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a b s t r a c t 

The thickness of the turbulent flame brush is central to the modeling of premixed turbulent combustion 

and the theory of turbulent diffusion is often applied to explain the growth of the brush with varying 

success. However, numerous studies have shown that the brush evolves differently from the dispersion of 

material points on the account of flame propagation, density changes across the front, and hydrodynamic 

instabilities. Modifications to turbulent diffusion theory to incorporate these effects are challenging since 

the theory is Lagrangian. In this article, we present an alternate Eulerian framework based on the sur- 

face density formalism. We employ the proposed framework to analyze a database of direct numerical 

simulations of spherical turbulent premixed flames in decaying isotropic turbulence and recover mech- 

anisms for which scaling laws are proposed and assessed against data. We characterize quantitatively 

two mechanisms: one related to the mean velocity gradient induced by thermal expansion and the other 

due to flame propagation in the presence of curvature. We demonstrate that the net effect of these two 

processes is to hinder the growth of the turbulent flame brush in the present configuration. Our anal- 

ysis supports the notion that the turbulent flame brush does not grow indefinitely, rather it attains a 

maximum thickness. 

© 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

Burning rates in turbulent premixed flames are several times 

igher than their laminar counterparts. This enhancement origi- 

ates from a proportional increase in the flame surface area due 

o wrinkling by turbulence [1–4] . 

A quantity central to the modeling of the turbulent flame sur- 

ace area is the thickness of the flame brush δT , which is a statisti-

al measure of the linear extent of the region where the turbulent 

ame is located over many realizations [5] . In fact, the turbulent 

ame surface area is related functionally to the standard deviation 

f the flame surface location around its mean location, which is 

roportional to δT [4] . The Bray-Moss-Libby model [6] relates the 

urbulent burning velocity to the product of flame brush thickness 

nd peak density of flame surface area within the brush, 

 T /S L ∼
∫ ∞ 

−∞ 

� dζ ∼ �max δT I, (1) 
∗ Corresponding author. 
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here � is the surface density function, ζ a local coordinate 

cross the turbulent flame brush, and I a correction factor of order 

nity. 

Apart from its utility in numerical modeling, the flame brush 

hickness also serves as a characteristic length scale in that the 

tatistics of the reaction progress variable exhibit self-similarity 

cross the turbulent flame brush in a coordinate normalized by 

T [7,8] . Examination of the development of the brush is thus es- 

ential to turbulent premixed combustion modeling. 

The turbulent flame brush is observed to undergo rapid growth 

n most laboratory and practical combustion devices [9] . Said 

rowth occurs in time for unsteady configurations such as spher- 

cal turbulent flames and with distance from the flame holder 

r injection port for statistically stationary turbulent flames such 

s Bunsen and V-flames [10–12] . The spatial development of the 

rush in steady flows may be regarded, at least qualitatively, as 

emporal development under Taylor’s hypothesis [13] . 

Karlovitz [3] recognized that if the flame propagation speed S L 
s small compared to the root mean squared (RMS) velocity fluc- 

uation u ′ , the development of the turbulent flame brush is qual- 

tatively similar to the dispersion of material points in isothermal 

urbulence. Turbulent diffusion theory [14] relates the dispersion 

hickness of material points in stationary isotropic turbulence to 

he Lagrangian velocity auto-correlation function. If an exponential 
. 
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orm is assumed for the auto-correlation function, the dispersion 

hickness ˜ σ is given by [15] 

 ̃  σ/L 11 ) 
2 = 2 ̃ t 

[ 
1 − 1 

˜ t 

(
1 − e −˜ t 

)] 
, (2) 

here L 11 denotes the transverse correlation length scale and 
˜  = t/τ † the dimensionless time, where the reference time scale 
† = L 11 /u 

′ is based on the RMS velocity fluctuation u ′ . Indeed, 
 qualitative agreement with the short and long time limits of 

q. (2) ( ̃  σ/L 11 ∼ ˜ t and ˜ σ/L 11 ∼ ˜ t 1 / 2 , respectively) was observed in 

 variety of flame configurations (see Refs. [9,16] and references 

herein). 

If the flame propagation speed is comparable to the RMS ve- 

ocity fluctuation, the trajectories of flame surface elements are 

xpected to deviate from Lagrangian ones, and a correction is re- 

uired. Assuming an exponential form of the correlation function, 

ow a function of the ratio u ′ /S L also, Scurlock and Grover [4] pro-
osed the following corrections to Eq. (2) : 

 ̃  σ/l ′ ) 2 = 2 
t 

τ ′ 

[
1 − τ ′ 

t 

(
1 − e −t/τ ′ )]

, l ′ = 

L 11 
1 + S L / 2 u ′ 

, (3) 

nd τ ′ = l ′ /u ′ . Goix et al. [17] and Renou et al. [8] applied

q. (3) successfully to turbulent V-shaped flames and turbulent 

pherical flames, respectively. However, other experiments [7,18–

0] report an increase in δT with increasing S L , while Eq. (3) pre- 

icts just the opposite. 

In addition to changes in the auto-correlation function due to 

ame propagation, further deviations from turbulent diffusion the- 

ry are expected due to inhomogeneous and anisotropic turbu- 

ence, gas expansion due to heat release, and flame propagation in 

he presence of curvature. Thermal expansion across the reactive 

ront introduces velocity gradients, possibly leading to flame gen- 

rated turbulence [21,22] , which assists in the growth of the brush 

hickness. Moreover, since the reactant (resp. product) side of the 

ame brush is predominantly curved convex (resp. concave) to- 

ards the reactants, flame propagation serves to reduce the brush 

hickness through surface destruction in regions of high negative 

urvature. 

Recent experiments in turbulent Bunsen flames have studied 

he effects of equivalence ratio, background thermodynamic pres- 

ure [23] , and hydrodynamic instabilities [11] on the evolution of 

he brush. A robust quantitative model for the development of the 

urbulent flame brush remains elusive since the turbulent diffusion 

heory is inherently Lagrangian. 

In this article, we present an Eulerian framework based on the 

urface density formalism. The framework is developed in the con- 

ext of turbulent spherical flames, but may be extended to other 

eometries by suitable coordinate transformation to a local coordi- 

ate system attached to the flame brush. 

The investigation of spherical turbulent flames allows us to as- 

ess whether the turbulent flame brush in unsteady configura- 

ions grows indefinitely or reaches an asymptotic value in a finite 

ime. A continuous growth of the turbulent flame brush in spheri- 

al flames has been reported in experiments [20,24,25] , which has 

een interpreted to indicate that the turbulent burning rates in- 

rease monotonically for spherical flames. 

The remainder of this article is organized as follows. 

ection 2 briefly describes the database of direct numerical sim- 

lations of pressurized premixed methane/air turbulent spheri- 

al flames. A framework for analyzing the turbulent flame brush 

ased on the surface density formalism is established in Section 3 . 

he analysis is presented in Section 4 . Section 5 summarizes the 

esults. 
2 
. Numerical setup 

We consider a set of five direct numerical simulations of spher- 

cal flames subjected to freely decaying isotropic turbulence. A 

rief description of numerical methods and flame configuration 

ollows next. For more details, the reader is directed to our pre- 

ious work [26] . 

The unsteady, reactive Navier–Stokes equations are solved in 

he low Mach number limit with the finite difference solver 

GA [27] . Mass conservation is enforced by solving a Poisson 

quation for the hydrodynamic pressure instead of the continu- 

ty equation. The momentum and pressure equations are cou- 

led with a pressure-correction approach [28] . Chemical reactions 

re modeled with a kinetics mechanism consisting of 16 species 

nd 73 Arrhenius elementary reactions [29] . The integration of 

he equations for temperature and species mass fractions follows 

n operator splitting approach in which the convective and dif- 

usive terms are integrated independently of the chemical source 

erms. 

