
This article was downloaded by: [155.254.6.155] On: 18 January 2021, At: 17:52
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Matching While Learning
Ramesh Johari, Vijay Kamble, Yash Kanoria

To cite this article:
Ramesh Johari, Vijay Kamble, Yash Kanoria (2021) Matching While Learning. Operations Research

Published online in Articles in Advance 07 Jan 2021

. https://doi.org/10.1287/opre.2020.2013

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2021, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2020.2013
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

OPERATIONS RESEARCH
Articles in Advance, pp. 1–27

http://pubsonline.informs.org/journal/opre ISSN 0030-364X (print), ISSN 1526-5463 (online)

Methods

Matching While Learning
Ramesh Johari,a Vijay Kamble,b Yash Kanoriac

aDepartment of Management Science and Engineering, Stanford University, Stanford, California 94305; bDepartment of Information and
Decision Sciences, University of Illinois at Chicago, Chicago, Illinois 60607; cColumbia Business School, New York, New York 10027
Contact: rjohari@stanford.edu, https://orcid.org/0000-0002-3960-0770 (RJ); kamble@uic.edu,

https://orcid.org/0000-0002-9261-1612 (VK); ykanoria@gsb.columbia.edu, https://orcid.org/0000-0002-7221-357X (YK)

Received: June 17, 2017
Accepted: April 1, 2020
Published Online in Articles in Advance:
January 7, 2021

Subject Classifications: probability: stochastic
model applications, analysis of algorithms;
inventory/production: policies: capacity.
Area of Review: Stochastic Models

https://doi.org/10.1287/opre.2020.2013

Copyright: © 2021 INFORMS

Abstract. We consider the problem faced by a service platform that needs to match limited
supply with demand while learning the attributes of new users to match them better in the
future. We introduce a benchmark model with heterogeneous workers (demand) and a
limited supply of jobs that arrive over time. Job types are known to the platform, but
worker types are unknown and must be learned by observing match outcomes. Workers
depart after performing a certain number of jobs. The expected payoff from a match
depends on the pair of types, and the goal is to maximize the steady-state rate of accu-
mulation of payoff. Although we use terminology inspired by labor markets, our
framework applies more broadly to platforms where a limited supply of heterogeneous
products is matched to users over time. Our main contribution is a complete character-
ization of the structure of the optimal policy in the limit that each worker performs many
jobs. The platform faces a tradeoff for each worker between myopically maximizing
payoffs (exploitation) and learning the type of the worker (exploration). This creates a
multitude of multiarmed bandit problems, one for each worker, coupled together by the
constraint on availability of jobs of different types (capacity constraints). We find that the
platform should estimate a shadow price for each job type and use the payoffs adjusted by
these prices first to determine its learning goals and then for each worker (i) to balance
learning with payoffs during the exploration phase and (ii) to myopically match after it has
achieved its learning goals during the exploitation phase.

Funding: This work was supported by the National Science Foundation [Grants CMMI-1653477, CNS-
1343253, CNS-1544548, and CNS-1931696], the Army Research Office [Grant W911NF-14-1-0526],
and the Simons Foundation.

Supplemental Material: The online appendices are available at https://doi.org/10.1287/opre.2020.2013.

Keywords: matching • learning • two-sided platform • multiarmed bandit • capacity constraints

1. Introduction
A wide range of online platforms serve as match-
makers between demand and supply; for example,
online labor markets match workers to jobs (e.g.,
Upwork for remote work, Handy for houseclean-
ing, Thumbtack and Taskrabbit for local tasks, etc.);
e-commerce platforms match consumers to goods (e.g.,
eBay, Amazon); and online fashion retailers match cli-
ents to clothing items (e.g., Rent The Runway, Stitch
Fix). These platforms are characterized by two salient
features that motivate our work. First, they have a lim-
ited supply available; for example, in online labor mar-
kets, the supplyof jobs is limited,whereas in e-commerce
and online fashion platforms, the supply of goods is
limited. Second, these platforms need to learn enough
about their users (the demand side) to be able tomatch
them to the right units of supply. Our paper addresses
this twin challenge of matching while learning.

The problem we address is a version of the explo-
ration-exploitation tradeoff: on the one hand, efficient

operation involves making matches that generate
the most value (exploitation); on the other hand, the
platform must continuously learn about newly arriving
participants, so that they can be efficiently matched
(exploration). The task is complicated in our setting
because of the fact that supply is limited: matching
a unit of supply to one user renders it unavailable
to other users, an externality that cannot be ignored,
whether exploring or exploiting. In this paper, we
develop a structurally simple and nearly optimal ap-
proach to resolving the exploration-exploitation tradeoff
in settings with limited supply.
For convenience, the terminology in our model will

be inspired by online labor markets: we call the de-
mand side of the platform the workers and the supply
side of the platform the jobs. Jobs are in limited supply
in the platform. Despite this specific terminology, our
model should be viewed as a stylized abstraction
of many platforms where supply is matched to users
in the presence of limited inventory, for example,

1

http://pubsonline.informs.org/journal/opre
mailto:rjohari@stanford.edu
https://orcid.org/0000-0002-3960-0770
https://orcid.org/0000-0002-3960-0770
mailto:kamble@uic.edu
https://orcid.org/0000-0002-9261-1612
https://orcid.org/0000-0002-9261-1612
mailto:ykanoria@gsb.columbia.edu
https://orcid.org/0000-0002-7221-357X
https://orcid.org/0000-0002-7221-357X
https://doi.org/10.1287/opre.2020.2013
https://doi.org/10.1287/opre.2020.2013

via algorithmic recommendation or matching en-
gines. Examples include online commerce and fash-
ion retail platformsmentioned previously and similar
platforms in other industries.

In our model, workers and jobs arrive over discrete
time. Workers depart after N periods, whereas jobs
each take one period for a single worker to complete
(hence each worker performs N jobs over her life-
time). The supply of jobs at each period is limited.
Each time a worker and job are matched, a (random)
payoff is generated and observed by the platform,
where the payoff distribution depends on the worker
type and the job type. (We assume a Bernoulli dis-
tribution for the payoffs.) To incorporate the limited
supply of jobs in the simplest possibleway, ourmodel
considers a continuum of workers and jobs. As a con-
sequence, in our analysis, we find that for a suitable
class of policies, there is stochasticity only at the level
of individual workers and not at the level of the
overall system.

As our emphasis is on the interaction between
matching and learning, our model has several fea-
tures that focus our analysis on that interaction. First,
we assume that the platformcentrally controlsmatching:
at the beginning of each time period, the platform
matches each worker in the system to an available
job. Second, strategic considerations are not modeled;
this remains an interesting direction for future work.
Finally, we focus on the prototypical goal of maxi-
mizing the steady-state rate of payoff generation.
(This is a reasonable proxy for the goal of a platform
that takes a fraction of the total surplus generated
through matches.)

We assume the platform has system-level knowl-
edge of the arrival rates of workers and jobs, as well
as the expected payoff generated when workers
of a given type are matched to jobs of a given type.
However, although we assume job types are known
to the platform, we assume the platform is initially
unaware of any specific worker’s type on arrival. (This
is consistent with the observation that in most plat-
forms, more is known about one side than the other.)

The platform learns about workers’ types through
the payoffs obtained when they are matched to jobs.
This gives rise to the central learning challenge: be-
cause the supply of jobs is limited, using jobs to learn
can reduce immediate payoffs and deplete the supply
of jobs available to the rest of the marketplace. Thus,
the presence of capacity constraints forces us to care-
fully design both exploration and exploitation in the
matching algorithm in order to optimize the rate of
payoff generation.

Our main contribution in this paper is the devel-
opment of a matching and learning policy that is
nearly payoff optimal. Our algorithm is divided
into two phases in each worker’s lifetime: exploration

(identification of the worker type) and exploitation
(optimal matching given the worker’s identified type).
We refer to our policy asDEEM: Decentralized Explore-
then-Exploit for Matching.
DEEM is an algorithm that assigns jobs to workers

over time. We begin by noting that DEEM has a natural
decentralization property: it determines the choice of
job type for aworkerbasedonlyon thatworker’s history
andnot basedonanyotherworkers’ histories. (We note,
however, that DEEM itself is designed with knowl-
edge of the global system-level statistics described
previously.) This decentralization is inspired by the
fact that in large-scale online platforms, matching is
typically carried out on an individual basis. For ex-
ample, if a worker searches for jobs on an online labor
market platform, the platform will generally display
available jobs in a personalized rank order based on
metadata about that worker. (In practice, this decen-
tralization arises in part due to the inherent asynchro-
nous nature of these platforms: workers and jobs ar-
rive continuously over time, and batched centralized
matching may be infeasible as a product design.)
At a high level, DEEM operates as follows during

the lifetime of a given worker. First, DEEM explores to
make a confident estimate of the type of this worker.
This exploration phase consists of two modes: a
guessing mode, where DEEM initially samples job
types uniformly at random to develop a reasonable
maximumaposteriori (MAP) estimate of theworker’s
type; and a confirmation mode, when DEEM chooses
jobs to confirm theMAP type as efficiently as possible.
The exploration phase is followed by an exploitation
phase, during which jobs are assigned based on the
worker type that was confirmed during exploration.
Each of these phases is carefully designed to optimize
the rate of payoff generation while ensuring that
capacity constraints are met.
To develop intuition for our solution, consider a

simple example with two types of jobs (Easy and Hard)
and two types of workers (Expert and Novice). Experts
can do both types of tasks well, but novices can only
do easy tasks well. Suppose that there is a limited sup-
ply of easy jobs: more than the mass of novices avail-
able but less than the total mass of novices and experts.
In particular, to maximize payoff, the platform must
learn enough to match some experts to hard jobs.
DEEM has several key features, each of which can

be understood in the context of this example. First,
because DEEMoperates at the level of a givenworker,
we must ensure that the algorithm nevertheless does
not violate capacity constraints. In particular, it is
essential for the algorithm to account for the exter-
nality to the rest of the market when a worker is
matched to a given job. For example, if easy jobs are
relatively scarce, then matching a worker to such a
job makes it unavailable to the rest of the market.

Johari, Kamble, and Kanoria: Matching While Learning
2 Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS

Our approach is to price this externality: we find
shadow prices for the capacity constraints and adjust
all per-match payoffs downward using these prices.

Second, our algorithm design specifies learning goals
that ensure an efficient balance between exploration
and exploitation. In particular, in our example, we
note that there are two kinds of errors possible while
exploring: misclassifying a novice as an expert and
vice versa. Occasionally mislabeling experts as nov-
ices is not catastrophic: some experts need to do easy
jobs anyway, and so the algorithm can account for
such errors in the exploitation phase. Thus, relatively
less effort can be invested in minimizing this error
type. However, mistakenly labeling novices as ex-
perts can be catastrophic: in this case, novices will
be matched to hard jobs in the exploitation phase,
causing substantial loss of payoff; thus, the proba-
bility of such errors must be kept very small. A major
contribution of our work is to precisely identify the
correct learning goals that determine progression of
the algorithm from the exploration phase to the ex-
ploitation phase and to then design DEEM to meet
these learning goals whilemaximizing payoff generation.

Third, the exploitation phase in DEEM is carefully
constructed to ensure that capacity constraints are
met while maximizing payoffs. A naive approach
during the exploitation phase would match a worker
to any job type that yields the maximum externality-
adjusted payoff corresponding to his type label. It
turns out that such an approach leads to significant
violations of capacity constraints and hence poor
performance. The reason is that in a generic capaci-
tated problem instance, one or more worker types are
indifferent between multiple job types, and appro-
priate allocation across multiple optimal job types is
necessary to achieve good performance. In our the-
oretical development, we achieve this by modifying
the solution to the static optimization problem with
known worker types, whereas our practical imple-
mentation of DEEM achieves appropriate allocation
via simple but dynamically updated shadow prices.

Our main result (Theorem 1) shows that DEEM
achieves essentially optimal regret as the number of
jobs N performed by each worker during her lifetime
grows, where regret is the loss in payoff accumulation
rate relative to the maximum achievable with known
worker types. In our setting, a lower bound on the
regret is (C logN/N)(1+ o(1)) for some C ∈ [0,∞) that
is a function of system parameters (we use the tech-
nicalmachinery developed inAgrawal et al. 1989 for a
related problem to prove this bound). DEEM achieves
this level of regret to leading order when C > 0,
whereas it achieves a regret of O(log logN/N) when
C � 0.

SituationswhereC > 0 are those inwhich there is an
inherent tension between the goals of learning and

payoff maximization. To develop intuition, consider
an expanded version of the previous example, where
each worker can be either an expert or novice pro-
grammer, as well as an expert or novice graphic
designer. Suppose that the supply of jobs is such that
if worker types were known, only expert graphic
designerswho are also novice programmerswould be
matched to graphic design jobs. (This would be the
case, e.g., if there were an excess supply of pro-
gramming jobs, whereas the supply of graphic design
jobs was less than the volume of available workers
who are both expert graphic designers and novice
programmers.) However, if we are learning worker
types, then expert graphic designersmust bematched
to approximately Ω(logN) programming jobs to dis-
tinguish between novice and expert programmers, so
that they can be matched to graphic design and
programming jobs, respectively. Thus, Ω(logN/N)
average regret per period is incurred relative to the
optimal solution with known types. DEEM precisely
minimizes the regret incurred while these distinc-
tions are made, thus achieving the lower bound on
the regret.
Our theory is complemented by a practical heuristic

thatwe call DEEM+,which optimizes performance for
small values of N, an implementation leveraging
queue-length based shadow prices that demonstrates
a natural way of translating our work into practice,
and supporting simulations. In particular, our simula-
tions reveal substantial benefit from jointly managing
capacity constraints and learning, as we do in DEEM
and DEEM+.
The remainder of the paper is organized as follows.

After discussing related work in Section 2, we present
our model and outline the optimization problem of
interest to the platform in Section 3. In Section 4, we
discuss the three key ideas in the design of DEEM and
present its formal definition. In Section 5, we present
our main theorem and discuss the optimal regret
scaling. In Section 5.1, we present a sketch of the proof
of the main result. In Section 6, we discuss the
practical implementation of DEEM and present the
heuristic DEEM+. In Section 7, we use simulations to
compare the performance of DEEM+ with bench-
mark multiarmed bandit algorithms. We conclude in
Section 8. All proofs are in the online appendices.

