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Abstract: A theoretical approach for the study of supported atom catalysis is
developed based on recent advances in the study of single molecule kinetics. This
view is particularly useful in exhibiting the role of disorder in single atom and
single site catalysts on amorphous supports. The distribution of passage times (or
waiting times) through a complex catalytic network originating from a set of
coupled active sites is described by a probability distribution function, f{?), that
reflects the local environment of the reaction center. An efficient algorithm is
developed based on the linear algebra of the Markov transition matrix that produces
f(t) or its moments. The kinetics of the hydrogenation reaction of styrene on an
organovanadium(III) catalyst supported on amorphous silica is studied. A kinetic
model consisting of three intertwined catalytic cycles emanating from three
chemically distinct active sites is proposed to describe the chemistry. Density
functional theory (DFT) calculations are employed to determine the free energy
barriers of the reactions which are used to construct the rate coefficient matrix. The
disorder induced by the amorphous support material is divided into a low-
dimensional short-range component reflecting the covalent structures near the
reaction center and a weaker long-range component modeling the bulk randomness.
The results are computed and analyzed for a wide range of concentration values
and disorder scenarios. Unusual structure in the f{#) probability distribution function
(PDF) is found to occur for certain cases that reveal the contribution of multiple
catalytic pathways acting in concert.
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I. Introduction

Computational studies of the kinetics of surface catalyzed reactions have traditionally
adopted an idealized surface chemistry that is a defect-free perfect crystal face environment. This
greatly simplifies kinetic modeling since each catalytic site is assumed to be equivalent. In reality,
inhomogeneity such as stepped faces, defects, roughness, and nanostructure'”’ can greatly promote
catalytic activity. Although many catalytic environments are disordered,® ! it is difficult to
theoretically model the activity of such systems. The large number of required quantum chemical
calculations needed to represent chemical barriers over the distributed environments are
burdensome to carry out. There are also ambiguities about how the random environments should
be selected. Furthermore, it is not trivial to model the full kinetics of the system even provided the
distribution of energetic barriers. Of interest here are single site and single atom catalysts that are
important cases where the microscopic environment can play a decisive role in the kinetics.!! 12
Amorphous supported catalysts are interesting due to the large degree of heterogeneity in the
catalytic environment. A common amorphous support, SiO2, shows heterogeneity in catalytic sites
due to non-uniform bonding of the metal atom to the support and dangling silanol groups that can
be stretched or angled towards the metal catalytic atom. These variations can be responsible for a
distribution of reaction barriers during catalysis. This was investigated in the work of Peters, Scott

and co-workers'? 14

who examined the statistical effects of amorphous supported catalysts with
distributed energy barriers. They concluded that a small percentage of catalysts that possess the
lowest activation energy may be responsible for the majority of catalytic events. However, how to
rigorously treat the disorder of the system remains an unresolved issue. We note that using methods

1,15 16 global sensitivity analysis,!” '8 and the De Donder

such as the degree of reaction contro
relations!? it is possible to assess the relativity importance of specific barriers in the overall
catalytic turnover. Such sensitivities may reveal particularly critical steps in a model and can

provide insight in assessing wherein the disorder may have the greatest impact.

Modeling the kinetics of a disordered system requires an explicit scheme to set rate
coefficients, usually by assigning barrier energies and using transition state theory (TST). For
single reactions, one can imagine a probability distribution of barriers which yields a distribution
of rates via TST. For more complicated multistep reaction networks, we must face the question:

are the random uncertainties of individual barrier energies correlated to each other, or are they



independent random variables? A computationally intensive approach is to create a large ensemble
of random structures from a large atomistic representation of the support, perhaps using annealing,
and computing all the barrier energies using quantum chemistry for each locally optimized
structure.?’ In lieu of this massive calculation, we adopt a simpler approach based on the idea of
dividing the disorder into local and global components. For a covalently bonded system, we can
imagine the local environment determined by a small number of structural features in the
immediate vicinity of the reaction center which can be parameterized by a small number of
geometrical factors r, i.e., bond lengths, bond angles, and so forth. Fixing r sets a local constraint?!
and the remaining geometries are optimized. The long-range disorder is due to structures distant
from the reaction center and is very high dimensional, {o}, which may be approximated as noise.
The probability distribution of barriers is highly correlated for local structure, but uncorrelated for
long-range structure. Thus, if there are n-energetic barriers and wells in the reaction network, E,
they are functions of r up to additive random noise, i.e., E=E(r)+A({o}). This reduces the
complexity of the model by requiring knowledge only of the probability distribution of the local
structures. This idea in the limit of zero noise was introduced in an earlier work on SiO; supported
single metal-atom catalysts where just one bond length was used to model local disorder.?? To
model disordered kinetics, we need to compute observables such as the turnover frequency for
potentially large reaction networks that sample the values of the disorder parameters. Because the
observables themselves are also functions of many parameters, i.e. concentration and temperature,
this requires an enormous number of kinetic simulations. Since analytic expressions cannot be
relied on for complex networks, a numerical approach is required. Conventional kinetic Monte
Carlo simulation is a candidate method we also have employed,?” but it is still quite slow
numerically. Instead, here we introduce a matrix-based method that uses efficient singular valued

decomposition (SVD) manipulations to extract the observable properties of the catalyst.

One very useful way to investigate disorder in a catalytic system employs the concepts and
methods of single molecule kinetics where reactivity is resolved at the single molecule level. 232’
These techniques are especially informative since they reveal the differences in kinetics occurring
in various microscopic environments. Some of the earliest investigations involved enzymatic
catalysis where the activity was correlated strongly with the enzyme’s conformational structure.