The spatial discretization for the momentum and reactive scalar 

quations is second order accurate. Convective terms in the scalar 

quations are treated with the weighted essentially non-oscillatory 

WENO) scheme of third order [30] . The time advancement scheme 

s second order accurate and explicit for the convective terms and 

mplicit for the diffusive and viscous terms. The Poisson equa- 

ion for the hydrodynamic pressure is solved using the library 

YPRE [31] . The system of ordinary differential equations arising 

rom the integration of the chemical sources at each grid point is 

olved in time by CVODE [32] . 

The computational domain is a cube with side equal to 2 L and 

eriodic boundaries in all three directions. A homogeneous grid 

pacing of � = 20 μm is used for all configurations ensuring ade- 

uate resolution of the turbulence spectrum with �/η ≤ 0 . 5 at all 

imes, where η is the Kolmogorov length scale. The grid spacing 

eads to δ0 
L 
/ � = 5 . 5 , where δ0 

L 
= (T 0 u − T 0 

b 
) / max |∇T | is the ther-

al thickness of a laminar flame at the initial conditions. The ade- 

uacy of the resolution has been previously demonstrated by Luca 

t al. [29] for identical thermo-chemical conditions. The simula- 

ions feature finite difference grids with N = 125 Million (R1) to 8 

illion grid points (R3). 

Relevant parameters for the database are listed in Table 1 . Four 

onfigurations, namely ‘R1’, ‘R2’, ‘R3’ and ‘R4’, are investigated at 

ncreasing ratios of velocity scales u ′ /S L , length scales l/δL , and ini- 
ial Taylor Reynolds number Re λ = u ′ λ/ν . Here l = u ′ 3 /ε is the in-

egral length scale based on the RMS velocity fluctuation u ′ and ε, 
he mean dissipation of the turbulence kinetic energy. Further, λ is 

he Taylor length scale and ν the kinematic viscosity of the reac- 

ants. Additionally, flame ‘R3s’ features identical conditions as ‘R3’ 

ut with half the computational domain size to examine the effect 

f a closed domain. 

While increasing the Reynolds number, the Karlovitz number 

a = τL /τη is kept constant. Here τL = δL /S L and τη = (ν/ε) 1 / 2 are 

he characteristic flame and Kolmogorov time scale, respectively. 

s a result, the Damköhler number Da = (k/ε) /τL ≡ τ/τL increases 
long with the Reynolds number also. All flames belong to the thin 

eaction zone regime according to the Borghi-Peters classification 

f turbulent premixed flames [33] . 

The simulations are initialized by adding a spherical kernel of 

urnt gases of radius R 0 in fully developed homogeneous isotropic 

urbulence. The size of the initial kernel relative to an equivalent 

omain radius R L is kept approximately the same across the con- 

gurations, except for ‘R3’. Here, R L is the radius of a sphere with 

olume equal to that of the cubic domain, i.e. R L = 2 L (3 / 4 π) 1 / 3 . 

The mean radial velocity field evolves as if the computa- 

ional domain were a sphere of radius R L [26] . Consistently, the 

urbulence kinetic energy k in the reactants was obtained by 
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Fig. 1. Flame brush thicknesses δT = 

√ 

2 πσ with σ defined as in Eq. (7) (solid 

lines) and ̃  δT as in Eq. (9) (symbols). For a description of symbols and colors re- 

fer to Table 1 . 
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ubtracting the kinetic energy due to mean radial velocity from 

he total kinetic energy. 

The value of the ratio R 0 /R L is chosen such that the initial ker-

el radius is large compared to the integral velocity length scale 

, ensuring that the entire turbulence kinetic energy spectrum par- 

icipates in flame wrinkling from the onset [34] . 

The turbulent flow field at the onset of the simulations is ob- 

ained as follows. First, statistically stationary turbulence at the tar- 

et Reynolds number is simulated on a smaller cubic periodic do- 

ain using a linear forcing scheme [35] . Next, several statistically 

ndependent samples of turbulence from the small cubic domain 

re combined along each direction. Finally, the flow field is ad- 

anced by 2 τη to remove discontinuities at the interfaces. 

This strategy allows for a large domain compared to the integral 

ength scale as desired. In particular, the ratio of the box half-size 

o the integral length scale at the onset is L/l > 20 for all cases,

nsuring a large R/l ratio at all times so that spherical averages 

onsists of many independent samples and statistical convergence 

s obtained with data from a single simulation. 

All pertinent statistics are spherically symmetric and depend 

n the radial coordinate r and time t only. Using spherical sym- 

etry, statistics are gathered over spherical shells from a single 

ealization of the flow field. Adequate convergence is due to a 

arge R/l ratio, which implies multiple independent and identically 

istributed samples are collected. This postulate was verified for 

ame R1 by ensemble averaging four independent simulations. 

We observed that the reactant side isotropic turbulence follows 

 power-law decay [36,37] , which for the turbulence kinetic energy 

 reads 

/k 0 = ( 1 + t/t 0 ) 
−n = exp (−ns ) , (4) 

here n and t 0 refer to the exponent and the virtual origin of the

ecay. As shown later, the transformation of the time coordinate 

to a logarithmic coordinate s ≡ log (1 + t/t 0 ) compensates for the 

ncrease in the reference time scale τ . The parameters n and t 0 
ere obtained by least squares fit to the eddy turnover time τ = 

t + t 0 ) /n . The decay exponent n falls in the range 1 . 55 ≤ n ≤ 1 . 78 ,

ncreasing from R1 to R4. 

. Mathematical framework 

The focus of this study is on the development of the turbulent 

ame brush, on the mechanisms that affect its growth rate, and on 

dentifying turbulence and flame scales relevant to each of these 

rocesses. To this end, we develop a framework based on the sur- 

ace density formalism. Comparison with the turbulent diffusion 

heory of Taylor [14] is made where possible. 

We identify the instantaneous flame surface as an infinitesi- 

ally thin iso-level of the reaction progress variable C, which is 

efined as 

 ≡
Y O 2 − Y b O 2 

Y u 
O 2 

− Y b 
O 2 

. (5) 

In the above expression, Y O 2 denotes to the mass fraction of 

olecular oxygen and superscripts u and b refer to the unburnt 

reactants) and fully burnt (products) states, respectively. In partic- 

lar, we consider the isolevel C = c ∗ = 0 . 73 , corresponding to the

eak conditional heat release rate and thus marking the middle of 

he reaction layer. Although not shown, all results presented in this 

rticle hold over a broad range of isolevels between 0.3 and 0.9. 

imilarly, other choices for progress variable such as temperature 

re not expected to affect the results. 

The local normal to the flame surface n = −∇ C/ |∇ C| is defined
uch that it points towards the reactants ( C = 0 ). The flame surface

oves in the direction of the normal with a speed S relative to the 
3 
ocal fluid velocity [38] 

 = 

1 

|∇C| 
DC 

Dt 
= 

˙ ω C 

ρ|∇C| + 

∇ · (ρD ∇C) 

ρ|∇C| , (6) 

here D/Dt = ∂ /∂ t + u · ∇ is the material derivative, u is the lo- 

al fluid velocity vector, D the molecular diffusion coefficient, and 

˙  C the reaction rate for the progress variable. Computationally, we 

valuate the displacement speed as the material derivative (left 

and side of Eq. (6) ) instead of the sum of the reactive and dif-

usive components for computational convenience within the con- 

nes of the operator-split temporal advancement. 