2. Related Literature
Here we discuss the relationship between our work
and several related threads in the literature on (1) gen-
eral stochastic multiarmed bandits, (2) dynamic pric-
ing and learning, (3) combinatorial bandits, including
bandits with matching constraints, and (4) dynamic
stochastic matching models.
Before surveying these threads of literature, we

note here that in the period since the initial development

Johari, Kamble, and Kanoria: Matching While Learning
Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS 3

of our results, our paper has inspired a subsequent pa-
per (Hsu et al. 2018), which studies a very similar
matching while learning setting and shows near
optimality of a backpressure algorithm similar to the
finite N heuristic DEEM+ that we propose here (see
Sections 6 and 7). Backpressure is a celebrated meth-
odology that prescribes using current queue-lengths as
shadow prices (Tassiulas and Ephremides 1990). Hsu
et al. (2018) goes beyond this paper by showing near
optimality of backpressure in their setting but at a
cost: their bounds on the bandit (learning) problem
are loose with a 1/

̅̅̅
N

√
upper (achievability) bound on

the regret, which is much larger than their logN/N
lower bound. By contrast, our theoretical analysis is
focused on a tight characterization of regret; we ob-
tain tight logN/N bounds on the regret, which match
even in the constant factor.

2.1. Stochastic Multiarmed Bandits
A foundationalmodel for investigating the exploration-
exploitation tradeoff is the stochastic multiarmed bandit
(MAB) problem (Lai and Robbins 1985, Gittins et al.
2011, Bubeck and Cesa-Bianchi 2012, Lattimore and
Szepesvári 2020). The goal in this problem is to find an
adaptive expected-regret-minimizing policy for choos-
ing among arms with unknown payoff distributions,
where regret is measured against the expected payoff of
the best arm (Lai and Robbins 1985, Auer et al. 2002,
Agrawal and Goyal 2012).

The closest work in this literature to the MAB
problem we tackle is by Agrawal et al. (1989). In their
model, they assume that the joint vector of arm dis-
tributions can only take on one of finitely many
values. This introduces correlation across different
arms. Depending on certain identifiability conditions,
the optimal regret is either Θ(1/N) or Θ(logN/N). In
our model, the analog is that job types are arms, and
for each worker, we solve a MAB problem to identify
the true type of a worker from among a finite set of
possible worker types. In fact, the model of Agrawal
et al. (1989) is a special case of our model with no
capacity constraints on jobs. Like us, they study the
limit N → ∞ and find a policy that achieves regret
that is optimal to leading order asN → ∞. To the best
of our knowledge, their result remains the state of the
art in their setting. Capacity constraints are of course
the innovation and focus of the present paper. No-
tably, our main result generalizing that of Agrawal
et al. (1989) to allow capacity constraints is as sharp as
the result they obtained in their much simpler setting in
the casewhere there is a tension between learning and
exploitation (i.e., the casewhere regret isΘ(logN/N)).

As demonstrated in Agrawal et al. (1989), the key to
attaining the instance-dependent optimal leading-
order regret in such multiarmed bandit problems is
the following intuition. Given a potential true model,

there is a regret-optimal policy that distinguishes this
model from all competingmodels that entail different
optimal decisions (defined as the optimal solution to
the optimization problem expressed in (36)). Hence,
to minimize regret, the challenge is to use this model-
specific regret-optimal policy to learn the true model,
without apriori knowing the truemodel. This isprecisely
the challenge we tackle using the guess-then-confirm
approach in the exploration phase of DEEM. Recently,
Modaresi et al. (2020) have addressed a similar chal-
lenge in a general combinatorial bandit setting.
On a related note, Massoulié and Xu (2018) study a

pure learning problem in a setting similar to ourswith
capacity constraints on each type of server/expert;
although there are some similarities in the style of
analysis, that paper focuses exclusively on learning
the exact type rather than balancing exploration and
exploitation as we do in this paper.

2.2. Dynamic Pricing and Learning
Some of the techniques used in our work have par-
allels in works on dynamic pricing and learning with a
finite inventory of products (for a recent comprehensive
survey of dynamic pricing and learning, see den Boer
2015). These are essentially MAB problems where the
decisions involve choosing product prices dynami-
cally over a selling horizon, with a capacity constraint
arising from the finite inventory. A typical approach
in these settings is to consider a regimewhere both the
inventory and the demand grow large (although there
are exceptions, notably den Boer and Zwart 2015).
This is similar to the regime we consider for our
technical results, which is equivalent to having both
the job arrival rates and the worker lifetimes simul-
taneously approach infinity.1 Such a regime was first
analyzed in the case of a single product in Besbes and
Zeevi (2009), which proposed algorithms with an
explore-then-exploit structure for settings with both
parametric and nonparametric uncertainty. A more
sophisticated algorithm that mixes exploration and
exploitation with an improved regret performance in
both settings is presented inWang et al. (2014). Besbes
and Zeevi (2012) and, recently, Ferreira et al. (2018)
extend the analysis to network revenue management
settings involving multiple products using multiple
resources with finite inventories. More generally, a
recently proposed formulation for MAB problems
with capacity constraints, broadly referred to as bandits
with knapsacks (Badanidiyuru et al. 2013) and its ex-
tensions (Agrawal and Devanur 2014, Badanidiyuru
et al. 2014, Agrawal et al. 2016, Agrawal and Devanur
2019), subsume several problems in revenue man-
agement under demand uncertainty (see Sauré and
Zeevi 2013 and Babaioff et al. 2015 in addition to the
models discussed previously).

Johari, Kamble, and Kanoria: Matching While Learning
4 Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS

The algorithms designed in all these works criti-
cally leverage the solution to the optimal pricing
problem in the full information setting in a deterministic
world where stochastic quantities are replaced by their
means. Similar to these works, we also crucially use the
full information optimal assignment problem (which is a
linearprogram inour case), and inparticular, the optimal
shadow prices for the jobs from the dual of this opti-
mization problem, in determining the job assignments
under DEEM. It is known that simply using the optimal
price corresponding to the best model estimate from
the obtained information at any step (also known as
certainty equivalent control) can potentially lead to in-
complete learning and hence linear regret (see prop-
osition 1 in den Boer and Zwart 2014). Thus, judicious
experimentation with prices is necessary.

In a similar fashion, naively using the optimal
shadow prices from the full information optimization
problem to greedily assign jobs based on current
estimates of the worker type typically leads to linear
regret in our setting (see fact 1 in Section 4.1). The
problem is twofold in our case: the issue is not only
that learning may stop prematurely under such a
policy but also that appropriate allocation across
multiple optimal job types is typically necessary in our
setting to satisfy capacity constraints. Thus, a good
algorithm in our setting needs to achieve both goals,
judicious experimentation and effective allocation
across optimal assignments, to achieve low regret. In
fact, we go one step further, obtaining a policy that
achieves not just sublinear but near-optimal regret.

Another key difference in our work compared with
these models is that they consider a single MAB
problem over a fixed time horizon. Our setting on the
other hand can be seen as a system with an ongoing
arriving stream of MAB problems, one per worker,
that are coupled together by the capacity constraints
on arriving jobs.

2.3. Bandits with Matching Constraints and
Combinatorial Bandits

SeveralMABproblemswithmatching constraints can
be seen as instances of a larger class of models typi-
cally referred to as combinatorial bandits (Gai et al.
2010, 2012; Liu and Zhao 2012; Chen et al. 2013; Sauré
and Zeevi 2013; Kveton et al. 2015). Considering the
problem of matching all the workers that exist on a
platform to the set of available jobs in a particular time
period, one can think of the combinatorial set of all
possiblematchings as being the arms in aMAB setting
(sometimes called superarms); this formulation is the
closest to the one in Gai et al. (2010). Several works
have looked at exploiting the structure of such prob-
lems in various settings to yield efficient learning algo-
rithms (Gai et al. 2010, Liu and Zhao 2012, Sauré and
Zeevi 2013).

In our case, there are two key aspects that make
such a reduction to combinatorial bandits infeasible.
First, the number of workers and jobs on real-world
platforms is large, and hence the number of possible
matchings is prohibitively large, even when one ac-
counts for limited variety in job types (worker types
are unknown and there is a vast heterogeneity in
worker histories). Thus, decentralization is critical to
obtaining a practically feasible solution, which is a
feature rarely seen in combinatorial bandit algo-
rithms. Second, the fact that the workers are arriving
and leaving asynchronously means that the set of
possible matchings, and hence the set of combina-
torial arms, is changing over time, which is another
feature that is relatively uncommon in the extant
literature. An example is Chakrabarti et al. (2009), who
consider this problem in a noncombinatorial setting.

2.4. Other Dynamic Stochastic Matching Models
We briefly discuss a few other directions that are
related to this paper. There are a number of recent
studies that consider efficient matching in dynamic
two-sided matching markets (Damiano and Lam 2005,
Das and Kamenica 2005, Akbarpour et al. 2014,
Anderson et al. 2015, Kadam and Kotowski 2015, Hu
and Zhou 2018, Baccara et al. 2020, Kurino 2020,
Ozkan and Ward 2020). A related class of dynamic
resource allocation problems, online bipartite matching,
is also well studied in the computer science community
(see Mehta 2012 for a survey). Similar to the present
paper, Fershtman and Pavan (2017) also studymatching
with learning, mediated by a central platform. Relative
to our model, their work does not have constraints on
the number of matches per agent while it does consider
agent incentives.

3. The Model and the
Optimization Problem

In this section we first describe our model. In par-
ticular, we describe the primitives of our platform
(workers and jobs) and give a formal specification of
the matching process we study. We conclude by pre-
cisely defining the optimization problem addressed in
this paper.
A key aspect of our approach is that we consider a

model with a continuum of workers in the system. The
policies we propose for matching workers to jobs will
recommend a job type independently for eachworker
as a function of the history of that worker alone. In our
analysis, we leverage the general framework pro-
vided by (Sun 2006, section 2.4), which provides a
formal mathematical basis for a continuum of inde-
pendent stochastic processes, including the exact law
of large numbers (ELLN) for cross-sectional averages
(theorem 2.16 of Sun 2006). Informally, applying this

Johari, Kamble, and Kanoria: Matching While Learning
Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS 5

framework allows the interchange of worker-level
probabilistic statements with population-level state-
ments about the evolution of the cross-sectional worker
measure over time, yielding the tractable (though
challenging) optimization problem we study in this
paper (see Section 3.4). We apply the ELLN through-
out our development below to yield such interchanges,
as appropriate.

3.1. Preliminaries: A Continuum Model
In this section, we describe the basic model that we
work with.

3.1.1. Time. Weassume that time is discrete t � 0, 1, 2,

3.1.2. Probability Space. We fix a probability space
(Ω,F ,P). An element ω ∈ Ω is a state of the world. All
randomness throughout our development below is
resolved by the state of the worldω ∈ Ω. An event is a
measurable subset B of Ω (that is, an element of F),
whose probability is P(B). Any statements of events
occurring “with probability 1” refer to almost sure
events with respect to the measure P.

3.1.3. Workers and Jobs. For convenience we adopt
the terminology ofworkers and jobs to describe the two
sides of themarket. Each job in the system is of one of a
fixed finite set of job types J , and each worker in the
system is one of a fixed finite set of worker types I . We
consider a continuum model with infinitesimal workers
and jobs and thus refer to masses of workers and jobs.
Informally, this approach is intended to capture a
large market, that is, where many workers and jobs
are present at each time step.

We assume a fixed unit mass of workers; we view
the space of workers as a measure space, endowed
with the Lebesgue measure on [0, 1] and the Borel
σ-algebra. Each element g ∈ [0, 1] represents a worker.
Sun (2006) provides a Fubini extension of the product
measure corresponding to the worker measure space
and the probability space (Ω,F ,P); this extension is,
roughly, a rich enough probability measure on the
product space such that the Fubini property holds.
We leverage this extension in our development.

We wish to model a process by which workers
arrive and depart from the system; however, for
technical simplicity,we alsowish to consider a system
where the mass of workers remains finite at all times.
To achieve both goals, we consider a system where
eachworker regenerates after everyN time periods;we
refer to N as the lifetime of a worker.2 We assume the
platform knows N.

Formally, fix a distribution ρ over worker types,
that is, ρi > 0 ∀i ∈ I such that

∑
i∈I ρi � 1. We assume

that the system initially starts empty prior to t � 0, and
in each time period t � 0, . . . ,N − 1, a mass 1/N of

workers arrives to the system. (In what follows, we
ultimately consider a steady-state analysis of the dy-
namical system, and initial conditions will be irrelevant.)
Each worker is of type i with probability ρi; these re-
alizations are independent across workers.3 No fur-
ther arrivals take place after time period N. Instead,
each worker subsequently regenerates every N pe-
riods after their arrival: at a regeneration time, the
worker type is resampled from the distribution ρ; that
is, the new type is i with probability ρi, and these
regenerations are also independent across workers
and across time. The ELLN (theorem 2.16 of Sun 2006)
ensures that, at each time t subsequent to time N, the
mass ofworkers of type i in the system is exactly ρi. (In
what follows, we will consider the scaling regime
where ρi is held constant and N → ∞.) When the
meaning is clear from the context, we sometimes refer
to a worker type regeneration as an arrival. Corre-
spondingly, we sometimes refer to ρi as the arrival
rate of workers of type i.
Each worker has the opportunity to do at most one

job during each time period of their lifetime. We as-
sume that in each time period a mass μj > 0 of jobs of
type j arrive to be matched to workers; each job lives
for only a single time period; we call μj the capacity
constraint of job type j. The platform’s matching policy
determines how workers are matched to jobs; we
elaborate further on matching policies later.
We assume that type uncertainty exists only for

workers; that is, the platform knows the types of
arriving jobs exactly, but only knows that each newly
arrived worker has independently and identically
distributed (i.i.d.) type with distribution ρ and needs
to learn the types of workers. We also assume that the
arrival rates of jobs (μj)j∈J and the distribution of
worker types (ρi)i∈I are known to the platform.

3.1.4. Matching and the Payoff Matrix. If a worker
of type i ∈ I is matched to a job of type j ∈ J , then
the resulting match, independent of everything else,
generates a Bernoulli rewardwith success probability
A(i, j) ∈ [0, 1]. The matrix A thus characterizes com-
patibility between workers and jobs. We call the
matrix A the payoff matrix. Throughout, we assume
that no two rows of A are identical. (This mild re-
quirement simply ensures that it is possible, in prin-
ciple, to distinguish between each pair of worker
types.) Because we will only be concerned with the
long-run rate of payoff generation, we do not concern
ourselves with the division of this payoff between
workers and employers. We assume that realized
payoffs are observed by the platform.
For ease of exposition, we define an empty job type

κ, such that all worker types matched to κ generate
zero reward, that is, A(i, κ) � 0 for all i. We view κ
as representing the possibility that a worker goes

Johari, Kamble, and Kanoria: Matching While Learning
6 Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS

unmatched, and thus assume that an unbounded
capacity of job type κ is available, that is, μκ � ∞. We
assume that κ is included in J .

