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Abstract:  A theoretical approach for the study of supported atom catalysis is 

developed based on recent advances in the study of single molecule kinetics. This 

view is particularly useful in exhibiting the role of disorder in single atom and 

single site catalysts on amorphous supports. The distribution of passage times (or 

waiting times) through a complex catalytic network originating from a set of 

coupled active sites is described by a probability distribution function, f(t), that 

reflects the local environment of the reaction center. An efficient algorithm is 

developed based on the linear algebra of the Markov transition matrix that produces 

f(t) or its moments. The kinetics of the hydrogenation reaction of styrene on an 

organovanadium(III) catalyst supported on amorphous silica is studied. A kinetic 

model consisting of three intertwined catalytic cycles emanating from three 

chemically distinct active sites is proposed to describe the chemistry. Density 

functional theory (DFT) calculations are employed to determine the free energy 

barriers of the reactions which are used to construct the rate coefficient matrix. The 

disorder induced by the amorphous support material is divided into a low-

dimensional short-range component reflecting the covalent structures near the 

reaction center and a weaker long-range component modeling the bulk randomness. 

The results are computed and analyzed for a wide range of concentration values 

and disorder scenarios. Unusual structure in the f(t) probability distribution function 

(PDF) is found to occur for certain cases that reveal the contribution of multiple 

catalytic pathways acting in concert. 
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I. Introduction 

Computational studies of the kinetics of surface catalyzed reactions have traditionally 

adopted an idealized surface chemistry that is a defect-free perfect crystal face environment. This 

greatly simplifies kinetic modeling since each catalytic site is assumed to be equivalent. In reality, 

inhomogeneity such as stepped faces, defects, roughness, and nanostructure1-7 can greatly promote 

catalytic activity. Although many catalytic environments are disordered, 8 - 10  it is difficult to 

theoretically model the activity of such systems. The large number of required quantum chemical 

calculations needed to represent chemical barriers over the distributed environments are 

burdensome to carry out. There are also ambiguities about how the random environments should 

be selected. Furthermore, it is not trivial to model the full kinetics of the system even provided the 

distribution of energetic barriers. Of interest here are single site and single atom catalysts that are 

important cases where the microscopic environment can play a decisive role in the kinetics.11 12 

Amorphous supported catalysts are interesting due to the large degree of heterogeneity in the 

catalytic environment. A common amorphous support, SiO2, shows heterogeneity in catalytic sites 

due to non-uniform bonding of the metal atom to the support and dangling silanol groups that can 

be stretched or angled towards the metal catalytic atom. These variations can be responsible for a 

distribution of reaction barriers during catalysis. This was investigated in the work of Peters, Scott 

and co-workers13 14 who examined the statistical effects of amorphous supported catalysts with 

distributed energy barriers. They concluded that a small percentage of catalysts that possess the 

lowest activation energy may be responsible for the majority of catalytic events. However, how to 

rigorously treat the disorder of the system remains an unresolved issue. We note that using methods 

such as the degree of reaction control,15 16 global sensitivity analysis,17 18 and the De Donder 

relations19 it is possible to assess the relativity importance of specific barriers in the overall 

catalytic turnover. Such sensitivities may reveal particularly critical steps in a model and can 

provide insight in assessing wherein the disorder may have the greatest impact. 

Modeling the kinetics of a disordered system requires an explicit scheme to set rate 

coefficients, usually by assigning barrier energies and using transition state theory (TST). For 

single reactions, one can imagine a probability distribution of barriers which yields a distribution 

of rates via TST. For more complicated multistep reaction networks, we must face the question: 

are the random uncertainties of individual barrier energies correlated to each other, or are they 
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independent random variables? A computationally intensive approach is to create a large ensemble 

of random structures from a large atomistic representation of the support, perhaps using annealing, 

and computing all the barrier energies using quantum chemistry for each locally optimized 

structure.20 In lieu of this massive calculation, we adopt a simpler approach based on the idea of 

dividing the disorder into local and global components. For a covalently bonded system, we can 

imagine the local environment determined by a small number of structural features in the 

immediate vicinity of the reaction center which can be parameterized by a small number of 

geometrical factors r, i.e., bond lengths, bond angles, and so forth. Fixing r sets a local constraint21 

and the remaining geometries are optimized. The long-range disorder is due to structures distant 

from the reaction center and is very high dimensional, {, which may be approximated as noise. 

The probability distribution of barriers is highly correlated for local structure, but uncorrelated for 

long-range structure. Thus, if there are n-energetic barriers and wells in the reaction network, E, 

they are functions of r up to additive random noise, i.e., E=E(r)+({ This reduces the 

complexity of the model by requiring knowledge only of the probability distribution of the local 

structures. This idea in the limit of zero noise was introduced in an earlier work on SiO2 supported 

single metal-atom catalysts where just one bond length was used to model local disorder.22 To 

model disordered kinetics, we need to compute observables such as the turnover frequency for 

potentially large reaction networks that sample the values of the disorder parameters. Because the 

observables themselves are also functions of many parameters, i.e. concentration and temperature, 

this requires an enormous number of kinetic simulations. Since analytic expressions cannot be 

relied on for complex networks, a numerical approach is required. Conventional kinetic Monte 

Carlo simulation is a candidate method we also have employed,22 but it is still quite slow 

numerically. Instead, here we introduce a matrix-based method that uses efficient singular valued 

decomposition (SVD) manipulations to extract the observable properties of the catalyst.  

One very useful way to investigate disorder in a catalytic system employs the concepts and 

methods of single molecule kinetics where reactivity is resolved at the single molecule level. 23-27 

These techniques are especially informative since they reveal the differences in kinetics occurring 

in various microscopic environments. Some of the earliest investigations involved enzymatic 

catalysis where the activity was correlated strongly with the enzyme’s conformational structure. 

The biophysical community has made impressive progress in developing both the experimental 



3 

methodology and the theoretical framework to gather and interpret the experimental data.28 29 

Many applications of this technology clearly establish that single molecule kinetics is a useful tool 

to unravel the role of local environment on chemical reactivity.30-41  Of particular interest here is 

the work of Chen and coworkers who have observed catalysis occurring on single nanoparticles 

and developed a real-time description of individual product formation.42-48 These studies have 

yielded intriguing descriptions of the kinetics and give a convenient framework that naturally 

extends to amorphous systems. In the present context of single atom catalysis, each active site 

embedded onto the amorphous support can be occupied by only one reactant molecule or 

intermediate at a time. Single atom turnover frequencies (TOF’s) are then collected for each 

distinct environment. The turnovers are typically quantified by the waiting time probability 

distribution functions, f(t), that records the formation and release of individual product molecules 

from a site and reflect the full kinetic mechanism operating at the site. The bulk TOF is an average 

over the single sites, but the single molecule results are vastly more informative. 