The biophysical community has made impressive progress in developing both the experimental



methodology and the theoretical framework to gather and interpret the experimental data.?8 %

Many applications of this technology clearly establish that single molecule kinetics is a useful tool
to unravel the role of local environment on chemical reactivity.’**! Of particular interest here is
the work of Chen and coworkers who have observed catalysis occurring on single nanoparticles
and developed a real-time description of individual product formation.***® These studies have
yielded intriguing descriptions of the kinetics and give a convenient framework that naturally
extends to amorphous systems. In the present context of single atom catalysis, each active site
embedded onto the amorphous support can be occupied by only one reactant molecule or
intermediate at a time. Single atom turnover frequencies (TOF’s) are then collected for each
distinct environment. The turnovers are typically quantified by the waiting time probability
distribution functions, f(?), that records the formation and release of individual product molecules
from a site and reflect the full kinetic mechanism operating at the site. The bulk TOF is an average

over the single sites, but the single molecule results are vastly more informative.

In this work we explore the single molecule view of the kinetics of a single site
organovanadium(IIl) catalyst supported on amorphous silica, specifically we treat the
hydrogenation of styrene in a nonpolar solution to yield the product ethylbenzene. The chemistry
of alkene molecules on such catalysts has been explored in detail experimentally. “->! A reaction
mechanism was proposed in an earlier work?? that was guided by experimental results for a related
alkene, butylstyrene, and by insight into behavior of amorphous silica.’>>* Nevertheless, several
unresolved issues remain, not the least of which is the role of disorder of the amorphous
environment in the activity of the catalyst. In the model, the local disorder in the system is
parameterized by a single bond length between the vanadium and the support. While this one-
dimensional parameterization is clearly an oversimplification, we believe the outline of the

approach is a good first step in understanding how disorder impacts the activity of the catalyst.

II. Kinetic modeling of bulk and single atom catalysis

A. Bulk kinetics

A common kinetic description of a bulk phase catalytic reaction employs the Michaelis-
Menten mechanism (MM).>® 36 In the simplest version, a single site catalyst E converts a substrate

S to a product P through a single intermediate complex ES via the mechanism



E+S—ES—>E+P
+1 ke
where the release step is assumed to be irreversible. The model is solved at low E concentrations,
Ey = [E] + [ES], under steady state conditions to obtain the turnover frequency (TOF)
k,[S] k_1+k,

V=——— with Ky = "
1

GEY® (2.1)

which is related to the overall reaction velocity by vel = [E,]v. The TOF of these models exhibits

hyperbolic saturation phenomenon at large [S], i.e., V = Vpqx = k3 as [S] > Ky, and a linear

Lineweaver-Burk plot of % vs [?1] . It has been demonstrated that the average of the single molecule

TOF, under many circumstances, will likewise show saturation behavior with a generalized

description of the physical meaning of the MM parameters Vy,,q, and K;.>?

Simple analytical behavior can sometimes be obtained for more complicated catalytic
motifs than the basic MM scheme, although the expressions for v, 4, and Ky must be generalized
and perhaps include inhibitor concentrations.>® 37 38 These motifs may yield to hyperbolic or more
complicated saturation curves. When more the one substrate is involved, as in the present case, the
MM formula must be generalized to account for multiple substrate concentrations. A class of
models for two concentrations (/4] and /B]) is described by the TOF expression®

Vmax[A][B]

Y = TATIBT + KualB] + Koo 4] + KinKorm (22)

where K4 and Ky are Michaelis constants for attachment of A and B substrates and K4 is an
equilibrium constant for E+A<~EA. When the catalytic motifis complicated by inhibition, multiple
substrates, multiple active sites, and disordered structural environments, the TOF is difficult to

analytically represent in any useful way and a numerical approach is preferred.

B. Single molecule kinetics

The single molecule view of kinetics is well adapted to treating the behavior of supported
single atom catalysts.>® The great advantage of this viewpoint is that the total kinetic turnover can
be straightforwardly decomposed into a convolution over the distinct environments.

Experimentally, detailed observations can directly resolve the activity of single enzymes or



nanoparticles in their distinct structures. Theoretically, the activity of a single environment such
as a structure can be predicted from reaction energetics. The fundamental descriptor in single
molecule catalytic kinetics is the probability distribution function (PDF) of reactive waiting times
from a single active site, fy(2). The waiting time ¢ is defined as the time interval between the
catalytic turnover cycles from one catalytic molecule or atom and is the sum of times for each step
along the pathway leading to product release. The label ¢ denotes distinct structures of the catalyst
which models the disorder. For a simple sequential cycle, a single catalytic atom E processes a
substrate S to product P through a set of n intermediates (ES); arranged along a linear chain, E +
S & (ES); © (ES); © -+ (ES),, = E + P; there, the event time ¢ is measured between sequential
product release reactions (ES), — E + P. No new substrate can bind to E during the sequence
which requires passage through the full cycle to renew. More generally, a full cross-linked reaction

network will govern the catalytic turnover at the active site. The turnover frequency (TOF) from a

single site, V4, is obtained from the first moment of the PDF, (t), = ) 000 t- fp(0) dt,
Vg = 7 (2.3)

The f,(2) for site g is obtained by simulating the kinetics for the reaction network that take reactants
to products using the rate coefficients appropriate to structure g. The observed TOF of a

macroscopic sample of many inequivalent AS’s is then obtained by the average
Vobs = Z Fv, (2.4)
q

where F, is the probability of the structure g in the sample. This relation assumes a static
distribution so that each TOF may be computed from a single set of rate coefficients. In the present
case, the chemistry is due to a single vanadium atom and distinct catalytic atoms in the sample do
not communicate. We shall distinguish two varieties of active site (AS) distributions, structural
and chemical. In the present supported V-atom problem, the structural distribution corresponds to
various amorphous configurations of the SiO» support which is assumed to be rigid and static on
the time scale of the experiment. The chemical distribution refers to distinct chemical structures
for the AS that may develop from the pre-catalyst. Here, these are associated with different ligands
on the V-atom that yield different catalytic cycles but with the same rigid amorphous structure of

Si0s. The chemical distributions may interconvert on the experimental time scales and must be



treated on par with the other catalytic chemistry. Should the SiO; structures become nonrigid, the
distinction between chemical and structural configurations blurs.