A key assumption in our work is that the platform
knows thematrixA. In particular, we are considering a
platform that has enough aggregate information to
precisely decipher the compatibility between differ-
ent worker and job types.

We note here that a platform can estimate μ, ρ, and
A from data: the job arrival rates μ can be directly
estimated empirically because job types are observed,
whereas the worker arrival rates ρ and payoff matrix
A can be indirectly estimated using the observed out-
come data as described in Online Appendix EC.1.1.

3.1.5. Generalized Imbalance. Throughout our tech-
nical development, we make a mild structural as-
sumption on the problem instance, defined by the
tuple (ρ, μ,A). This is captured by the following
definition. We say that arrival rates ρ � (ρi)i∈I and μ �
(μj)j∈J satisfy the generalized imbalance condition if
there is no pair of nonempty subsets of worker types
and job types (I ′,J ′), such that the total worker ar-
rival rate of I ′ exactly matches the total job capacity
of J ′. Formally,∑

i∈I ′
ρi 	�

∑
j∈J ′

μj ∀I ′ ⊆ I ,J ′ ⊆ J ,I ′ 	� φ. (1)

The generalized imbalance condition holds generically.4

This condition does not depend on the matrix A. (The
condition will ensure that the shadow prices corre-
sponding to capacity constraints under full infor-
mation are uniquely determined; see Proposition 3.)

3.2. Matching Policies and Platform Objective
A matching policy is what the platform uses to match
jobs to workers. Informally, we model the following
process. The operator knows, at any point in time, the
history of each worker in the platform, and also
knows the job arrival rates μj for j ∈ J . The matching
policy of the platform decides how to match workers
and jobs; in particular, it decides which job type each
worker is assigned to, while respecting the capacity
constraints on job types.

With this intuition in mind, we now formally
define a matching policy, and then define the plat-
form’s goal: to choose a matching policy that maxi-
mizes the long-run average rate of payoff generation.

3.2.1. Worker History. To define the state of the system
and the resulting matching dynamics, we need the
notion of a worker history; informally, this is the full
history of a given worker since her last regeneration.
Formally, a worker history of length k is a tuple Hk �
((j1, r1), . . . , (jk, rk)), where jk′ is the job type this worker

was matched to at her k′th time step in the system
since her last regeneration, for 1≤ k′ ≤ k; and rk′ ∈ {0, 1}
is the corresponding reward obtained. Because workers
persist forN jobs between regenerations, the histories
will have lengths k � 0, . . . ,N − 1.WeuseH to denote a
generic history.We letφdenote the empty history (for
k � 0). We let H � ∪N−1

k�0 (J × {0, 1})k denote the set of
possible histories.

3.2.2. Full System State. The full system state (also
referred to as the full state or simply the state) at time t
is a mapping from workers to their histories and true
types, ξt : [0, 1] → H × I .

3.2.3. Observable System State. The platform is not
able to observe the true type of aworker; in particular,
for any g ∈ [0, 1], the platform only observes the
history of the worker g. Define ξ̂t : [0, 1] → H as the
projection of the full state ξt onto the set of historiesH;
this is the observable state at time t. Any policy the
platform implements must depend on only the ob-
servable state.
Recall that the system starts with no workers in the

system before time t � 0. Our subsequent develop-
ment will ensure that ξ̂t is Borel measurable with
probability 1 for all times t � 0, 1,

3.2.4. Matching Policy. The platform uses a matching
policy to assign each worker to a job type in J (recall
that we think of unmatched workers as being matched
to the empty job type κ). As mentioned previously, we
assume that any mass of jobs left unmatched in a
given period disappears at the end of that period,
although our results do not depend on this assumption.
Fix N, and recall that the platform is assumed to
know N.
Formally, a matching policy is a mapping, for each t,

from the observable states ξ̂t to assignments of workers
to job types. We restrict attention to matching policies
such that for all t � 0, 1, . . . and for any measurable ξ̂t,
with probability 1, the set of workers with each his-
tory in H assigned to each job type in J is Borel
measurable; we refer to these as measurable match-
ing policies.
Furthermore, we restrict attention to matching

policies that are capacity feasible; a policy is capacity
feasible if, for all t ∈ N and for anymeasurable ξ̂t, with
probability 1, the set of workers assigned to each job
type jhasmass (i.e., Lebesguemeasure), nomore than
the capacity μj for each j ∈ J .
The matching policy can choose a randomized as-

signment; in this case, all relevant randomness used by
the policy is encompassed by ω, the state of the world.
The definition of a matching policy and the defi-

nitions of measurability and capacity feasibility all

Johari, Kamble, and Kanoria: Matching While Learning
Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS 7

appeal only to the notion of the observable state.
We also note in passing that the platform can define a
matching policy and check that it is measurable and
capacity feasible even without knowing A and ρ.

3.2.5. System Dynamics. Next, we will describe the
system dynamics; we subsequently use these to specify
the platform objective.

Fix a matching policy. In each period t, for each
worker g (with history denoted by H), the matching
policy determines the job type j assigned to that
worker. If that worker is actually of type i, then the
realized payoff is r ∼ Bernoulli(A(i, j)) and the new
history of g becomes (H, (j, r)) (if g does not regener-
ate); otherwise, the payoff accrues but g regenerates
to an empty history with true type resampled (in-
dependently) from distribution ρ.

By the same Fubini extension of Sun (2006), for any
measurable matching policy π, the set of workers of
historyHwith true type i assigned to job type jwill be
Borel measurable with probability 1 at all times t; for
policy π, call this mass mπ,t(H, i, j). Then it follows by
the ELLN of Sun (2006) that the reward generated
from these assignments at time t is mπ,t(H, i, j)A(i, j).
For a general policyπ, themassmπ,t(H, i, j) is a random
variable. Also observe that for any candidate policyπ,
the platform can compute the distribution of mπ,t(H, i, j)
and hence the reward generated using its knowledge
of A and ρ. (The platform can perform this compu-
tation offline for any candidate policy, notwith-
standing the fact that the true worker types are
unobservable.) For brevity we skip the details of
the computation for general policies but provide
the full calculation for the sufficient subclass of
policies that we identify in the next section.

For later reference, we let xπ,t(i, j) be the derived
(random) quantity representing the fraction of workers
of true type imatched to jobs of type j at time t under
policyπ; we refer to xπ,t as the routingmatrix at time tof
policy π. This is a (row) stochastic matrix for each t;
that is, each row sums to 1. For times t ≥ N − 1, the
mass of workers of true type i in the system is exactly
equal to ρi. Therefore, for t ≥ N − 1, it follows that
xπ,t(i, j) � 1

ρi

∑
H∈H mπ,t(H, i, j).

3.2.6. Platform Objective: Rate of Payoff Generation.
Recall that each worker generates a payoff of 1 or 0,
in each period. The platform then aims to maximize
the long-run average of the mass of workers who
generate a payoff of 1 in each period. (This choice of
objective is the analog of the total payoff per period
objective in a settingwithfinitelymanyworkers.) As a
result of the ELLN of Sun (2006), the long-run average
rate of payoff generation is identical to the long-run
average of

∑
i∈I

∑
j∈J A(i, j)∑H mπ,t(H, i, j).

The long-run average may not exist for an arbitrary
measurable policy, and so formally we define the
objective as the limit inferior of the expectation of
this quantity:

V π() � lim inf
T→∞ E VT π()[], (2)

where VT π() � 1
T

∑T
t�1

∑
i∈I

ρi
∑
j∈J

xπ,t i, j
()

A i, j
()

. (3)

In the definition of VT, we make the substitution that
ρixπ,t(i, j) � ∑

H∈H mπ,t(H, i, j), because the latter rela-
tion holds for all t ≥ N. The goal is to find policies that
maximize this objective. As per our earlier remark, the
platform is able to compute offline the objective value
V(π) for any candidate policy π, even though the true
worker types are unobservable.

3.3. Worker-History-Only Policies
In general, policies may be time-varying, and may
have complex dependence on the observable state ξ̂t.
In this section, we introduce a much simpler class of
policies that we call worker-history-only (WHO) poli-
cies. These are policies where, as a function of the
history of each individual worker, a job type is drawn
independently from a given distribution, which does
not depend on time or on the identity of the worker or
on the state of the rest of the system.
Formally, aWHOpolicy is associatedwith amapping

π : H → ΔJ , where ΔJ denotes the probability sim-
plex of distributions on J . (Thus, for WHO policies,
we have chosen to identify the notation π with the
mapping that defines the policy.) For each worker g
with current history H, the job type for g is sampled
from the distributionπ(H), independently of the other
workers.We use π(H, j) to denote the jth coordinate of
π(H).WHOpolicies are anonymous; that is, they do not
depend on the worker’s index. We let ΠN denote the
class of WHO policies, for a given N.
The platform operator may choose the mapping π

using information available in aggregate, such as the
payoff matrix A, the worker type distribution ρ, and
the arrival rates of jobs μ. However, the only way that
observable state information influences the online
matching of a worker to a job in a WHO policy is
through the history of the individual worker. For
example, suppose that the platform uses a multi-
armed bandit algorithm at the level of an individual
worker’s history to determine the next job they are
matched to; in our model this would be a WHO
policy. In this sense, WHO policies are decentralized in
their assignment of intended job types.
In the remainder of the section, we specialize our

model to WHO policies; as we show, this yields a
substantially more tractable setting. Observe that, a

Johari, Kamble, and Kanoria: Matching While Learning
8 Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS

priori, there is no guarantee that a WHO policy will
respect the capacity constraints on jobs.5 To handle
this issue, we begin by ignoring capacity constraints;
we define the state dynamics and steady-state of a
WHO policy, and use this to identify the steady-state
rate of payoff generation for such policies. We then
characterize the subclass of WHO policies such that
capacity constraints are satisfied. Finally, we make
the important observation that we may restrict at-
tention to WHO policies essentially without loss of
optimality (see Proposition 2). For this reason, in the
sequel, we focus on finding approximately optimal
WHO policies.

Steady state of a WHO policy π. Assume no capacity
constraints, i.e., μj �∞ for all j. BecauseWHOpolicies
are anonymous, in analyzing WHO policies it is
convenient to work instead with a reduced state νt,
called the system profile, which only measures the
aggregate mass of workers with history H and true
type i just before period t, for each pair (H, i). For-
mally, νt(H, i)≜ |ξ−1t (H, i)|, where | · | denotes the Leb-
esgue measure of the set. As before, we emphasize
that this system profile is not observable to the platform,
as it does not know the true types of workers. Note that,
using the ELLN of Sun (2006), w.p. 1, we have that
mπ,t(H, i, j) � νt(H, i)π(H, j) is the total mass of workers
of true type iwith history H who are assigned to jobs
of type j at time t.

The system dynamics are as follows. Because the
system starts empty before t � 0, we have

ν0 H, i() � 0 for all non-empty histories
H ∈ H\ φ

{ }
and all i.

(4)

Worker arrivals and type regenerations lead to

νt φ, i
() � ρi/N for all t ≥ 0 (5)

For all i, j, t ≥ 1, and historiesH ∈ H of length ≤ N − 2,
we have

νt H, j, 1
()()

, i
() � νt−1 H, i()π H, j

()
A i, j
()

; (6)
νt H, j, 0

()()
, i

() � νt−1 H, i()π H, j
()

1 − A i, j
()()

. (7)
Because π and ρ are time independent, the dynamics
(4)–(7) yield a unique steady state after N − 1 time
periods; that is, νs � νt for all s, t ≥ N − 1 w.p. 1.
Abusing notation, we use νπ to denote the steady-state
system profile induced by the WHO policy π. The
steady-state can be inductively computed over his-
tories of increasing length: for the empty history φ of
length zero, we have

νπ φ, i
() � ρi/N. (8)

Then for any history H of length 0, . . . ,N − 2, we have

νπ H, j, 1
()()

, i
() � νπ H, i()π H, j

()
A i, j
()

; (9)
νπ H, j, 0

()()
, i

() � νπ H, i()π H, j
()

1 − A i, j
()()

. (10)

Routing matrix of a WHO policy π. In steady state, π
induces a time-independent fraction xπ(i, j) of the
mass of workers of true type i that are assigned to type
j jobs in each time step. In particular,

xπ i, j
()

≜
∑

H∈H νπ H, i()π H, j
()∑

H∈H νπ H, i() �
∑

H∈H νπ H, i()π H, j
()

ρi
.

(11)
Let

XN ≜ xπ : π ∈ ΠN{ } ⊆ 0, 1[]|I |×|J | (12)
be the set of (steady-state) routingmatrices achievable
(when each worker does N jobs) by WHO policies,
that is, for π ∈ ΠN . Again, we emphasize that capacity
constraints are ignored in the definition of XN . In
Online Appendix EC.1.4, we show the following.

Proposition 1. The set XN is a convex polytope.

Steady-state rate of payoff generation of a WHO policy π.
Recall the T-period average payoff generation rate
defined in (3). Because aWHOpolicy is in steady state
for all t ≥ N − 1, it follows that for such a policy the
limit limT→∞ VT exists and is equal to the following
steady-state rate of payoff generation WN(π):

WN π()≜ ∑
i∈I

ρi
∑
j∈J

xπ i, j
()

A i, j
()

. (13)

w.p. 1, this is the payoff generated per time step in
steady-state by the policy π across the entire pop-
ulation of jobs and workers, because xπ(i, j) is the
fraction of workers of true type i matched to jobs of
type j, and A(i, j) is the fraction of these matches that
generate a unit reward. In the sequel, our goal will be
to maximize this rate of payoff generation.

3.3.1. Satisfying Capacity Constraints. We now return
to enforcing the capacity constraints, i.e., μj < ∞ for
j 	� κ. In our analysis, we restrict attention to WHO
policies that satisfy capacity constraints. Given the above
definitions, this is straightforward: we restrict at-
tention to WHO policies π ∈ ΠN such that the steady-
state routingmatrix xπ does not require anymore than
mass μj of jobs of type j:∑

i∈I
ρixπ i, j

() � ∑
i∈I

∑
H∈H

νπ H, i()π H, j
() ≤ μj ∀j ∈ J .

(14)

Johari, Kamble, and Kanoria: Matching While Learning
Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS 9

Any WHO policy π that satisfies this constraint will
ensure that the capacity constraints are satisfied by
the implied assignment in steady-state (i.e., for t ≥ N − 1)
w.p. 1 by the ELLN of Sun (2006). In fact, because we
assume the system starts empty, the following lemma
establishes that for any such policy, w.p. 1, capacity
constraints are never violated. The lemma is proved in
Online Appendix EC.1.2.