A statistical description of the turbulent spherical flame is con- 

idered by recognizing that the radial distance of the flame sur- 

ace from the center of the domain is a random variable, denoted 

enceforth by φ. The radial distance φ of the flame surface follows 

losely a Gaussian distribution around the mean radial distance. Of 

articular interest to our analysis is the standard deviation σ of 

he radial distance, defined as 

(t) = 

[ ∫ ∞ 

0 

(ϕ − R (t)) 2 P(φ = ϕ; t) dϕ 

] 1 / 2 
, (7) 

here P(φ; t) denotes the probability density function (PDF) of 
he radial distance, ϕ the sample space variable and R (t) the mean 

adial distance of the flame surface, 

 (t) = 

∫ ∞ 

0 

ϕ P(φ = ϕ; t) dϕ. (8) 

We define the thickness of the flame brush as δT = 

√ 

2 πσ . In- 

lusion of the factor 
√ 

2 π in the definition of δT ensures its con- 
istency with the commonly used definition, 

 

T = 1 / max 
{| d C /dr| }, (9) 

here C denotes the Reynolds averaged progress variable field. The 

wo definitions are equivalent under the assumption of a Gaussian 

istribution of the flame surface [16] . Figure 1 demonstrates a good 

greement between the two. The former definition will be used in 

he remainder of this article, since it is less susceptible to statisti- 

al noise. 

Figure 3 shows two-dimensional planar cuts of the spherical 

urbulent flame for configuration R4. The region R − δT / 2 ≤ r ≤
 + δT / 2 is marked in red hue and contains about 80% of the flame

urface area. The turbulent flame brush develops over time and its 

hickness grows monotonically. 

.1. The surface density function 

Next, we relate the PDF P to the surface density function �, 

hich allows us to obtain an ordinary differential equation for δ . 
T 
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Fig. 2. y − z planar slice of the turbulent spherical flame R4. The four snapshots are taken at t/τ0 = 0 . 3 , 1.2, 2.1, and 3.0 (left to right). The instantaneous flame surface is 

shown in black color. The shaded red region corresponds to R − δT / 2 ≤ r ≤ R + δT / 2 , containing about 80% of the total flame surface area. 

Table 1 

Simulation parameters at the initial time. The reference scales refer 

to flame scales at initial time and are constant across simulations: 

laminar flame speed S L = 1 . 0 m/s, thermal thickness δL = 0 . 11 mm, 

flame time scale τL = δL /S L = 0 . 11 ms. 

R1 R2 R3 R3s R4 

Symbol 

N 512 3 1024 3 2048 3 1024 3 1728 3 

�x ( μm) 20 20 20 20 20 

R 0 /R L 0.2015 0.1511 0.1012 0.2015 0.2015 

u ′ /S L 7.4 8.5 9.8 9.8 11.21 

l/δL 3.4 5.2 7.8 7.8 12.14 

δL /η 11.3 11.3 11.5 11.5 11.2 

Re λ 44 59 77 77 102 

Ka 25 25 25 25 24.4 

Da 0.69 0.91 1.12 1.12 1.62 

n 1.55 1.57 1.58 1.72 1.78 

T

fl

�

a

p

c

s

t

A  

t

i

P

H

f

t

P  

o

d

t

w

i

K

w

f

i

o

w

〈

s

S

c

a

 

g

w  

t

v

3

δ
s

A

p

R

a

f

f

i

s

e

he surface density function is the statistical expectation of the 

ame surface area per unit volume [39,40] 

(c ∗; r, t) = 

〈|∇C| ∣∣C = c ∗
〉
P C (C = c ∗; r, t) . (10) 

In the equation above, P C denotes the PDF of the progress vari- 

ble and angular brackets indicate statistical expectation. The ex- 

licit dependence of the isolevel C = c ∗ is dropped hereafter for 

onciseness. By definition, the statistical expectation of the flame 

urface area A (t) at time t is given by the volumetric integral of 

he surface density function, 

 (t) = 

∫ 
V 

�( x , t) dV = 4 π

∫ ∞ 

0 

r 2 �(r, t) dr. (11)

The probability P that a surface element dA has a radial dis- 

ance φ < ϕ is equal to the ratio of the expectation of surface area 

nside a sphere of radius ϕ to the surface area A : 

 { φ < ϕ } = A −1 

∫ ϕ 

0 

4 πξ 2 �(ξ, t) dξ . (12) 

ere, ξ is a dummy variable of integration. The probability density 

unction P(φ; t) is thus proportional to the surface density func- 
ion and is given by 

(φ = ϕ; t) = d P /d ϕ = 4 πA −1 ϕ 
2 �(r = ϕ, t) . (13)

Connecting the PDF to the surface density function allows us to 

btain its evolution equation as follows. We begin with the surface 

ensity transport equation [39,40] , simplified to retain only deriva- 

ives in r and t

∂�

∂t 
+ 

1 

r 2 
∂ 

∂r 

(
r 2 〈 ( u + S n ) · e r 〉 w �

)
= 〈 K 〉 w �, (14) 

here e r = x / || x || is the unit vector in the radial direction and K
s the flame stretch rate [41] 

 = 

[
− n 

T (∇ u ) n + ∇ · u 

]
− 2 Sκ (15) 
4 
ith κ = −(∇ · n ) / 2 the flame curvature. The flame stretch rate 

eatures contributions from hydrodynamic tangential strain (terms 

n the square brackets) and flame propagation in the presence 

f mean surface curvature. In Eq. (14) , 〈 . 〉 w denotes the surface 
eighted average, 

 Q 〉 w ≡ 〈 Q|∇C| 〉 
〈 |∇C| 〉 . (16) 

Integrating Eq. (14) over the domain gives the following expres- 

ion for the logarithmic time rate of change of the expected area 

1 

A 

dA 

dt 
= 

∫ ∞ 

0 

4 πξ 2 �

A 
〈 K 〉 w d ξ = 

∫ ∞ 

0 

P(ϕ; t) 〈 K 〉 w d ϕ. (17) 

ince the transport terms integrate to zero, the logarithmic rate of 

hange of the expected area in Eq. (17) is termed global stretch rate 

nd denoted henceforth by K G = d ln A/dt . 

Using Eqs. (13) , (14) and (17) , the rate of change of the PDF is

iven by 

∂P 

∂t 
= 

4 π r 2 

A 

(
∂�

∂t 
− �

A 

dA 

dt 

)
(18) 

= − ∂ 

∂r 
( 〈 u r + Sn r 〉 w P ) + P 

〈
K ′ 
〉
w 
, (19) 

here K ′ = K − K G is the differential flame stretch rate . In Eq. (19) ,

he subscript r denotes the radial components of the appropriate 

ectors, i.e. u r = u · e r and n r = n · e r . 

.2. Governing equation for δT 

An ordinary differential equation for the flame brush thickness 

T is obtained by differentiating Eq. (7) with respect to time and 

ubstituting into Eq. (19) , 

dδT 
dt 

= 

2 π

δT 

∫ ∞ 

0 

〈
u ′ r 
〉
w 
(r − R ) P dr + 

2 π

δT 

∫ ∞ 

0 

u r (r − R ) P dr 

+ 

2 π

δT 

∫ ∞ 

0 
〈 Sn r 〉 w (r − R ) P dr + 

π

δT 

∫ ∞ 

0 

〈
K ′ 
〉
w 
(r − R ) 2 P dr. 

(20) 

ll divergence terms have been dropped using integration by 

arts. Decomposing the radial velocity field into its unconditional 

eynolds average u r and the corresponding fluctuation u 
′ 
r = u r − u r 

llows us to isolate the effect of changes in density across the 

ront on the development of the flame brush. Note that the sur- 

ace weighted mean of the Reynolds fluctuation 
〈
u ′ r 
〉
w 

is not zero. 