We model the catalytic network assuming the intermediate species X;' interconvert through
the pseudo-first-order reactions, X ]fl - Xiq with rates given klg j [X]g]. The concentrations of the

substrates, styrene, and H» in the present case, or inhibitors, THF in the present case, are taken as

constant parameters within kg e The rate coefficients for the reaction step j—=21i is given by the

+,0
standard Eyring form, k{, = "Zie—AGi,j @/kBT . 7 \where Z is either [ST], [Ha], [THF] or 1

depending on the reaction and AGf}O (q) is the structure-dependent standard free energy barrier for

Jj(+Z) »%— i. The free energies are provided by the DFT calculations and include energetic and

entropic contributions, and in principle may also include solvation effects.
C. Stochastic Modeling:

We assume the catalytic network consists of N distinct species including m chemically
distinct AS’s. We represent each of the N chemical species in the catalytic network as a “state” in
a continuous time Markov stochastic process with occupation probability P;(t), i=1,...,N+m.% ¢!
We have augmented the state space to include the m AS’s as both initial and final states for
mathematical convenience. The AS’s may interconvert via first order kinetics on the same footing
with other reactions in the network. Thus, all species are combined into a single state vector that
includes both the initial and final states of the AS’s. (For the moment we drop the cumbersome
“g” superscripts which are implicit in all the probabilities and rates.) The first m states are taken
as the reagent states, i.e., Ei+Reactants, and the final m states are the product states Ei+Products,

with i=1,...,m. Here, the E;’s are the m chemically distinct AS’s. Importantly, we assume the final

m product Markov states are “absorbing” so that all reactions into them are irreversible, k; y.; =

Owithi=1,..,mand j=1,..,N+ m. This is strictly valid only in the limit of zero product,
1.e., for the initial stages of reaction. The first N states are termed “transient” since any molecule
lying in those states will eventually transition into the absorbing states after some amount of time.
The rate coefficients in the Markov chain picture are then state-to-state transition probabilities per
unit time. The time evolution of the state probabilities is given by the familiar system of first-order
ordinary differential equations (ODEs) in terms of the probability vector P=(P;, ... ,Pn+m) and

the (N + m) X (N 4+ m) transition rate matrix G (also known as the generating matrix)



=GP 2.
——=G-P(t) 25)
where
—kq v kinim
G = : : (2.6)
kN+m,1 v —knim

The diagonal elements G;; for i=1,...,N are the (negative) decay probabilities per unit time of state
L,k = Z?’:lm k;; fori=1,..,N. Each column of the matrix sums to zero reflecting conservation of
probability. The last m columns of G are zero since transitions out of the absorbing states are
forbidden. The solution of this system models the first passage time from the initial state P(0) to
any final absorbing state and the waiting time PDF is given by the derivative of the total final state
probability for all the final product states, i.e.

m

dPy.;
fo=) ”d—t(t) (2.7)

i=1
In our previous work,?> we modeled the single molecule kinetics of eq. (2.5) using a kinetic Monte
Carlo scheme in which an ensemble of similarly prepared sites was propagated using methods
similar to those proposed by Gillespie. ®> ® Here, for the most part, we adopt a more

computationally efficient approach based on linear algebra.

Further analytical progress on this problem is possible®! Error! Bookmark not defined.

by partitioning the generating matrix G into a sub-generator T and an absorption matrix ¢

T 0
G — ( NXN NXm) 2_8
TimxN Omxm ( )
where
_k1 kl,N
T= : =~ (2.9)
kn 1 —ky
and



kN+1,1 kN+1,N
= ; (2.10)

knsmn - knimn

Physically, T represents transitions between the transient states while 7 describes transitions from

transient states into absorbing states. By conservation of probability YN +™ G;j = 0 implying that
N T;j = — Xi%1 Tn+ij forj=1,...,N. In other words, the net transition rate out of a transient state

J to other transient states i#j equals negative of the transition rate of j into the absorbing states. The
passage time through the network is determined by 7 and does not require the redundant

specification of 7. The sub-generator 7 is an invertible matrix (unlike G) and it can be shown that

the moments are obtained by matrix inversion®!

t"y =n!1T - (=T7)™"- P(0) (2.11)
In particular, the TOF is given by the first moment

1

V=17 —T)1-P0) (2.12)
and the full waiting time distribution is
f(@) =17 - (=T) - exp(Tt) - P(0) (2.13)

The vector 17 is the transpose vector of all one’s and P(0) is the initial state vector, which is some
distribution over the active sites. The TOF for the site is then obtained from the first moment

without the need for explicit time propagation.

If there are m-chemically distinct AS’s, there will be m potential “initial states” and m
potential absorbing “final states”. We require a method to set P(0)) when the system is in steady
state which occurs after many turnovers. To achieve stationarity, the total decay rate from a
specific initial state must be equal to the formation rate of the corresponding absorbing state.

Hence, we have the steady state conditions

N
k;P;(0) = Z knsi P (0) i =1,..,m (2.14)
=



These homogeneous equations can be solved using the constraint )/, P; = 1. If the active sites

rapidly interconvert the initial state can be approximated with the equilibrium constants.