Lemma 1. Recall that the system starts empty, i.e.,
ν0(H, i) � 0 for all H 	� φ, i ∈ I . Suppose that the WHO
policy π satisfies (14). Then at all times t � 0, 1, . . ., w.p. 1,
the implied assignment satisfies the capacity constraint;
i.e., at each time t and for each job type j, the mass of workers
matched to jobs of type j does not exceed μj:∑

i∈I

∑
H

νt H, i()π H, j
() ≤ μj ∀j ∈ J . (15)

Furthermore, the system reaches steady-state at t �
N − 1 and remains in steady-state for all t ≥ N − 1.

3.3.1.1. Optimality of WHO Policies. We now establish
that the restriction to WHO policies is without loss of
optimality. Recall that VT(π) as defined in (3) is the
T-period average payoff achieved by the (arbitrary,
possibly time-varying) measurable and capacity-feasible
policy π. Hence, the largest possible asymptotic rate
of payoff accumulation under policy π is V(π)≜
limsupT→∞E[VT(π)]. The next proposition establishes
that a WHO policy exists that satisfies capacity con-
straints and yields a steady-state rate of payoff gen-
eration arbitrarily close to V(π). The proof can be
found in Online Appendix EC.1.3.

Proposition 2. Fix A, ρ, μ, and N. Fix any feasible policy π
and any ε > 0. Then there is a worker-history-only (WHO)
policy satisfying (14) that achieves a steady-state rate of
payoff accumulation exceeding V(π) − ε.

3.4. The Optimization Problem
We are now in position to state our optimization
problem of interest. We want to find a WHO policy π
that maximizes the steady-state rate of payoff gen-
erationWN(π), subject to the capacity constraints (14).
Formally, we have the following problem:

maximize WN π()≜ ∑
i∈I

ρi
∑
j∈J

xπ i, j
()

A i, j
()

; (16)

subject to
∑
i∈I

ρixπ i, j
() ≤ μj ∀j ∈ J ; (17)

xπ ∈ XN . (18)
BecauseXN (defined in (12)) is a convex polytope, this
is a linear program, albeit a complex one. The com-
plexity of this problem is hidden in the complexity of

the set XN , which includes all possible routing matrices
that can be obtained using WHO policies π ∈ ΠN . The
remainder of our paper is devoted to solving this
problem and characterizing its value by considering
an asymptotic regime where N → ∞.

3.5. The Benchmark: Full Information Setting
We evaluate our performance relative to a natural
benchmark: the maximal rate of payoff generation
possible if worker types are perfectly known upon
arrival. We will refer to this as the full information
setting. In this case, any (row) stochastic matrix is
feasible as a routing matrix. LetD denote the set of all
row stochastic matrices:

D � x ∈ R|I |×|J | : x i, j
() ≥ 0;

∑
j∈J

x i, j
() � 1

{ }
. (19)

Any routingmatrix inD is implementable by a simple
policy if worker types are perfectly known: given a
desired routing matrix x ∈ D, at each time step t we
match a fraction x(i, j) of workers of type i to jobs of
type j.
Thus, with known worker types, the maximal rate

of payoff generation is given by the solution to the
following optimization problem:

maximize
∑
i∈I

ρi
∑
j∈J

x i, j
()

A i, j
()

; (20)

subject to
∑
i∈I

ρix i, j
() ≤ μj ∀j ∈ J ; (21)

x ∈ D. (22)
We let V∗ denote the maximal value of the preceding
optimization problem and let x∗ denote the solution
(breaking ties arbitrarily). We further use J ∗

full to
denote the set of fully utilized job types

J ∗
full ≜ j ∈ J :

∑
i∈I

ρix∗ i, j
() � μj

{ }
. (23)

This linear program is a special case of the static
planning problem that arises frequently in the opera-
tions literature (Ata and Kumar 2005). The problem
can also be viewed as a version of the assignment
problem of Shapley and Shubik (1971), in which the
resources are divisible. We denote the shadow prices
associated with the capacity constraints (21) by6 p∗ �
(p∗j)j∈J . We prove the following fact about these prices
in Online Appendix EC.1.5.

Proposition 3. Under the generalized imbalance con-
dition (1), the job shadow prices p∗ are uniquely
determined.

As we shall see, these uniquely defined prices p∗
will be key to our solution to the problem.

Johari, Kamble, and Kanoria: Matching While Learning
10 Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS

3.6. Regret
We evaluate the performance of a given policy in
terms of its regret relative to V∗. In particular, givenN
and a WHO policy π satisfying (14), we define the
regret of π as V∗ −WN(π).

We focus on the asymptotic regime where N → ∞
and try to find policies that have small regret in this
regime. This asymptotic regime provides tractability,
allowing us to identify structural aspects of policies
that perform well. In particular, we focus on devel-
oping policies that achieve a nearly optimal rate at
which the regret V∗ −WN(πN) approaches zero.

3.7. Summary
We summarize our model as follows.

• The platform chooses a matching policy. In par-
ticular, without loss of optimality, it chooses a WHO
policy π.

• The policy π induces a steady-state system pro-
file νπ and associated steady-state routing matrix xπ;
that is, at all times t ≥ N − 1, the system profile is νπ
and the mass of workers of type i matched to jobs of
type j is xπ(i, j).

• The steady-state routing matrix xπ induces a
steady-state rate of payoff generation WN(π).

• The regret of the policyπ isV∗ −WN(π).We focus
on finding WHO policies that yield low regret.

4. Decentralized Explore-Then-Exploit for
Matching (DEEM): A
Payoff-Maximizing Policy

In this section, we present our proposed policy DEEM:
Decentralized Explore-then-Exploit for Matching. Our
main result (Theorem 1) will quantify the regret per-
formance of DEEM and characterize it as nearly opti-
mal. DEEM is formally defined in Figure 1 with sup-
porting definitions in Figure 2. To assist the reader,we
provide an informal schematic of DEEM in Figure 3.

DEEMoperates individually on everyarrivingworker;
in fact DEEM is a WHO policy (WHO policies were
defined in Section 3.3). As shown in Figure 3, DEEM is
divided into two phases: Explore and Exploit. In the
Explore phase the policy efficiently learns the type of
the worker with appropriate confidence and gener-
ates a type label. In the Exploit phase, the algorithm
focuses on payoff maximization for the given type
label in a manner that accounts for system-level ca-
pacity constraints.

The Explore phase involves two possible modes of
operation: Guessing and Confirmation, and starts in
Guessing mode. The Guessing mode is in effect when
there is not enough confidence in the maximum a
posteriori (MAP) estimate of the worker type based
on the observations so far (condition (a) in Figure 3). It
assigns the worker to job types uniformly at random

and aims to build confidence in the MAP estimate.
The Confirmation mode is in effect when there is
sufficient confidence in the MAP estimate to merit
focusing on confirming that it is indeed the true type,
but not enough to actually start exploiting (condi-
tion (b) in Figure 3). In this mode, DEEM boosts the
confidence that the guessed type is correct, trying to
rule out types in the carefully defined set Str(MAP)
(defined in Figure 1, Equation (24)) that must be
distinguished to facilitate exploitation. It achieves
this goal while minimizing the loss in payoff by
sampling job types from an appropriate distribution
α(MAP), defined in Figure 2. Once an appropriate
confidence level is reached in the MAP estimate (con-
dition (c) in Figure 3), the worker is labeled according
to this estimate and the algorithm permanently enters
the Exploit phase, in which the label is treated as the
true type of the worker.
DEEM uses externality adjustments on payoffs to

capture the effect of system-wide aggregate capacity
constraints. These adjustments are achieved by using
shadow prices p∗ for the capacity constraint (21) in the
problem with known worker types. Under these
adjusted payoffs, a particular worker type may have
multiple optimal job types. Appropriate tie-breaking
across these types in the Exploit phase is necessary to
satisfy the aggregate capacity constraints. This is
achieved by using a specifically designed routing
matrix y∗, which is a perturbed version of the solution
x∗ to the problemwith knownworker types (20)–(22).
The matrix y∗ is defined in Figure 2, and the following
proposition shows the existence of y∗ satisfying the
conditions specified in the figure.

Proposition 4. Suppose that the generalized imbalance
condition is satisfied. Then, for anyN large enough, there
exists a feasible routingmatrix y∗ such that (27)–(31) hold.
The proof is in Online Appendix EC.2.2 and shows,

moreover, that as N → ∞, a vanishing fraction of
workers are in the Explore phase, that is, mxplr(i, j) �
o(1) ∀i ∈ I , j ∈ J , which a vanishing fraction ofworkers
are mislabeled at the end of the Explore phase, that is,
l(i, i′) � o(1) ∀i 	� i′ ∈ I , and that there is a small per-
turbation of x∗ that is a feasible solution to (27)–(31),
that is, y∗ � x∗+ o(1).
In the next section, we use an example to illustrate

the operation of DEEM. Before we continue, we make
three important remarks.

Remark 1 (DEEM Is aWHO Policy). Observe that DEEM
as defined in Figure 1 is a WHO policy; in other words,
DEEM defines a mapping from workers’ histories to a
distribution over job types. The input parameters are
the model primitives, which are then used to precom-
pute the derived quantities p∗, (Str(i))i∈I , (α(i))i∈I , and
y∗; these are all functions of model primitives only, with

Johari, Kamble, and Kanoria: Matching While Learning
Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS 11

no dependence on the current system state. For any
individual worker, the control logic of DEEM relies
only on the posterior λ(·), the current MAP estimate,
and Label, all of which are functions of the history of

the individual worker. Before Label is set, job types are
drawn using EXPLORE(), whereas after it is set, job types
are drawn using EXPLOIT(). These functions again con-
struct a job type distribution based only on the history of

Figure 1. Definition of DEEM

Johari, Kamble, and Kanoria: Matching While Learning
12 Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS

the individual worker as captured by λ(·), MAP, and Label
(and model primitives and quantities derived from them).

Remark 2 (DEEM Satisfies Capacity Constraints). Prop-
osition 4 shows that there is a feasible solution to the
Constraints (27)–(31). We use this solution y∗ as the
routing matrix during exploitation. Because the ca-
pacity constraints are incorporated in (29) and (30),
it follows that DEEM does not run out of jobs of any
type, in any time step.

One possible concern could be that the definition
of y∗ depends on DEEM and DEEM itself depends
on y∗. In fact, there is no circularity in the definitions,
as explained in the following remark.

Remark 3. Because DEEM is aWHO policy, and under
DEEM, each worker completes the Explore phase be-
fore entering the Exploit phase, the matrix y∗ satisfy-
ing (27)–(31) can be computed in an offline fashion
using only aggregate statistics mxplr(i, j) and l(i, i′) that

depend on the Explore phase alone. This matrix y∗ is
then only used to define the Exploit phase of DEEM to
ensure that capacity constraints are met.

4.1. Key Features of DEEM via an Example
In this section, we discuss the structure and the main
features of DEEM by way of an example. Consider a
simple setting in the context of a labor platform like
Upwork, in which worker skills differ along two
dimensions: Programming and Design. Furthermore,
suppose the skill level is binary in each dimension:
each worker either has that skill or does not. Suppose
that the worker population is composed of three
worker types (in order): Programmers (who know
only Programming), Designers (who know only De-
sign), and All-rounders (who know both Program-
ming and Design). Finally, there are three job types
(in order) with the corresponding subsets of rele-
vant skills: Programming (which depend on only the

Figure 2. Definitions of α(i) and y∗

Notes. In Online Appendix EC.2.1, we show that (25) can be expressed as a small linear program (with |I | constraints and |J | variables). The
quantity m(i, j) given by (28) represents the mass of type i workers that is matched to type j jobs in steady state.

Johari, Kamble, and Kanoria: Matching While Learning
Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS 13

Programming skill), Design (which depend on only
the Design skill), and Mixed (which depend on both
skills). Let the payoff matrix (consistent with the sub-
sets of relevant skills) be

A �
Programming Design Mixed

0.5 0.2 0.1
0.3 0.8 0.2
0.5 0.8 0.6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Programmers
Designers
All-rounders

(32)
Let the arrival rates be ρ � [0.4/1.9 0.6/1.9 0.9/1.9]T
and the job type capacities be μ� [1/1.9 1/1.9 1/1.9]T.
In this example, the optimal solution to the bench-
mark Problem (20)–(22) with known types results in
the following allocation of the masses of workers
to jobs:

ρTx∗ � ρix∗ i, j
()[]

i∈I ,j∈J�
0.4/1.9 0 0

0 0.6/1.9 0
0 0.4/1.9 0.5/1.9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(33)
There are three key features of DEEM, which we
now discuss.

1. Shadow prices to account for capacity constraints.
The intuition behind using p∗ for externality adjust-
ment of payoffs under DEEM is that with large N,
learning will occur quickly relative to the worker
lifetime, and p∗ will approximate well the shadow
prices even with unknown worker types. At the high
level, DEEM is a near-optimal policy for the uncon-
strained externality-adjusted bandit problem:

maximizexπ∈XN

∑
i∈I

ρi
∑
j∈J

xπ i, j
()

A i, j
() − p∗j

()
. (34)

In our example, the shadow prices corresponding to the
capacity constraints in the benchmark linear program
under full information (20)–(22) are8 p∗ � [0 0.2 0]T.
DEEM makes job-assignment decisions based on the
externality-adjusted payoff matrix

A i, j
() − p∗j

[]
i∈I ,j∈J

�
0.5 0.0 0.1
0.3 0.6 0.2
0.5 0.6 0.6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (35)

instead of the original payoff matrix A. The sets J (i)
defined in Figure 1, Equation (24) capture the job types
thatmaximize the externality-adjustedpayoff forworker
type i; these maximal externality-adjusted payoffs
for each worker type are shown in bold face in the ma-
trix. Hence, we have J (Programmer) � {Programm-
ing}, J (Designer) � {Design}, and J (All-rounder) �
{Design,Mixed}. The routing matrix y∗ in the Exploit
phase of DEEM assigns labeled workers exclusively
to these jobs during exploitation, just as x∗ in the
benchmark solution exclusively assigns workers to
these jobs (see (33)).
However, DEEM also needs to satisfy capacity con-

straints to be feasible. As implied by the following fact, in
general theJ (i)maynot be singleton sets (as is the case for
All-rounders) and appropriate tie-breaking between mul-
tiple optimal job types for one or more worker types is
necessary during exploitation to avoid capacity violations.

