR achieves
better efficiency for both cases than other storage systems.
Synchronization-free control and data planes are responsible
for good scalability. The load balancer in NVMe-CR allows it

Metric OrangeFS GlusterFS NVMe-CR

Checkpoint Time (s) 85.9 44.5 39.5
Recovery Time (s) 3.6 4.5 3.6

Progress Rate 0.252 0.402 0.423

Table II: CoMD evaluation with multi-level checkpointing at 448
processes. For progress rate, higher values are better.
to attain better efficiency than other systems at lower process
counts. This is because our greedy load balancing algorithm
ensures that all of the SSDs are utilized efficiently. Apart from
GlusterFS, other systems are unable to handle the metadata
burden when 448 processes concurrently checkpoint data. The
reason is the use of a global namespace and high software
overhead. During recovery, however, they perform much better
since there is no metadata overhead involved. GlusterFS is
better than other systems we compare with because of its
decentralized design. Nevertheless, its checkpoint performance
is still ∼ 13% lower than NVMe-CR because of its poor create
performance (see Figure 8(b)) and reliance on POSIX IO
(see Figure 7(c)). At high concurrency, NVMe-CR achieves the
best efficiency of all systems because of its coordination-free
design.
Weak Scaling. We fix the problem size to 32K atoms per
process while scaling up to 448 processes. We take 10 periodic
checkpoints during application runs for a total checkpoint
dump of 700GB. This experiment was designed to show
that NVMe-CR can handle large data volume. Figures 9(c)
and 9(d) show the results of this analysis. Overall, we find that
NVMe-CR achieves near perfect efficiency (0.96 for checkpoint
and 0.99 for recovery) at 448 processes. Recovery efficiency
is so high because of log record coalescing which allows the
runtime to recover instantaneously and fully utilize available
bandwidth. For checkpoints, other systems suffer from the
high synchronization overhead of creating a large number of
concurrent files, leading to poor efficiency. During recovery,
just like in the strong scaling case, their performance improves
significantly because there is less synchronization involved
to read files. However, GlusterFS performance dips at 448
processes because its metadata server is unable to handle the
large influx of read requests. In contrast, NVMe-CR achieves
good efficiency at both low and high concurrency by avoiding
synchronization and achieving direct device access.

I. Multi-Level Checkpointing Evaluation
To evaluate NVMe-CR in a real-world use case with cascad-

ing failures, we conduct an experiment with CoMD at 448
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processes. We use different systems for the first checkpoint
level and Lustre as the second level, where one checkpoint in
ten is written to Lustre. We compare checkpoint time, recovery
time, and application progress rate for different systems in
Table II. It is clear that NVMe-CR is the best for all metrics,
which is because its efficiency is near ideal. Compared to
GlusterFS, it reduces checkpoint time by 11%, recovery time
by 20% and progress rate by 5%. The large improvement in
recovery is due to log record coalescing (without coalescing,
recovery takes 4s) which allows very fast metadata recovery.
Therefore, using NVMe-CR directly results in benefits at the
application level, reducing overall runtime and increasing the
probability of applications running successfully.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the design of NVMe-CR, a
storage runtime for disaggregated clusters with NVMf. First,
we presented a powerful design template for filesystems meant
for storing ephemeral application data. By following the design
principles of this template, filesystems can achieve low latency
direct access to device. Built upon these principles, NVMe-CR
provides synchronization-free control and data planes as well
as a fault-tolerance and load-aware storage balancing. By
proposing techniques like metadata provenance, log record
coalescing, and hugeblocks, NVMe-CR is well suited for storing
checkpoint data. Experimental analysis with CoMD shows that
on a local cluster our runtime can achieve near perfect (> 0.96)
efficiency at 448 processes. As a result, our runtime lowers
checkpoint overhead by up to 2x, while increasing job progress
rates by as much as 1.6x. In the future, we plan to study the
impact of a cache layer over NVMe-CR and evaluate with more
applications.
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