
RDMP-KV: Designing Remote Direct Memory
Persistence based Key-Value Stores with PMEM

Tianxi Li*, Dipti Shankar*, Shashank Gugnani, and Xiaoyi Lu
Department of Computer Science and Engineering

The Ohio State University
{li.9443, shankar.50, gugnani.2, lu.932}@osu.edu

Abstract—Byte-addressable persistent memory (PMEM) can
be directly manipulated by Remote Direct Memory Access
(RDMA) capable networks. However, existing studies to combine
RDMA and PMEM can not deliver the desired performance due
to their PMEM-oblivious communication protocols. In this paper,
we propose novel PMEM-aware RDMA-based communication
protocols for persistent key-value stores, referred to as Remote
Direct Memory Persistence based Key-Value stores (RDMP-
KV). RDMP-KV employs a hybrid ‘server-reply/server-bypass’
approach to ‘durably’ store individual key-value objects on
PMEM-equipped servers. RDMP-KV’s runtime can easily adapt
to existing (server-assisted durability) and emerging (appliance
durability) RDMA-capable interconnects, while ensuring server
scalability through a lightweight consistency scheme. Perfor-
mance evaluations show that RDMP-KV can improve the server-
side performance with different persistent key-value storage
architectures by up to 22x, as compared with PMEM-oblivious
RDMA-‘Server-Reply’ protocols. Our evaluations also show that
RDMP-KV outperforms a distributed PMEM-based filesystem
by up to 65% and a recent RDMA-to-PMEM framework by up
to 71%.

Index Terms—Next Generation Networking, RDMA, Data
storage systems, Key-value Stores, Persistent Memory

I. INTRODUCTION

Emerging persistent memory (PMEM) technologies, such as
3D-XPoint [23], phase change memory (PCM) [35], and STT-
RAM [21], promise many advanced features, such as durable
writes, byte-addressability, and a higher density than DRAM
with a latency slowdown of about 2x–5x. These PMEM de-
vices have led to significant re-design of many storage engines
and systems, such as key-value stores with persistence support.
Persistent key-value stores can leverage the byte-addressability
of PMEM to enable durable in-memory structures and data
objects, including, Echo [9], Pmem-Redis [3], and Apache
Ignite [6].

On the other hand, many recent in-depth studies [12], [19],
[20], [24], [28], [29] have been undertaken towards exploit-
ing Remote Direct Memory Access (RDMA) capabilities on
modern high-performance networks (e.g., InfiniBand, RoCE)
to improve the end-to-end communication performance of
volatile in-memory key-value stores. For instance, HERD [20]
combines RDMA writes and messaging verbs to design a low
latency single-RTT design for key-value store Put/Get opera-
tions. With recent research works [5], [17], [22], [27], [37]
showing great potentials in combining RDMA and PMEM

*Tianxi Li and Dipti Shankar contributed equally to this work.

for designing high-performance distributed storage and file
systems, there is significant scope for exploring how to fully
utilize these technologies to benefit distributed persistent key-
value stores.

A. Motivation and Challenges

As the starting point of these explorations, we ask the
following question first: can existing RDMA-based proto-
cols [12], [19], [20], [24], [28], [29] designed for accelerat-
ing volatile in-memory key-value stores be directly used to
replace the communication engine in persistent in-memory
key-value stores? This approach can, of course, be taken, but
this simple approach cannot lead to the best utilization of
‘RDMA+PMEM’. The reason is that existing RDMA-based
protocols [20], [24], [29] for volatile key-value stores are
oblivious to PMEM’s byte-addressability and to the data dura-
bility needs of persistent in-memory key-value stores. Naively
replacing the communication engine requires explicitly copy-
ing and persisting data from RDMA communication buffers
to PMEM (DRAM-to-PMEM staging) in the PUT operation.
Similar data staging overhead for GET will happen as well.
These protocols diminish the benefits of zero-copy RDMA
reads/writes and do not fully leverage the byte-addressability
of PMEM. This situation leads to our first challenge: Can
we design PMEM-aware RDMA protocols for persistent in-
memory key-value stores that can enable the clients to di-
rectly access and ‘durably’ update key-value pairs in servers’
PMEM, to possibly avoid the ‘DRAM-PMEM’ staging?

To overcome such noticeable data staging overhead between
DRAM and PMEM, some advanced designs have also been
proposed in the literature recently to enable PMEM-aware
RDMA protocols. For example, Octopus [22] is a recent user-
space RDMA-enabled distributed file system built for PMEM
systems. Another example system, called Forca [14], comes
close to enabling PMEM-aware key-value stores with built-
in data consistency RDMA protocols. To our best knowledge,
neither of these systems can provide strong data durability
and efficient consistency at the same time. This means these
systems cannot guarantee durability per key-value pair in-
sert/update request, which is a key requirement for persistent
in-memory key-value stores. Some other storage systems like
Mojim [37] and Hotpot [27] expose distributed persistent
memory to data center applications, and leverage one-sided
and two-sided RDMA semantics to enable efficient RPC

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

SC
20

: In
ter

na
tio

na
l C

on
fer

en
ce

 fo
r H

igh
 Pe

rfo
rm

an
ce

 C
om

pu
tin

g,
Ne

tw
ork

ing
, S

tor
ag

e a
nd

 A
na

lys
is

| 9
78

-1-
72

81
-99

98
-6/

20
/$3

1.0
0 ©

20
20

 IE
EE

 | D
OI

: 1
0.1

10
9/S

C4
14

05
.20

20
.00

05
6

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:52:49 UTC from IEEE Xplore. Restrictions apply.

mechanisms and high-performance primary backup protocols.
These studies provide a great basis for designing persistent
storage systems, but their designs are tightly coupled with
their system architectures, which cannot be directly leveraged
to enable persistence of individual key-value object per request
for different key-value store backend designs. Moreover, some
of these designs, such as Mojim, are heavily reliant on special
hardware support (experimental RDMA Commit capability1),
which makes it hard for these designs to be adapted in many
existing HPC environments.

In contrast to these existing studies, we find that designing
high-performance and generic PMEM-aware RDMA protocols
for persistent key-value stores is non-trivial. There is no
existing work which can be directly used to design an efficient
communication engine to adapt to different key-value store
backend architectures and cluster environments. This situation
further leads to the second important challenge: Can we design
efficient and generic PMEM-aware RDMA communication
protocols for different persistent in-memory key-value store
architectures, that can enable the system to ensure strong data
durability for key-value pair updates while maximizing end-to-
end performance?

Third, since distributed key-value stores are typically ac-
cessed and updated by many concurrent clients, it is vital
to ensure that any inconsistent updates to the key-value data
in PMEM are identifiable, so that data consistency can be
ensured during any types of failures. Efficiently achieving this
becomes more challenging for our work because we allow
clients to access remote server memory and directly update
key-value data in the server’s backend. In this case, the server
backend processing could be bypassed and it may not be
able to detect any failures. This problem is exasperated by
the volatile cache hierarchy in front of PMEM. The cache
hierarchy, through cache-line evictions, may change the order
in which stores become persistent. This situation brings a
significant challenge: What kind of schemes can be designed
to effectively and efficiently ensure remote data consistency
without sacrificing the performance goals discussed above?

B. Contribution
To address the above challenges, in this paper, we propose

a novel PMEM-aware communication runtime for persistent
key-value stores over modern RDMA-enabled networks, re-
ferred to as Remote Direct Memory Persistence based Key-
Value stores (RDMP-KV). The key goal of RDMP-KV is
to leverage RDMA to ‘durably’ store and access key-value
pairs in the server’s PMEM directly. To achieve this, RDMP-
KV employs a hybrid ‘server-reply/server-bypass’ protocol to
address the DRAM-to-PMEM staging overheads and enable
remote direct PMEM access.

To enable strong data durability for every key-value pair
insert/update (i.e., PUT(k,v)), RDMP-KV designs two com-
munication protocols: (a) a two-sided ‘Server-Assisted’ proto-
col (referred to as RDMP-SA) for memory persistence via

1RDMA Commit is not mature enough to be deployed on RDMA networks
yet

local cache flush operations, and, (b) a one-sided ‘Client-
Centric’ protocol (referred to as RDMP-CC) via RDMA
Commit [30], so that RDMP-KV can adapt to both current
generation RDMA network adapters and emerging RDMA
Commit capable networks.