Fact 1. Under the generalized imbalance condition, as
long as there is at least one capacity constraint that is
binding in some optimal solution x∗ to the benchmark
problem (20)–(22) with known types, there is at least
oneworker i such that x∗(i, ·) is supported onmultiple job
types. This implies thatJ (i) has more than one element.

Figure 3. (Color online) Schematic of DEEM at the Individual Worker Level

Notes. λ(i) for each i ∈ I is the unnormalized posterior probability of the type being i before each job assignment. It is initializedwith the prior ρi,
and is updated after each job assignment based on the observed reward (line 13 of Figure 1). α and y∗ are defined in Figure 2, whereas (i) is
defined in (24).

Johari, Kamble, and Kanoria: Matching While Learning
14 Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS

Proof of Fact 1. Fix x∗ such that at least one capacity
constraint binds; that is, J ∗

full defined in (23) is non-
empty. Consider worker types I∗full � {i : ∃j ∈ J ∗

full
s.t. x∗(i, j) > 0}. By the generalized imbalance condi-
tion and the fact that all worker types are fully
matched (recall that the empty job type κ, which serves
as a proxy for remaining unmatched, is included in J),
there must be some i ∈ I∗full and j′ /∈ J ∗

full such that
x∗(i, j′)> 0. (If not,

∑
i∈I∗full ρi � ∑

j∈J ∗
full
μj, which contra-

dicts the generalized imbalance condition.)

In DEEM, the exploitation-phase routing matrix y∗
is carefully constructed in (27)–(31) to achieve the
proper tie-breaking (the feasibility of this construc-
tion is shown in Proposition 4). Because of this con-
struction, DEEM simultaneously satisfies (a) aggregate
capacity constraints and (b) complementary slackness
conditionswith respect to thepricesp∗. These properties
are key to showing the near-optimality of DEEM for the
original capacity-constrainedoptimizationproblem(16).

2. Appropriate learning goals for the Explore phase.
DEEM’s tolerance for labeling errors in the Explore
phase depends on their impact on payoffs during
exploitation. For instance, in our example, suppose
that at the end of the Explore phase, the algorithm
mislabels a Programmer as an All-rounder. This has
a dire impact on payoffs: the Programmer is then
assigned to Design or Mixed jobs in the Exploit phase
(because J (All-rounder) � {Design,Mixed}), neither
of which is optimal for Programmers. These errors
lead to a constant regret relative to the optimal
externality-adjusted payoffs per unit mass of workers
per time step.

In fact, in our example, every other kind of mis-
labeling is also similarly problematic, with one ex-
ception: If anAll-rounder is labeled as a Designer, this
is acceptable, because the worker will then be as-
signed Design jobs during exploitation, but Design ∈
J (All-rounder); that is,J (Designer)⊂J (All-rounder).
To ensure that capacity constraints do not pose a prob-
lem, we nevertheless ensure that even such accept-
able mislabeling occurs for only Θ(1/ logN) fraction
of workers.

This motivates our definition of the sets Str(i) for
eachworker type i: this is the set of types that imust be
distinguished from with high confidence or strongly
distinguished. In particular, if J (i) \ J (i′) 	� φ, then
i′ ∈ Str(i). The target error probability for types in
Str(i) is chosen to be 1/N (see the second condition
in line 15 of Figure 1): if we choose a much larger
target, we will incur a relatively large expected re-
gret during exploitation because of misclassifica-
tion; if we choose a smaller target, the Explore phase
will be unnecessarily long, and we will thus incur a
relatively large regret in the Explore phase. In our
example Str(Programmer) � {Designer, All-rounder},

Str(Designer)�{Programmer}, and Str(All-rounder)�
{Programmer,Designer}. For every other type i′ /∈ Str(i),
we have J (i) ⊆ J (i′), and we weakly distinguish i
from such i′, with a target misclassification proba-
bility of 1/ logN (see the first condition in line 15 of
Figure 1).
3. Minimizing regret duringConfirmation.After quickly

obtaining a fairly confident estimate i for the worker
type using the Guessing mode, DEEM attempts to
distinguish i from all types in Str(i) with high confi-
dence using the Confirmation mode. Regret relative
to the largest possible externality-adjusted payoff
U(i) � maxj(A(i, j) − p∗j) for worker type i may be in-
evitable in this process. A key feature underlying the
near optimality of DEEM is that it tries to minimize
the regret incurred during Confirmation.
For instance, the only job type that is optimal for

Programmers; that is, Programming does not allow
the policy to distinguish between Programmers and
All-rounders. Thus, if the guessed worker type is Pro-
grammer, then because All-rounder ∈ Str(Programmer),
during Confirmation, DEEM must assign the worker
either Design or Mixed jobs in order to make sure she
is not an All-rounder. Thus, confirming the guess
necessitates regret in the event that the guess is correct.
To minimize this regret, DEEM samples job types

during Confirmation of worker type i from the care-
fully chosen distribution α(i)defined in Figure 2. For a
job type distribution α ∈ Δ(J), for workers of true
type i, the smallest value of the log posterior odds,
mini′∈Str(i) logλ(i)/λ(i′), increases at an expected rate
of mini′∈Str(i)

∑
j∈J αjKL(i, i′|j). In order to confirm i

against worker types in Str(i) with a probability of
error of 1/N, the smallest value of log posterior odds
needs to cross the threshold of logN (see second con-
dition in line 15 in Figure 1). The expected number of
jobs needed to cross this threshold is log N/(mini′∈Str(i)∑

j∈J αjKL(i, i′|j)). Hence, the expected externality-
adjusted regret incurred during Confirmation is

logN
N

∑
j∈J αj U i() − A i, j

() − p∗j
[]()

mini′∈Str i()
∑

j∈J αjKL i, i′|j() ,

where the factorN in the denominator arises from the
worker’s lifetime, because regret is defined per pe-
riod. DEEM choses a policy α(i) that minimizes this
quantity, which in effect minimizes the ratio of the
rate of regret accumulation and the rate of learning,
or, informally, the regret per unit of learning. This min-
imal regret of C(i) logNN to leading order is inevitable
per unit mass of workers of type i for any optimal
policy that solves (34) for a large N, where

C i()≜ min
α∈Δ J()

∑
j∈J αj U i() − A i, j

() − p∗j
[]()

mini′∈Str i()
∑

j∈J αjKL i, i′|j() . (36)

Johari, Kamble, and Kanoria: Matching While Learning
Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS 15

In Online Appendix EC.2.1, we show that the above
optimization problem reduces to a linear program. In
general, this problem can have several optimal so-
lutions, denoted by the set A(i). Of these, DEEM
chooses the one that gives the highest learning rate.9

In our example, U(Programmer) � 0.5, and thus

U Programmer
() − A Programmer, j

() − p∗j
()[]

j∈J
� 0 0.5 0.4
[]T;

(37)
KL Programmer,Designer|j()[]

j∈J
� DKL 0.5‖0.3() DKL 0.2‖0.8() DKL 0.1‖0.2()[]T;

(38)
KL Programmer,All-rounder|j()[]

j∈J
� 0 DKL 0.2‖0.8() DKL 0.1‖0.6()[]T. (39)

In this case, one can show thatA(Programmer)� {(1−ε,
ε,0) :ε∈(0,1]} and C(Programmer)� 0.5/DKL(0.2‖0.8)≈
0.6011. Of these solutions, DEEM picks α(Program-
mer) � (0, 1, 0) as per (26), because this distribution is
the quickest in confirming a Programmer while pos-
sessing the optimal regret per unit of learning (this
α achieves the log posterior targets for i′ � Designer
and for i′ � All-rounder in the same expected time).

On the other hand, Mixed jobs are optimal for All-
rounders and further allow All-rounders to be dis-
tinguished from both Designers and Programmers
(both these types are in Str(All-rounder)). Thus, no
regret needs to be incurred while confirming an All-
rounder. Recall that Design jobs are also optimal
for All-rounders. It is straightforward to verify that
A(All-rounder) � {(0, 1 − ε, ε) : ε ∈ (0, 1]}, and C(All-
rounder) � 0. The choice of α(All-rounder) � (0, 0, 1)
results in the highest learning rate as per (26). (One can
similarly verify thatC(Designer) � 0 and α(Designer) �
(0,1,0).)
The distinction in C(i) for i � Programmer and i′ �

All-rounder is fundamental, and motivates the fol-
lowing definition.

Definition 1. Consider a worker type i. Suppose that
there exists another type i′ ∈ I\{i} such that A(i, j) �
A(i′, j) for all j∈J (i), and i′ ∈ Str(i) ⇔ J (i) 	⊆ J (i′),
whereJ (i) and Str(i) are as defined in (24). Thenwe say
that the ordered pair (i, i′) is a difficult type pair.10

Note that C(i) > 0 if and only if there is some other i′
such that (i, i′) is a difficult type pair. In this case, there
is a nontrivial (asymptotic) trade-off between myopic
payoffs and learning, and a regret of Ω(logN) is
necessary per unit mass of workers. In the example,
(Programmer, All-rounder) is a difficult type pair.

5. Main Result
Our main result is the following theorem. In partic-
ular, we prove a lower bound on the regret of any
policy and show thatDEEM (essentially) achieves this
lower bound. For the result and discussion,we denote
DEEMN to be the instantiation of DEEM for a givenN.

Theorem 1. Fix (ρ, μ,A) such that (a) no two rows of A are
identical and (b) the generalized imbalance condition holds.
Let C≜

∑
i∈I ρiC(i) for C(i) as defined in (36). If C > 0, we

have the following:
1. (Lower bound) For any sequence of WHO policies

(πN)N∈N, indexed by worker lifetime N, that are feasible
for (16)–(18), we have

lim inf
N→∞

N
logN

V∗ −WN πN()() ≥ C. (40)

2. (Upper bound) There exists N0 < ∞ such that for all
N ≥ N0, DEEMN is feasible for (16)–(18) with

lim sup
N→∞

N
logN

V∗ −WN DEEMN()() ≤ C. (41)

If instead C � 0, then there exists N0 < ∞ such that for all
N ≥ N0, DEEMN is feasible for (16)–(18) with

lim sup
N→∞

N
log logN

V∗ −WN DEEMN()() ≤ K, (42)

where K � K(ρ, μ,A) ∈ [0,∞) is some constant.

Recall that C(i) and hence C depend on the primi-
tives of the problem; that is, (ρ, μ,A) and that C(i) > 0
if and only if there exists i′ 	� i such that (i, i′) is a
difficult type pair. We immediately deduce that C > 0
if and only if there is a difficult pair of worker
types (i, i′).
Remark 4. The constant C in Theorem 1 is strictly
positive if and only if there exists at least one difficult
pair of worker types (i, i′), that is, a pair of distinct
worker types (i, i′) such that A(i, j) � A(i′, j) ∀j ∈ J (i)
and J (i) 	⊆ J (i′), where

J ĩ
()

≜ argmax
j∈J A ĩ, j

() − p∗j ∀ĩ ∈ I (43)

and p∗ are the shadow prices for the capacity con-
straints (21) in the problem with known worker
types (20)–(22). Theorem 1 implies that the smallest
achievable regret is Θ(logNN) (large) if there is a difficult
type pair, whereas one can achieve a regret ofO(log logNN)
(small) if there is no difficult type pair.

In Section 5.2, we show that in a setting where
workers are heterogeneous along more than one skill
dimension, and some job type allows one to distin-
guish only a subset of skills, many problem instances

Johari, Kamble, and Kanoria: Matching While Learning
16 Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS

contain such difficult type pairs; that is, there is often
a nontrivial (asymptotic) tradeoff between myopic
payoffs and learning.

5.1. Proof Sketch
The proof of Theorem 1 can be found in Online Ap-
pendix EC.3.1. Here we present a sketch. The critical
ingredient in the proof is the following relaxed op-
timization problem in which there are no capacity
constraints, but capacity violations are charged nonneg-
ativepricesp∗ from the optimization problem (20)–(22)
with known worker types.

WN
p∗ �max

x∈XN

∑
i∈I

ρi
∑
j∈J

x i, j
()

A i, j
()−∑

j∈J
p∗j

∑
i∈I

ρix i, j
()−μj

[]
.

(44)

5.1.1. Lower Bound on Regret. If C > 0 (i.e., if there is
at least one difficult pair of worker types; see Section 5),
there is a lower bound on the regret relative to V∗
under any policy in this problem. This result follows
directly from theorem 3.1 in Agrawal et al. (1989):

lim inf
N→∞

N
logN

V∗ −WN
p∗

()
≥ C.

By a standard duality argument, we know that
WN ≤ WN

p∗ , and hence this bound holds forWN as well,
yielding the lower bound on regret in our original
problem (16). This is shown in Proposition EC.1 in the
Online Appendix EC.3.1.

5.1.2. Upper Bound on Regret. There are two key steps
in proving that DEEMN is feasible for Problem (16)–(18)
and that

lim sup
N→∞

N
logN

V∗ −WN DEEMN()() ≤ C.

1. First, in Proposition EC.2, we show that DEEM,
with an arbitrary exploitation-phase routing matrix y∗
supportedonJ (i) for each i ∈ I , achieves near-optimal
performance for the vanilla multiarmed bandit prob-
lem (44). Formally, if (with some abuse of notation)
we let WN

p∗ (π) denote the value attained by a policy π
in problem (44), that is,

WN
p∗ π() �∑

i∈I
ρi
∑
j∈J

xπ i, j
()

A i, j
()−∑

j∈J
p∗j

∑
i∈I

ρixπ i, j
()−μj

[]
,

then we can show that11

lim sup
N→∞

N
logN

V∗ −WN
p∗ DEEMN()

()
≤ C if C > 0

and

lim sup
N→∞

N
log logN

V∗ −WN
p∗ DEEMN()

()
≤ K if C � 0,

for some constantK �K(ρ, μ,A) ∈ [0,∞). Thus,wehave

lim
N→∞

N
logN

WN
p∗ −WN

p∗ DEEMN()
()

� 0,

and hence, DEEM is near-optimal in problem (44).
The proof of Proposition EC.2 uses two technical
results presented as Lemma EC.3 and Lemma EC.4 in
the online appendix.
2. Finally, in Proposition EC.3, we prove that if

DEEMN uses an Exploit-phase routing matrix y∗ (that
depends on N) that satisfies Conditions (27)–(31) (re-
call that the existence of such amatrix for a large enoughN
was shown in Proposition 4), then WN(DEEMN) �
WN

p∗(DEEMN). In conjunction with Proposition EC.2,
this yields our upper bound on regret. The proof of
Proposition C.5 crucially uses the fact that our specific
choice of the exploitation-phase routing matrix y∗
ensures that the routing matrix xDEEMN , as defined
in (11), satisfies the following conditions:

(a) (Complementary slackness)
∑

i∈I ρixDEEMN(i,j)−
μj� 0 for all j such that p∗j > 0, and

(b) (Feasibility)
∑

i∈I ρixDEEMN (i, j) −μj ≤ 0 for all
other j ∈ J .
This shows that DEEMN with this choice of y∗ in the

exploitation phase is feasible for problem (16)–(18)
and the complementarity slackness property implies
that WN(DEEMN) � WN

p∗(DEEMN).
This result crucially relies on Proposition 4, which

shows the existence of the routing matrix y∗ with the
required properties. The basic idea behind this con-
struction is as follows. At the end of the exploration
phase of DEEM, the correct label of the worker is
learned with a confidence of at least (1 − o(1)). This
fact, coupled with the generalized imbalance condi-
tion (leading to flexibility in modifying x∗), is suffi-
cient to ensure that an appropriate and feasible choice
of y∗ � x∗+ o(1) will correct the deviations from x∗ in
terms of the capacity utilizations of job types that
were fully used under x∗, that is, with p∗j > 0 (these
deviations arise because of the short exploration
phase and because of the infrequent cases in which
exploitation is based on an incorrect worker label
coming out of the exploration phase).