In order to compare the development of the flame brush and 

ts growth rate across different flames in the database, we con- 

ider Eq. (20) in dimensionless form. We choose the instantaneous 

ddy turnover time τ = k/ε in the reactants as the reference time 
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Fig. 3. Terms in Eq. (23) for flame R2: turbulent dispersion term �1 (blue circles), 

mean velocity term �2 (green squares), flame propagation term �3 (yellow trian- 

gles), and differential stretch term �4 (red diamonds). Their sum (solid black line) 
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is referred to the web version of this article.) 
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cale in order to account for decaying turbulence. The time deriva- 

ive d /d t is replaced by the corresponding derivative in the loga- 

ithmic time coordinate s with ds = dt/nτ . Consistently, we choose 

he instantaneous integral scale l = u ′ 3 /ε on the reactants’ side as 

 reference length scale. 

The evolution of the normalized flame brush thickness ˆ δT ≡
T /l in the logarithmic time coordinate s is given by 

d ̂  δT 
ds 

= nτ
d(δT /l) 

dt 
= 

3 n 

2 u ′ 
dδT 
dt 

− δT 
l 2 

dl 

ds 
(21) 

= 

3 n 

2 u ′ 
dδT 
dt 

− (1 − n/ 2) ˆ δT , (22) 

ince τ/l = (k/ε)(u ′ 3 /ε) −1 = 3 / (2 u ′ ) and the integral length scale
volves as l/l 0 = exp ((1 − n/ 2) s ) . The two terms on the right hand

ide of the above equation quantify the effect of the growing brush 

nd the evolution of the reference length scale itself. 

Substituting for d δT /d t from Eq. (20) , we obtain 

d ̂  δT 
ds 

= 

nC δ
u ′ 
∫ ∞ 

−R/σ

〈
u ′ r 
〉
w 
θ ˆ P dθ − (1 − n/ 2) ̂  δT ︸ ︷︷ ︸ 

�1 

+ 

nC δ
u ′ 
∫ ∞ 

−R/σ
u r θ ˆ P dθ︸ ︷︷ ︸ 

�2 

+ 

nC δ
u ′ 
∫ ∞ 

−R/σ
〈 Sn r 〉 w θ ˆ P dθ︸ ︷︷ ︸ 
�3 

+ 

n ̂  δT τ

2 

∫ ∞ 

−R/σ

〈
K ′ 
〉
w 
θ2 ˆ P dθ︸ ︷︷ ︸ 

�4 

, (23) 

here C δ = 3 
√ 

π/ 2 is a constant, θ = (r − R ) /σ the normalized 

ame brush coordinate, and ˆ P = σP the corresponding normal- 

zed probability density function. The spatial transformation from 

to the brush coordinate θ attaches the frame of reference to the 

ean radial location of the flame surface. 

In the order that they appear in Eq. (23) , the terms account 

or turbulent dispersion in decaying turbulence (term �1 ), mean 

elocity (term �2 ), flame propagation (term �3 ), and differential 

ame stretch (term �4 ). 

Eq. (23) identifies four mechanisms that affect the evolution of 

urbulent flame brush. Term �1 accounts for turbulent dispersion 

f flame surface elements in decaying turbulence, much like the 

ispersion of material points in isotropic turbulence. Apart from 

urbulent dispersion, any spatial inhomogeneities in the mean ra- 

ial velocity (term �2 ) and flame propagation speed (term �3 ) 

cross the flame brush also contribute to changes in the flame 

rush thickness. Finally, inhomogeneity in the flame stretch rate 

cross the brush lead to different rates of production of flame sur- 

ace and affect the PDF ˆ P and brush thickness (term �4 ). 

The four terms and their balance are shown for flame configu- 

ation R2 in Fig. 3 . Turbulent dispersion (term �1 ) dominates early 

n the evolution leading to a rapid increase in the thickness of the 

rush. The contributions from mean velocity (term �2 ) and differ- 

ntial stretch (term �4 ) increase in magnitude with time, while 

hat of turbulent dispersion decreases. The contribution of flame 

ropagation to the growth of the brush (term �3 ) is negligible. 

s a result, the rate of growth of the turbulent flame brush slows 

own with time, so that its thickness appears to admit an asymp- 

ote or a maximum. The remainder of this article analyzes these 

echanisms and the development of the turbulent flame brush, 

roposing suitable scaling laws whenever possible. 

. Results and discussion 

.1. Turbulent dispersion 

For slow, thin fronts with no gas expansion, the evolution of 

he turbulent flame brush mimics the dispersion of an ensemble of 
5 
aterial elements [3] and follows Taylor’s theory of turbulent dis- 

ersion [14] . Within the proposed Eulerian framework, the effect of 

urbulent dispersion is described by �1 ( Eq. (23) ). This allows us 

o compare �1 to its equivalent from Taylor’s theory after appro- 

riate modifications are made for decaying turbulence and changes 

o the radial direction along Lagrangian trajectories. These modifi- 

ations were discussed in detail in our past work [26] and are only 

riefly summarized below. 

We consider the evolution of variance of the radial distance ˜ σ 2 

f an ensemble of material elements released at r = R 0 . For the

urpose of comparing against term �1 alone, we consider decay- 

ng isotropic turbulence with exponent n and zero mean velocity. 

ollowing Taylor [14] , the rate of change of ˜ σ 2 is given by 

1 

2 

d ̃  σ 2 

dt 
= 

〈
dr(a, t) 

dt 
(r(a, t) − R 0 ) 

〉

= 

〈
u (a, t) · e r (a, t) 

∫ t 

0 

u (a, p) · e r (a, p) dp 
〉
, (24) 

here p is a dummy variable, a the element index in the ensemble, 

 (a, p) the local fluid velocity at particle position x (a, p) , r(a, p) =
 x (a, p) ‖ its radial distance, and e r = x (a, p) /r(a, p) the unit vector 

n the radial direction. Angular brackets denote averaging over the 

nsemble. 

Simplifying Eq. (24) for isotropic turbulence, we obtain 

1 

2 

d ̃  σ 2 

dt 
= u ′ (t) 

∫ t 
0 

u ′ (p) f L (p, t) 〈 cos αp,t 〉 dp, (25) 

here f L denotes the Lagrangian auto-correlation function of the 

elocity component in any fixed direction u x , 

f L (t 1 , t 2 ) ≡

〈 
u x (a, t 1 ) u x (a, t 2 ) 

〉 
u ′ (t 1 ) u ′ (t 2 ) 

, (26) 

ormalized by the RMS velocity fluctuation u ′ . The orientation 
actor 〈 cos αp,t 〉 = 〈 e r (a, p) · e r (a, t) 〉 accounts for changes to the 
adial direction e r along Lagrangian trajectories. For a detailed 

erivation of Eq. (25) , the reader is directed to our previous 

ork [26, Appendix B] . 

Since the orientation factor is less than or equal to unity, the 

tandard deviation of the radial distance is lower than the corre- 

ponding dispersion thickness in Cartesian coordinates. A quanti- 

ative analysis of the orientation factor requires the simulation of 

agrangian trajectories and is out of the scope of the present work. 

nstead, we investigate the limiting behavior cos αp,t → 1 and in- 

erpret ˜ σ as an upper bound on the standard deviation of the ra- 

ial distance. 
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Fig. 4. (a) Turbulent dispersion term �1 for different simulations (symbols) against 

the logarithmic time coordinate s = log (1 + t/t 0 ) . Comparison with the temporal 

derivative d ̂  σ/ds for the range of values n ∈ (1 . 55 , 1 . 78) , evaluated using Eq. (27) is 

also shown as a shaded gray area. (b) Normalized turbulent flame brush against 

the normalized flame radius. Both quantities are normalized by l, the instantaneous 

integral length scale in the reactants. Refer to Table 1 for a description of symbols. 
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Fig. 5. Turbulent dispersion term �1 for simulation R3s: (a) Integrand of the turbu- 

lent dispersion term θ ˆ P 〈 u ′ r 〉 w /u ′ at four instants, (b) PDF of the normalized brush 
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tion 〈 u ′ r 〉 w /u ′ . Simulation time increases in the direction of the arrow, i.e. from light 

to dark color, corresponding to t/τ0 = 0 . 81 , 1.63, 2.44, and 3.25. 
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The self-similarity of the Lagrangian auto-correlation func- 

ion in freely decaying isotropic turbulence was demonstrated 

y Huang and Leonard [37] . The two-time Lagrangian auto- 

orrelation function f L depends only on the lag in the logarithmic 

ime coordinate, f L (�s ) = f L (s (t 2 ) − s (t 1 )) . Transforming the tem-

oral derivative in Eq. (25) to that in the logarithmic time coordi- 

ate s , we obtain 

 
2 = (9 πn 2 ) 