To support data consistency, RDMP-KV proposes a novel
light-weight consistency checking scheme by only introducing
two one-byte flags appended to every key-value pair. Through
careful and smart manipulation of the flag bytes, our scheme
can effectively provide crash consistency with minimal perfor-
mance overhead.

Overall, this paper makes the following novel contributions:

• We introduce RDMP-KV protocols and runtime for
designing RDMA-aware persistent key-value stores for
PMEM systems, that can avoid data staging overhead,
while ensuring strong data durability, crash-consistency,
and atomicity for every key-value pair stored. Unlike
prior work, the proposed protocols allow clients the
direct access to data on the servers using a novel two-
flag consistency scheme to enable inline durability and
consistency with minimal performance impact.

• RDMP-KV’s communication protocols can adapt to cur-
rent and emerging high-performance RDMA-capable net-
works. It is generic enough to support different PMEM-
based persistent key-value store backend architectures.
The proposed protocols have been carefully tailored to
work with both currently available commodity RDMA
NICs and future generation RDMA NICs. We showcase
RDMP-KV’s generality across three different persistent
key-value store architectures based on a widely used key-
value store, Pmem-Redis [2], [3].

• RDMP-KV protocols consider a holistic approach to
designing RDMA- and PMEM-aware protocols to en-
able the server to scale with client-centric data process-
ing. We demonstrate RDMP-KV’s performance benefits
over existing PMEM-oblivious RDMA protocols (i.e.,
HERD [20]) with extensive microbenchmark evaluations
and the YCSB benchmark. We also show the benefits
of RDMP-KV by comparing it with two state-of-the-art
persistent memory storage solutions, Octopus [22] and
Forca [14].

Performance evaluations on an InfiniBand EDR (100 Gbps)
cluster show that our proposed RDMP-KV designs can im-
prove the server-side performance with different persistent
key-value storage architectures by 1.7x–22x for throughput
and latency by up to 88%, as compared with the protocols
used in HERD for PUT. We also observe a boost over HERD
of 1.1x–9.5x in terms of throughput at server side and up to
57% improvement in terms of end-to-end latency for GET.
In addition, we demonstrate an end-to-end performance gain
of up to 79% for durable PUTs. For throughput, RDMP-
SA and RDMP-CC gain up to 1.7x and 4.9x boost over
RDMA-HERD for PUT and 1.7x for GET, with both update-
heavy (50:50) and read-heavy (95:5) YCSB workloads running
over 96 clients. Our evaluations also show that RDMP-KV

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:52:49 UTC from IEEE Xplore. Restrictions apply.

outperforms Octopus FS and the Forca RDMA-to-PMEM
framework by up to 65% and 71%, respectively, in terms of
latency for PUT operations.

The rest of the paper is organized as follows. Sec-
tion II presents our characterization and analysis of exist-
ing PMEM-based persistent key-value storage and PMEM-
oblivious RDMA-based protocols. Section III presents the
RDMP-KV communication runtime and our key-value store
prototype based on Pmem-Redis. Section IV describes detailed
evaluations. Section V discusses related works and Section VI
presents our conclusion and future work.

II. CHARACTERIZATION AND ANALYSIS

As discussed in Section I, naively combining PMEM-
oblivious RDMA-based protocols with PMEM-aware persis-
tent key-value stores has overheads, such as DRAM-PMEM
staging and data persistence. In this section, we use Pmem-
Redis [3] as an example to quantitatively discuss these perfor-
mance bottlenecks.

A. Pmem-Redis Design Overview
Persistent in-memory key-value stores are typically a com-

bination of three main components: (1) an in-memory index
such as a hash table or a B+-tree (Index), (2) memory pools of
key-value pair data (KVData), and, (3) an append-only write-
ahead log (WAL) [15] on the persistent layer which stores key-
value data for recoverability. Every key-value pair insertion or
update involves a PUT operation that allocates and writes a
new key-value object into the ‘KVData’ pool, appends the
PUT operation to the ‘WAL’, and flushes all PMEM-resident
data for durability. Then, it updates the Index to point to
the new key-value object. Every GET operation accesses the
‘Index’ to locate the key-value object and returns the value to
the client, if any.

To give a concrete example, Figure 1 presents a typical
single round trip protocol for durable PUT and GET operations
in Pmem-Redis [3], which is an PMEM-aware persistent
in-memory key-value store based on Redis [2]. In Pmem-
Redis, ‘KVData’ is PMEM-resident and is accessed via a fast
DRAM-resident ‘Index’. An PMEM-based WAL compactly
stores write requests by requiring only metadata and persistent
key-value object pointer per log entry. Pmem-Redis employs
Intel’s Persistent Memory Development Kit (PMDK) [17] to
allocate and manage persistent memory key-value objects, and
does not rely on in-place updates. We use this as the basis for
our study.

Due to the asymmetric read/write performance as compared
to DRAM, PMEM mainly affects write operations. Hence,
we focus our analysis on persistent key-value store PUT
operations. Since Pmem-Redis does not have RDMA support
by default, we first implement RDMA-based HERD protocol
(HERD) [20] for it. We choose HERD’s RDMA protocols
because [20], [29] show that this approach ensures optimal
RDMA usage with a single round-trip per PUT operation.
Hence, we use ‘Pmem-Redis+HERD’ as the comparison base-
line to represent PMEM-oblivious RDMA-based persistent

TX_BEGIN

Client Server

KV
req

DRAM

KV

PMEM

req

Tserver_proc

T c
li_

re
q

T c
li_

wa
it

T c
li_

wa
it

PUT_CMPL(k)

REQ(k, v)

K index

req objp
(Alloc pmemobj)

WAL

KV KVData

TX_COMMIT

req REQ(k, v)
req

K index

KVDataKVGET_RSP(k,v)
KV KVData

Pu
t

Ge
t

K
K

Fig. 1. PUT and GET in Pmem-Redis

key-value stores. We believe this is a reasonably good baseline
for the study.

Pmem-Redis over HERD first employs the one-sided
RDMA-Write-with-Immediate (RWImm) operation to send
the PUT and GET requests, i.e., REQ(k, v), which is
placed directly into a pre-allocated DRAM-resident RDMA
buffer in the server communication engine (HERD). Then,
the RWImm operation triggers the Pmem-Redis engine to
process the request. Here, the key-value object data in DRAM-
resident RDMA buffer needs to be staged into PMEM for
PUT requests. Based on how the persistent key-value store
backend is designed, different kinds of data and structures need
to be updated in DRAM or PMEM. Typically, these updates
need the transaction support to guarantee strong data durability
and consistency, as shown in Figure 1 (i.e., TX BEGIN and
TX END/COMMIT). Once the server process on the PUT
request is complete, the server uses a two-sided RDMA SEND
operation to reply to the client with the PUT_CMPL(k)
message. For GET requests, the response including the data
requested is sent using a two-sided RDMA SEND.

B. Performance Characterization
Based on Pmem-Redis over HERD described above, we first

evaluate its performance with the write-only PUT workload us-
ing the redis-benchmark [26] utility. These experiments
are performed on two nodes on Cluster A (described in Sec-
tion IV-A) that is equipped with InfiniBand EDR (100 Gbps).
We emulate PMEM over DRAM, as detailed in Section IV-A.
A single Pmem-Redis server instance and a remote Pmem-
Redis client are employed, with typical KV pair sizes [8]
(value sizes 64 B, 4 KB, 64 KB and a fixed key of 20 B).

First, we measure the time-wise breakdown of End-to-End
PUT latency in Pmem-Redis over both IPoIB and HERD
protocols. Figure 2(a) presents the detailed breakdown results.
From this figure, we can clearly see that the HERD-based
RDMA protocol outperforms the IPoIB protocol by 73% –
79% for latency. This is a consequence of the impact of RDMA
on improving communication performance. From Figure 2(a),
we also find that for RDMA-HERD, the server-side processing
time in PUT constitutes a large portion (33% – 59%) of

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:52:49 UTC from IEEE Xplore. Restrictions apply.