5.2. Difficult Type Pairs Occur Frequently with
Multiple Skill Dimensions

In Section 4.1, we saw a simple and natural example
with two skill dimensions that included a difficult
type pair. In this section, we show that difficult type
pairs occur frequently when there is more than one
skill dimension.

Johari, Kamble, and Kanoria: Matching While Learning
Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS 17

Again taking Upwork as an example, one of the
categories on this platform is Web Development, and
there are a number of relevant Skills, for example,
HTML development, WordPress, Python, JavaScript,
Payment Gateway Integration, and Web Design. A
typical web developer has a subset of these skills. For
each of these skill dimensions, there may be distinct
levels, for example, missing/inexpert/expert. The
platform may have a prior but learns about a de-
veloper’s skill along a certain dimension chiefly by
observing outcomes. Moreover, job listings are het-
erogeneous in terms of the relevant skills. For ex-
ample, a project requiring the skills Web Design and
WordPress would reveal some information about
these skill dimensions but not whether the devel-
oper is an expert in HTML development. In this
section, we formalize a special case of our model with
multiple skill dimensions and show that difficult type
pairs occur frequently (i.e., in many instances) in
such a setup.

Suppose that there is a set S of skill dimensions,
and a worker type i is a tuple i � (i1, i2, . . . , i|S|), where
each is ∈ I s captures the skill level of the worker in
dimension s. Here I s is a finite set for each s, and the
set of worker types I ⊆ I1 × I2 × · · · × I |S|. For each
job type j ∈ J , there is a nonempty subset of relevant
skill dimensions Sj ⊆ S. We then require the expected
payoffA(i, j) tobe consistentwithSj; that is, theremustbe
a function fj :

∏
s∈Sj I s→[0,1] such thatA(i, j) � f ((is)s∈Sj

).
Without loss of generality, assume that ∪j∈JSj � S,

because if this was not true, we could safely ignore
the (irrelevant) skills in S\(∪j∈JSj), given that they do
not matter for any job type (multiple worker types
that differ only in irrelevant skills can be collapsed
into a single worker type). Then, the following as-
sumption on (I ,J ,S, (Sj)j∈J) is very plausible if there
are at least two skill dimensions |S| ≥ 2.

Assumption 1. There is a job type j ∈ J and a pair of
distinct worker types i ∈ I and i′ ∈ I\{i} such that (i) a
strict subset Sj ⊂ S of skills is relevant to job type j and
(ii) worker types i and i′ differ only in skill dimensions inS\Sj.

The assumption implies that job type j cannot
distinguish between worker types i and i′.

We establish the following result, showing that
under Assumption 1, many instances have difficult
type pairs. In particular, difficult type pairs do not
occur only on a knife edge.

Proposition 5. Fix I , J , S, and (Sj)j∈J such that As-
sumption 1 holds and |I | ≥ 3. Also fix capacity constraints
μ � (μj)j∈J such that12

∑
j∈J μj 	� 1. Consider the set of

possible instances

P � ρ,A
() ∈ Δ|I | × 0, 1[]|I ||J |: A ·, j()

is
{
consistent with Sj for all j ∈ J

}
.

(45)

The distribution over worker types ρ has |I | − 1 degrees of
freedom, and for each j ∈ J , the jth column of the payoff
matrix A(·, j) has |ISj | degrees of freedom, where

ISj � is()s∈Sj
: ∃i′ ∈ I s.t. i′s � is∀s ∈ Sj

{ }
(46)

is the set of distinct worker type classes that arise when
worker types are projected onto Sj. Then the subset
of instances

Pdiff � {(ρ,A) ∈P : there is a difficult type pair} (47)
has full dimension |I | − 1 + ∑

j∈J |ISj |, equal to the di-
mension of P.

Proposition 5 is proved in Online Appendix EC.3.2.
Starting with Assumption 1 and the corresponding
i ∈ I , i′ ∈ I , and j ∈ J , the main idea is to construct an
instance such that in any solution in the full infor-
mation setting, worker type i will be matched ex-
clusively to job type j, whereas type i′ will be matched
exclusively to jobs types other than j. We then show
that this remains true in a neighborhood of the given
set of parameters.

6. Practical Considerations
and a Heuristic

Although DEEMminimizes the leading-order term of
regret asN → ∞ in our continuummodel, it is unclear
how to obtain from it a policy that performs well in
practice. The first concern is that it is defined in the
context of the continuum model, whereas, in reality,
we have finite arrivals of workers and jobs over time.
The second concern is that, although DEEM is ex-
pected to perform well when N is large, it may not
perform well when N is relatively small, which is the
case in many practical settings. In Online Appendix
EC.4.1, we present a fairly straightforward transla-
tion of DEEM to a discrete setting (with finite arrivals
of workers and jobs at each time), which is a close
analogue to our continuum setting.
Although this policy is simple and effectively ad-

dresses the first concern, it falls short of addressing
the second concern: in fact, we find that it performs
well only when N is large. A main cause of this de-
ficiency is that DEEM-discrete does not learn the right
shadow prices for the constraints. In fact, simulations
tell us that for practical values of N, if we use the
shadow prices p∗ for the capacity constraints from the
static planning problem (20)–(22) to define the Ex-
plore phase for each worker as in DEEM, then, in
many instances, a subset of job types are fully (or
substantially) used by workers in the Explore phase
itself and are thus unavailable for workers in the
Exploit phase (see Remark EC.1 in Online Appendix
EC.4.1). In particular, this suggests that in many in-
stances, p∗ constitutes a poor estimate of the shadow

Johari, Kamble, and Kanoria: Matching While Learning
18 Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS

prices for finiteN. Moreover, this is the case even for a
large system with many workers and jobs. Thus, an
important practical issue is to learn the right shadow
prices for the capacity constraints.

This is where we can leverage a key practical fea-
ture of most real platforms: jobs typically queue up
rather than get assigned instantaneously. In such
systems, the inventory of jobs is dynamically evolving,
and therefore the shadow prices should be responsive
to the inventory of the system. Backpressure Tassiulas
and Ephremides (1990) is the method of choice for
learning shadow prices in a dynamic queueing con-
text by estimating shadow prices based on queue
lengths. This prompts us to adopt it for the DEEM-
inspired practical heuristic we present in this section.
Besides learning the right shadow prices, backpressure
has the added advantage of seamlessly handling sto-
chasticity in the (finite) arrivals of workers and jobs.

In the remainder of this section, we present our
heuristic derived from DEEM called DEEM+, which
is (1) practically implementable in a market envi-
ronment with discrete arrivals and (2) is designed for
good small N performance. DEEM+ is defined in
Figures 4 and 5. Similar to DEEM, DEEM+ is a de-
centralized algorithm that acts individually on each
worker and hence is defined at the worker level.
DEEM+ makes use of dynamic (queue-based) shadow
prices pq as a key input at the worker level. In our
numerical simulations in Section 7, we will define an
environment where pending jobs can queue up and
specify a backpressure-like approach to computing
queue-based prices. Notably, besides its use of queue-
based shadow prices, DEEM+ incorporates a few key
modifications to the Explore and Exploit phases of
DEEM that improve performance when N is small.
Below, we discuss the important features of DEEM+
in detail.

6.1. Dynamic Queue-Based Shadow Prices
DEEM+ uses dynamic shadowprices computed using
job queue length information. Each new worker cor-
responds to a multiarmed bandit problem that gets
adjusted under DEEM+ by the instantaneous prices in
themarketwhen theworker arrives, to account for the
externalities because of the presence of the capacity
constraints. These prices remain fixed throughout the
lifetime of the worker; this is analogous to having p∗
be the fixed prices under DEEM. We refer to these
instantaneous queue-based prices as pq in the defi-
nition of DEEM+ in Figures 4 and 5.

Suitably defined prices as functions of job queue
lengths can be used as a feedback control mechanism
to stabilize the queue lengths and hence stabilize the
prices themselves. (Such backpressure pricing based
on queue lengths is commonly used in designing
distributed algorithms for resource allocation, for

example, for congestion control in communication net-
works (Shakkottai et al. 2008, Srikant 2012).) For our
simulations in Section 7, we use a proportional-de-
rivative (PD) control-based definition of these prices as
an illustrative example (the technical details of the
controller design are presented in Online Appendix
EC.5.2). The instantaneous shadow price for each job
type is the sum of a proportional term and a derivative
term. The proportional term is an affine function of
the queue length with a negative coefficient for the
queue length. The idea is that if the queue length is small
then this indicates that the job type is in high demand
and hence the price for this type should be high. The
derivative term is proportional to the negative of the
recent rate of change of the queue length to counteract
rapid changes in queue length and prevent oscilla-
tory behavior.
Our definition of these prices does not depend on

the vector of job arrival rates μ. It also obviates the
need to explicitly compute y∗ in the exploitation phase
of DEEM; instead the Exploit phase can be imple-
mented by allocating optimally for eachworker given
the queue-based prices that were supplied to the
worker when the worker arrived. Natural (small)
fluctuations in prices that arise in the process of stabi-
lizing queue lengths result in appropriate tie-breaking
inallocation (tie-breaking is typicallyneeded; seeFact 1),
with randomization occurring across workers. The
resulting stability of the queue lengths implies that
the capacity constraints are satisfied.

6.2. Optimizing the Explore Phase for Finite N
DEEM+ shares the same explore-then-exploit struc-
ture as DEEM, but with a few changes to the explo-
ration phase to optimize learning for finite N. These
modifications lead to a significant improvement in
performance. In Online Appendix EC.5.4, we show
that the regret estimate that the Explore phase of
DEEM minimizes is a poor estimate of the true regret
for small N. By contrast, the regret estimate that the
Explore phase of DEEM+ minimizes captures the true
regret reasonably well even for small N, hence ex-
plaining the improvement in performance produced
by these modifications.
The changes to the Explore phase in DEEM+ are

discussed in detail below.
1. Refining learning goals. Recall that in DEEM,

we achieve a 1/ logN probability of error of mis-
classifying i′ as i even if J (i) ⊆ J (i′). In DEEM+, be-
cause we use queue-based prices, the counterparts of
the sets J (i) are the sets

J q i()≜ argmax
j∈J A i, j

() − pqj (48)

for each i ∈ I . These are sets of job types that are
optimal for the different worker types under the

Johari, Kamble, and Kanoria: Matching While Learning
Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS 19

queue-based prices pq. Because of natural fluctua-
tions in the prices across jobs, these sets are typically
singletons and hence for any two types i and i′, either
J q(i) ∩ J q(i′) � ∅ or J q(i) � J q(i′). In the latter case, it
would appear wasteful to achieve a 1/ logN proba-
bility of error ofmisclassifying i′ as i, except in the case
where the optimal confirmation policies for the two
types are different, since confirming using a subopti-
mal job sampling policy leads to an increase in leading-
order regret.13 Thus, inDEEM+, for eachworker type i,
we define the sets of types it needs to be distinguished
from as follows (the definition does not assume that
the sets J q(i) are singletons).

Definition 2. For each i, i′ ∈ I ,
(a) Strq(i)≜ {i′ : J q(i) \ J q(i′) 	� ∅}; and
(b) Weakq(i)≜ {i′ : J q(i) ⊆ J q(i′) and α(i,I ,J ,A,pq,

Strq(i)) 	� α(i′,I ,J ,A,pq,Strq(i′))}, where the function
α is defined as in Figure 2.
In the Guessing mode, DEEM+ explicitly distin-

guishes i only from types in Strq(i) ∪Weakq(i) (see line
28 and the first condition in line 15 in Figure 4). If, at
some point in the Explore phase, type i has been
confirmed against all types in Strq(i), then the algo-
rithm can safely proceed to the Exploit phase even if i
has not been weakly distinguished from some i′ ∈
Weakq(i); the latter distinction is rendered unnecessary

Figure 4. Definition of DEEM+

Note. The prices pq dependon the queue lengths of the different job types, as discussed in Section 6.1, and formally defined inOnlineAppendix EC.5.2.

Johari, Kamble, and Kanoria: Matching While Learning
20 Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS

in this case. This change accounts for the difference in
the conditions for transitioning from Explore to Ex-
ploit in line 15 of DEEM vs. line 15 of DEEM+.

Next, recall that DEEM tries to achieve a probability
1/N of misclassifying a worker of type i′ as type i for
any i ∈ Str(i). For small N, however, we can do better:
the desired probability of error should depend on the
largest regret that type i′ could incur by performing a
job that is optimal for i but not for i′: if this regret is
very small, then it isn’t worth trying to make this
distinction with high precision. For each i ∈ I , define
the maximal externality-adjusted payoffs

Uq i()≜ max
j∈J A i, j

() − pqj . (49)
Then we define

R i, i′()≜ max
j∈J q i(), j/∈J q i′()

Uq i′() − A i′, j
()− pqj

[]
∀ i′ ∈ Strq i().

(50)
We informally refer to R(i, i′) as the maximal per-step
regret of mislabeling i′ as i. It will further be conve-
nient to (arbitrarily) define14

R i, i′()≜ 1 ∀i′ ∈ Weakq i(). (51)
DEEM+ aims for a probability of mislabeling i′ as
i of 1/(R(i, i′) logN) instead of 1/ logN at the end
of Guessing for all i′ ∈ Strq(i) ∪Weakq(i), and of 1/
(NR(i, i′)) instead of 1/N at the end of Explore for all
i′ ∈ Strq(i). These changes account for the fact that if
R(i, i′) is small, then we can tolerate a higher proba-
bility of error (see line 15 in Figure 4). This modifi-
cation is especially important in preventing wasteful
learning in caseswhere price fluctuations (necessary for
tie-breaking; see Section 6.1) result in J q(i) ⊊ J q(i′)
even though J (i) ⊆ J (i′).

