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ABSTRACT

The thickness of the turbulent flame brush is central to the modeling of premixed turbulent combustion
and the theory of turbulent diffusion is often applied to explain the growth of the brush with varying
success. However, numerous studies have shown that the brush evolves differently from the dispersion of
material points on the account of flame propagation, density changes across the front, and hydrodynamic
instabilities. Modifications to turbulent diffusion theory to incorporate these effects are challenging since
the theory is Lagrangian. In this article, we present an alternate Eulerian framework based on the sur-
face density formalism. We employ the proposed framework to analyze a database of direct numerical
simulations of spherical turbulent premixed flames in decaying isotropic turbulence and recover mech-
anisms for which scaling laws are proposed and assessed against data. We characterize quantitatively
two mechanisms: one related to the mean velocity gradient induced by thermal expansion and the other
due to flame propagation in the presence of curvature. We demonstrate that the net effect of these two
processes is to hinder the growth of the turbulent flame brush in the present configuration. Our anal-
ysis supports the notion that the turbulent flame brush does not grow indefinitely, rather it attains a
maximum thickness.

© 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

where ¥ is the surface density function, ¢ a local coordinate
across the turbulent flame brush, and I a correction factor of order

Burning rates in turbulent premixed flames are several times
higher than their laminar counterparts. This enhancement origi-
nates from a proportional increase in the flame surface area due
to wrinkling by turbulence [1-4].

A quantity central to the modeling of the turbulent flame sur-
face area is the thickness of the flame brush §, which is a statisti-
cal measure of the linear extent of the region where the turbulent
flame is located over many realizations [5]. In fact, the turbulent
flame surface area is related functionally to the standard deviation
of the flame surface location around its mean location, which is
proportional to 87 [4]. The Bray-Moss-Libby model [6] relates the
turbulent burning velocity to the product of flame brush thickness
and peak density of flame surface area within the brush,

S1/S, ~ / £ d¢ ~ Smaxdrl. (1)
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unity.

Apart from its utility in numerical modeling, the flame brush
thickness also serves as a characteristic length scale in that the
statistics of the reaction progress variable exhibit self-similarity
across the turbulent flame brush in a coordinate normalized by
é1 [7,8]. Examination of the development of the brush is thus es-
sential to turbulent premixed combustion modeling.

The turbulent flame brush is observed to undergo rapid growth
in most laboratory and practical combustion devices [9]. Said
growth occurs in time for unsteady configurations such as spher-
ical turbulent flames and with distance from the flame holder
or injection port for statistically stationary turbulent flames such
as Bunsen and V-flames [10-12]. The spatial development of the
brush in steady flows may be regarded, at least qualitatively, as
temporal development under Taylor’s hypothesis [13].

Karlovitz [3] recognized that if the flame propagation speed S;
is small compared to the root mean squared (RMS) velocity fluc-
tuation v/, the development of the turbulent flame brush is qual-
itatively similar to the dispersion of material points in isothermal
turbulence. Turbulent diffusion theory [14] relates the dispersion
thickness of material points in stationary isotropic turbulence to
the Lagrangian velocity auto-correlation function. If an exponential
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form is assumed for the auto-correlation function, the dispersion
thickness & is given by [15]

(&ﬂnﬂzqu—%@—¢4ﬂ, (2)

where L{; denotes the transverse correlation length scale and
f=t/rT the dimensionless time, where the reference time scale
1T =L;;/u is based on the RMS velocity fluctuation u’. Indeed,
a qualitative agreement with the short and long time limits of
Eq. (2) (6/Ly; ~T and & /Ly ~ £1/2, respectively) was observed in
a variety of flame configurations (see Refs. [9,16] and references
therein).