∫ s 
0 

d p 

∫ p 
0 

d q f L (q − p) exp 
{ 
(1 − n/ 2)(p + q − 2 s ) 

} 
, 

(27) 

here p and q are dummy variables and ̂ σ = 

√ 

2 π˜ σ/l is the 

ormalized dispersion thickness, consistent with the definition of 

he turbulent flame brush thickness ˆ δT . The expression for ̂ σ in 

q. (27) is obtained by using an exponential model for f L as pro- 

osed by Huang and Leonard [37] . 

The rate of change d ̂  σ/ds is compared to �1 in Fig. 4 (a). The

ate of change was evaluated for each configuration using the cor- 

esponding value for the decay exponent n and predictions from 

heory fall in the shaded gray region. 

Figure 4 (a) demonstrates that turbulent dispersion is largely 

imilar to the dispersion of material elements for identical turbu- 

ence statistics. Term �1 is similar to d ̂  σ/ds , albeit lower in mag- 

itude. The difference likely originates from the orientation factor 

nd deviations from Lagrangian trajectories. 

This hypothesis is supported by the following observations. 

arly on, when the thickness of the turbulent flame brush is small, 

ny movement of flame surface elements in a direction perpen- 

icular to the radial direction is small compared to their radial 

istance, leading to 〈 cos αp,t 〉 ≈ 1 . Accordingly, we see agreement 

etween term �1 and Eq. (27) at early times. Subsequently, the 

hickness of the turbulent flame brush grows rapidly compared to 

he rate of change of the mean radial distance (see Fig. 4 (b)), lead-

ng to a decreasing orientation factor. In the long time limit, the 

ean radial distance of the flame surface grows large compared to 

he thickness of the brush and 〈 cos αp,t 〉 is expected to increase 
o unity again. The differences between �1 and d ̂  σ/ds follow this 

ualitative trend. 
6 
We note here that the decrease in the magnitude of �1 in time 

s not due to the decay of turbulence on the reactants side, since 

he decay is accounted for by the reference velocity scale u ′ , which 

hanges in time. Instead, the decrease results from the decorrela- 

ion of the radial velocity fluctuations in time, consistently with 

aylor’s theory. 

In the Eulerian framework, the decorrelation manifests itself as 

 decrease in the magnitude of the normalized radial velocity fluc- 

uation 
〈
u ′ r 
〉
w 

/u ′ , while the distribution of the surface density in 

he normalized brush coordinate remains virtually identical (see 

ig. 5 ). Flame surface elements that experience higher (resp. lower) 

adial velocity fluctuations than global mean are transported to- 

ards the leading (resp. trailing) edge of the brush. Then, the sub- 

equent decrease in the magnitude of the radial velocity fluctua- 

ion with time points to a decaying correlation of the velocity fluc- 

uation at the flame surface as expected. 

In summary, the development of the turbulent flame brush due 

o turbulent dispersion is rather similar to that predicted by Tay- 

or’s theory. The contribution of this mechanism to the growth of 

he flame brush decreases with time due to decorrelation of the 

adial velocity fluctuation. 

.2. Mean velocity gradient term 

The development of the flame brush is affected also by the 

ean velocity field introduced by the propagating turbulent flame 

nd associated density change across the brush. Since the mean 

adial velocity in the reactants is higher than that in the products, 

he flame surface closer to the reactants (leading edge) propagates 

aster than that closer to the products (trailing edge), resulting in 

he broadening of the brush [42] . In the proposed framework this 

ffect is quantified by �2 , which reads 

2 = 

∫ ∞ 

−R/σ

nC δu r 

u ′ θ ˆ P dθ . (28) 

We investigate, qualitatively, the dependence of �2 on select 

onfiguration parameters. The Reynolds averaged continuity equa- 

ion, simplified considering spherical symmetry, reads 

1 

r 2 
∂r 2 u r 
∂r 

= − 1 

ρ

∂ ρ

∂t 
− u r 

ρ

∂ ρ

∂r 
− 1 

ρr 2 
∂r 2 ρ ′ u ′ r 

∂r 
. (29) 
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Fig. 6. Source terms for the mean radial velocity governing differential equation 

( Eq. (32) ) are shown at t/τ0 = 2 . 44 . Comparison of source terms for flames R3 (dot- 

ted lines) and R3s (solid lines with symbols), showing negligible dependence on 

domain size. 

Fig. 7. (a) The temporal variation of the mean radial velocity term �2 for all flames. 

(b) Compensated term �2 (S T /u 
′ ) against the parameter σ/R , (c) Evolution of σ/R 

in time for all flames. Refer to Table 1 for a description of the symbols. 
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Further simplifications are made by adopting the following as- 

umptions. First, the Bray–Moss–Libby [43] model for the mean 

ensity ρ is employed, so that 

(r, t) ≈ ρu (1 −C ) + ρb C 

= ρu, 0 (p/p 0 ) 
1 /γ
[
1 − (1 − 1 /ζ ) C 

]
. (30) 

n the equation above ρu (t) and ρb (t) denote the time dependent 

ensities of the reactants and products, respectively. The effects of 

adiation and viscous heating are ignored and the compression of 

eactants away from the flame front is found to be isentropic, so 

hat the reactant density changes as ρu /ρu, 0 = (p/p 0 ) 
1 /γ . Lastly, 

he ratio of specific heats γ and the density ratio ζ = ρu /ρb are 

ssumed to be constant. 

With these models, the continuity equation reads 

1 

r 2 
∂r 2 u r 
∂r 

= − 1 

γ

d log (p/p 0 ) 

dt 
− 1 

ρr 2 
∂r 2 ρ ′ u ′ r 

∂r 

+ 

1 − 1 /ζ

1 − (1 − 1 /ζ ) C 

(
∂ C 

∂t 
+ u r 

∂ C 

∂r 

)
. (31) 

he equation above identifies the contributions of background 

ressure rise in the closed domain, flame propagation, and turbu- 

ent mass flux. 

A dimensionless form of the equation above is obtained by 

ransforming the coordinates to s and θ with (∂ /∂ s ) θ = nτ (∂ /∂ t) r 
nd (∂ /∂ θ ) s = σ (∂ /∂ r) t : 

(1 + θσ/R ) −2 ∂(1+ θσ/R ) 2 ( u r /u 
′ ) 

∂θ
= −

ˆ δT 
nC δγ

∂ log (p/p 0 ) 

∂s ︸ ︷︷ ︸ 
pressure 

(1 + θσ/R ) −2 1 

ρu ′ 
(1 + θσ/R ) 2 ρ ′ u ′ r 

∂θ
− F (ζ ;C ) σu 

′ · ∇C ′ 
u ′ 

 ︷︷ ︸ 
turbulent flux 

+ F (ζ ;C ) (S/S L ) (|∇C| σ ) 

u ′ /S L ︸ ︷︷ ︸ 
flame propagation 

, 

(32) 

here F (ζ ;C ) = (1 − 1 /ζ ) / [1 − (1 − 1 /ζ ) C ] is the coefficient that

cales the gradient weighted displacement speed. The velocity field 

s normalized by the instantaneous RMS velocity fluctuation u ′ . 
he spatial and temporal derivatives of mean progress variable are 

ubstituted from the Reynolds-averaged progress variable equation 

 Eq. (6) ). 