2. Incorporating the posterior during Explore.
The final change we propose is to explicitly incor-
porate the posterior into the Explore phase. First,
recall that in DEEM, Guessing involves the naive

approach of exploring uniformly at random. When N
is finite, we can reduce regret by instead leveraging
the posterior at each round to appropriately allocate
learning effort across the different types until we
form a good guess of the worker type. In DEEM+, we
do so by using a price-adjusted version of Thompson
sampling (TS), which is a popular Bayesianmultiarmed
bandit algorithm, in the Guessing mode. Under this
algorithm, a worker type is sampled from the posterior
distribution and the job type that maximizes the price-
adjusted payoff for this sampledworker type is assigned
to the worker; if there are multiple such types, one type
is chosen uniformly at random. This is defined in the
function αguess in Figure 5.
Similarly, the posterior can also be incorporated in

minimizing expected regret in the Confirmation mode.
This is capturedby the functionαconf defined inFigure 5.
This function returns a sampling distribution that max-
imizes the product of the expected per-time-step regret
relative to the maximal externality-adjusted payoffs
(the term in the first parenthesis in the objective on line
44) and the estimated time until the confirmation of the
MAP estimate assuming it is correct (the term in the
second parenthesis in the objective in line 44). If there
are multiple solutions, αconf is chosen to be the one
with the smallest time until confirmation (line 45).
Observe that as λ(MAP)/(∑i∈I λ(i)) → 1 for the MAP
estimate, the objective function in line 44 in the def-
inition of αconf converges to the objective function
used while computing α(MAP) in (25), except for the
(logN + logR(i, i′)) factors that simply capture the fact
that the learning goals have been adjusted for smallN.

6.3. Optimizing the Exploit Phase for Finite N
In DEEM+, we tweak the approach in the Exploit
phase of DEEM to improve performance: instead of
optimizing the price-adjusted payoff for the con-
firmed worker label, we can maximize the expected
payoff with respect to the posterior distribution,
thus accounting for the possibility that we may have

Figure 5. Definition of DEEM+ (Continued)

Johari, Kamble, and Kanoria: Matching While Learning
Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS 21

confirmed incorrectly. This is reflected in the new def-
inition of the EXPLOIT() function in line 35. We find that
this change significantly improves performance.

7. Simulations
In this section, we simulate DEEM+ in a market envi-
ronment with queue-based shadow prices and compare
its performance against other policies. We consider
350 instances with |I | � 4worker types and |J | � 3 job
types. In each instance, the arrival rates of all the
worker types are identical, that is, ρi � 0.25 for all
i ∈ I , whereas the arrival rates of the job types are
randomly chosen. The choice of these instances is dis-
cussed in detail in Online Appendix EC.5.1. For our
simulations, we consider N ∈ {10, 20, 30, 40}. Given an
instance (ρ,N, μ,A), our simulated marketplace is
described as follows.

7.1. Arrival Process
Time is discrete, t � 1, 2, · · · ,T, where we assume that
T ∈ (200, 400, 600, 800) for N ∈ (10, 20, 30, 40), respec-
tively. At the beginning of each time period t, a fixed
MN(i)number of workers of type i arrive and they stay
for N periods. We choose MN(i) � 600/N for the dif-
ferent values of N for each i, so that, irrespective ofN,
the total number of workers of any type i present in
the market at any time t is MN(i) ×N � 600 (making a
total of 600 × |I | � 600 × 4 � 2,400 workers present in
the market at any time). Relating back to the con-
tinuummodel, here we implicitly assume that a mass
of 0.25 corresponds to 600 workers or jobs. Observe
that the fact thatMN(i) is the same for all i ∈ I reflects
the fact that ρi � 0.25 for all i.

Job-matching decisions are sequentially made for
each of the 2,400 workers in each time step in an
arbitrary order. Between successive allocations, a job
of type j arrives with probability μj/

∑
i∈I ρi for each

type j. Thus, the relative proportions of the number of
workers of different types that are present in the
market at any time, and the expected number of jobs
that arrive in the market in any time step, are pro-
portional to ρi and μj for i ∈ I and j ∈ J , where a mass
of 1 corresponds to 1,200 workers or jobs. We assume
that each job takes one period to complete.

7.2. Queues and Queue-Based Prices
As described in Section 6.1, we use a PD-control
mechanism to set prices with the goal of stabilizing
queue lengths; the details are presented in Online
Appendix EC.5.2. Queue lengths change at epochs
where either a job arrives or it is assigned to a worker.
The arriving jobs accumulate in queues for the dif-
ferent types, each with a finite buffer of capacity B,

where we choose B � 50, 000. If the buffer capacity is
exceeded for some job type, then the remaining jobs
are lost. (We use a large buffer in our simulations to
keep the price fluctuations small to ensure that dif-
ferences in the observed performance of DEEM+ and
other benchmark policies are not caused by large
price fluctuations.)

7.3. Matching Process
In the period when a worker arrives, when a job-
matching decision is made for the worker for the very
first time, the instantaneous price at that time is
assigned to theworker. This price is used by the policy
in determining the job allocations for the worker
throughout her lifetime.
At every job-matching opportunity, an assignment

is generated by the chosen policy based on the assigned
price and the history of assignments and outcomes for
the worker. If a job of the required type is unavailable,
then the worker remains unmatched. For each worker-
job match, a random payoff is realized, drawn from the
distribution specified byA, and the assignment-payoff
tuple is added to the history of the worker.

7.4. Simulation Output
We look at two main outputs: the average perfor-
mance and the prices assigned to the workers.
1. Performance ratio (PR): For the performance

measure, we compute the average reward per worker
over the last T/4 periods of the simulation horizon (so
that themean queue lengths have had a sufficient time
to stabilize) and divide it by the optimal per-worker
reward in the full information setting (i.e., the optimal
value of (20) divided by

∑
i∈I ρi). We call this quantity

the PR of the instance. The average PR over the 350
instances is a proxy for the performance of a fixed
policy for a given N.
2. Average queue-based prices p̄qj : We also ex-

amine the prices for the different job types seen by the
workers that arrived in the last T/4 periods. We look
at the average price over these periods for each job
type j, denoted by p̄qj , and also the magnitude of
typical fluctuations in prices around their average
values. The main goal here is to investigate how these
prices compare with p∗.
7.5. Benchmark Policies
AlongwithDEEM+, we implement two other policies.
These policies are formally defined in Online Ap-
pendix EC.5.3.
1. PA-TS: We consider an extension of TS that

Agrawal and Goyal (2011) adapted to our setting, in
which the payoffs are adjusted by queue-based prices
to account for capacity constraints. We refer to this

Johari, Kamble, and Kanoria: Matching While Learning
22 Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS

policy as PA-TS (for price-adjusted Thompson sam-
pling). PA-TS is formally defined in Figure EC.1 in the
online appendix. TS is a popular Bayesian multi-
armed bandit algorithm and is a natural benchmark
for our setting (with the incorporation of queue-based
prices, as we propose). TS explores due to sampling
from the posterior distribution of the true (worker)
type; the exploration is more aggressive in the early
stages when the posterior is not sufficiently concen-
trated. Because of sufficient exploration, it is known
to attain the optimal leading-order of regret in several
settings (Agrawal and Goyal 2012, Russo and Van
Roy 2016) but not necessarily the optimal constant
factor for the leading term.

2. TS-DEEM+: We also consider a policy that is a
hybrid of DEEM+ and TS that also uses queue-based
prices for payoff adjustment to account for capacity
constraints. We will refer to this policy as TS-DEEM+.
TS-DEEM+ is formally defined in Figure EC.2 in the
online appendix. This policy operates individually
on each worker and has the same two-phase struc-
ture of DEEM+, consisting of an Explore phase and
an Exploit phase. The Exploit phase is identical to that
in DEEM+, in which the algorithm simply assigns a
job that maximizes the expected price-adjusted pay-
off at each opportunity. The learning goals of the
Explore phase are also identical to those of DEEM+:
in order to label a worker as being of type i, the prob-
ability of misclassifying i′ as i for any i′ ∈ Strq(i) must
be less than 1/N. The only difference is in the way the
policy explores. TS-DEEM+ uses Thompson sampling
throughout the Explore phase until the learning goals
are met, unlike DEEM+, which uses Thompson sam-
pling only in the Guessing mode and a different sam-
pling policy that optimizes the trade-off between
learning and payoff maximization in the Confirma-
tion mode.

Comparing the performance of DEEM+ with PA-TS
and TS-DEEM+ allows us to investigate the relative
importance of the two main features of DEEM+ that it
inherits from DEEM (the other important feature
being the use of shadow prices for externality ad-
justment): (1) setting appropriate learning goals and
(2) achieving these goals while minimizing regret in
the Confirmationmode. As we have seen earlier, both
these features are critical to the leading-order regret
optimality of DEEM.

We conjecture that both PA-TS and TS-DEEM+
explore sufficiently and are asymptotically optimal;
that is, the average regret per unit mass of workers
converges to 0 as N → ∞. However, unlike the Con-
firmationmode in DEEMorDEEM+, these algorithms
don’t optimize the exploration versus exploitation
tradeoff in a way that is tailored to the instance.
Hence, we conjecture that they do not achieve the
optimal leading term of regret.

7.6. Results
7.6.1. Performance Comparison. The four panels of
Figure 6 show the empirical cumulative distribution
function (CDF) over the 350 instances of the per-
instance PRs (defined in the discussion on simulation
output) for the three candidate policies for different
values ofN. The average of these ratios over the set of
instances for each policy, along with the standard
error, is presented in the legends. As one can observe,
both DEEM+ and TS-DEEM+ significantly outper-
form PA-TS by a widemargin in all four settings. This
suggests the importance of setting appropriate learn-
ing goals and of focusing only on payoff maximiza-
tion after the learning goals have been met. By contrast,
PA-TS explores excessively: it keeps exploring beyond
the point where such experimentation has any signifi-
cant benefit for future payoffs. DEEM+ outperforms
TS-DEEM+ in all four settings as well. This points to
the added benefit from having an optimized Con-
firmation mode, which is central to the leading-order
regret optimality of DEEM.
Figure 7 shows the performance improvement of

DEEM+ with growing N.

7.6.2. Quality of Our Regret Estimate. In Online Ap-
pendix EC.5.4, we numerically investigate the quality
of our finite N regret estimate. Because DEEM+ is a
modified version of DEEM, this regret estimate is a
corresponding modified version of the asymptotic
regret estimate C logN/N in Theorem 1. We find that
our regret estimate captures the true regret reason-
ably well, which suggests that our specific design of
the Confirmation mode under DEEM+ is approxi-
mately minimizing regret and explains why DEEM+
outperforms the TS-DEEM+ policy.

7.6.3. Prices. Under generalized imbalance (recall
Condition (1)), the potential capacity violations be-
cause of deviations from the optimal routing during
the Explore phase can be corrected in the Exploit
phase by designing a routing matrix y∗ that perturbs
x∗ appropriately, but without changing the shadow
prices for large enoughN (Proposition 4). For finiteN,
such a correction that leaves the shadow prices un-
affected may not be possible if GI is violated or near
violated. In these cases, even if p∗ is unique, the shadow
prices under unknownworker typesmay apriori be quite
different from p∗, and using p∗ for externality adjust-
ment in these cases could prove to be detrimental to
performance. On the other hand, our queue length–
based implementation organically discovers the ap-
propriate shadow prices. It is nevertheless interesting
to investigate how different these prices are from p∗.
The first column of Table 1 shows the average and

median value of ‖p∗ − p̄q‖∞ under DEEM+ for different
values of N. As expected, the average queue-length-based

Johari, Kamble, and Kanoria: Matching While Learning
Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS 23

prices p̄q are close to p∗, and they get closer for lar-
ger N. The difference in these prices is small as com-
pared with the typical range of variation of these
prices: the standard deviation of p∗j for j ∈ J (rounded
to three decimal places) is (0.512, 0.530, 0.484). The
closeness of p∗ and p̄q supports our theoretical device
of using p∗ to approximately capture the externalities
because of capacity constraints in the large N regime.
Moreover, we find that the price fluctuations around
the mean values p̄q are relatively small. This can be
observed in the second column of Table 1, which
shows the median (rounded to three decimal places)
across the 350 instances of the standard deviation of
the prices seen by workers in the last T/4 periods, for
different values of N.

Finally, because the fluctuations of pq around p̄q are
very small and p̄q itself is typically close to p∗, we
expect to frequently encounter difficult type pairs in
the price-adjusted multiarmed bandit problems cor-
responding to the different workers (recall that all 350
instances have a difficult type pair assuming that the

shadow prices are p∗). Indeed, we observe that under
prices p̄q, each of the 350 instances possesses difficult
type pairs.

Figure 7. Empirical Cumulative Distribution of the PRs
under DEEM+ for Different Values of N

Note. The average PRs along with standard errors are given in
the parentheses.

Figure 6. Empirical Cumulative Distributions of the PRs under the Different Policies for 350 Instances for Different Values ofN

Note. The average PR along with the standard error under a policy is given in the corresponding parentheses.

Johari, Kamble, and Kanoria: Matching While Learning
24 Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS

8. Conclusion
This work suggests a novel and practical algorithm
for learningwhilematching, applicable across a range
of online matching platforms. Several directions of
generalization remain open for future work. First,
although we consider a finite-type model, a richer
model of types would admit a wider range of ap-
plications; for example, workers and jobs may be
characterized by features in a vector-valued space,
with compatibility determined by the inner product
between feature vectors. Second, although our model
includes only one-sided uncertainty, in general, a
market will include two-sided uncertainty (i.e., both
supply and demand will exhibit type uncertainty).
Finally, although our results extend immediately to
settings where all jobs have a fixed duration larger
than one time period, it would be interesting to
consider settingswhere job durations are random and
possibly depend on the job type and/or the worker
type.We expect that a similar approach using shadow
prices for capacity constraints, first to set learning
objectives and then to achieve them while incurring
minimum regret, should be applicable even in these
more general settings.

We conclude by noting that our model ignores
strategic behavior by participants. A simple extension
might be to presume that workers are less likely to
return after several bad experiences; this would dra-
matically alter the model, forcing the policy to be-
come more conservative. The modeling and analysis
of these and other strategic behaviors remain im-
portant challenges.