In this work we explore the single molecule view of the kinetics of a single site 

organovanadium(III) catalyst supported on amorphous silica, specifically we treat the 

hydrogenation of styrene in a nonpolar solution to yield the product ethylbenzene. The chemistry 

of alkene molecules on such catalysts has been explored in detail experimentally. 49-51 A reaction 

mechanism was proposed in an earlier work22 that was guided by experimental results for a related 

alkene, butylstyrene, and by insight into behavior of amorphous silica.52-54 Nevertheless, several 

unresolved issues remain, not the least of which is the role of disorder of the amorphous 

environment in the activity of the catalyst. In the model, the local disorder in the system is 

parameterized by a single bond length between the vanadium and the support. While this one-

dimensional parameterization is clearly an oversimplification, we believe the outline of the 

approach is a good first step in understanding how disorder impacts the activity of the catalyst. 

II. Kinetic modeling of bulk and single atom catalysis 

A. Bulk kinetics 

A common kinetic description of a bulk phase catalytic reaction employs the Michaelis-

Menten mechanism (MM).55 56 In the simplest version, a single site catalyst E converts a substrate 

S to a product P through a single intermediate complex ES via the mechanism 
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𝐸 + 𝑆
𝑘±1
↔ 𝐸𝑆

𝑘2
→ 𝐸 + 𝑃 

where the release step is assumed to be irreversible. The model is solved at low E concentrations, 

𝐸0 = [𝐸] + [𝐸𝑆], under steady state conditions to obtain the turnover frequency (TOF)  

𝜈 =
𝑘2[𝑆]

[𝑆] + 𝐾𝑀
   𝑤𝑖𝑡ℎ    𝐾𝑀 =

𝑘−1 + 𝑘2
𝑘1

                            (2.1)  

which is related to the overall reaction velocity by 𝑣𝑒𝑙 = [𝐸0]𝜈. The TOF of these models exhibits 

hyperbolic saturation phenomenon at large [S], i.e., 𝜈 → 𝜈𝑚𝑎𝑥 = 𝑘2  as [𝑆] ≫ 𝐾𝑀 , and a linear 

Lineweaver-Burk plot of 
1

𝜈
 𝑣𝑠 

1

[𝑆]
 . It has been demonstrated that the average of the single molecule 

TOF, under many circumstances, will likewise show saturation behavior with a generalized 

description of the physical meaning of the MM parameters 𝜈𝑚𝑎𝑥 and 𝐾𝑀.33 

Simple analytical behavior can sometimes be obtained for more complicated catalytic 

motifs than the basic MM scheme, although the expressions for 𝜈𝑚𝑎𝑥 and KM must be generalized 

and perhaps include inhibitor concentrations.56 57 58 These motifs may yield to hyperbolic or more 

complicated saturation curves. When more the one substrate is involved, as in the present case, the 

MM formula must be generalized to account for multiple substrate concentrations. A class of 

models for two concentrations ([A] and [B]) is described by the TOF expression56 

𝜈 =
𝜈𝑚𝑎𝑥[𝐴][𝐵]

[𝐴][𝐵] + 𝐾𝑀𝐴[𝐵] + 𝐾𝑀𝐵[𝐴] + 𝐾𝑖𝐴𝐾𝑀𝐵
                                     (2.2)  

where KMA and KMB are Michaelis constants for attachment of A and B substrates and KiA is an 

equilibrium constant for E+A↔EA. When the catalytic motif is complicated by inhibition, multiple 

substrates, multiple active sites, and disordered structural environments, the TOF is difficult to 

analytically represent in any useful way and a numerical approach is preferred. 

B. Single molecule kinetics 

The single molecule view of kinetics is well adapted to treating the behavior of supported 

single atom catalysts.59 The great advantage of this viewpoint is that the total kinetic turnover can 

be straightforwardly decomposed into a convolution over the distinct environments. 

Experimentally, detailed observations can directly resolve the activity of single enzymes or 
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nanoparticles in their distinct structures. Theoretically, the activity of a single environment such 

as a structure can be predicted from reaction energetics. The fundamental descriptor in single 

molecule catalytic kinetics is the probability distribution function (PDF) of reactive waiting times 

from a single active site, fq(t). The waiting time t is defined as the time interval between the 

catalytic turnover cycles from one catalytic molecule or atom and is the sum of times for each step 

along the pathway leading to product release. The label q denotes distinct structures of the catalyst 

which models the disorder. For a simple sequential cycle, a single catalytic atom E processes a 

substrate S to product P through a set of n intermediates (ES)i arranged along a linear chain, 𝐸 +

𝑆 ↔ (𝐸𝑆)1 ↔ (𝐸𝑆)2 ↔ ⋯(𝐸𝑆)𝑛 → 𝐸 + 𝑃; there, the event time t is measured between sequential 

product release reactions (𝐸𝑆)𝑛 → 𝐸 + 𝑃. No new substrate can bind to E during the sequence 

which requires passage through the full cycle to renew. More generally, a full cross-linked reaction 

network will govern the catalytic turnover at the active site. The turnover frequency (TOF) from a 

single site, q, is obtained from the first moment of the PDF, 〈𝑡〉𝑞 = ∫ 𝑡 ∙ 𝑓𝑞(𝑡) 𝑑𝑡
∞

0
, 

𝜈𝑞 =
1

〈𝑡〉𝑞
                                (2.3)  

The fq(t) for site q is obtained by simulating the kinetics for the reaction network that take reactants 

to products using the rate coefficients appropriate to structure q. The observed TOF of a 

macroscopic sample of many inequivalent AS’s is then obtained by the average 

𝜈𝑜𝑏𝑠 =∑𝐹𝑞𝜈𝑞 

𝑞

                      (2.4)  

where Fq is the probability of the structure q in the sample. This relation assumes a static 

distribution so that each TOF may be computed from a single set of rate coefficients. In the present 

case, the chemistry is due to a single vanadium atom and distinct catalytic atoms in the sample do 

not communicate. We shall distinguish two varieties of active site (AS) distributions, structural 

and chemical. In the present supported V-atom problem, the structural distribution corresponds to 

various amorphous configurations of the SiO2 support which is assumed to be rigid and static on 

the time scale of the experiment. The chemical distribution refers to distinct chemical structures 

for the AS that may develop from the pre-catalyst. Here, these are associated with different ligands 

on the V-atom that yield different catalytic cycles but with the same rigid amorphous structure of 

SiO2. The chemical distributions may interconvert on the experimental time scales and must be 
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treated on par with the other catalytic chemistry. Should the SiO2 structures become nonrigid, the 

distinction between chemical and structural configurations blurs. 