(a) Breakdown of PUT Latency (b) Breakdown of Server Processing in PUT (with throughput)

Fig. 2. Pmem-Redis PUT Performance with PMEM-oblivious IPoIB and RDMA protocols

the PUT latency. Compared with IPoIB that spends most
time in communication, server-side processing becomes the
major bottleneck of RDMA-HERD after exploiting RDMA
protocols.

we further breakdown the server processing per-PUT oper-
ation into five different major operations as shown in Fig-
ure 2(b), which are memory allocation in PMEM (Alloc),
writing key-value data to PMEM-based memory (KVWrite),
flushing key-value data from CPU cache to PMEM (KVPer-
sist), WAL-based logging (Log) and index updating (Index).
We also add server’s response time (RDMA-Comm) for com-
parison.

From Figure 2(b), we observe that the costs of KVWrite
and KVPersist keep increasing with key-value pair sizes and
adversely affect the server throughput significantly (measured
as KPuts/s as shown on top of the bars), especially for large
key-value sizes. Also, the PMEM persist times are significantly
larger than the RDMA communication time.

C. Analysis Summary

Through the above performance characterizations, we find
that even though RDMA can reduce the communication over-
head compared with IPoIB, the server-side processing time
still poses a major bottleneck to the end-to-end performance.
This makes it clear that, rather than exploiting RDMA only
for communication, it helps to leverage RDMA to cut short
the server side DRAM-to-PMEM staging that drastically limits
the system’s scalability.

Besides, data persistence time could take more than half of
the processing time at large message sizes (e.g., 64 KB) that
adversely affects scalability of server. By contrast, the memory
allocation and index updating phases only account for a small
and constant overhead. Therefore, it can be inferred that the
overhead of ensuring PMEM persistence affects the server’s
performance. This implies we need a new scheme to reduce
the persistence bottleneck.

In summary, we find that the widely adopted techniques
in the RDMA community, e.g., RDMA-HERD protocols,
designed for volatile key-value stores cannot ensure both low
latency and high scalability in persistent key-value stores. We

also pinpoint the bottleneck of staging and persistence. There-
fore, it is vital to design PMEM-aware RDMA communication
protocols that can alleviate server-side processing overheads
due to durable PMEM writes. With this as the basis, we present
our RDMP-KV designs in the following section.

III. RDMP-KV DESIGN

In this section, we present the detailed design of the RDMP-
KV runtime and its corresponding RDMP protocols. We also
present an overview of adapting RDMP-KV with different key-
value store backends through co-designs.

Figure 3 provides an overview of RDMP-KV’s runtime
architecture. RDMP-KV’s runtime consists of three main
components to manage and achieve the three goals laid out
in Section I: (a) durability, (b) data consistency and recover-
ability, and, (c) metadata engine for log, index, and memory
management. We discuss the functionality and design of each
of these components below.

RDMP Runtime

Durability ManagerIndex/Memory Manager (Metadata) Data Consistency Manager

Log-In-PMEM

DRAM
(Index/
KVData)

PMEM
(Log)

All-In-
Pmem

PMEM
(Index/KVData/

Log)

No-Log Log+KVData-
In-PMEM

DRAM
(Index)

PMEM
(Log/
KVData)

General-Purpose
Server

Durability
Appliance
Durability

RDMA-Capable Network
Interconnects

Fig. 3. Overview of RDMP-KV Runtime Architecture

A. Remote Direct PMEM Access
To avoid the ‘DRAM-to-PMEM’ staging overheads of

PMEM-oblivious RDMA protocols, we need to enable persis-
tent in-memory key-value stores to leverage RDMA to durably
store and access key-value pairs directly from the server’s
PMEM (i.e., server bypass for data access). This requires the
client to know the PMEM address of the key-value object that
needs to be stored or retrieved. In order to enable this, RDMP-
KV employs a hybrid two phase ‘Server-Reply/Server-Bypass’
approach to separate the data and metadata (log, index, and
memory) management involved to store or retrieve a key-value

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:52:49 UTC from IEEE Xplore. Restrictions apply.

K

Client

V

REQ(k)

K Index

(pd_addr, pd_rkey)

Server DRAM

RR(pd_addr, vlen + 2)

PMEM

(WAL)

PFKV

(op,k,valobjp)...

Se
rv

er
-R

ep
ly

Se
rv

er
-B

yp
as

s
Re

ad

(Find KVObj
Address)

PFKV VF

VF

Fig. 4. RDMP-KV Protocol for GET (‘RR’ means RDMA-Read)

pair in PMEM. We choose a two phase approach as opposed to
a one phase (single RTT) approach for offloading processing
from the server to the client and increase server throughput.
The end-to-end communication protocol we propose involves
two phases:
(1) Server-Reply Metadata Phase: In this phase, a two-sided
‘Server-Reply’ (RPC-like) protocol is employed to perform
metadata management at the server and to retrieve the PMEM
key-value object address from the server (client request and
server response are posted using two-sided RDMA-Sends).
For PUT(k,v), metadata management at the server involves
updating local DRAM and PMEM-resident data structures,
including the allocation from PMEM pool, recording key
and meta information like value size, persistently appending
the request to the write-ahead log and updating the index
prior to reply to the client with kv pair address. Server will
also save the allocated KV data address and length in a
data structure for the ‘Server-Bypass’ phase. For GET(k)2,
metadata management involves index lookups to locate the
key-value object and consistency check. Figure 4 shows the
Get protocol in detail.
(2) Server-Bypass Read/Write Phase: In this phase, the
RDMP-KV enables the client to read or write directly from
PMEM, with the address received from the ‘Server-Reply’
phase. For PUT requests, RDMP-KV also initiates remote
durability steps from the client-side, to ensure durability for
every key-value object (detailed in Section III-B).

An overview of the end-to-end RDMP-KV protocols is pre-
sented in Figure 5. With the above hybrid approach, RDMP-
KV can be leveraged on both current and emerging RDMA-
capable networks by enabling remote durability support via
two mechanisms discussed in the literature [11]:
(1) General Purpose Server Durability (GPSD), wherein, the
host performs an RDMA Write into remote side’s PMEM to
explicitly notify a dedicated process to: (a) flush all cache-
lines associated with the specified data and invoke a persistent
store barrier, and, (b) notify the initiator on completion of
persistence.

2We refer to RDMP-KV Get Protocol as “RDMP-GET” for our evaluations

(2) Appliance Durability (AD), wherein, hardware-assisted
commands like RDMA Commit [30] can be leveraged. Its
semantic is similar to that of a one-sided RDMA Read
operation, but it initiates the RDMA-capable network adapter
on the remote target to force data to be flushed to the PMEM
durably, directly via PCIe.

B. Remote Data Durability
The ‘Server-Bypass Write’ phase discussed above typically

involves two steps: (a) using RDMA to write key-value objects
directly into PMEM without involving the server, and, (b)
ensuring remote durability. As presented in Figure 5, RDMP-
KV can ensure durability for PUT operations via either a
‘Server-Assisted’ or a ‘Client-Centric’ approach, described in
detail below.

1) Server-Assisted RDMP Protocol (RDMP-SA): As the
starting point, we leverage the GPSD mechanism for durabil-
ity. We refer to this persistence protocol as ‘Server-Assisted
RDMP Protocol’ (RDMP-SA) and can be easily enabled
on current-generation RDMA-capable networks. Figure 5(a)
illustrates the RDMP-SA communication protocol, and its
interaction with the PMEM-based backend. As seen in this
figure, ensuring durability per PUT requires an additional
round trip. It involves a request/response protocol using the
one-sided RDMA-Write-with-Immediate, wherein, the client
specifies the index of server’s saved data structure that has the
PMEM-resident object’s address and the length to be ‘flushed-
for-persistence’. At last, the server responds with the status of
the completed flush.

RDMP-SA enables offloading RDMA-based PMEM writes
either: (a) at the client’s RDMP communication engine
via RDMA-Write, or, (b) at the server’s RDMP engine
via RDMA-Read from the client’s communication buffers.
Since we are focused on scalable server designs, we choose
to offload the ‘Server-Bypass Write’ phase to the client’s
RDMP runtime(i.e., posting RDMA writes to client’s network
adapter).