Acknowledgments
An extended abstract for an early version of the paper appeared
in ACM EC 2017. We thank the anonymous referees and as-
sociate editor, Dan Russo, Kuang Xu, Bert Zwart, and numerous
seminar participants for their invaluable suggestions.

Endnotes
1We in fact consider a regimewhere the job capacities are held constant
and we reduce the worker arrival rates as their lifetime increases.
However, it is straightforward to see that we can equivalently keep the

worker arrival rates fixed and increase the job capacities as the worker
lifetimes increase, without impacting any of our results or insights.
2Our analysis and results generalize to random (exogenous) worker
lifetimes that are i.i.d. across workers of different types, with mean
N and any distribution such that the lifetime exceeds N/polylog(N)
with high probability. In particular, the definition of our DEEM
policy in Figures 1 and 2 remains unchanged except that the con-
dition k < N in the while commands in lines 9 and 21 of Figure 1 is
replaced by the condition that the worker has not yet left the system.
Theorem 1 remains unchanged as well. The platform only needs to
know the mean lifetime N beforehand to implement DEEM; it
suffices for the platform to find out about the departure (as per the
realized lifetime) of a worker only when it occurs.
3Here and throughout, independence of a continuum of random
variablesmeans that any finite subcollection ismutually independent.
4The set (ρ, μ) for which the condition holds is open and dense in
Relint(Δ|I |) × R

|J |
++ , where Δ|I | is the probability simplex in |I | di-

mensions, Relint(·) denotes the relative interior, and R++ are the
strictly positive real numbers.
5 In other words, it is possible that a WHO policy may lead to a mass
of workers matched to jobs of type j in some period that exceeds μj.
Formally, to ensure that WHO policies satisfy the capacity-feasibility
requirement defined in Section 3.2, we define that, if the implied
assignment under a WHO policy violates a capacity constraint, the
WHO policy does not assign any jobs to workers in that period or in
any subsequent period. This definition is merely for concreteness; it
does not affect our results because we will ensure that capacity vi-
olations occur with probability 0 (Lemma 1).
6Formally, the shadow prices p∗ are the values of the corresponding
dual variables at an optimum of dual linear program (EC.12)–(EC.13)
stated in the online appendix.
7We ensure that our practical policies derived from DEEM (DEEM-
discrete discussed in Section EC.4.1, andDEEM+, specified in Figure 4)
are well defined for any value of N.
8These shadow prices are consistent with the fact that all Design jobs
are assigned (but this is not the case for other job types), andmarginal
All-rounders could generate 0.8 − 0.6 � 0.2 more in payoffs per unit if
there were more Design jobs available.
9 In Online Appendix EC.2.1, we show that this choice is well defined,
despite the fact that A(i) could be an open set.
10A similar definition also appears in Agrawal et al. (1989); the modifi-
cation here is that the setsJ (i) are defined with respect to externality-
adjusted payoffs to account for capacity constraints.
11Agrawal et al. (1989) prove a similar performance guarantee for a
slightly different policy.
12This technical requirement says that the total arrival rate of jobs
should not be exactly equal to the total mass of workers present. We
also assume that |I | ≥ 3. These assumptions help us get unique
shadow prices p∗ in our construction, simplifying the analysis, al-
though we expect this proposition can be stated and proved without
these assumptions.
13 In DEEM, we made this distinction even when the confirmation
policies for the two types are the same since leading-order regret
is unaffected and because it allowed us to leverage the solution to
the problem with known worker types to obtain a policy with
provable guarantees that satisfies capacity constraints (see the
construction of y∗ in the proof of Proposition 4 in Online Appendix
EC.3.1). The resulting key property is that shadow prices remain
close to those under known worker types, and, happily, we observe
that this latter property holds under DEEM+ in our numerical
experiments (Table 1).
14The definition in (51) plays a role only in line 28 of DEEM+ (Figure 4),
which contains the criterion for being in Guessing mode.

Table 1. The Queue-Length-Based Prices pq Are Close to p*

N Med. ‖p∗ − p̄q‖∞ (Med. of stdev(pqj))j∈J

10 0.119 (0.011, 0.010, 0.011)
20 0.075 (0.006, 0.006, 0.006)
30 0.057 (0.006, 0.006, 0.006)
40 0.053 (0.007, 0.006, 0.007)

Notes. First column: median over 350 instances of difference between
the queue-based prices p̄q under DEEM+ and p∗ for different values of
N under the L∞ norm. Second column: median over 350 instances of
the standard deviation of the prices seen by workers in the last T/4
periods, under DEEM+, for the different values of N. All values are
rounded to three decimal places.

Johari, Kamble, and Kanoria: Matching While Learning
Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS 25

References
Agrawal R, Teneketzis D, Anantharam V (1989) Asymptotically ef-

ficient adaptive allocation schemes for controlled i.i.d. processes:
Finite parameter space. IEEE Trans. Automatic Control 34(3):
258–267.

Agrawal S, Devanur NR (2014) Bandits with concave rewards and
convex knapsacks. Proc. 15th ACMConf. Econom. Comput. (ACM,
New York), 989–1006.

Agrawal S, Devanur NR (2019) Bandits with global convex con-
straints and objective. Oper. Res. 67(5):1486–1502.

Agrawal S, Devanur NR, Li L (2016) An efficient algorithm for
contextual bandits with knapsacks, and an extension to concave
objectives. J. Machine Learn. Res. 49:4–18.

Agrawal S, Goyal N (2012) Analysis of thompson sampling for the
multi-armed bandit problem. Mannor S, Srebro N, Williamson
RC, eds. Proc. 25th Annual Conf. Learn. Theory (Edinburgh, Scot-
land), vol. 23, 39.1–39.26.

AkbarpourM, Li S, Oveis Gharan S (2014) Dynamicmatchingmarket
design. Preprint, submitted February 15, https://arxiv.org/abs/
1402.3643.

Anderson R, Ashlagi I, Gamarnik D, Kanoria Y (2015) A dynamic
model of barter exchange. Proc. 26th Annual ACM-SIAM Sympos.
Discrete Algorithms (SIAM, Philadelphia), 1925–1933.

Ata B, Kumar S (2005) Heavy traffic analysis of open processing
networkswith complete resource pooling: Asymptotic optimality
of discrete reviewpolicies.Ann. Appl. Probabilities 15(1A):331–391.

Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the
multiarmed bandit problem. Machine Learn. 47(2-3):235–256.

Babaioff M, Dughmi S, Kleinberg R, Slivkins A (2015) Dynamic
pricing with limited supply. ACM Trans. Econom. Comput. 3(1):4.

Baccara M, Lee S, Yariv L (2020) Optimal dynamic matching. Theoret.
Econom. 15(3):1221–1278.

Badanidiyuru A, Kleinberg R, Slivkins A (2013) Bandits with knap-
sacks. Proc. 2013 IEEE 54th Annual Sympos. (IEEE, New York),
207–216.

Badanidiyuru A, Langford J, Slivkins A (2014) Resourceful contextual
bandits. Balcan MF, Feldman V, Szepesvari C, eds. Proc. 27th
Conf. Learn. Theory (Barcelona, Spain), vol. 35, 1109–1134.

Besbes O, Zeevi A (2009) Dynamic pricing without knowing the
demand function: Risk bounds and near-optimal algorithms.
Oper. Res. 57(6):1407–1420.

Besbes O, Zeevi A (2012) Blind network revenue management. Oper.
Res. 60(6):1537–1550.

Blischke W (1964) Estimating the parameters of mixtures of binomial
distributions. J. Amer. Statist. Assoc. 59(306):510–528.

Bubeck S, Cesa-Bianchi N (2012) Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Machine Learn.
5(1):1–122.

Chakrabarti D, Kumar R, Radlinski F, Upfal E (2009) Mortal multi-
armed bandits. Koller D, Schuurmans D, Bengio Y, Bottou L, eds.
Adv. Neural Inform. Processing Systems, vol. 21, 273–280.

Chen W, Wang Y, Yuan Y (2013) Combinatorial multi-armed bandit:
General framework and applications. Internat. Conf. Machine
Learn. (Atlanta), vol. 28, 151–159.

Damiano E, Lam R (2005) Stability in dynamic matching markets.
Games Econom. Behav. 52(1):34–53.

Das S, Kamenica E (2005) Two-sided bandits and the dating market.
Proc. 19th Internat. Joint Conf. Artificial Intelligence (Morgan
Kaufmann Publishers Inc., Burlington, MA), 947–952.

den Boer AV (2015) Dynamic pricing and learning: historical origins,
current research, and new directions. Survey Oper. Res. Man-
agement Sci. 20(1):1–18.

den Boer AV, Zwart B (2014) Simultaneously learning and optimizing
using controlled variance pricing.Management Sci. 60(3):770–783.

den Boer AV, Zwart B (2015) Dynamic pricing and learning with
finite inventories. Oper. Res. 63(4):965–978.

Feldman J, O’Donnell R, Servedio RA (2008) Learning mixtures of
product distributions over discrete domains. SIAM J. Comput.
37(5):1536–1564.

Ferreira KJ, Simchi-Levi D, Wang H (2018) Online network rev-
enue management using Thompson sampling. Oper. Res. 66(6):
1586–1602.

Fershtman D, Pavan A (2017) Matching auctions. Technical Report
0144, Department of Economics, Center for the Study of In-
dustrial Organization, Northwestern University, Evanston, IL.

Gai Y, Krishnamachari B, Jain R (2010) Learning multiuser chan-
nel allocations in cognitive radio networks: A combinatorial
multi-armed bandit formulation. IEEE Sympos. New Frontiers
Dynamic Spectrum (IEEE, New York), 1–9.

Gai Y, Krishnamachari B, Jain R (2012) Combinatorial network op-
timization with unknown variables: Multi-armed bandits with
linear rewards and individual observations. IEEE/ACM Trans.
Networks 20(5):1466–1478.

Gittins J, Glazebrook K,Weber R (2011)Multi-Armed Bandit Allocation
Indices (John Wiley & Sons, New York).

Hsu WK, Xu J, Lin X, Bell MR (2018) Integrating online learning
and adaptive control in queueing systems with uncertain payoffs.
2018 Inform. Theory Appl. Workshop (ITA) (IEEE, New York), 1–9.

Hu M, Zhou Y (2018) Dynamic type matching. Preprint, submitted
November 16, https://arxiv.org/abs/1811.07048.

Kadam SV, Kotowski MH (2015) Multi-period matching. Technical
report, John F. Kennedy School of Government, Harvard Uni-
versity, Cambridge, MA.

Kurino M (2020) Credibility, efficiency, and stability: A theory
of dynamic matching markets. Japanese Econom. Rev. 71(1):
135–165.

Kveton B, Wen Z, Ashkan A, Szepesvari C (2015) Tight regret
bounds for stochastic combinatorial semi-bandits. Lebanon G,
Vishwanathan SVN, eds. Proc. 18th Conf. Artificial Intelligence
Statist. (San Diego, CA), vol. 38, 535–543.

Lai TL, Robbins H (1985) Asymptotically efficient adaptive allocation
rules. Adv. Appl. Math. 6(1):4–22.

Lattimore T, Szepesvári C (2020) Bandit Algorithms (Cambridge
University Press, Cambridge, UK).

Liu K, ZhaoQ (2012) Adaptive shortest-path routing under unknown
and stochastically varying link states. Proc. 10th Internat. Sympos.
Model. Optim. Mobile Ad Hoc Wireless Networks (WiOpt) (IEEE,
New York), 232–237.

Massoulié L, Xu K (2018) On the capacity of information processing
systems. Oper. Res. 66(2):568–586.

Mehta A (2012) Online matching and ad allocation. Theoret. Comput.
Sci. 8(4):265–368.

Modaresi S, Saure D, Vielma JP (2020) Learning in combinatorial opti-
mization: What and how to explore. Oper. Res. 68(5):1585–1604.

Özkan E, Ward AR (2020) Dynamic matching for real-time ride
sharing. Stochastic Systems 10(1):29–70.

Ross S (2008) Stochastic Processes, 2nd ed. (Wiley, New York).
Russo D, Van Roy B (2016) An information-theoretic analysis of

thompson sampling. J. Machine Learn. Res. 17(1):2442–2471.
Sauré D, Zeevi A (2013) Optimal dynamic assortment planning with

demand learning.Manufacturing Service Oper. Management 15(3):
387–404.

Shakkottai S, Srikant R, et al (2008) Network optimization and
control. Foundations Trends Networking 2(3):271–379.

Shapley LS, Shubik M (1971) The assignment game I: The core.
Internat. J. Game Theory 1(1):111–130.

Srikant R (2012) The Mathematics of Internet Congestion Control
(Springer Science & Business Media, New York).

Sun Y (2006) The exact law of large numbers via Fubini extension
and characterization of insurable risks. J. Econom. Theory 126(1):
31–69.

Tassiulas L, Ephremides A (1990) Stability properties of constrained
queueing systems and scheduling policies for maximum

Johari, Kamble, and Kanoria: Matching While Learning
26 Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS

https://arxiv.org/abs/1402.3643
https://arxiv.org/abs/1402.3643
https://arxiv.org/abs/1811.07048

throughput inmultihop radio networks. 29th IEEEConf. Decision
Control (IEEE, New York), 2130–2132.

Wang Z, Deng S, Ye Y (2014) Close the gaps: A learning-while-doing
algorithm for single-product revenue management problems.
Oper. Res. 62(2):318–331.

Ramesh Johari is a professor of management science and
engineering and (by courtesy) computer science and electrical
engineering at Stanford University. His research broadly
focuses on the design and operation of online platforms and
marketplaces, as well as experimentation and online learning
in these platforms.

Vijay Kamble is an assistant professor of information and
decision sciences in College of Business Administration,
University of Illinois at Chicago. His research is in the areas
of market design, applied probability, and online learning,
with applications to operationalizing modern economic and
policy paradigms.

Yash Kanoria is the Sidney Taurel Associate Professor of
Business in the Decision, Risk, and Operations division at
Columbia Business School, working on the design and
optimization of marketplaces, especially matching markets.
He received a U.S. National Science Foundation CAREER
Award in 2017.

Johari, Kamble, and Kanoria: Matching While Learning
Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS 27

	Matching While Learning
	Introduction
	Related Literature
	The Model and the Optimization Problem
	Decentralized Explore-Then-Exploit for Matching (DEEM): A Payoff-Maximizing Policy
	Main Result
	Practical Considerations and a Heuristic
	Simulations
	Conclusion