If the flame propagation speed is comparable to the RMS ve-
locity fluctuation, the trajectories of flame surface elements are
expected to deviate from Lagrangian ones, and a correction is re-
quired. Assuming an exponential form of the correlation function,
now a function of the ratio u’/S; also, Scurlock and Grover [4] pro-
posed the following corrections to Eq. (2):

(5’/[’)2 — ZL 1-— Z(] _ e—t/t/) V= L (3)
v t ' 1+S/2u”

and 7/ =1'/u’. Goix et al. [17] and Renou et al. [8] applied
Eq. (3) successfully to turbulent V-shaped flames and turbulent
spherical flames, respectively. However, other experiments [7,18-
20] report an increase in d; with increasing S;, while Eq. (3) pre-
dicts just the opposite.

In addition to changes in the auto-correlation function due to
flame propagation, further deviations from turbulent diffusion the-
ory are expected due to inhomogeneous and anisotropic turbu-
lence, gas expansion due to heat release, and flame propagation in
the presence of curvature. Thermal expansion across the reactive
front introduces velocity gradients, possibly leading to flame gen-
erated turbulence [21,22], which assists in the growth of the brush
thickness. Moreover, since the reactant (resp. product) side of the
flame brush is predominantly curved convex (resp. concave) to-
wards the reactants, flame propagation serves to reduce the brush
thickness through surface destruction in regions of high negative
curvature.

Recent experiments in turbulent Bunsen flames have studied
the effects of equivalence ratio, background thermodynamic pres-
sure [23], and hydrodynamic instabilities [11] on the evolution of
the brush. A robust quantitative model for the development of the
turbulent flame brush remains elusive since the turbulent diffusion
theory is inherently Lagrangian.

In this article, we present an Eulerian framework based on the
surface density formalism. The framework is developed in the con-
text of turbulent spherical flames, but may be extended to other
geometries by suitable coordinate transformation to a local coordi-
nate system attached to the flame brush.

The investigation of spherical turbulent flames allows us to as-
sess whether the turbulent flame brush in unsteady configura-
tions grows indefinitely or reaches an asymptotic value in a finite
time. A continuous growth of the turbulent flame brush in spheri-
cal flames has been reported in experiments [20,24,25], which has
been interpreted to indicate that the turbulent burning rates in-
crease monotonically for spherical flames.

The remainder of this article is organized as follows.
Section 2 briefly describes the database of direct numerical sim-
ulations of pressurized premixed methane/air turbulent spheri-
cal flames. A framework for analyzing the turbulent flame brush
based on the surface density formalism is established in Section 3.
The analysis is presented in Section 4. Section 5 summarizes the
results.
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2. Numerical setup

We consider a set of five direct numerical simulations of spher-
ical flames subjected to freely decaying isotropic turbulence. A
brief description of numerical methods and flame configuration
follows next. For more details, the reader is directed to our pre-
vious work [26].

The unsteady, reactive Navier-Stokes equations are solved in
the low Mach number limit with the finite difference solver
NGA [27]. Mass conservation is enforced by solving a Poisson
equation for the hydrodynamic pressure instead of the continu-
ity equation. The momentum and pressure equations are cou-
pled with a pressure-correction approach [28]. Chemical reactions
are modeled with a kinetics mechanism consisting of 16 species
and 73 Arrhenius elementary reactions [29]. The integration of
the equations for temperature and species mass fractions follows
an operator splitting approach in which the convective and dif-
fusive terms are integrated independently of the chemical source
terms.

The spatial discretization for the momentum and reactive scalar
equations is second order accurate. Convective terms in the scalar
equations are treated with the weighted essentially non-oscillatory
(WENO) scheme of third order [30]. The time advancement scheme
is second order accurate and explicit for the convective terms and
implicit for the diffusive and viscous terms. The Poisson equa-
tion for the hydrodynamic pressure is solved using the library
HYPRE [31]. The system of ordinary differential equations arising
from the integration of the chemical sources at each grid point is
solved in time by CVODE [32].