We model the catalytic network assuming the intermediate species 𝑋𝑖
𝑞
 interconvert through 

the pseudo-first-order reactions, 𝑋𝑗
𝑞 → 𝑋𝑖

𝑞
 with rates given 𝑘𝑖,𝑗

𝑞 [𝑋𝑗
𝑞]. The concentrations of the 

substrates, styrene, and H2 in the present case, or inhibitors, THF in the present case, are taken as 

constant parameters within 𝑘𝑖,𝑗
𝑞

. The rate coefficients for the reaction step ji is given by the 

standard Eyring form, 𝑘𝑖,𝑗
𝑞 =

𝑘𝐵𝑇

ℎ
𝑒−∆𝐺𝑖,𝑗

‡,0(𝑞)/𝑘𝐵𝑇 ∙ 𝑍  where Z is either [ST], [H2], [THF] or 1 

depending on the reaction and ∆𝐺𝑖,𝑗
‡,0(𝑞) is the structure-dependent standard free energy barrier for 

𝑗(+𝑍) →‡→ 𝑖. The free energies are provided by the DFT calculations and include energetic and 

entropic contributions, and in principle may also include solvation effects.  

C. Stochastic Modeling:  

We assume the catalytic network consists of N distinct species including m chemically 

distinct AS’s.  We represent each of the N chemical species in the catalytic network as a “state” in 

a continuous time Markov stochastic process with occupation probability 𝑃𝑖(𝑡), i=1,…,N+m.60 61 

We have augmented the state space to include the m AS’s as both initial and final states for 

mathematical convenience. The AS’s may interconvert via first order kinetics on the same footing 

with other reactions in the network. Thus, all species are combined into a single state vector that 

includes both the initial and final states of the AS’s. (For the moment we drop the cumbersome 

“q” superscripts which are implicit in all the probabilities and rates.) The first m states are taken 

as the reagent states, i.e., Ei+Reactants, and the final m states are the product states Ei+Products, 

with i=1,…,m.  Here, the Ei’s are the m chemically distinct AS’s. Importantly, we assume the final 

m product Markov states are “absorbing” so that all reactions into them are irreversible, 𝑘𝑗,𝑁+𝑖 =

0 with i = 1,… ,m and  j = 1,… , N + m . This is strictly valid only in the limit of zero product, 

i.e., for the initial stages of reaction. The first N states are termed “transient” since any molecule 

lying in those states will eventually transition into the absorbing states after some amount of time. 

The rate coefficients in the Markov chain picture are then state-to-state transition probabilities per 

unit time. The time evolution of the state probabilities is given by the familiar system of first-order 

ordinary differential equations (ODEs) in terms of the probability vector P=(P1, … ,PN+m) and 

the (𝑁 + 𝑚) × (𝑁 +𝑚) transition rate matrix G (also known as the generating matrix) 
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𝑑𝑷(𝑡)

𝑑𝑡
= 𝑮 ∙ 𝑷(𝑡)                         (2.5)  

where  

𝑮 = (

−𝑘1 … 𝑘1,𝑁+𝑚
⋮ ⋱ ⋮

𝑘𝑁+𝑚,1 … −𝑘𝑁+𝑚

)                        (2.6)  

The diagonal elements Gi,i for i=1,…,N are the (negative) decay probabilities per unit time of state 

i, 𝑘𝑖 = ∑ 𝑘𝑗,𝑖
𝑁+𝑚
𝑗=1   for i=1,..,N. Each column of the matrix sums to zero reflecting conservation of 

probability. The last m columns of G are zero since transitions out of the absorbing states are 

forbidden. The solution of this system models the first passage time from the initial state 𝑷(0) to 

any final absorbing state and the waiting time PDF is given by the derivative of the total final state 

probability for all the final product states, i.e. 

𝑓(𝑡) =∑
𝑑𝑃𝑁+𝑖(𝑡)

𝑑𝑡

𝑚

𝑖=1

                                   (2.7)  

In our previous work,22 we modeled the single molecule kinetics of eq. (2.5) using a kinetic Monte 

Carlo scheme in which an ensemble of similarly prepared sites was propagated using methods 

similar to those proposed by Gillespie. 62  63  Here, for the most part, we adopt a more 

computationally efficient approach based on linear algebra. 

Further analytical progress on this problem is possible61 Error! Bookmark not defined. 

by partitioning the generating matrix G into a sub-generator T and an absorption matrix  

𝑮 = (
𝑻𝑁×𝑁 𝟎𝑁×𝑚
𝝉𝑚×𝑁 𝟎𝑚×𝑚

)                      (2.8)  

where  

𝑻 = (

−𝑘1 … 𝑘1,𝑁
⋮ ⋱ ⋮
𝑘𝑁,1 … −𝑘𝑁

)                  (2.9)  

and 
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𝝉 = (

𝑘𝑁+1,1 … 𝑘𝑁+1,𝑁
⋮ ⋱ ⋮

𝑘𝑁+𝑚,𝑁 … 𝑘𝑁+𝑚,𝑁

)                       (2.10)  

Physically, T represents transitions between the transient states while  describes transitions from 

transient states into absorbing states.  By conservation of probability ∑ 𝐺𝑖,𝑗 = 0
𝑁+𝑚
𝑖=1  implying that 

∑ 𝑇𝑖,𝑗 = −∑ 𝜏𝑁+𝑖,𝑗
𝑚
𝑖=1

𝑁
𝑖=1  for j=1,…,N. In other words, the net transition rate out of a transient state 

j to other transient states i≠j equals negative of the transition rate of j into the absorbing states. The 

passage time through the network is determined by T and does not require the redundant 

specification of .  The sub-generator T is an invertible matrix (unlike G) and it can be shown that 

the moments are obtained by matrix inversion61 

〈𝑡𝑛〉 = 𝑛! 𝟏𝑻 ∙ (−𝑻)−𝑛 ∙ 𝑷(0)                  (2.11)  

In particular, the TOF is given by the first moment 

𝜈 =  
1

𝟏𝑻 ∙ (−𝑻)−1 ∙ 𝑷(0)
                          (2.12)  

and the full waiting time distribution is 

𝑓(𝑡) = 𝟏𝑻 ∙ (−𝑻) ∙ exp(𝑻𝑡) ∙ 𝑷(0)                          (2.13)  

The vector 1T is the transpose vector of all one’s and P(0) is the initial state vector, which is some 

distribution over the active sites. The TOF for the site is then obtained from the first moment 

without the need for explicit time propagation.  