The standard difficulty that arises with the stochastic matrix approach is the possibility of
ill-conditioned transition matrices for certain regions of parameter space.’! As a result, an
unacceptable level of noise may occur in the evaluation of observables in those regions. This
difficulty is usually dealt with by invoking a preconditioning process on the linear system that
lowers the effective condition number of the matrix. A quasi-equilibrium approximation can

accomplish the same thing by eliminating certain rapid steps from the mechanism.
D. Kinetic Monte Carlo

The single molecule perspective is based on solving the egs. (2.5)-(2.7) for the waiting time
distribution f{#) by any consistent method. An alternative to the matrix method of Sec. II.C is to
use the stochastic simulation method of Gillespie®® to generate the first passage time through the
network using an explicit random walk algorithm. We refer to this as the kinetic Monte Carlo
algorithm, kMC. The problem manifested by high matrix condition number in Sec. II.C is here
exhibited through very long required propagation MC flights due to a separation of time scales
between reactions with very different barrier heights. This problem can be ameliorated by invoking
a quasi-equilibrium approximation. Thus, if two or more species rapidly interconvert but decay

slowly as a group, we can equilibrate the concentration within that family; e.g. if X; e X, is
£rkp

% ~ g and the fastest transition can be dropped from the list of potential MC events.
1 b

This well-known approach® accelerates the calculation considerably and can be used sometimes

rapid then

when the ill-conditioning problem of the matrix method is severe.

III. Hydrogenation of Styrene on Vanadium Catalysts

A. Chemical model

The modeling catalytic kinetics of styrene hydrogenation requires detailed information
about the nature of the AS’s and rate coefficients of the steps along the catalytic cycles. In a
previous work,?? the model based on quantum chemistry and chemical insight was described in

detail which here we briefly review. The model was generated from electronic structure



calculations using Gaussian16%* software and guided by experimental studies of 4-butylstyrene
hydrogenation catalysis on the same surface. For the amorphous SiO» support, silsequioxane cages
composed of siloxane ring structures were used in place of periodic DFT calculations. To model
top monolayer relaxation in periodic models, the bottom half of the silica cluster (6 H, 11 O, and
6 Si atoms) was kept frozen during the optimization and frequency calculation. Styrene (ST) was
used as the model reactant. All structures were optimized using the B3LYP density functional®
and CEP-31G pseudopotential double-{ basis set.®” 8 ¢ The thermal corrections to the Gibbs
energy profile are done for 50°C and the frequency determination are made using B3LYP with the

TZVP’° basis set. It is assumed that solvent effects are small and are ignored.

In the experimental analog system involving 4-butylstyrene, the active sites on the catalyst
evolve from a pre-catalytic surface where a single V' atom was tethered to the surface by several

V-0 bonds and capped with ligands Mes(mesitylene) and THF (tetrahydrofuran).’! The surface

V-O(siloxane) bond V-O(siloxane) bond V-O(siloxane) bond

Figure 1. The structures of three potential active sites. The vanadium atom (green) is
tethered to the SiO: support by bonds to the silsequioxane cage. The vanadium atom has
no ligand in the first structure, a ligand THF in the second, and a ST ligand in the third.
One of the V-O bond lengths is systematically altered in each structure to simulate short-
range disorder.

was pretreated by exposure to H> that leads to three feasible active sites where some or all of the
ligands were removed. These structures are pictured in Fig. 1, labeled C, D, and E. These

correspond to V-atom ligands: bare, THF, and ST, respectively.

The chemistry of the system involves two substrate species, styrene (ST) and hydrogen

(H»), an inhibitor (THF), and three active sites. Three interlaced chemical pathways were identified

10



that accomplish the overall reaction Stryene+H,—>Ethylbenzene which are shown in Fig. 2. The

active sites can interconvert by reversible attachment of THF and ST from solution.

Figure 2. The proposed catalytic scheme. The three active sites can interconvert by
attachment/detachment of ST of THF to the V-atom. The scheme involves three
interconnected cycles (or pathways). The transition state structures are indicated in
brackets. Reprinted with permission from Ref 22. Copyright American Chemical Society.

As seen in the diagram, the catalytic cycles are connected, through (i) ligand
attachment/detachment of the active sites, (i1) at the merging structure 19¢, and (iii) at the
branching structure 25. The free energy profiles that emerge from the assumed optimized SiO>
developing from the pre-catalytic structure are shown in Fig. 3. We note that the barriers for the
reactions D & C « E and 19a < 19c are significantly lower than the others and are amenable
to a quasi-equilibrium approximation. There are 10 stable chemical structures and 9 transition
states that contribute to this mechanism. The 7 matrix above is thus a 10x10 matrix and the G-
matrix, augmented with the absorbing states is 13x13. The concentrations of ST, H», and THF
enter the 7T-matrix as multipliers of the rate coefficients and should be expressed in molar units in

keeping with the definitions of the standard free energies. Hence, the matrix is parameterized by

11



the vector X=(ST, H, THF), i.e., T(X). It is not obvious whether the TOF for this catalytic model

would be described by a simple parameterization such as that of eq. (2.2).
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Figure 3. The free energy for the structures shown in Fig. 2 relative to active site C. The
pathways 5, 6, and 7 are indicated with blue, orange, and gray connecting lines,
respectively. The nominal temperature is 50°C and concentrations are IM.