The three source terms in Eq. (32) are labeled ‘pressure’, ‘tur- 

ulent flux’ and ‘flame propagation’ and compared for flames R3 

dotted lines) and R3s (solid line with symbols) in Fig. 6 . Recall 

hat apart from the domain radius R L all other flow parameters are 

dentical across the two flames. 

We observe that all source terms are approximately the same, 

ndicating that the effect of domain size is negligible. The contri- 

ution of flame propagation is greater than those of the other two 

ource terms. We expect the following scaling analysis to hold for 

pherical flames in an open domain also, since the pressure rise 

erm plays a minor role. 

The flame propagation source term in Eq. (32) depends on the 

ean gradient weighted displacement speed S|∇C| and is param- 

terized by the density ratio ζ through the coefficient F (ζ ;C ) . 
We begin by rewriting the scaled gradient weighted speed as: 

S/S L ) |∇C| σ = (σ /S L ) 

∫ 1 
0 

〈
S|∇C| ∣∣C = c 

〉
P C (C = c) dc 

= σ

∫ 1 −
0 + 

〈 S(C = c) 〉 w 
S L 

�(C = c) dc, (33) 

here 〈 . 〉 w denotes the surface weighted average at the iso-level 

 = c. The product of the surface weighted displacement speed and 
7 
urface density function is integrated over all isolevels 0 < c < 1 . 

e exclude the reactants ( c = 0 ) and products ( c = 1 ) from the in-

egral, where the gradient of the progress variable equals zero. The 

xplicit dependence of statistics on r and t is dropped for clarity. 

Further dividing and multiplying by the peak flame surface den- 

ity �max (C = c ∗; t) , we obtain 

S/S L ) |∇C| σ = �max σ

∫ 1 −
0 + 

〈 S(C = c) 〉 w 
S L 

�(C = c) 

�max 
dc 

∼ �max δT ∼ S T /S L . (34) 

he above scaling relies on self-similar profiles of the surface den- 

ity function �(C = c) / �max and gradient weighted flame speed 

 S 〉 w /S L for all iso-levels C = c, independent of time and across dif- 

erent flames (not shown). Note that �max is defined at the par- 

icular isolevel C = c ∗ that represents the flame, while Eq. (34) in- 

egrates the product of the surface density function and displace- 

ent speed over all isolevels. 

Since the density ratio ζ is the same for all flames in the 

resent database, the flame propagation source term and �2 scale 

s S T /u 
′ . Indeed, large variations in �2 with time disappear when 

ultiplied by the ratio u ′ /S as shown in Fig. 7 . Thus, � increases
T 2 
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Fig. 8. Differential flame stretch terms �a 
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ith the turbulent burning rates both in time and across flames R1 

o R4. 

Eq. (32) suggests that the coefficient F (ζ ;C ) and mean radial 

elocity increase with ζ , leading to a faster growth of the brush. 

hile the present database is not suitable for the examination 

f such dependence, support for this hypothesis comes from re- 

ent experiments on turbulent Bunsen and V-shaped flames by Nie 

t al. [10] , Tamadonfar and Gülder [23] , and Kheirkhah and Gülder 

44] . The researchers report a dependence of the spatial growth 

ate of the turbulent flame brush on mixture properties and ob- 

erve deviations from Taylor’s theory. We believe that these trends 

re in part due to mean velocity effects and can be explained qual- 

tatively within our framework, as discussed below. 

Tamadonfar and Gülder [23] and Nie et al. [10] report that 

he growth rate of the flame brush thickness increased when 

he equivalence ratio changed from 0.7 to 1 for premixed tur- 

ulent Bunsen flames of various hydrocarbon fuels. Kheirkhah 

nd Gülder [44] observed a similar increase for turbulent pre- 

ixed methane/air V-shaped flames. Since the equivalence ratio 

as changed at fixed turbulence intensity and bulk velocity, it is 

easonable to assume that the contribution of the turbulent dis- 

ersion mechanism to the development of the brush remained the 

ame. 

On the other hand, increases in the equivalence ratio for lean 

ixtures bring about an increase in the laminar flame speed and 

ensity ratio ζ , both of which result in a larger mean velocity gra- 

ient across the brush. We note that the modification to the dis- 

ersion relation proposed by Scurlock and Grover [4] to account 

or flame propagation suggests a decrease in the brush thickness 

ith increasing flame speed, contrary to experimental evidence. 

Data from Tamadonfar and Gülder [23] for fuel-rich mix- 

ures is consistent with our theory also. The researchers observed 

hat the growth rate decreased when the equivalence ratio in- 

reased beyond unity. This trend mimics the dependence of lami- 

ar flame speed on equivalence ratio, which peaks near stoichiom- 

try. Moreover, when experiments were repeated at higher turbu- 

ence intensity, a lower sensitivity to the equivalence ratio was ob- 

erved [23,44] . Since a higher turbulence results in a greater rela- 

ive contribution of turbulent dispersion (term �1 ) compared to 

ean velocity (term �2 ), the lower sensitivity of the turbulent 

ame brush to equivalence ratio is consistent with our proposition. 

In closing, we acknowledge that the mean velocity field and 

erm �2 are geometry dependent. For spherical flames they are 

nfluenced by the geometric parameter σ/R also (see Eq. (32) ). In 

he limit σ/R → 0 , the evolution of the flame brush thickness in

 spherical configuration is similar to that of a planar flame. This 

orresponds to both the small time limit ( σ ≈ 0 ) and the long time 

imit ( R � σ ). Similar geometry effects are expected in other con- 

gurations. 

.3. Differential flame stretch 

Flame stretch is responsible for production and destruction of 

ame surface. Since flame stretch varies across the brush, the spa- 

ial distribution of flame surface is affected due to unequal rates 

f production and destruction. In particular, the flame stretch rate 

hanges from negative at the trailing edge (net destruction) to pos- 

tive at the leading edge (net production). This asymmetry is ob- 

erved for various turbulent flame configurations and acts to re- 

uce the thickness of flame brush by modifying the spatial distri- 

ution of the flame surface. As we discuss below, the change in 

ame stretch across the brush is primarily associated with that in 

he flame curvature. 

We begin by defining a gradient-weighted displacement speed 

 g ≡ S|∇ C| / 〈 |∇ C| 〉 , so that the curvature-propagation component 
8 
f flame stretch reads 

 S∇ · n 〉 w = 

〈 S(∇ · n ) |∇C| 〉 
〈 |∇C| 〉 = −2 〈 S g κ〉 . (35) 

ext, the mean of the product 〈 S g κ〉 at the flame surface is further

ecomposed into the product of the means and a covariance term 

s 

2 〈 S g κ〉 = −2 〈 S 〉 w 〈 κ〉 − 2 covar { S g , κ} = K b + K c . (36)

ere, the mean curvature 〈 κ〉 and covariance are evaluated at the 

ame surface C = c ∗, although not indicated explicitly. Note that 
 S g 〉 = 〈 S 〉 w by definition. 