If there are m-chemically distinct AS’s, there will be m potential “initial states” and m 

potential absorbing “final states”. We require a method to set P(0) when the system is in steady 

state which occurs after many turnovers. To achieve stationarity, the total decay rate from a 

specific initial state must be equal to the formation rate of the corresponding absorbing state. 

Hence, we have the steady state conditions 

𝑘𝑖𝑃𝑖(0) =∑𝑘𝑁+𝑖,𝑗𝑃𝑗(0)

𝑁

𝑗=𝑖

 𝑖 = 1,… ,𝑚                                  (2.14)  
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These homogeneous equations can be solved using the constraint ∑ 𝑃𝑖
𝑚
𝑖=1 = 1 . If the active sites 

rapidly interconvert the initial state can be approximated with the equilibrium constants.  

The standard difficulty that arises with the stochastic matrix approach is the possibility of 

ill-conditioned transition matrices for certain regions of parameter space.61 As a result, an 

unacceptable level of noise may occur in the evaluation of observables in those regions. This 

difficulty is usually dealt with by invoking a preconditioning process on the linear system that 

lowers the effective condition number of the matrix. A quasi-equilibrium approximation can 

accomplish the same thing by eliminating certain rapid steps from the mechanism. 

D.  Kinetic Monte Carlo 

The single molecule perspective is based on solving the eqs. (2.5)-(2.7) for the waiting time 

distribution f(t) by any consistent method. An alternative to the matrix method of Sec. II.C is to 

use the stochastic simulation method of Gillespie62 to generate the first passage time through the 

network using an explicit random walk algorithm. We refer to this as the kinetic Monte Carlo 

algorithm, kMC. The problem manifested by high matrix condition number in Sec. II.C is here 

exhibited through very long required propagation MC flights due to a separation of time scales 

between reactions with very different barrier heights. This problem can be ameliorated by invoking 

a quasi-equilibrium approximation. Thus, if two or more species rapidly interconvert but decay 

slowly as a group, we can equilibrate the concentration within that family; e.g. if 𝑋1
𝑘𝑓,𝑘𝑏
↔  𝑋2 is 

rapid then 
[𝑋2]

[𝑋1]
≈
𝑘𝑓

𝑘𝑏
 and the fastest transition can be dropped from the list of potential MC events. 

This well-known approach62 accelerates the calculation considerably and can be used sometimes 

when the ill-conditioning problem of the matrix method is severe. 

III. Hydrogenation of Styrene on Vanadium Catalysts 

A. Chemical model 

The modeling catalytic kinetics of styrene hydrogenation requires detailed information 

about the nature of the AS’s and rate coefficients of the steps along the catalytic cycles. In a 

previous work,22 the model based on quantum chemistry and chemical insight was described in 

detail which here we briefly review. The model was generated from electronic structure 
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calculations using Gaussian1664 software and guided by experimental studies of 4-butylstyrene 

hydrogenation catalysis on the same surface. For the amorphous SiO2 support, silsequioxane cages 

composed of siloxane ring structures were used in place of periodic DFT calculations. To model 

top monolayer relaxation in periodic models, the bottom half of the silica cluster (6 H, 11 O, and 

6 Si atoms) was kept frozen during the optimization and frequency calculation. Styrene (ST) was 

used as the model reactant. All structures were optimized using the B3LYP density functional65 66 

and CEP-31G pseudopotential double-ζ basis set.67 68 69 The thermal corrections to the Gibbs 

energy profile are done for 50°C and the frequency determination are made using B3LYP with the 

TZVP70 basis set. It is assumed that solvent effects are small and are ignored. 

In the experimental analog system involving 4-butylstyrene, the active sites on the catalyst 

evolve from a pre-catalytic surface where a single VIII atom was tethered to the surface by several 

V-O bonds and capped with ligands Mes(mesitylene) and THF (tetrahydrofuran).51 The surface  

 

Figure 1. The structures of three potential active sites. The vanadium atom (green) is 

tethered to the SiO2 support by bonds to the silsequioxane cage. The vanadium atom has 

no ligand in the first structure, a ligand THF in the second, and a ST ligand in the third. 

One of the V-O bond lengths is systematically altered in each structure to simulate short-

range disorder. 

was pretreated by exposure to H2 that leads to three feasible active sites where some or all of the 

ligands were removed. These structures are pictured in Fig. 1, labeled C, D, and E. These 

correspond to V-atom ligands: bare, THF, and ST, respectively. 

The chemistry of the system involves two substrate species, styrene (ST) and hydrogen 

(H2), an inhibitor (THF), and three active sites. Three interlaced chemical pathways were identified 
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that accomplish the overall reaction Stryene+H2Ethylbenzene which are shown in Fig. 2. The 

active sites can interconvert by reversible attachment of THF and ST from solution.  

 

Figure 2. The proposed catalytic scheme. The three active sites can interconvert by 

attachment/detachment of ST of THF to the V-atom. The scheme involves three 

interconnected cycles (or pathways). The transition state structures are indicated in 

brackets. Reprinted with permission from Ref 22. Copyright American Chemical Society. 

As seen in the diagram, the catalytic cycles are connected, through (i) ligand 

attachment/detachment of the active sites, (ii) at the merging structure 19c, and (iii) at the 

branching structure 25. The free energy profiles that emerge from the assumed optimized SiO2 

developing from the pre-catalytic structure are shown in Fig. 3. We note that the barriers for the 

reactions 𝐷 ↔ 𝐶 ↔ 𝐸 and 𝟏𝟗𝒂 ↔ 𝟏𝟗𝒄 are significantly lower than the others and are amenable 

to a quasi-equilibrium approximation. There are 10 stable chemical structures and 9 transition 

states that contribute to this mechanism. The T matrix above is thus a 10×10 matrix and the G-

matrix, augmented with the absorbing states is 13×13. The concentrations of ST, H2, and THF 

enter the T-matrix as multipliers of the rate coefficients and should be expressed in molar units in 

keeping with the definitions of the standard free energies. Hence, the matrix is parameterized by 
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the vector X=(ST, H2, THF), i.e., T(X). It is not obvious whether the TOF for this catalytic model 

would be described by a simple parameterization such as that of eq. (2.2). 