B. Structural Disorder

In the previous report,?? we introduced a simple model for the structural disorder of silica
in this system. Here we briefly describe this model. The coordination environment of the V site is
essentially determined by a set of structural parameters, such as V-O bonds and O-V-O angels,
etc. For this class of supported organometallic catalysts, amorphous silica is used, which has no
facets, but yet numerous local environments lead to the heterogeneity of the grafting sites. The
resulting V sites also have a variety of coordination environments. Here we simplify the structural
parameters to a single parameter, one of the V-O bond distances, and use the change of this
parameter to mimic the heterogeneity of the active sites. While other geometric parameters, such
as bond angles and dihedrals, as well as the distance between two =SiO— groups, could play a role
in describing the relative position of the siloxane, the V-O (siloxane) distance is an effective
simplification that is sufficient to demonstrate a qualitative trend in catalysis (vide infra). Based
on the DFT optimized V-O distance for 1c (2.29 A) in the fully relaxed model coming from the
pre-catalyst, three rigid V-O (siloxane) distances are considered: 2./, 2.3 and 2.5 A as
representative structures for compressed or elongated local environments in an amorphous silica

surface. These distances are both chemically feasible in an amorphous sample and had a critical

12



impact on the effective turnover frequencies. The four representative structures for the catalytic
pathways corresponding to each individual V-O(siloxane) distance, i.e., fully relaxed (2.29 A),
2.1,2.3,and 2.5 A, represent two scenarios of surface heterogeneity: one that utilizes the rigidness
of the neutral siloxane groups on the surface of amorphous silica, which infers the positions of the
siloxane relative to the metal center, and the possibility that the donor siloxane could be on the
edge or corner of the amorphous silica sample, which could provide more flexibility for the
siloxane donor during grafting and catalysis given the extra degrees of freedom. As the V-O bond
length is extended to distances larger than 2.5A, the energy of the active sites grows large and

presumably sites with such values become very improbable.

The energetics of the chemical model of Fig. 2 were computed at a series of fixed values
of one V-O bond length, ». This V-O bond refers to the bond between the V center and the siloxane
group, shown by the arrow in Fig. 1, is held fixed away from its optimum value and the remaining
chemical geometries and energetics are optimized subject to that constraint. Thus, a particular SiO2
structure was first chosen as a fiducial based on the pre-catalyst, and other members of the
disordered sample were represented as a one parameter family. The energetic profiles along

catalytic pathways for the four values of » computed are shown in Fig. 4.

13
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Figure 4. The free energy profiles along pathways (a) 5, (b) 6, and (b) 7 computed as a
function of the parameter r (V-O bond length) used to model short-range disorder in the
sample. Reprinted from Ref. 22 with permission, Copyright American Chemical Society.

In the rate computations, we have used a cubic spline interpolation scheme to obtain each barrier
and well energy as a continuous function of 7 Hence the transition matrix itself is also a function
of the parameter r, i.e., T(r), as is the TOF, v(r). If the probability distribution of » is denoted by
F(r), then the observed TOF via eq. (2.12) is

Vops = f F(r)v(r) dr = f F(r) [1T-(—T(r))‘1-p(0)]_1dr (3.1)

In addition to the short-range disorder modeled by the one-parameter family of V-O bond lengths,

14



we also consider the possibility of long-range disorder induced by more distant structural
randomness. This was represented by a Gaussian random noise function with variance o which
was added to the energy of each barrier and well in the chemical model. There was no correlation
between the added noise at the various stationary points and the variance was assumed to be the
same for all values of 7. The observed TOF is an average of v computed from a random sample of

barriers and wells at each r, so that

Vobs = J.F(r)(v(r))dr = fF(r) < [1T : (—T(r))_1 . P(O)]_1 >dr (3.2)

At present it is not clear what the distribution F'() should be nor is the value for the noise parameter
o (although see Sec. VII). We note that eq. (3.2) is easily generalized to include more than one

local disorder parameter, should that information be available, specifically »—r and dr—>d"r.

IV. Results for Turnover Frequencies

The matrix methods described above are efficient and make it possible to generate results
for many thousands of parameter values of [ST], [Hz], and [THF] even including disorder. The
results presented here are meant to give a survey of the qualitative trends predicted by the model
and not a direct representation of experimental results which do not exist at present for styrene

reactions but only for butylstyrene. Hence, we choose values for convenience.

We first illustrate the turnover frequencies obtained at fixed values of » computed without
noise as functions of the concentrations [ST], [Hz], and [THF] in Fig. 5. We select a temperature
of 325K to present results and the matrix inversion was carried out using the SVD. The waiting
time distribution is found to be extremely insensitive to the choice of initial state, P(0)), since the
active sites C, D, and E rapidly equilibrate before the first (slow) H» attachment step. In Fig. 5a-c
we show the TOF, v, versus r under a number of conditions. There is clearly an optimal range of
values near r=2.36A where vreaches a maximum, while at small r values the catalyst is relatively
inactive due to higher barriers. In Fig. 5e, we show vversus [ST] for several values of [THF] at an
optimal » value. The results exhibit typical saturation behavior versus [ST] at fixed values for the

remaining parameters. Also, in Fig. 5g, are the corresponding linear Lineweaver-Burk plots of
% vs [Sl—T] from which the MM parameters may be extracted. However, it is found that the values

of the MM parameters can vary dramatically as a function of » and at some values we can see clear

15



departures in a linear Lineweaver-Burk plot. It is clear from Fig. 5g that the THF acts as a
noncompetitive inhibitor since the straight lines do not intersect at % = 0 but instead occurs at some
negative value. The TOF versus [H2], Fig. 5d, also shows saturation behavior for low values of
[THF]. When [THF] is large or when r lies significantly below the optimum value, we observe a
linear dependence of v on [Hz] or [ST] for all reasonable concentration values since the predicted

Michaelis parameter (Kwm) is extremely high. The TOF versus [THF] is shown in Fig. 5f for several
values of [ST]. There is clearly strong inhibition of the TOF due to THF. For [H>], THF acts more