Upon introducing the above definitions, we distinguish between 

hree contributions to flame stretch, i.e. tangential strain 〈 a 〉 w , 
roduct of mean flame curvature and its displacement speed K b , 

nd their covariance K c . Splitting their contributions to term �4 

ccordingly, we have 

4 = �a 
4 + �b 

4 + �c 
4 

= 

nτ ˆ δT 
2 

∫ ∞ 

−R/σ

(〈 a 〉 w − K a G 
)
θ2 ˆ P dθ

+ 

nτ ˆ δT 
2 

∫ ∞ 

−R/σ

(
−2 〈 S 〉 w 〈 κ〉 − K b G 

)
θ2 ˆ P dθ

+ 

nτ ˆ δT 
2 

∫ ∞ 

−R/σ

(
−2 covar { S g , κ} − K c G 

)
θ2 ˆ P dθ . (37) 

he three contributions to �4 are denoted as �
a 
4 
, �b 

4 
, and �c 

4 
, re- 

pectively and K a 
G 
, K b 

G 
, and K c 

G 
are their respective global stretch 

omponents: 

 
a 
G = 

∫ ∞ 

−R/σ
〈 a 〉 w ˆ P d θ, K b G = −2 

∫ ∞ 

−R/σ
〈 S 〉 w 〈 κ〉 ˆ P d θ, 

 
c 
G = −2 

∫ ∞ 

−R/σ
covar { S g , κ} ˆ P dθ . (38) 

Figure 8 shows the three stretch terms �a 
4 
, �b 

4 
and �4 

c for 

ll flames in the database. The combined contribution of �a 
4 
and 

c 
4 

is negligible as expected, while �b 
4 

is greater in magnitude 

or flames with higher initial Reynolds number, which also have 

igher initial Damköhler number. 

Figure 9 shows the spatial variations of the three stretch com- 

onents and integrands in terms �a 
4 
, �b 

4 
, and �c 

4 
. The tangential 

train rate and the covariance of the displacement speed and cur- 

ature are uniform throughout the brush. Since both these terms 

ffect the flame surface uniformly, they do not contribute to the 

rowth of the turbulent brush directly (see Fig. 9 (b)). 

On the other hand, both the surface-weighted mean displace- 

ent speed 〈 S 〉 w and the mean curvature 〈 κ〉 vary significantly 
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Fig. 9. (a) Spatial variation of components of the normalized stretch rate; 〈 a 〉 w τL 
(blue circles), −2 〈 S g 〉 〈 κ〉 τL (red diamonds), and −2 covar { S g , κ} τL (green squares). 
(b) Integrands in terms �a 

4 , �
b 
4 , and �

c 
4 in Eq. (37) . Stretch components and in- 

tegrands are normalized by the flame time scale τL = δL /S L . Data shown for flame 

R3s at time t/τ0 = 2 . 44 . (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article) 

Fig. 10. (a) Joint-PDF of S g and mean curvature κ . Mean and most probable values 

are marked with circle and cross, respectively. Red line marks conditional mean of 

curvature and surface weighted mean of normalized displacement speed at various 

locations ( −3 . 5 ≤ θ ≤ 3 . 5 ) across the brush. Arrow marks the direction of increasing 

θ , i.e. from trailing to leading edge of the brush. Data shown for flame R3s at t/τ0 = 

2 . 44 . (b) Displacement speed across the brush: DNS data (symbols), and predictions 

from Eq. (41) (lines of same color). 
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cross the brush. Overall, the flame stretch is negative (resp. posi- 

ive) at the trailing edge (resp. leading edge). This behavior is well 

ocumented for spherical [45,46] and planar flames [47,48] and 

nderstood to be universal. 

That the mean curvature 〈 κ〉 itself varies across the brush is a 
undamental topological feature of a closed surface; the portion of 

 closed surface behind (resp. ahead of) its mean location in the 

irection of the mean normal must necessarily be positively (resp. 

egatively) curved on average. 
9 
Figure 10 (a) presents the joint probability density function of 

he two at the flame surface (conditioned on C = c ∗). The displace-
ent speed is multiplied by the ratio of the density ρ∗ at C = c ∗

nd ρu in a laminar flame to compensate for differences between 

he displacement speed and the laminar flame speed. The presence 

f the weight |∇ C| / 〈 |∇ C| 〉 in S g de-emphasizes large displacement 

peeds in highly curved areas at the trailing and leading edges of 

he brush, where |∇ C| / 〈 |∇ C| 〉 � 1 . As a result, the joint-PDF of S g 
nd κ is S-shaped as shown in Fig. 10 (a) instead of a nearly linear

oint-PDF of S and κ in spherical flames [49] . 

The normalized gradient-weighted mean displacement speed 

∗〈 S g 〉 /ρu S L averaged on the entire surface is approximately equal 

o unity as expected. Consistent with the topology of spherical 

ames, the surface-averaged flame curvature is negative, i.e. con- 

ex towards the reactants on average. The most probable values of 

he curvature however, is positive, indicating that concave topolo- 

ies (i.e. ridges) are more commonly found. 

In general, we observe that the variation of the mean displace- 

ent speed across the flame brush is strongly correlated with that 

f the mean flame curvature. The mean of the two random vari- 

ble is plotted across the brush as a red curve on top of the joint-

DF. As the curvature distribution shifts from largely-positive at 

he trailing edge to largely-negative at the leading edge, the con- 

itional mean of the normalized gradient-weighted displacement 

peed decreases from a value above unity towards zero. 

The variation in the mean displacement speed across the brush 

s consistent with Markstein effects, modeled as [50–52] 

 S 〉 w = 

ρu S L 
ρ∗

(
1 − Ma 〈 K 〉 w τL 

)
(39) 

 

ρu S L 
ρ∗

(
1 − Ma 〈 a 〉 w τL + 2 Ma 

〈 S 〉 w 
S L 

〈 κ〉 δL + 2 Ma τL covar { S g , κ} 
)

, 

(40) 

here Ma = L /δL is the Markstein number and L the Marstein 

ength, which are mixture properties. The density ratio ρ∗/ρu com- 

ensates for the differences between the displacement speed and 

he laminar flame speed. Based on calculations of laminar spherical 

ames at the same thermo-chemical conditions we find Ma = 0 . 33 . 

Isolating 〈 S 〉 w in Eq. (39) , we obtain 

ρ∗〈 S 〉 w 
ρu S L 

= 

(
1 − Ma Ka ( 〈 a 〉 w − 2 covar { S g , κ} ) τη

1 − 2 Ma (ρu /ρ∗) 〈 κ〉 δL 
)

. (41) 

he tangential strain rate 〈 a 〉 w is normalized with the instanta- 

eous Kolmogorov time scale τη in accordance with its scaling 

or the deformation material elements in isotropic turbulence [53] . 

 similar scaling is also shown to hold in premixed turbulent 

ames [54,55] . Consistently, we use τη to normalize the covariance 

erm also and the Karlovitz number Ka = τL /τη appears in the nu- 

erator as a result, although our choice is by no means unique. 

Figure 10 (b) shows the variation in the displacement speed 

cross the brush. Data are shown at three different times for flame 

3s (symbols) and compared with the predictions of Eq. (41) with 

a = 0 . 33 . A good agreement is observed in the middle of the

rush, when flame stretch is small. At the leading and trailing 

dges of the brush, large curvature leads to large flame stretch and 

eviations from the linear Markstein model is observed. However, 

hese differences do not affect the integral in �b 
4 
appreciably since 

ˆ  θ2 → 0 at the edges of the brush. 