 

Figure 3.  The free energy for the structures shown in Fig. 2 relative to active site C. The 

pathways 5, 6, and 7 are indicated with blue, orange, and gray connecting lines, 

respectively. The nominal temperature is 50℃ and concentrations are 1M. 

B. Structural Disorder 

In the previous report,22 we introduced a simple model for the structural disorder of silica 

in this system. Here we briefly describe this model. The coordination environment of the V site is 

essentially determined by a set of structural parameters, such as V-O bonds and O-V-O angels, 

etc. For this class of supported organometallic catalysts, amorphous silica is used, which has no 

facets, but yet numerous local environments lead to the heterogeneity of the grafting sites. The 

resulting V sites also have a variety of coordination environments. Here we simplify the structural 

parameters to a single parameter, one of the V-O bond distances, and use the change of this 

parameter to mimic the heterogeneity of the active sites. While other geometric parameters, such 

as bond angles and dihedrals, as well as the distance between two ≡SiO− groups, could play a role 

in describing the relative position of the siloxane, the V-O (siloxane) distance is an effective 

simplification that is sufficient to demonstrate a qualitative trend in catalysis (vide infra). Based 

on the DFT optimized V-O distance for 1c (2.29 Å) in the fully relaxed model coming from the 

pre-catalyst, three rigid V-O (siloxane) distances are considered: 2.1, 2.3 and 2.5 Å as 

representative structures for compressed or elongated local environments in an amorphous silica 

surface. These distances are both chemically feasible in an amorphous sample and had a critical 
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impact on the effective turnover frequencies. The four representative structures for the catalytic 

pathways corresponding to each individual V-O(siloxane) distance, i.e., fully relaxed (2.29 Å), 

2.1, 2.3, and 2.5 Å, represent two scenarios of surface heterogeneity: one that utilizes the rigidness 

of the neutral siloxane groups on the surface of amorphous silica, which infers the positions of the 

siloxane relative to the metal center, and the possibility that the donor siloxane could be on the 

edge or corner of the amorphous silica sample, which could provide more flexibility for the 

siloxane donor during grafting and catalysis given the extra degrees of freedom.  As the V-O bond 

length is extended to distances larger than 2.5Å, the energy of the active sites grows large and 

presumably sites with such values become very improbable.   

The energetics of the chemical model of Fig. 2 were computed at a series of fixed values 

of one V-O bond length, r. This V-O bond refers to the bond between the V center and the siloxane 

group, shown by the arrow in Fig. 1, is held fixed away from its optimum value and the remaining 

chemical geometries and energetics are optimized subject to that constraint. Thus, a particular SiO2 

structure was first chosen as a fiducial based on the pre-catalyst, and other members of the 

disordered sample were represented as a one parameter family. The energetic profiles along 

catalytic pathways for the four values of r computed are shown in Fig. 4.  



14 

 

Figure 4. The free energy profiles along pathways (a) 5, (b) 6, and (b) 7 computed as a 

function of the parameter r (V-O bond length) used to model short-range disorder in the 

sample. Reprinted from Ref. 22 with permission, Copyright American Chemical Society. 

In the rate computations, we have used a cubic spline interpolation scheme to obtain each barrier 

and well energy as a continuous function of r. Hence the transition matrix itself is also a function 

of the parameter r, i.e., T(r), as is the TOF, (r). If the probability distribution of r is denoted by 

F(r), then the observed TOF via eq. (2.12) is  

𝜈𝑜𝑏𝑠 = ∫𝐹(𝑟)𝜈(𝑟) 𝑑𝑟 = ∫𝐹(𝑟) [𝟏
𝑻 ∙ (−𝑻(𝑟))

−1
∙ 𝑷(0)]

−1

𝑑𝑟              (3.1)  

In addition to the short-range disorder modeled by the one-parameter family of V-O bond lengths, 
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we also consider the possibility of long-range disorder induced by more distant structural 

randomness. This was represented by a Gaussian random noise function with variance 2 which 

was added to the energy of each barrier and well in the chemical model. There was no correlation 

between the added noise at the various stationary points and the variance was assumed to be the 

same for all values of r. The observed TOF is an average of  computed from a random sample of 

barriers and wells at each r, so that 

𝜈𝑜𝑏𝑠 = ∫𝐹(𝑟)〈𝜈(𝑟)〉 𝑑𝑟 = ∫𝐹(𝑟) < [𝟏
𝑻 ∙ (−𝑻(𝑟))

−1
∙ 𝑷(0)]

−1

>𝑑𝑟               (3.2)  

At present it is not clear what the distribution F(r) should be nor is the value for the noise parameter 

 (although see Sec. VII).  We note that eq. (3.2) is easily generalized to include more than one 

local disorder parameter, should that information be available, specifically r→r and dr→dnr. 

IV. Results for Turnover Frequencies  

The matrix methods described above are efficient and make it possible to generate results 

for many thousands of parameter values of [ST], [H2], and [THF] even including disorder. The 

results presented here are meant to give a survey of the qualitative trends predicted by the model 

and not a direct representation of experimental results which do not exist at present for styrene 

reactions but only for butylstyrene. Hence, we choose values for convenience.  

We first illustrate the turnover frequencies obtained at fixed values of r computed without 

noise as functions of the concentrations [ST], [H2], and [THF] in Fig. 5. We select a temperature 

of 325K to present results and the matrix inversion was carried out using the SVD. The waiting 

time distribution is found to be extremely insensitive to the choice of initial state, P(0), since the 

active sites C, D, and E rapidly equilibrate before the first (slow) H2 attachment step. In Fig. 5a-c 

we show the TOF, , versus r under a number of conditions. There is clearly an optimal range of 

values near r=2.36Å where  reaches a maximum, while at small r values the catalyst is relatively 

inactive due to higher barriers. In Fig. 5e, we show  versus [ST] for several values of [THF] at an 

optimal r value. The results exhibit typical saturation behavior versus [ST] at fixed values for the 

remaining parameters. Also, in Fig. 5g, are the corresponding linear Lineweaver-Burk plots of 

1

𝜈
 𝑣𝑠 

1

[𝑆𝑇]
 from which the MM parameters may be extracted. However, it is found that the values 

of the MM parameters can vary dramatically as a function of r and at some values we can see clear 
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departures in a linear Lineweaver-Burk plot. It is clear from Fig. 5g that the THF acts as a 

noncompetitive inhibitor since the straight lines do not intersect at 
1

𝜈
= 0 but instead occurs at some 

negative value. The TOF versus [H2], Fig. 5d, also shows saturation behavior for low values of 

[THF]. When [THF] is large or when r lies significantly below the optimum value, we observe a 

linear dependence of on [H2] or [ST] for all reasonable concentration values since the predicted 

Michaelis parameter (KM) is extremely high. The TOF versus [THF] is shown in Fig. 5f for several 

values of [ST]. There is clearly strong inhibition of the TOF due to THF. For [H2], THF acts more 

in keeping with competitive inhibition as 
1

𝜈
 𝑣𝑠 

1

[𝐻2]
seem to intersect near  

1

[𝐻2]
= 0 . Thus, in 
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summary, the performance of the catalyst is found to have a strong r-dependence with respect to 

all the controllable parameters of the system.  