. . . .. . o e 1 1 . 1 .
in keeping with competitive inhibition as ~ s mseem to intersect near T 0. Thus, in
2 2
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summary, the performance of the catalyst is found to have a strong r-dependence with respect to

all the controllable parameters of the system.
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Figure 5. The TOF (v) at T=325K computed using eq. (2.12) for various values of the
system parameters. Panels a-c show the r-dependence of v for various values of [H>],
[THF], and [ST] respectively. In d-f the concentrations dependencies of v are shown for
the H>, ST, and THF at r=2.364. In g and h, the Lineweaver-Burk plots are shown for H»
and ST at r=2.364

To fully account for the structural disorder in a bulk sample to obtain vuss, it is necessary
to average the TOF over both 7 (short-range) and o (long-range) disorder as in eq. (3.2). Here our
purpose is to qualitatively explore the sensitivity of the kinetics to the disorder so we simply test

several potential distributions. First, we consider the influence of Gaussian noise on the TOF at
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fixed values of . The concentrations were held fixed at [ST]=1M, [H2]=5M, and [THF]=0.01M
and the TOF was computed for the reaction networks for 500,000 random values for the additive
noise added to the barriers and wells. The calculation is repeated over a range of fixed r for a
number of values of the StDev o. As shown in Fig. 6, the noise can increase the TOF by up to an
order of magnitude at reasonable values of o. Clearly, the more active catalysts (with lower
activation barriers) are emphasized in the average as noted by Peters et al.'> We note that, while
the activity of the site seems to continue to grow at beyond r=2.5A, the probability of such sites in

the sample decreases rapidly due to the high energy of such structures.
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1.0 A _
o = 0.33kcal —4.95 -
— o= 0.67kcal =
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Figure 6. The TOF at computed for T=325K, [ST]=IM, [H2]=5M, and [THF]=0.01M
with the addition of random Gaussian noise to each barrier and each well free energy
for a number of values of o. In (a) the TOF is shown as a function of r, and in (b) the
TOF at the near optimal value of r=2.36 A is plotted versus the variance o°.

The averaging over short-range disorder requires an expression for F(7) in eq. (3.2). While
it is not clear what the proper choice should be, the total energy grows larger with r so the value
r=2.1 A is likely to be the most probable value for r. Therefore, we consider distributions of the

form

F(r) = N(a) - e~®Ir—21l (4.1)
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Figure 7. The TOF averaged over short- and long-range disorder. In panel a, the TOF
for T=325K, [H2]=5M, [ST]=IM, and [THF]=0.01M computed for various a values
versus . In panels b and c, the concentration dependence of TOF at various a values
computed for 0=0 and 1 kcal/mol, respectively.

We investigate several values of a ranging from a broad (a small) to a narrow (a large) distribution
of short-range structure. The average TOF at fixed [ST], [Hz], and [THF] was computed using
500,000 noise values as a function of 7, and then integrated over » using eq. (3.2). The TOF at fixed
concentration is shown in Fig. 7 for various a-values as a function of the strength of noise. The 7-
averaging clearly preserves the noise enhancement of the rate seen for the fixed r-results. The fully
averaged TOF as functions of [ST] for various a values (in units of A™') choosing the noise
parameter of 6=1 kcal/mol is shown in Fig. 7c. It is seen that the TOF shows weak saturation
behavior versus [ST] for all a values. However, the results do not fit well to a linear Lineweaver-

Burk plot nor to a linear Hill plot.

V. Multiple Reaction Pathways and Disorder Explain

Nonlinear Lineweaver-Burk Plots

The origin of the nonlinear behavior in Fig. 7 can be traced mostly to reaction path
branching which is either promoted or suppressed depending on the values of the disorder
parameter . As was seen in Fig. 2, there are three basic catalytic pathways that contribute
simultaneously to the complete TOF. It is possible to approximately extract the separate
contributions to the kinetics from the individual pathways (5-7) by blocking flux going along the
other two paths with artificially high barriers. Thus, the contribution of pathway 7 is found by
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setting the barriers for structures 18b and 18c to high values. Similarly, pathways 5 and 6 can be
isolated by raising the barriers for 18a and 18¢, and for 18a and 18b, respectively. In Fig. 8a, we
see how the TOF decomposes into path contributions versus » for [THF]=0.01M, [H2] = 5M and
[ST]=1M. We see path 7 dominates the TOF up to about 7=2.4A, at which point path 5 begins to
contribute significantly and path 6 becomes somewhat more important although path 5 is much
more important than path 6 at 7=2.5A. Thus we see that in a window around =2.45A the TOF is

due to a combination of paths while outside the window a single pathway dominates. To exhibit

how the LB plot responds to changes in , in Figs. 8b we show % Vs. ﬁ at =2.35, 2.4. 2.45, and

2.5A holding [Hz] and [THF] fixed. The LB plot is sometimes linear, such as at =2.30, 2.36, and
2.5A, but sometimes nonlinear, such as at 7=2.45A. In those region of multiple contributing paths,
we see nonlinear behavior. Obviously, when broadly averaged over all » using F(r), the plot
remains nonlinear. However, it is interesting to note that the individual paths each exhibit a linear