2) Client-Centric RDMP Protocol (RDMP-CC): In order to
maximize server’s scalability, it is vital to alleviate the over-
head of persistence incurred at the server processes. This can
be enabled via a one-sided server-bypass approach employed
by the AD mechanism, via hardware-assisted commands like
RDMA Commit [30].

Figure 5(b) illustrates the RDMP-CC protocol, and its
interaction with the PMEM-based backend. As seen in this
figure, RDMP-CC enables a truly one-sided ‘Server-Bypass
Write Phase’. The client-side RDMP-KV runtime posts an
RDMA Commit to the underlying RDMA-capable network
adapter, and the server-side network hardware can directly
flush the PMEM-resident object to persistence via the PCIe.
Based on these, RDMP-CC will enable the server to offload
both data writes and durability duties to the client.

C. Data Consistency and Recoverability
RDMP-KV separates the metadata and data update phases

(as discussed in Section III-A) for enabling direct PMEM

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:52:49 UTC from IEEE Xplore. Restrictions apply.

TX_BEGIN

TX_END

Se
rv

er
-

As
sis

te
d

Pe
rs

ist

(Alloc KVObj +
WALEntry)

K

Client

V

REQ(k, vlen)

K Index

(pd_addr, pd_rkey)

Server DRAM

RWr_Imm(Data)

PMEM

WAL

PF

PFK

KV

(op,k,valobjp)...

flush &
set flags

[alternative] RR(Data)

PERSIST_CMPL(pd_addr)

Se
rv

er
-R

ep
ly

Se
rv

er
-

In
de

pe
nd

en
t

W
rit

e

VF

VF

(a) RDMP-SA

TX_BEGIN

TX_END

(Alloc KVObj +
WALEntry)

K

Client

V

REQ(k, vlen)

K Index

(pd_addr, pd_rkey)

Server DRAM

RWr(Data)

PMEM

WAL

PF

PFK

KV

(op,k,valobjp)...

flush &
set flags

Se
rv

er
-R

ep
ly

Se
rv

er
-

By
pa

ss
W

rit
e RCommit(pd_addr)

VF

VF

(b) RDMP-CC

Fig. 5. RDMP-KV Protocols for PUT (‘RWr’: RDMA-Write, ‘RWr Imm’: RDMA-Write-with-Immediate)

access. Hence, we need an explicit mechanism to ensure data
consistency during the ‘Server-Bypass Read/Write’ phase, for
managing concurrent reads/updates and for the correctness of
data recovery.

Both PMEM persistence instructions (e.g., clwb) and one-
sided RDMA operations guarantee atomicity only at the
granularity of a word, i.e., 8 B [7]. This is because spurious
cache-line eviction can change the order of stores to PMEM.
Therefore, we have the following issues that will result in
inconsistency in terms of a single KV operation:

• Once the data arrives at the remote side (i.e., the server),
any cache lines can be written back to persistent memory
implicitly in an out of order manner. This can happen
before the server initiates persistence.

• Even in persistence function calls, there is no guarantee
that data will be flushed to the PMEM device in order,
i.e., segments can be re-ordered by the cache hierarchy. In
case the KV pair data buffer spans multiple cache-lines,
(i.e, KV size >64 B), clflushopt, clwb, etc., do not
guarantee in order data flushing either.

In order to maintain the consistency of the KV store system,
we exploit the basic 8 B atomicity capabilities of the underly-
ing RDMA hardware to design a light-weight, efficient scheme
that ensures data consistency for updates via RDMA Write. We
employ two additional one-byte flags per KV pair: persist
flag and valid flag. The additional bytes, referred to as ‘flag
bytes’, are allocated after KV pair from the PMEM-based
memory pools. We elaborate and illustrate this mechanism in
Figure 6, which presents a snapshot of the DRAM and PMEM
data placement in RDMP-KV with the two flags, for consistent
updates to KV pair objects in PMEM below.

During ‘Server-Reply Metadata’ phase, the allocated ‘flag
bytes’ are persistently set to zero before the PMEM-resident
object address is returned by the server’s RDMP-KV runtime
(i.e., kvlen+2 per KV pair). Since these metadata-related
PMEM-resident structures can be transactionally updated by
the server (e.g., PMDK’s pmemobj [1]), any failures can be
rolled back or undone. For instance, Case 1 in Figure 6
illustrates a failure during this phase for PUT(K3, V3). This

request does not get persisted to the WAL, and the failure
is returned to the KVS client (instead of a PMEM address
location).

For RDMP-SA, once the server receives a request to persist
a key-value pair, it first persists (flush + store fence) all cache-
lines except for the one containing the persist flag (PF). Once
the cache-lines are persisted, the PF is set and the cache-line
containing it is persisted in an atomic manner. Finally, the
valid flag (VF) is set to indicate that the key-value pair is
persistent and is safe to read. The VF is required to guarantee
the consistency in scenarios involving concurrent PUT and
GET operations to the same key. If the system only has PF,
at the point when PF is set but yet persisted, a GET operation
will only check PF and assume the data is valid. However,
if the system crashes at this moment, on recovery the KV
pair will be aborted since PF is unset but a client has already
fetched the non-existent data. Therefore, checking the PF does
not guarantee that all data has been persisted. It is important
to note that the VF is not required to be persisted explicitly
because it is only used by GET requests to ensure that the
value read is already persistent. On recovery, only the PF needs
to be checked because the PF is only set and atomically flushed
once all other data cache-lines have been flushed.

For RDMP-SA, as the server is involved, the flags can be
set once the server flushes the KV object to PMEM. However,
for RDMP-CC, we need to leverage additional RDMP Commit
semantic extensions recently proposed for emerging RDMA-
capable networks [31]. We discuss these in Section III-D. With
‘no in-place updates’, there is only one KVS client updating
the ‘flag bytes’. Since 8 B atomicity is guaranteed for x86
cache-line flushes, setting these flag bytes can clearly indicate
that the data has been consistently written and persisted by a
remote PM-KVS client. For instance, Case 2 in Figure 6 il-
lustrates an ongoing ‘Server-Bypass Write’ phase for PUT(K2,
V2), as the corresponding VF is still zero, i.e., a PUT-in-
progress.

During any subsequent ‘Server-Bypass Read’ phase (for
GET), as shown in Figure 4, the client RDMP-KV runtime
posts the RDMA Read of size (kvlen+2) and checks the

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:52:49 UTC from IEEE Xplore. Restrictions apply.

trailing byte, i.e., the VF, to ensure that it reads a consistently
updated KV pair.

If the VF is zero (as in Case 2 in Figure 6), then we can
infer that the ‘Server-Bypass Write’ phase of the same KV pair
may not be successfully completed (i.e., GET(k) is considered
as failed). The PM-KVS server is queried again via RDMA
Read to retrieve the correctly updated data.

Persistent
WAL

KV Object
Pool!......

Op K1 Op K2 Op K3

PMEM

DRAM Hash Table
Index

3 12

(undo)

VF=1PF=1VK1 VF=0PF=1VK2 VF=0PF=0VK3

Fig. 6. RDMP-KV Memory Layout and Data Consistency Example: illus-
trated with three PUT(Kx,Vx) operations (PF = ‘persist flag’, VF = ‘valid
flag’)

For data recoverability, in case of node or process failures,
the write-ahead log in PMEM (if any) is typically replayed.
During this recovery process, only those PMEM-resident ob-
jects with valid PF are retrieved and used to reconstruct the
DRAM-resident index. For instance, from Figure 6, Cases 2
and 3 illustrate that PUT(K1, V1) and PUT(K2, V2) have
successfully persisted and are replayed. Note that PUT(K3,
V3) was incomplete in ‘Server-Bypass Write’ phase, and is
hence rolled back via undo from WAL (represented with
dotted-lines in Case 1). An entry for such PUT operations
will be non-existent in the PMEM-based WAL when replayed
in case of failures.

D. Remote Data Consistency Extensions for RDMP-CC

Based on the RDMA Commit extensions proposed in [30],
[31], we have the following options to enable remote consis-
tency via the ‘flag bytes’ for RDMP-CC protocol:

1) RDMP-CC-SA: Similar to RDMP-SA, client can initiate
the update of the ‘flag bytes’ per KV object by explicitly
sending a request to the KV server. Server will return
the status via a two-sided RDMA-Send. We refer to
this as RDMP-CC Server-Assisted or RDMP-CC-SA.
Evidently, this requires an additional RTT for end-to-
end PUT completion.