Figure 5. The TOF () at T=325K computed using eq. (2.12) for various values of the 

system parameters. Panels a-c show the r-dependence of  for various values of [H2], 

[THF], and [ST] respectively. In d-f the concentrations dependencies of are shown for 

the H2, ST, and THF at r=2.36Å. In g and h, the Lineweaver-Burk plots are shown for H2 

and ST at r=2.36Å 

To fully account for the structural disorder in a bulk sample to obtain obs, it is necessary 

to average the TOF over both r (short-range) and (long-range) disorder as in eq. (3.2). Here our 

purpose is to qualitatively explore the sensitivity of the kinetics to the disorder so we simply test 

several potential distributions. First, we consider the influence of Gaussian noise on the TOF at 
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fixed values of r. The concentrations were held fixed at [ST]=1M, [H2]=5M, and [THF]=0.01M 

and the TOF was computed for the reaction networks for 500,000 random values for the additive 

noise added to the barriers and wells. The calculation is repeated over a range of fixed r for a 

number of values of the StDev . As shown in Fig. 6, the noise can increase the TOF by up to an 

order of magnitude at reasonable values of . Clearly, the more active catalysts (with lower 

activation barriers) are emphasized in the average as noted by Peters et al.13  We note that, while 

the activity of the site seems to continue to grow at beyond r=2.5Å, the probability of such sites in 

the sample decreases rapidly due to the high energy of such structures. 

  

Figure 6. The TOF at computed for T=325K, [ST]=1M, [H2]=5M, and [THF]=0.01M 

with the addition of random Gaussian noise to each barrier and each well free energy 

for a number of values of . In (a) the TOF is shown as a function of r, and in (b) the 

TOF at the near optimal value of r=2.36 Å is plotted versus the variance 2. 

The averaging over short-range disorder requires an expression for F(r) in eq. (3.2). While 

it is not clear what the proper choice should be, the total energy grows larger with r so the value 

r=2.1 Å is likely to be the most probable value for r. Therefore, we consider distributions of the 

form 

𝐹(𝑟) = 𝑁(𝑎) ∙ 𝑒−𝑎|𝑟−2.1|                    (4.1)  
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Figure 7. The TOF averaged over short- and long-range disorder. In panel a, the TOF 

for T=325K, [H2]=5M, [ST]=1M, and [THF]=0.01M computed for various a values 

versus 2. In panels b and c, the concentration dependence of TOF at various a values 

computed for =0 and 1 kcal/mol, respectively. 

We investigate several values of a ranging from a broad (a small) to a narrow (a large) distribution 

of short-range structure. The average TOF at fixed [ST], [H2], and [THF] was computed using 

500,000 noise values as a function of r, and then integrated over r using eq. (3.2). The TOF at fixed 

concentration is shown in Fig. 7 for various a-values as a function of the strength of noise. The r-

averaging clearly preserves the noise enhancement of the rate seen for the fixed r-results. The fully 

averaged TOF as functions of [ST] for various a values (in units of Å-1) choosing the noise 

parameter of =1 kcal/mol is shown in Fig. 7c. It is seen that the TOF shows weak saturation 

behavior versus [ST] for all a values. However, the results do not fit well to a linear Lineweaver-

Burk plot nor to a linear Hill plot.  

V. Multiple Reaction Pathways and Disorder Explain 

Nonlinear Lineweaver-Burk Plots 

The origin of the nonlinear behavior in Fig. 7 can be traced mostly to reaction path 

branching which is either promoted or suppressed depending on the values of the disorder 

parameter r. As was seen in Fig. 2, there are three basic catalytic pathways that contribute 

simultaneously to the complete TOF. It is possible to approximately extract the separate 

contributions to the kinetics from the individual pathways (5-7) by blocking flux going along the 

other two paths with artificially high barriers. Thus, the contribution of pathway 7 is found by 



20 

setting the barriers for structures 18b and 18c to high values. Similarly, pathways 5 and 6 can be 

isolated by raising the barriers for 18a and 18c, and for 18a and 18b, respectively. In Fig. 8a, we 

see how the TOF decomposes into path contributions versus r for [THF]=0.01M, [H2] = 5M and 

[ST]=1M. We see path 7 dominates the TOF up to about r=2.4Å, at which point path 5 begins to 

contribute significantly and path 6 becomes somewhat more important although path 5 is much 

more important than path 6 at r=2.5Å.  Thus we see that in a window around r=2.45Å the TOF is 

due to a combination of paths while outside the window a single pathway dominates.  To exhibit 

how the LB plot responds to changes in r, in Figs. 8b we show 
1

𝜈
 vs. 

1

[𝑆𝑇]
 at r=2.35, 2.4. 2.45, and 

2.5Å holding [H2] and [THF] fixed.  The LB plot is sometimes linear, such as at r=2.30, 2.36, and 

2.5Å, but sometimes nonlinear, such as at r=2.45Å. In those region of multiple contributing paths, 

we see nonlinear behavior. Obviously, when broadly averaged over all r using F(r), the plot 

remains nonlinear. However, it is interesting to note that the individual paths each exhibit a linear 

LB curve even at the value r=2.45Å as seen in Fig. 8c. 
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Figure 8. The pathway analysis of the kinetics for T = 325K, [THF]=0.01M, [ST] = 1M 

and [H2]=5M. In (a) the TOF versus r is decomposed into contributions from three 

pathways.  In (b) the Lineweaver-Burk plot for various choices of r is shown with the 

average (observable bulk) value of the LB plot in purple. In (c), the result  for r=2.45 Å 

is decomposed into individual pathways. 
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Nonlinear LB curves are commonly seen in branched multi-pathway catalytic networks56 