LB curve even at the value /=2.45A as seen in Fig. 8c.
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Figure 8. The pathway analysis of the kinetics for T = 325K, [THF]=0.0IM, [ST] = IM
and [H>]=5M. In (a) the TOF versus r is decomposed into contributions from three
pathways. In (b) the Lineweaver-Burk plot for various choices of r is shown with the
average (observable bulk) value of the LB plot in purple. In (c), the result for r=2.45 A
is decomposed into individual pathways.
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Nonlinear LB curves are commonly seen in branched multi-pathway catalytic networks>®
I'and in the cooperative kinetics of enzyme catalyzed reactions.”? 7* In the present problem, even

the more general Hill curve remain nonlinear.>¢

Here, we also note that disorder can result in
nonlinear LB curves even for a purely sequential (single path) reaction mechanism. This may

occur since the general sample average of the TOF yields

Lo a4+l (5.1)
v Z F vmax[S] [S]
AT+ K,

In particular, if the affinity parameter K, shows strong variation over the sample, then the overall
LB plot is nonlinear. When a sequential (single path) mechanism is subjected to correlated disorder,
then we are effectively combining the turnover from a set of completely different sequential
mechanisms. In Fig. 9, this is demonstrated by computing the LB plot for styrene saturation broken
down into contributions from each pathway but averaged over disorder with a=1 A" and o=1
kcal/mol. The dominant path 7 shows clear nonlinearly which carries over to the full ensemble
averaged result. On the other hand, the linear behavior of path 5 and 6 suggests a very weak
dependence of K, on the disorder parameters. Hence, we observe that both multiple pathway

kinetics and correlated disorder both contribute to nonlinear LB behavior.
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Figure 8. The Lineweaver-Burk plots for styrene saturation averaged at T=325K,
[THF]=0.01M, and [H2] =5M, over the local and global disorder with a=1 A" and o=1
kcal/mol. The pathway decomposed results and full result are shown.

VI. Results for Waiting Time Distributions

The TOF is of course only the simplest aspect of the single molecule kinetics, i.e., the first
moment of f{z). The full shape of this PDF (eq. 2.13) is vastly more informative since it responds
to the full kinetic network. Since a single molecule observation may extract f(¢) for distinct
microscopic environments, it is interesting to investigate how the PDF reflects the disorder. Here
we consider just several representative cases for values of the concentrations to illustrate the

behavior of /(). As context, we note that the simple MM scheme E + S «= ES — E + P has a well-

+1 k2
known analytical solution*?
A
f(£) = =2 (eMt — eet) (6.1)
A2 =M
where the eigenvalues of T are
k|SI+ ki + Kk ki[S]+ k_1+ ky)?
UL S zij< s ) ©2)

This gives rise to a unimodal PDF with a rapid rise in f{#) due to transient kinetics (4,) followed

by a slower exponential decay set by the rate limiting process (4;). Thus, when [S] is saturated
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f(t) = (ko + ky)e U1tk and when [S] is small f(£) — (ky[S]D)(e 1Bt — g=Ckat ko)t

. . .k . . .
where I' is the branching ratio i . The TOF from the first moment of f(?) is consistent with the
-1 2
. . ki[Sl+k_1+k . In(z)
standard equation (2.1), i.e., (t) = =———=—2, however the maximum t,,,, = —=2 can be
kikz[S] Az

significantly smaller than the mean waiting time < t >. For general non-defective kinetic
networks that exhibit nondegenerate eigenvalues, the PDF is a linear combination f(t) = Y. c;e’it

which can be complicated, even showing multimodal behavior as seen by English et al.>* 3*
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Matrix Method, T = 450K
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Figure 10. Waiting time distribution f(t) computed by two different methods. In the upper
panels (a)-(f), f(t) is computed by matrix method at T=450K. Panels (a)-(c) demonstrate
the [THF] dependence for several [ST] values at r = 2.36 A and panels (d)-(f) shows the
r dependence. In the lower panels, f(t) is computed by kMC at T=325K. The results are
for various r, [H>], and [ST] values with [THF]=0.34M. In all cases the random noise

parameter o is set to zero.

In Fig. 10, we show f{z) on a linear-log scale computed from eq. (2.13) for a survey of

catalytic conditions with normalization [ f(t)dt = 1. In the upper portion of the figure, f{2) is
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computed using the MATLAB command EXPM and the temperature was chosen as T=450K to
avoid ill-conditioning of exp(7?) that develops at long times with lower temperatures. For the
lower portion of the figure, we employed the slower kMC approach which could be employed at
T=325K. In Fig. 10a-c, the PDF is shown for /=2.36A (the optimal value for the TOF) at a number
of [ST] values for three levels of the THF inhibitor. In Fig. 10a at low [THF], the PDF is a narrow
peak fairly well represented by a two-exponential expression, eq. (6.1). When the concentration of
inhibitor increases, as in Figs. 10b and 10c, the peak broadens and develops a clear shoulder for
faster turnover times. These are clear signs of multiexponential behavior. The dependence of f{?)
on [ST] and [H>], highlighted in Figs. 10d-f, is found to be less dramatic than that of [THF]. The
peak positions and first moments shift gradually to faster times with increasing concentrations.
The most interesting variation in f{¢) occurs as a function of the disorder parameter r. As r
increases, the shape of f(?) clearly evolves and develops two or more distinct features as seen in
Figs. 10g-i. This is exciting since it demonstrates a qualitative distinction between different

structural environments that is potentially observable in experiment.

The kMC calculations in the lower portion of Fig. 10 were obtained with the quasi-
equilibrium approximation invoked for interconversion of the AS’s, AS3 & AS4 < AS5. This
allowed f(?) to be computed at the lower temperatures 325 K. Although the kMC calculations are
time consuming, the instability of the linear equations does not affect the quality of the results.
The waiting time distribution were obtained for various substrate concentrations and » values with
the inhibitor fixed at [THF]=0.34M. The main peak of the PDF in Fig. 10g-1 is approximately
described by a simple two-exponential representation. However, more complicated structure does
develop at shorter turnover times. For example, in Fig. 10h the secondary peak in f(?) clearly
reflects the contribution of pathway 5 at 7=2.3A when pathway 7 is suppressed with the inhibitor.