2) RDMP-CC-Imm: Like RDMA-Write-with-Immediate,
‘immediate data’ can be optionally provided to signal
the upper layer on the remote peer (i.e, the KV server)
when RDMA Commit completes. This signal from the
RDMA completion queue can be used to set the flags
atomically. Likewise, the status will be returned from
the server.

3) RDMP-CC-ADP: The proposed extensions also suggest
an additional optional payload (ADP) of 8 B to be
placed and made durable in an atomic fashion after the
requested commit. This is ideal for our ‘flag bytes’-
based remote consistency protocol. We emulate RDMA
COMMIT in this mode by issuing an RDMA-Read after

RDMA-Write the value with the additional ‘flag bytes’.
Therefore, for our evaluation we use this method.

By studying this futuristic RDMA Commit protocol and its
extensions, we enable RDMP-KV designs to work optimally
with current and emerging PMEM and RDMA-capable hard-
ware.

E. Pmem-Redis Co-Design with RDMP-KV
To demonstrate RDMP-KV’s effectiveness and backend-

agnostic capabilities, we enable three candidate PMEM-aware
backend architectures, as shown in Figure 3, by implementing
our prototype based on Pmem-Redis (Redis+PMDK) [3] as
follows:
(1) Log+KVData-In-PMEM: This approach (default in
Pmem-Redis) places both the WAL (undo-based log) and key-
value pairs in PMEM, and accesses them via a DRAM-resident
hash table. The log will only track the addr of kv pair in
PMEM instead of the value.
(2) Log-In-PMEM: To maximize DRAM utilization (as in
traditional disk-based persistent data stores), this approach
extends the PMEM-resident WAL in Pmem-Redis to include
the actual key-value pairs, and maintains key-value object
pools in DRAM along with the index. We tweak RDMP-KV
to update both the log entry in PMEM and the key-value data
in DRAM via RDMA-Writes.
(3) No-Log: To maximize PMEM utilization, the DRAM-
resident index (e.g, Pmem-Redis hash table) is moved to
PMEM [4]. Since the index can be persisted during the
‘Server-Reply Metadata’ phase, no WAL is required to ensure
data durability and recovery. RDMP-KV can still be leveraged
to read/write key-value objects directly from the PMEM.

To enable the ‘Server-Reply Metadata’ phase, we register
callback functions with the RDMP-KV runtime for: (1) meta-
data management (allocation + index updates) for PUTs, and
(2) index lookup for GETs. For the RDMP-SA protocol, a
callback is provided for invoking local ‘flush-for-persistence’
operations.

In order to boost server processing, after system analysis, we
manage to take advantage of the benefits from RMDA-HERD
on our server assisted design RDMP-SA. In the hybrid RDMP-
SA design, we enable server to handle PUTs in the RDMA-
HERD mode and reduce communication to a single RTT under
a certain value size threshold (e.g., 16 KB). Thus, RDMP-SA
can achieve similar performance as RDMA-HERD when KV
sizes are small. PMEM-resident object pools allocated via
PMDK are registered with the RDMA network adapter on
a per-pool basis at server initialization phase. Based on this
prototype, we present a detailed evaluation in the following
section.

IV. PERFORMANCE EVALUATION

We present the results of our in-depth analysis of the
proposed RDMP communication runtime and protocols for
PMEM-aware RDMP-KV (described in Section III-E), and
contrast it with HERD’s one-RTT PMEM-oblivious RDMA-
‘Server-Reply’ protocol over Pmem-Redis. We divide our

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:52:49 UTC from IEEE Xplore. Restrictions apply.

evaluations into the following sections:
(1) Evaluations with Redis PUT/GET Micro-benchmarks.
(2) Evaluations with YCSB benchmark.
(3) Comparison with other RDMA-over-PMEM works in the
literature and case study to demonstrate RDMP-KV’s backend
agnostic capabilities

A. Experimental Setup
In this sub-section, we present the HPC cluster configura-

tions used for our experiments, along with the configuration
of the PMEM-over-RAMDisk emulation employed.
Cluster Setup:
(1) For most benchmarks, we use a testbed (Cluster A)
equipped with two Linux servers for our experiments. Each
node is provisioned with a 28 core Intel Skylake processor
(Gold6132@2.6GHz), 192 GB DRAM and connected via EDR
InfiniBand (100 Gbps). We dedicate 64 GB RAMDisk for
PMEM emulation on the server node.
(2) For YCSB benchmark, due to hardware limitation in
Cluster A, we set up another cluster (Cluster B) with six
nodes. Each node is equipped with a 28 core Intel Broadwell
processor (E5-2680v4@2.4GHz) and 128 GB DRAM. The
cluster is interconnected with EDR InfiniBand (100 Gbps).
Besides, 32 GB RAMDisk is reserved for PMEM emulation
on each server node.
Emulating PMEM: We use Intel PMDK 1.8 over DRAM via
RAMDisk, to create and maintain byte-addressable persistent
memory pools in PMEM. To emulate the slower-than-DRAM
writes, we employ the same emulation technique used in the
widely accepted work on persistent memory, mnemosyne [32]
for our experiments. For our emulation:
(1) We introduce an additional delay after each write into
PMEM, using hardware access macros (clwb). We also insert
the delay after each memory fence (sfence) to account for
the wait involved for persisting outstanding writes to PMEM.
We model the write bandwidth by inserting appropriate delays
after every write sequence completes, to limit the effective
bandwidth.
(2) As in [32], we add 150 ns of extra latency and limit
the write bandwidth to 4GB/s unless otherwise noted. Since
PMEM reads are likely to be serviced from the cache, we do
not account for additional latency during reads.
(3) RDMA Commit is emulated by first issuing an RDMA
Read at the address to be persisted, to the NIC at the server
node and following operations based on different emulation
variations (detailed in Section III-D).

We only add the additional delay to emulate slower-than-
DRAM latencies persistent objects in PMEM, that are accessed
via the PMDK library (e.g., WAL entries and KV pairs in
default Pmem-Redis; Redis’s DRAM-resident hash table is
not affected). Unless otherwise specified, we use RDMP-KV
runtime backed by default Pmem-Redis [3], that employs
the ‘Log+KVData-In-PMEM’ backend design (detailed in
Section III-E), to contrast the performance of RDMP-KV
protocols with the state-of-the-art PMEM-oblivious RDMA-
‘Server-Reply’ protocol, HERD [20]. In contrast to RDMP-

KV, HERD employs an RDMA-enabled single round-trip
design for both PUT and GET.

RDMP-KV protocols are designed to ensure inline persis-
tence for every PUT. Hence, all of our experiments involving
PUTs demonstrate persistence. Additionally, since recovery
from persistent memory is not the focus of this paper, we
mainly focus on the performance of persistent PUTs and server
scalability.

B. Redis Micro-benchmark Studies
First, we extend the evaluations in Figure 2(a), to study

the proposed RDMP-KV designs. We contrast RDMP-KV’s
persistent PUT protocols (RDMP-[SA/CC]) with the PMEM-
oblivious RDMA-based HERD protocol [20] (RDMA-HERD).

1) End-to-end PUT Latency: For this test, KV pairs are
generated and loaded into the persistent in-memory key-value
store by PUT; and the average end-to-end (p2p) latency is
measured. From Figure 7(a), we observe that for KV sizes
less than 16 KB, our proposed hybrid RDMP-SA design can
achieve similar PUT performance to that of RDMA-HERD,
while RDMP-CC has an overhead from 8% to 24% which
results from an additional round trip of communication. For
larger KV pairs (≥16 KB), we can observe that as compared
with RDMA-HERD, RDMP-SA improves PUT latencies by
up to 55% and RDMP-CC by up to 79%, for Pmem-Redis.
Upon further analysis, we observe that replacing DRAM-to-
PMEM staging with communication-involved hybrid ‘Server-
Reply/Server-Bypass’ schemes does not incur additional over-
heads to client-side latencies. This is because avoiding staging
leads to significant latency reduction despite the need for
another round trip, as we observe from Figure 2(b). This
design helps lower latency for large values and increase
throughput for all value sizes.