71 and in the cooperative kinetics of enzyme catalyzed reactions.72 73  In the present problem, even 

the more general Hill curve remain nonlinear.56  Here, we also note that disorder can result in 

nonlinear LB curves even for a purely sequential (single path) reaction mechanism.  This may 

occur since the general sample average of the TOF yields 

1

𝜈
=

1

∑ 𝐹𝑞
𝜈𝑚𝑎𝑥
𝑞 [𝑆]

[𝑆] + 𝐾𝑀
𝑞𝑞

≠ 𝐴 +
𝐵

[𝑆]
                              (5.1)

 

In particular, if the affinity parameter 𝐾𝑀
𝑞

 shows strong variation over the sample, then the overall 

LB plot is nonlinear.  When a sequential (single path) mechanism is subjected to correlated disorder, 

then we are effectively combining the turnover from a set of completely different sequential 

mechanisms. In Fig. 9, this is demonstrated by computing the LB plot for styrene saturation broken 

down into contributions from each pathway but averaged over disorder with a=1 Å-1 and =1 

kcal/mol. The dominant path 7 shows clear nonlinearly which carries over to the full ensemble 

averaged result. On the other hand, the linear behavior of path 5 and 6 suggests a very weak 

dependence of 𝐾𝑀
𝑞

  on the disorder parameters. Hence, we observe that both multiple pathway 

kinetics and correlated disorder both contribute to nonlinear LB behavior. 
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Figure 8. The Lineweaver-Burk plots for styrene saturation averaged at T=325K, 

[THF]=0.01M, and [H2]=5M, over the local and global disorder with a=1 Å-1 and =1 

kcal/mol. The pathway decomposed results and full result are shown. 

VI. Results for Waiting Time Distributions  

The TOF is of course only the simplest aspect of the single molecule kinetics, i.e., the first 

moment of f(t). The full shape of this PDF (eq. 2.13) is vastly more informative since it responds 

to the full kinetic network. Since a single molecule observation may extract f(t) for distinct 

microscopic environments, it is interesting to investigate how the PDF reflects the disorder. Here 

we consider just several representative cases for values of the concentrations to illustrate the 

behavior of f(t). As context, we note that the simple MM scheme 𝐸 + 𝑆
𝑘±1
↔ 𝐸𝑆

𝑘2
→ 𝐸 + 𝑃 has a well-

known analytical solution33 

𝑓(𝑡) =
𝜆1𝜆2
𝜆2 − 𝜆1

(𝑒𝜆1𝑡 − 𝑒𝜆2𝑡)                            (6.1)  

where the eigenvalues of T are 

𝜆1,2 = −
𝑘1[𝑆] + 𝑘−1 + 𝑘2

2
± √

(𝑘1[𝑆] + 𝑘−1 + 𝑘2)
2

4
− 𝑘1𝑘2[S]                     (6.2)  

This gives rise to a unimodal PDF with a rapid rise in f(t) due to transient kinetics (𝜆2) followed 

by a slower exponential decay set by the rate limiting process (𝜆1). Thus, when [S] is saturated 
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𝑓(𝑡) → (𝑘−1 + 𝑘2)𝑒
−(𝑘−1+ 𝑘2)𝑡  and when [S] is small 𝑓(𝑡) → (𝑘1[𝑆]Γ)(𝑒

−𝑘1[𝑆}Γ𝑡 − 𝑒−(𝑘−1+ 𝑘2)𝑡 ) 

where  is the branching ratio 
𝑘2

𝑘−1+𝑘2
. The TOF from the first moment of f(t) is consistent with the 

standard equation (2.1), i.e., 〈𝑡〉 =
𝑘1[𝑆]+𝑘−1+𝑘2

𝑘1𝑘2[𝑆]
 , however the maximum 𝑡𝑚𝑎𝑥 =

ln (
𝜆1
𝜆2
)

𝜆2−𝜆1
  can be 

significantly smaller than the mean waiting time < 𝑡 > . For general non-defective kinetic 

networks that exhibit nondegenerate eigenvalues, the PDF is a linear combination 𝑓(𝑡) = ∑𝑐𝑖𝑒
𝜆𝑖𝑡 

which can be complicated, even showing multimodal behavior as seen by English et al.33 34  
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Figure 10. Waiting time distribution f(t) computed by two different methods. In the upper 

panels (a)-(f), f(t) is computed by matrix method at T=450K. Panels (a)-(c) demonstrate 

the [THF] dependence for several [ST] values at r = 2.36 Å and panels (d)-(f) shows the 

r dependence.  In the lower panels, f(t) is computed by kMC at T=325K. The results are 

for various r, [H2], and [ST] values with [THF]=0.34M. In all cases the random noise 

parameter is set to zero. 

In Fig. 10, we show f(t) on a linear-log scale computed from eq. (2.13) for a survey of 

catalytic conditions with normalization ∫ 𝑓(𝑡)𝑑𝑡 = 1.  In the upper portion of the figure, f(t) is 
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computed using the MATLAB command EXPM and the temperature was chosen as T=450K to 

avoid ill-conditioning of exp(Tt) that develops at long times with lower temperatures.  For the 

lower portion of the figure, we employed the slower kMC approach which could be employed at 

T=325K.  In Fig. 10a-c, the PDF is shown for r=2.36Å (the optimal value for the TOF) at a number 

of [ST] values for three levels of the THF inhibitor. In Fig. 10a at low [THF], the PDF is a narrow 

peak fairly well represented by a two-exponential expression, eq. (6.1). When the concentration of 

inhibitor increases, as in Figs. 10b and 10c, the peak broadens and develops a clear shoulder for 

faster turnover times. These are clear signs of multiexponential behavior. The dependence of f(t) 

on [ST] and [H2], highlighted in Figs. 10d-f, is found to be less dramatic than that of [THF]. The 

peak positions and first moments shift gradually to faster times with increasing concentrations. 

The most interesting variation in f(t) occurs as a function of the disorder parameter r. As r 

increases, the shape of f(t) clearly evolves and develops two or more distinct features as seen in 

Figs. 10g-i. This is exciting since it demonstrates a qualitative distinction between different 

structural environments that is potentially observable in experiment. 

The kMC calculations in the lower portion of Fig. 10 were obtained with the quasi-

equilibrium approximation invoked for interconversion of the AS’s, 𝐴𝑆3 ↔ 𝐴𝑆4 ↔ 𝐴𝑆5. This 

allowed f(t) to be computed at the lower temperatures 325 K. Although the kMC calculations are 

time consuming, the instability of the linear equations does not affect the quality of the results. 