The two stretch components and mean curvature across the 

rush are shown in Fig. 11 . The spatial variation in 〈 S 〉 w at a partic-
lar time originates from its dependence on curvature alone, since 

oth the tangential strain rate 〈 a 〉 w τη and the covariance stretch 

 
c τη do not change appreciably across the brush. However, accord- 

ng to Eq. (41) , they reduce the flame speed 〈 S 〉 w and scale �b 
4 
in- 

irectly. 
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Fig. 11. (a) Spatial variation of mean curvature normalized by δL . (b) The sum of 

tangential strain rate a and covariance stretch K c = −2 covar (S g , κ) terms normal- 

ized by the instantaneous Kolmogorov time scale τη . Data shown for flame R3s at 

t/τ0 = 0 . 81 (blue circles), 1.63 (green squares), and 2.44 (red diamonds). (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article) 

Fig. 12. �b 
4 compensated by ˆ δT Da as suggested by Eq. (42) . Refer to Table 1 for a 

description of the symbols. 
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Fig. 13. Comparison of the normalized turbulent flame brush thickness ˆ δT = δT /l

for all simulations (lines with symbols). Shaded grey region is bound by the modi- 

fied isothermal dispersion relation ( Eq. (27) ) for n = 1 . 55 and n = 1 . 78 , the range of 

values of the decay exponent observed from DNS data. 
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Substituting 〈 S 〉 w from Eq. (41) in Eq. (37) , we obtain 

b 
4 = −n ̂  δT Da 

∫ ∞ 

−R/σ
dθ ˆ P θ2 

⎛ 

⎝ 

ρu 

ρ∗

1 − Ma Ka τη

(
〈 a 〉 w − 2 covar (S g , κ) 

)
1 − 2 Ma (ρu /ρ∗) 〈 κ〉 δL 〈 κ〉 δL − K b G τL 

⎞ 

⎠ , 

(42) 

here the Damköhler number Da = τ/τL originates from the 

hoice of normalizing scales. 

Figure 12 presents term �b 
4 

normalized by the product ˆ δT Da 
s suggested by Eq. (42) . The normalization seeks to compensate 

or the temporal variation of �4 due to increasing brush thick- 

ess and decreasing Damköhler number. The magnitude of term 

b 
4 
increases in time with the brush thickness itself ( Eq. (37) ). As 

ith the mean velocity term, flame stretch effects are negligible 

arly on when turbulent diffusion dominates. As the brush grows, 

he flame stretch term increases and hinders further growth of the 

rush. However, the magnitude of �4 continues to increase even 

s the thickness reaches an asymptotic value ( s > 1 for flame R2). 

his residual temporal variation may be due to deviations from 

arkstein theory, variation in the normalized curvature 〈 κ〉 δL , or 
ther transient effects. 
10 
Overall, the model for 〈 S 〉 w in Eq. (41) highlights the role of the 
arkstein number in the growth of the flame brush through term 

b 
4 
. Since a lower Markstein number leads to a smaller variations 

f 〈 S 〉 w across the brush, we expect �4 to decrease in magnitude 

ith decreasing Markstein number. While the present database is 

nadequate to explore such dependence, Fairweather et al. [56] in- 

eed report that methane-hydrogen mixtures with lower Mark- 

tein number burn faster than may be attributed to changes in the 

aminar flame speed alone. Based on the above analysis, we postu- 

ate that this might be due to a smaller contribution of �4 towards 

indering the growth of the brush. In turn, a thicker brush implies 

 higher turbulent flame speed. 

We note here that Darrieus-Landau (DL) instabilities may affect 

he flame surface wrinkling and the growth of the flame brush. 

t has been demonstrated that in the presence of Darrieus-Landau 

nstabilities, the PDF of curvature departs from a Gaussian distri- 

ution and exhibits a skewness towards negative curvatures [57] . 

he accompanying changes to the curvature statistics will affect 

he stretch terms �b 
4 
and �c 

4 
and influence the evolution of the 

rush. While hydrodynamic instabilities thus may play a role in 

he evolution of the brush, such effects are minimal in the present 

onfigurations due to large values of u ′ /S L [26] . Similarly, differen- 

ial diffusion effects for non-unity Lewis number are expected to 

hange the response of the flame speed to the curvature and affect 

he flame stretch term. 

.4. The growth of the turbulent flame brush 

In this article we identified and discussed several mechanisms 

hat control the growth of the flame brush for a spherical turbu- 

ent flame. Figure 13 compares the normalized brush thickness ˆ δT 
cross different flames and against the modified dispersion rela- 

ion. The dimensional flame brush thickness δT changes by a fac- 
or of four from R1 to R4 (see Fig. 1 ), yet the normalized thickness
ˆ 
T evolves similarly across flame configurations. This demonstrates 

hat the integral scale l is the most appropriate normalizing scale 

or the thickness of the turbulent flame brush, even as turbulence 

n the reactants decays freely and in the presence of additional 

echanisms. 

The shaded region in Fig. 13 shows the predictions of the mod- 

fied turbulent dispersion relation for the range of values of the 

ecay exponent n observed in the database. A better agreement 

etween the two is seen early on as the initial growth of the tur- 

ulent brush is governed by turbulent dispersion. More important 

ifferences appear as the mean velocity gradient and differential 

tretch terms grow in magnitude. The normalized turbulent flame 

rush thickness appears to saturate, contrary to the thickness of 
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[  
he region occupied by material points, which continues to grow 

ven in decaying isotropic turbulence [37] . 

A characterization of the various terms points to universal 

echanisms that are likely to apply in flame configurations other 

han the one considered in this study. We observed that the role 

f turbulent dispersion weakens in time compared to other effects. 

his decline is due to the decorrelation of the velocity fluctuation 

xperienced by the flame surface elements, consistent with Tay- 

or’s theory. Thus, a similar behavior is also expected in statistically 

tationary homogeneous isotropic turbulence. On the other hand, 

ifferential stretch and mean transport become more important as 

he brush thickness increases because differences in the mean ve- 

ocity field and stretch rates between the leading and trailing edges 

re amplified. This is clear as these two mechanisms are propor- 

ional to the normalized brush thickness. 

Based on the preliminary characterization of expanding tur- 

ulent flames from our database, the latter seems to domi- 

ate the former. The analysis presented in this article suggests 

hat the thickness of a spherical turbulent flame brush reaches 

n asymptotic value at which point a balance between turbu- 

ent dispersion, mean velocity, and differential stretch terms is 

ttained. 

. Conclusions 

We developed an Eulerian framework and analyzed the evo- 

ution of the turbulent flame brush in spherical turbulent flames 

ubjected to freely decaying isotropic turbulence. The effects of 

ame propagation, mean velocity and flame stretch were identi- 

ed. 

While the framework based on the surface density function it- 

elf is general, we adopted the following assumptions in order 

o facilitate the task of scaling various terms. To compare term 

1 with the theory of turbulent diffusion, changes to the ra- 

ial direction along Lagrangian trajectories were ignored. A ho- 

ogeneous isotropic turbulence with no mean flow and shear 

as considered. Further, we assumed that the flame is suffi- 

iently thin and the Bray-Moss-Libby model for mean density is 

pplicable. 

We observed that the early development of the brush oc- 

urs primarily due to transport of flame surface elements by tur- 

ulence, consistent with the isothermal turbulent diffusion the- 

ry of Taylor [14] . Large deviations from this theory appear at 

ater time due to additional effects, which hinder the growth 

f the brush. As a result, the turbulent flame brush thickness 

ttains a maximum value, in contradiction with turbulent dif- 

usion theory, which predicts indefinite growth. The proposed 

ulerian framework explains this behavior and also the depen- 

ence of the brush thickness on thermo-chemical parameters, 

uch as equivalence ratio, due to changes in the density ratio. 

e note that, while modifications to Taylor’s theory to account 

or these effects have been proposed, they show limited success 

nd are generally more difficult to incorporate into a Lagrangian 

odel. 

In closing, we remark that more work on select issues is needed 

n order to generalize our findings on the growth of the tur- 

ulent flame brush thickness. First, we considered homogeneous 

sotropic turbulence fluctuations and the mean velocity was due 

o flame propagation alone. Practical flow configurations feature 

oth inhomogeneous and anisotropic turbulent fluctuations in the 

resence of mean shear. Secondly, our choice of mixture and op- 

rating conditions is such that both differential diffusion effects 

nd Darrieus-Landau instabilities are suppressed. Influence of these 

echanisms on the development of the brush requires further 

nvestigation. 
11 
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