The multi-exponential behavior is intimately connected to the multiple pathway structure.

It is clear that the information contained in f(?) goes well beyond what is reflected in the
first few moments of the PDF. How can that information be extracted and interpreted? While a
full analysis goes beyond our present scope, some aspect of the behavior of f{z) can be easily
inferred with reference to the catalytic motif shown in Fig. 2. Using the flux blocking scheme
introduced in Sec. V, we can analyze the individual pathway contributions to f{z) which are

computed separately using the 7T-matrix modified with the high barriers under the conditions
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T=450K, [H2]=1M, and [THF]=0.01M. In Fig. 11a, the relative importance of the three pathways
is inferred from the TOF versus 7. It is seen that path 7 constitutes the main contribution to the
peak near =2.36A while influence of pathways 5 and 6 grow significant for larger » values, i.e.,
r>2.4A. In Fig. 11b, the full (unblocked) mechanism PDF for the case 7=2.45A is shown which
reveals similar structure at all [ST] values. Then in Fig. 11c, the result for [ST]=4M is decomposed
into three pathways contributions which sum nearly perfectly to the observed total. The peak near
=1 s is due mostly to pathway 7. The feature at shorter times comes from pathway 5. A broad
longer time contribution comes from pathway 6. In Figs. 11d-f, the [ST] dependence of separate
pathways is exhibited. It is very interesting to note that the [ST] dependence of f(?) for pathway 7
is extremely weak. This is due to the fact that styrene attachment along path 7, which occurs after
the rate limiting step, has a very low barrier so that it is easily saturated. The takeaway is that the
pathway decomposition of the PDF provides a useful tool to unravel the contributions from
different reaction routes to the activity of individual reactive sites on a catalyst. To a degree, the

resolution of results in time allow the separate pathway structure to be revealed.
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Figure 11. The pathway analysis of the kinetic mechanism for the case of T=450 K,
[THF]=0.0IM, and [H>]=5M. In (a) the TOF versus r is decomposed into contributions
from three pathways. In (b), the full PDF f{t) is shown for r=2.454. In (c), the PDF for

27



r=2.454 is decomposed into pathway contributions. In (d)-(f), the [ST] dependence of
each pathway is shown.

VII. Discussion and Conclusions

The single molecule viewpoint is an extremely useful tool to analyze the catalysis of
disordered systems. The advantage over the traditional bulk perspective is twofold. First, spatial
resolution permits the isolation of turnovers at a single environment of the sample. Second, the
temporal resolution allows the kinetics of passage through the network to be spread out in time.
As we have shown, the analysis of the waiting time PDF, f;(z), permits the identification of distinct
kinetic pathways as features occurring in different regions of time. Hence, single molecule
observations allow us to undo the two averages in the TOF, i.e. vops = Xg F | fq(t) - t-dt. The
necessary experiments, of course, are very challenging and cannot be routinely applied to systems
of interest. However, Chen and coworkers***® have elegantly demonstrated that technology
developed previously to study enzymology can be adapted to traditional catalytic systems. Single-
atom catalytic systems seem to be a plausible target for experimental study since spatial resolution
is possible through use of a sufficiently dispersed sample of catalytic atoms. Of course a successful
experiment also requires a spectroscopic signal to monitor the turnover events, and this will be
system dependent. We believe that the methods outlined in this paper may provide some guidance

in the design and analysis experiments arising from single site catalysts on disorder surfaces.

The present work employs a realistic model based on DFT to study the styrene
hydrogenation process with a single site organovanadium catalyst on an amorphous silica support.
It was found there are three interconverting active sites that yield three interconnect catalytic
cycles. The TOF and f4(¢) may be efficiently extracted from the kinetic model using an SVD
representation. This enables large scale simulations of structural disorder implicit in this class of
catalysts. Traditional models of disordered kinetics have typically employed random sampling to
determine the required reaction barriers. When multiple steps are present in the reaction
mechanism, one must face the issue of how the successive reaction barriers correlate to one
another. The structural static disorder was divided into two components that had different
statistical characteristics. The short-range disorder was modeled by a parameterization of the local

structure around the anchoring site of the vanadium atoms to the silica surface. This local structure
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gives rise to strong correlation between the reaction barriers along the three catalytic cycles. The
long-range disorder models the bulk silica substrate and has a much lower level of correlation

between the barriers and is simply represented as Gaussian noise.

The present study represents the first step in the treatment of the supported
organovanadium catalyst. We have treated the local structural disorder using only a single
geometrical parameter, the V-O bond length. While the local covalent structure imposes severe
constraints on the dimensionality of disorder, we anticipate that further parameters will likely be
required to fully account for the distribution of active site environments. We must also address
the question of proper choice for the statistical probability function F'(r) that develops from the
actual pre-catalyst. It is difficult to use direct experimental data to extract the structural information
about site distributions. A purely theoretical approach will require a large number of QM

calculations to represent the local environment of the reaction center and scheme to represent the

L 74 l 75

grafting and preparation kinetics. We note that Kahn et al.” and Vandervelden et al.”> have
suggested an “importance learning method” that starts from a quenched disorder parameterized
model of silica and aims to make predictions based on a relatively small set of training data. This
approach may reduce the number of calculations required. Finally, in the future we shall require a
more complete model to relate the weighting time distribution to chemical pathways. Here, we
have adopted a rather crude method of pathway selection via flux blocking. It is possible to use a
more sophisticated deconvolution method’6-®! to analyze the reaction network that does not

involve any alteration of the barrier heights. This will be the subject of future work.
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