The waiting time distribution were obtained for various substrate concentrations and r values with 

the inhibitor fixed at [THF]=0.34M. The main peak of the PDF in Fig. 10g-l is approximately 

described by a simple two-exponential representation. However, more complicated structure does 

develop at shorter turnover times. For example, in Fig. 10h the secondary peak in f(t) clearly 

reflects the contribution of pathway 5 at r=2.3Å when pathway 7 is suppressed with the inhibitor. 

The multi-exponential behavior is intimately connected to the multiple pathway structure. 

It is clear that the information contained in f(t) goes well beyond what is reflected in the 

first few moments of the PDF. How can that information be extracted and interpreted? While a 

full analysis goes beyond our present scope, some aspect of the behavior of f(t) can be easily 

inferred with reference to the catalytic motif shown in Fig. 2.  Using the flux blocking scheme 

introduced in Sec. V, we can analyze the individual pathway contributions to f(t) which are 

computed separately using the T-matrix modified with the high barriers under the conditions 
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T=450K, [H2]=1M, and [THF]=0.01M.  In Fig. 11a, the relative importance of the three pathways 

is inferred from the TOF versus r. It is seen that path 7 constitutes the main contribution to the 

peak near r=2.36Å while influence of pathways 5 and 6 grow significant for larger r values, i.e., 

r>2.4Å. In Fig. 11b, the full (unblocked) mechanism PDF for the case r=2.45Å is shown which 

reveals similar structure at all [ST] values. Then in Fig. 11c, the result for [ST]=4M is decomposed 

into three pathways contributions which sum nearly perfectly to the observed total. The peak near 

t=1 s is due mostly to pathway 7. The feature at shorter times comes from pathway 5. A broad 

longer time contribution comes from pathway 6. In Figs. 11d-f, the [ST] dependence of separate 

pathways is exhibited. It is very interesting to note that the [ST] dependence of f(t) for pathway 7 

is extremely weak. This is due to the fact that styrene attachment along path 7, which occurs after 

the rate limiting step, has a very low barrier so that it is easily saturated. The takeaway is that the 

pathway decomposition of the PDF provides a useful tool to unravel the contributions from 

different reaction routes to the activity of individual reactive sites on a catalyst. To a degree, the 

resolution of results in time allow the separate pathway structure to be revealed. 

Figure 11. The pathway analysis of the kinetic mechanism for the case of T=450 K, 

[THF]=0.01M, and [H2]=5M. In (a) the TOF versus r is decomposed into contributions 

from three pathways.  In (b), the full PDF f(t) is shown for r=2.45Å. In (c), the PDF for 
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r=2.45Å is decomposed into pathway contributions.  In (d)-(f), the [ST] dependence of 

each pathway is shown. 

 

VII. Discussion and Conclusions 

The single molecule viewpoint is an extremely useful tool to analyze the catalysis of 

disordered systems.  The advantage over the traditional bulk perspective is twofold.  First, spatial 

resolution permits the isolation of turnovers at a single environment of the sample.  Second, the 

temporal resolution allows the kinetics of passage through the network to be spread out in time.  

As we have shown, the analysis of the waiting time PDF, fq(t), permits the identification of distinct 

kinetic pathways as features occurring in different regions of time. Hence, single molecule 

observations allow us to undo the two averages in the TOF, i.e. 𝜈𝑜𝑏𝑠 = ∑ 𝐹𝑞 ∫ 𝑓𝑞(𝑡) ∙ 𝑡 ∙ 𝑑𝑡𝑞 .  The 

necessary experiments, of course, are very challenging and cannot be routinely applied to systems 

of interest.  However, Chen and coworkers42-48 have elegantly demonstrated that technology 

developed previously to study enzymology can be adapted to traditional catalytic systems.  Single-

atom catalytic systems seem to be a plausible target for experimental study since spatial resolution 

is possible through use of a sufficiently dispersed sample of catalytic atoms.  Of course a successful 

experiment also requires a spectroscopic signal to monitor the turnover events, and this will be 

system dependent.   We believe that the methods outlined in this paper may provide some guidance 

in the design and analysis experiments arising from single site catalysts on disorder surfaces.  

The present work employs a realistic model based on DFT to study the styrene 

hydrogenation process with a single site organovanadium catalyst on an amorphous silica support.  

It was found there are three interconverting active sites that yield three interconnect catalytic 

cycles. The TOF and fq(t) may be efficiently extracted from the kinetic model using an SVD 

representation. This enables large scale simulations of structural disorder implicit in this class of 

catalysts. Traditional models of disordered kinetics have typically employed random sampling to 

determine the required reaction barriers. When multiple steps are present in the reaction 

mechanism, one must face the issue of how the successive reaction barriers correlate to one 

another. The structural static disorder was divided into two components that had different 

statistical characteristics. The short-range disorder was modeled by a parameterization of the local 

structure around the anchoring site of the vanadium atoms to the silica surface.  This local structure 
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gives rise to strong correlation between the reaction barriers along the three catalytic cycles.  The 

long-range disorder models the bulk silica substrate and has a much lower level of correlation 

between the barriers and is simply represented as Gaussian noise.   

The present study represents the first step in the treatment of the supported 

organovanadium catalyst.  We have treated the local structural disorder using only a single 

geometrical parameter, the V-O bond length. While the local covalent structure imposes severe 

constraints on the dimensionality of disorder, we anticipate that further parameters will likely be 

required to fully account for the distribution of active site environments.  We must also address 

the question of proper choice for the statistical probability function F(r) that develops from the 

actual pre-catalyst. It is difficult to use direct experimental data to extract the structural information 

about site distributions. A purely theoretical approach will require a large number of QM 

calculations to represent the local environment of the reaction center and scheme to represent the 

grafting and preparation kinetics. We note that Kahn et al.74  and Vandervelden et al.75 have 

suggested an “importance learning method” that starts from a quenched disorder parameterized 

model of silica and aims to make predictions based on a relatively small set of training data.  This 

approach may reduce the number of calculations required. Finally, in the future we shall require a 

more complete model to relate the weighting time distribution to chemical pathways. Here, we 

have adopted a rather crude method of pathway selection via flux blocking. It is possible to use a 

more sophisticated deconvolution method 76 - 81  to analyze the reaction network that does not 

involve any alteration of the barrier heights. This will be the subject of future work. 
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