2) Server-Side Performance Analysis: To study the server-
side performance, similar to Figure 2(b), we measure the
Redis server per-instance throughput for the PUTs during the
above experiment. From Figure 7(b) (line-graph), we observe
that the RDMP-SA design can achieve 1.6x speedup in PUT
throughput over RDMA-based HERD protocol at value size of
64KB, by offloading key-value data updates to the client. Most
importantly, we observe that RDMP-CC can achieve 1.7x–6.4x
speedup over HERD protocol and 1.5x–3.9x speedup over the
server-assisted RDMP-SA protocol, by offloading both key-
value data updates and durability steps to the client. We further
extend our evaluation to the value size of 256KB and observe
that RDMP-CC can maintain the throughput of ∼185 KPUTs/s
while the throughput of RDMA-HERD continues to drop to
9 KPUTs/s. Hence, the speedup of RDMP-CC over RDMA-
HERD can reach up to 22x for throughput. To clearly show
the breakdown numbers in Figure 7(b) for the cases of small
value sizes (e.g, 64B), we choose to not include these results
in the figure.

For further clarity, we present the breakdown of the server-
side processing time (similar to Figure 2(b)) into: (1) Metadata
(allocating from PMEM pool with flag bytes set to zero +
hash table updates), (2) Log (updating WAL persistently),

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:52:49 UTC from IEEE Xplore. Restrictions apply.

0
50

100
150
200
250
300
350
400

32 128 512 2K 8K 32K 128K 512K

Re
dis

 PU
T L

ate
nc

y (
us)

Value Size in Bytes (Key = 20 B)

RDMA-HERD RDMP-SA RDMP-CC

10

14

18

22

26

32 128 512 2K 8K

(a) End-to-End Latency (b) Server-Side Throughput and Latency Breakdown

Fig. 7. End-to-End and Server-Side Performance for PUT

and, (3) KVData (write to key-value pair objects in PMEM
persistently) phases. This is also presented (by the stacked-
bars) in Figure 7(b). From this figure, we can observe that
both RDMA-HERD and RDMP-SA designs are affected by
the overhead of persistence at the server, which increases along
with the increasing KV pair sizes. However, RDMP-SA attains
benefits in terms of throughput especially for large key-value
sizes, as the DRAM-to-PMEM staging overheads increase
considerably for PMEM-oblivious protocols like HERD. Also,
as shown in Figure 7(b), the numbers of ‘Metadata’ show
RDMP-SA/-CC protocols incur a smaller overhead as com-
pared to RDMA-HERD, as RDMP-KV’s ‘Server-Reply Meta-
data’ phase involves allocating and persisting PMEM-resident
‘flag bytes’ for ensuring consistent updates and saving KV
pair’s address in PMEM for persistence in the ‘Server-Bypass’
phase. However, in RDMP-CC protocol, server only copies
key and meta information. Thus, the major bottleneck of
‘KVData’ in RDMA-HERD and RDMP-SA at server side
becomes negligible in RDMP-CC. Hence, RDMP-CC based
RDMP-KV design for Pmem-Redis can maintain a constant
server-side PUT throughput (∼185 KPuts/s with little overhead
from ‘KVData’ phase).

3) End-to-end GET Latency: For completeness of micro-
benchmark studies, we study the key-value store GET per-
formance. We contrast ‘RDMP-GET’ in RDMP-KV design
with the PMEM-to-DRAM staging-based GET in RDMA-
HERD (over default Pmem-Redis). We load the Redis instance
with KV pairs and run the redis-benchmark [26] GET
workload. Figure 8 presents the GET latencies for varying
value sizes (key size fixed to 20 B). From Figure 8, we observe
that RDMP-KV performs similar to HERD for small value
sizes (<16 KB), and improves GET latencies by up to 57%
for value sizes ≥16 KB. To further understand this, from the
server-side GET throughput in Figure 8, we can see that with
the RDMP-KV GET protocol, the throughput remains steady
around 225 KGets/s, irrespective of KV sizes. In contrast, the
performance of RDMA-HERD deteriorates from 225 KGets/s
to 24 KGets/s as the KV sizes increase, due to the need
for PMEM-to-DRAM staging. RDMA-HERD is based on a

one round-trip, server-centric design which incurs PMEM-to-
DRAM staging overhead. Our design, in contrast, is based on
a two round-trip, client-centric data fetching protocol which
avoids the staging overhead. Therefore, our design may incur
a small overhead from communication for small messages,
which is why HERD marginally outperforms RDMP-KV in
latency for <16 KB value sizes. However, note that RDMP-
KV has higher throughput even for small message sizes by
reducing server side processing.

Fig. 8. End-to-End Performance for GET

C. Evaluations with YCSB

To illustrate the applicability for online data processing
workloads, we study the performance of RDMP-KV with
the YCSB benchmark [10]. We use Cluster B to conduct
the experiments and employ two nodes to launch 24 server
instances and 4 nodes to run a total of 96 clients. Each
server instance reserves 4 GB DRAM and 4 GB of PMEM.
Using the YCSB benchmark suite, we generate and load KV
pairs into the Redis server instances. Analysis of real-world
workloads [8] shows that most values are in the range of 64 B–
64 KB. Based on this observation, we choose to generate PUT
and GET requests with variable KV pair sizes. Value sizes
are chosen from 64 B, 1 KB, 4 KB, or 64 KB with a uniform
distribution. And key sizes are selected evenly as either 12 B,
16 B, or 20 B.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:52:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Performance with YCSB Workloads A (50:50 read:write) and B
(95:5 read:write). Contrasting RDMP-KV vs. RDMA-HERD over Pmem-
Redis running 96 Clients over 24 server instances

Figure 9 presents the average end-to-end PUT/GET la-
tencies with YCSB-A (write-heavy) and YCSB-B (read-
heavy) workloads. We can see that RDMP-SA and RDMP-
CC RDMP-KV designs improve the PUT latencies by about
38% and 65% over RDMA-HERD, respectively, with YCSB-A
workload while deliver similar performance in terms of GET
latency with YCSB-B workload. From Figure 9, it can also
be seen that RDMP-KV can maintain higher total PUT/GET
throughput, as compared with RDMA-HERD even in a multi-
client environment. For PUT operation, the total throughput of
RDMP-SA and RDMP-CC exceeds RDMA-HERD by about
1.7x and 4.9x, respectively. With YCSB-B, both RDMP-SA
and RDMP-CC deliver similar performance for latency as
RDMA-HERD and both have enabled an improvement of
∼1.7x for throughput by enabling the client to fetch the
value through an RDMA-Read. In this manner, the PMEM-
to-DRAM staging at the server side can be avoided.

D. Comparison with other RDMA-over-PMEM frameworks
To better understand the need for RDMP-KV to enable

RDMA-accelerated persistent in-memory key-value storage,
we contrast RDMP-KV with two recent RDMA-enable persis-
tent memory storage systems that provide user-space abstrac-
tions to store and manage PMEM-resident data via RDMA.
Similar to RDMP-KV, these frameworks use ‘Server-Reply’-
like (i.e., RPC-based) mechanism to exchange PMEM ad-
dresses and update metadata information, and use RDMA to
read from and write to PMEM directly. To compare RDMP-
KV with an RDMA-over-PMEM system that does not provide
strong durability guarantees per KV pair and efficient data
consistency, we employ Octopus [22], a recent RDMA-enabled
distributed PMEM-aware file system. It provides open/close
APIs for managing metadata via RDMA-based RPC and
write/read file APIs to directly access PMEM on server nodes.
We mimic the behavior of a key-value store by storing key-
value pairs in individual Octopus files identified by key as
the filename. By default, Octopus does not provide inline
persistence guarantees for every update of KV pair (denoted

as ‘Ocotpus (Default)’). So, we explicitly add a persistence
barrier to ensure data is written through for each PUT and
measure its latency (denoted as ‘Octopus (Persistent Put)’).
To compare RDMP-KV with a recent RDMA-over-PMEM
framework that provides data consistency guarantees but in a
different manner, we use Forca [14]. Forca uses self-verifying
CRC checksums to verify if the key-value pairs in PMEM
are consistent. To enable consistent PUT and GET operations:
(a) a checksum is calculated at the client and written into
server memory via RDMA for PUTs, and, (b) a checksum is
calculated by the server for every GET prior to returning a key-
value pair address. We implement Forca in Pmem-Redis with
the same checksum consistency guarantee. Thus, we can have
a fair comparison between Forca and RDMP-KV protocols.

Fig. 10. Comparison with state-of-the-art RDMA-enable persistent memory
systems. Contrasting end-to-end PUT/GET latency RDMP-KV with Octopus
FS [22] and Forca [14]

For this experiment, we measure the end-to-end latencies for
PUT and GET operations, between a single client and server.
For RDMP-KV, we present the average PUT/GET latencies for
both RDMP-SA and RDMP-CC modes. From Figure 10, we
observe that for sizes of 64B and 4KB, RDMP-SA and RDMP-
CC can improve PUT latency by about 40% and 24%, respec-
tively, over default Octopus despite the need to guarantee data
durability and consistency for every PUT request. In addition,
both designs enable an improvement of ∼33% for GETs. For
64KB values, RDMP-CC gains an improvement over default
Octopus of 11% and 65% over persistent Octopus. Though
default Octopus performs better than RDMP-SA for 64KB
values but on adding a persistence barrier we can observe
that its performance is actually worse by 50% than RDMP-
SA. Similar GET latencies of Octopus and RDMP-KV for
larger key-value pairs are observed as RDMA communication
time dominates the metadata access/update time at value size
of 64KB. In comparison to Forca that incurs a checksum
computation overhead for every PUT and GET, RDMP-CC
can improve PUT latency by up to 71% and GET latency by
up to 64% by leveraging the ‘flag bytes’-based consistency
mechanism with durability guarantees per PUT operation.

E. Backend-Agnostic RDMP-KV Design
Figure 11 extends the end-to-end PUT latency test in Fig-

ure 7(a) to include RDMP-KV based Pmem-Redis with Log-

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:52:49 UTC from IEEE Xplore. Restrictions apply.

In-PMEM, No-Log, and Log+KVData-In-PMEM backends
discussed in Section III-E. From Figure 11, we can observe
that:
(a) For small KV pairs (≤4 KB), the RDMP-SA protocol
achieves similar PUT latencies compared with RDMA-HERD
for all three kinds of backends. RDMP-CC in the ‘Log-In-
PMEM’ mode incurs more overheads in communication at
small value size (64B), which is because RDMP-CC needs
an additional RDMA-Write to update remote DRAM data.
In the meantime, RDMP-CC shows similar performance in
terms of latency as RDMA-HERD in both ‘No-Log’ and
‘Log+KVData-In-PMEM’ backends.
(b) For larger KV pairs (64KB), we observe that as compared
with RDMA-HERD, RDMP-SA improves PUT latencies by
up to 30% for all three backends. RDMP-CC can improve
end-to-end latency for PUT by up to 52% in ‘No-Log’ and
‘Log+KVData-In-PMEM’ modes by minimizing persistence
overhead. RDMP-CC can also reduce latency by 44% in ‘Log-
In-PMEM’ mode. For large value sizes, we see much better
performance improvement with RDMP-KV designs, which
is mainly because RDMP-KV can alleviate the data staging
and persistence overhead in RDMA-HERD as discussed in
Section IV-B.

The results demonstrate the superiority of RDMP-SA and
RDMP-CC protocols over HERD protocol and indicate a sim-
ilar trend observed in previous evaluation in ‘Log+KVData-
In-PMEM’ backend.

Fig. 11. End-to-End Performance with PMEM-based Backend Alternatives

In addition, by comparing three backends, for RDMA-
HERD and RDMP-SA, ‘Log-In-PMEM’ outperforms the other
two backends when message sizes are small (<4KB) because
it stores KV data in DRAM with faster access than PMEM.
However, the performance deteriorates drastically when value
gets larger since it maintains two copies of KV data in DRAM
and PMEM as the log. Thus, in RDMA-HERD and RDMP-
SA, server needs to do an additional memory copy after client
writes values to PMEM log buffer.

‘No-Log’ and ‘Log+KVData-In-PMEM’ deliver simi-
lar performance. ‘No-Log’ keeps an individual persistent
hashmap [4] and gets rid of WAL since all components are

kept persistently. ‘Log+KVData-In-PMEM’ logs KV pairs’
addresses in PMEM and each logging process takes almost
constant time when value size changes. It has been evaluated
that updating the persistent hashmap in ‘No-Log’ mode takes
slightly longer time than the index update in ‘Log+KVData-
In-PMEM’ mode. On the other hand, ‘No-Log’ saves time
of writing WAL. Hence the test results of ‘No-Log’ and
‘Log+KVData-In-PMEM’ are comparable.

Overall, in certain applications where value sizes are mostly
small (e.g., 64B), ‘Log-In-PMEM’ with RDMA-HERD or
RDMP-SA would be a better option. In other cases, ‘No-
Log’ and ‘Log+KVData-In-PMEM’ with RDMP are better
candidates.

V. RELATED WORK

Emerging PMEM devices (e.g., PCM, 3D-XPoint, etc.) are
paving the way for novel middleware designs on modern HPC
clusters. On the other hand, several RDMA-based volatile
memory key-value stores have been proposed [12], [19], [20],
[24], [28], [29], [34] in the community. We have discussed
and compared with several closely related works in Section I
and Section IV. In this section, we further discuss more related
studies in three categories: PMEM-aware Middleware, RDMA
over PMEM, and combining fast DRAM and slower PMEM.
PMEM-aware Middleware: The potential of leveraging
PMEM in HPC and data center middleware has come into
the spotlight over the recent years [13], [32]. Several research
works [15], [25] have been studying the potential of employ-
ing PMEM’s memory semantics and persistence features to
accelerate online transaction processing systems. Bullet [16]
is a single-node persistent key-value store which relies on a
DRAM frontend to improve performance. These works are
indicative of the potential for designing efficient in-memory
computing middleware with PMEM. However, these works
are single-node systems and do not consider RDMA-based
distributed designs, which is the focus of this paper.
RDMA over PMEM: To leverage the PMEM technologies
in HPC middleware over RDMA-capable interconnects, the
benefits of RDMA are discussed in the context of Persistent
Memory over Fabrics (PMoF) through collaborations such as
SNIA [11]. Similarly, highly available storage services for the
OS kernel, such as Mojim [37] and Hotpot [27] have been
proposed. NVFS [18] has been proposed to take advantage
of RDMA with PMEM to enable high performance data
persistency in Hadoop Distributed File System (i.e., HDFS).
Crail [5] is an RDMA-enable distributed storage system but
is focused on enabling high-performance multi-tiered storage
management for in-memory data processing frameworks. On
the other hand, PMEM-aware RDMA is being used to design
specific systems, such as QueryFresh [33], which is an append-
only storage system that guarantees data safety and freshness.
FileMR [36] is a recent work which proposes an abstraction
that combines PMEM regions and files. It allows direct access
to a PMEM-backed file through RDMA.
Combining fast DRAM and slow PMEM: There exists
several volatile key-value stores [12], [19], [20], [24], [28],

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:52:49 UTC from IEEE Xplore. Restrictions apply.

[29], [34] leveraging RDMA networks. These works either do
not provide persistence or have high overhead for persistence
because they do not utilize PMEM. So, they should only be
used when durability is not a requirement. On the other hand,
some systems like Bullet [16] and Crail [5] leverage a combi-
nation of DRAM and PMEM/SSD to improve performance
and maintain durability. Our work also compares different
backend options and demonstrates that utilizing PMEM only
to replace disks for WAL (‘Log-In-PMEM) can not fully take
advantage of PMEM. The hybrid DRAM+PMEM approach
that keeps data and logs in PMEM while maintaining index in
DRAM for fast update and query (‘Log+KVData-In-PMEM’)
seems to be optimal for memory efficiency and performance.

In contrast to the related work, our work attempts to design
a high-performance and generic PMEM-aware RDMA com-
munication runtime for emerging persistent key-value stores,
called RDMP-KV. RDMP-KV can leverage ‘RDMA+PMEM’
in an integrated manner for optimizing the critical path per-
formance of various key-value store backends and support
different generations of RDMA networks.

VI. CONCLUSION

In this paper, we present our proposed designs of Remote
Direct Memory Persistence based Key-Value stores with
PMEM (RDMP-KV). RDMP-KV can efficiently avoid data
staging overhead between DRAM and PMEM and ensure
strong data durability, data consistency and recoverability for
every key-value object stored or updated. Performance evalua-
tions on InfiniBand EDR clusters with PMEM emulation show
that our proposed RDMP-KV designs can improve the server
performance with various persistent key-value store backend
architectures by 1.7x–22x, as compared with existing PMEM-
oblivious RDMA protocols in HERD that require DRAM-
PMEM staging; enabling an end-to-end performance gain of
38%–65% for latency in update-heavy workload and a speedup
of ∼1.7x for throughput in read-heavy YCSB workloads. Our
evaluations also show that RDMP-KV outperforms Octopus
FS [22] and the Forca RDMA-to-PMEM framework [14] by
65% and 71%. In the future, we plan to evaluate RDMP-KV
over real PMEM hardware and NICs with RDMA Commit
capabilities, and study with more online/offline data analytical
workloads.

ACKNOWLEDGMENT

We would like to sincerely thank Arjun Kashyap from The
Ohio State University for his help in conducting some of the
experiments. We also want to thank the anonymous reviewers
for their insightful comments and suggestions. This work was
supported in part by NSF research grant CCF #1822987.

REFERENCES

[1] An introduction to pmemobj (part 1) - accessing the persistent memory.
http://pmem.io/2015/06/13/accessing-pmem.html, 2015.

[2] Redis. https://redis.io/, 2017.
[3] Redis, enhanced to use PMDK’s libpmemobj. https://github.com/pmem/

redis, 2017.
[4] pmemkv. https://github.com/pmem/pmemkv, 2018.
[5] Apache Crail. http://crail.incubator.apache.org/, 2019.

[6] Apache Ignite. https://ignite.apache.org/, 2019.
[7] Persistent Memory Replication Over Traditional RDMA. https:

//software.intel.com/content/www/us/en/develop/articles/persistent-
memory-replication-over-traditional-rdma-part-1-understanding-
remote-persistent.html, 2019.

[8] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny.
Workload Analysis of a Large-scale Key-value Store. SIGMETRICS
Perform. Eval. Rev., 40(1):53–64, June 2012.

[9] K. A. Bailey, P. Hornyack, L. Ceze, S. D. Gribble, and H. M. Levy.
Exploring Storage Class Memory with Key Value Stores. In Proceedings
of the 1st Workshop on Interactions of NVM/FLASH with Operating
Systems and Workloads, page 4. ACM, 2013.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB. In The Proceedings
of the ACM Symposium on Cloud Computing (SoCC ’10), Indianapolis,
Indiana, June 2010.

[11] C. Douglas. RDMA with PMEM. http://www.snia.org/sites/default/
files/SDC15 presentations/persistant mem/ChetDouglas RDMA with
PM.pdf, 2015.

[12] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. FaRM: Fast
Remote Memory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414, Seattle, WA,
2014. USENIX Association.

[13] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson. System Software for Persistent Memory. In
Proceedings of the Ninth European Conference on Computer Systems,
page 15. ACM, 2014.

[14] H. Huang, K. Huang, L. You, and L. Huang. Forca: Fast and Atomic
Remote Direct Access to Persistent Memory. 2018 IEEE 36th Interna-
tional Conference on Computer Design (ICCD), pages 246–249, 2018.

[15] J. Huang, K. Schwan, and M. K. Qureshi. NVRAM-aware Logging in
Transaction Systems. Proceedings of the VLDB Endowment, 8(4), 2014.

[16] Y. Huang, M. Pavlovic, V. Marathe, M. Seltzer, T. Harris, and S. Byan.
Closing the Performance Gap Between Volatile and Persistent Key-
Value Stores Using Cross-Referencing Logs. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 967–979, 2018.

[17] Intel. PMDK: Persistent Memory Development Kit. https://github.com/
pmem/pmdk/, 2019.

[18] N. S. Islam, M. Wasi-ur Rahman, X. Lu, and D. K. Panda. High
Performance Design for HDFS with Byte-Addressability of NVM and
RDMA. In Proceedings of the 2016 International Conference on
Supercomputing, ICS ’16, pages 8:1–8:14, New York, NY, USA, 2016.
ACM.

[19] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-
ur Rahman, N. S. Islam, X. Ouyang, H. Wang, S. Sur, and D. K.
Panda. Memcached Design on High Performance RDMA Capable
Interconnects. In Proceedings of the 2011 International Conference on
Parallel Processing, ICPP, Washington, DC, USA, 2011.

[20] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA Efficiently
for Key-Value Services. In Proceeding of SIGCOMM ’14, Aug 2014.

[21] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. Eval-
uating STT-RAM as an Energy-Efficient Main Memory Alternative.
In 2013 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 256–267. IEEE, 2013.

[22] Y. Lu, J. Shu, Y. Chen, and T. Li. Octopus: an RDMA-enabled
Distributed Persistent Memory File System. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 773–785, Santa Clara,
CA, 2017. USENIX Association.

[23] Micron. 3D XPoint technology. 2019.
[24] C. Mitchell, Y. Geng, and J. Li. Using One-Sided RDMA Reads to

Build a Fast, CPU-Efficient Key-Value Store. In Proceeding of USENIX
Annual Technical Conference (USENIX ATC ’13), Jun 2013.

[25] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage management
in the NVRAM era. Proceedings of the VLDB Endowment, 7(2):121–
132, 2013.

[26] redis. How fast is Redis? https://redis.io/topics/benchmarks.
[27] Y. Shan, S.-Y. Tsai, and Y. Zhang. Distributed Shared Persistent

Memory. In Proceedings of the 2017 Symposium on Cloud Computing,
pages 323–337. ACM, 2017.

[28] D. Shankar, X. Lu, N. Islam, M. Wasi-Ur-Rahman, and D. K. Panda.
High-Performance Hybrid Key-Value Store on Modern Clusters with
RDMA Interconnects and SSDs: Non-blocking Extensions, Designs,
and Benefits. In 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 393–402, May 2016.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:52:49 UTC from IEEE Xplore. Restrictions apply.

[29] M. Su, M. Zhang, K. Chen, Z. Guo, and Y. Wu. RFP: When RPC is
Faster Than Server-Bypass with RDMA. In Proceedings of the Twelfth
European Conference on Computer Systems, EuroSys ’17, pages 1–15,
2017.

[30] T. Talpey. Remote Access to Ultra-Low-Latency Storage -
SNIA. https://www.snia.org/sites/default/files/SDC15 presentations/
persistant mem/Talpey-Remote Access Storage.pdf, 2015.

[31] T. Talpey. RDMA Persistent Memory Extensions. In 15th Annual Open
Fabrics Alliance Workshop, 2019.

[32] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight
Persistent Memory. In ACM SIGARCH Computer Architecture News,
volume 39, pages 91–104. ACM, 2011.

[33] T. Wang, R. Johnson, and I. Pandis. Query Fresh: Log Shipping on
Steroids. Proc. VLDB Endow., 11-4:406–419, December 2017.

[34] Y. Wang, L. Zhang, J. Tan, M. Li, Y. Gao, X. Guerin, X. Meng, and
S. Meng. HydraDB: A Resilient RDMA-driven Key-value Middleware
for In-memory Cluster Computing. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC’15, 2015.

[35] H. S. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson. Phase Change Memory. Proceedings
of the IEEE, 98(12):2201–2227, Dec 2010.

[36] J. Yang, J. Izraelevitz, and S. Swanson. FileMR: Rethinking RDMA
Networking for Scalable Persistent Memory. In 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20),
pages 111–125, 2020.

[37] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson. Mojim: A Reliable
and Highly-Available Non-Volatile Memory System. In ACM SIGARCH
Computer Architecture News, volume 43, pages 3–18. ACM, 2015.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on October 15,2021 at 21:52:49 UTC from IEEE Xplore. Restrictions apply.