The computational domain is a cube with side equal to 2L and
periodic boundaries in all three directions. A homogeneous grid
spacing of A =20 um is used for all configurations ensuring ade-
quate resolution of the turbulence spectrum with A/n < 0.5 at all
times, where 7 is the Kolmogorov length scale. The grid spacing
leads to /A = 5.5, where 8 = (T — T?)/ max |VT| is the ther-
mal thickness of a laminar flame at the initial conditions. The ade-
quacy of the resolution has been previously demonstrated by Luca
et al. [29] for identical thermo-chemical conditions. The simula-
tions feature finite difference grids with N = 125 Million (R1) to 8
Billion grid points (R3).

Relevant parameters for the database are listed in Table 1. Four
configurations, namely ‘R1’, ‘R2’, ‘R3’ and ‘R4’, are investigated at
increasing ratios of velocity scales u’/S;, length scales 1/5;, and ini-
tial Taylor Reynolds number Re, = u’A/v. Here | = u’3/¢ is the in-
tegral length scale based on the RMS velocity fluctuation u’ and e,
the mean dissipation of the turbulence kinetic energy. Further, A is
the Taylor length scale and v the kinematic viscosity of the reac-
tants. Additionally, flame ‘R3s’ features identical conditions as ‘R3’
but with half the computational domain size to examine the effect
of a closed domain.

While increasing the Reynolds number, the Karlovitz number
Ka = 1;/7, is kept constant. Here 7, = §;/S; and 7, = (v/€)1/? are
the characteristic flame and Kolmogorov time scale, respectively.
As a result, the Damkéhler number Da = (k/€)/t; = T/t increases
along with the Reynolds number also. All flames belong to the thin
reaction zone regime according to the Borghi-Peters classification
of turbulent premixed flames [33].

The simulations are initialized by adding a spherical kernel of
burnt gases of radius Ry in fully developed homogeneous isotropic
turbulence. The size of the initial kernel relative to an equivalent
domain radius R; is kept approximately the same across the con-
figurations, except for ‘R3’. Here, R; is the radius of a sphere with
volume equal to that of the cubic domain, i.e. R; = 2L(3/4m)1/3.

The mean radial velocity field evolves as if the computa-
tional domain were a sphere of radius R; [26]. Consistently, the
turbulence kinetic energy k in the reactants was obtained by
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subtracting the kinetic energy due to mean radial velocity from
the total kinetic energy.

The value of the ratio Ry/R; is chosen such that the initial ker-
nel radius is large compared to the integral velocity length scale
I, ensuring that the entire turbulence kinetic energy spectrum par-
ticipates in flame wrinkling from the onset [34].

The turbulent flow field at the onset of the simulations is ob-
tained as follows. First, statistically stationary turbulence at the tar-
get Reynolds number is simulated on a smaller cubic periodic do-
main using a linear forcing scheme [35]. Next, several statistically
independent samples of turbulence from the small cubic domain
are combined along each direction. Finally, the flow field is ad-
vanced by 27, to remove discontinuities at the interfaces.

This strategy allows for a large domain compared to the integral
length scale as desired. In particular, the ratio of the box half-size
to the integral length scale at the onset is L/l > 20 for all cases,
ensuring a large R/l ratio at all times so that spherical averages
consists of many independent samples and statistical convergence
is obtained with data from a single simulation.

All pertinent statistics are spherically symmetric and depend
on the radial coordinate r and time t only. Using spherical sym-
metry, statistics are gathered over spherical shells from a single
realization of the flow field. Adequate convergence is due to a
large R/I ratio, which implies multiple independent and identically
distributed samples are collected. This postulate was verified for
flame R1 by ensemble averaging four independent simulations.

We observed that the reactant side isotropic turbulence follows
a power-law decay [36,37], which for the turbulence kinetic energy
k reads

k/ko = (1+t/to)™" = exp(-ns), (4)

where n and ty refer to the exponent and the virtual origin of the
decay. As shown later, the transformation of the time coordinate
t to a logarithmic coordinate s = log(1 + t/ty) compensates for the
increase in the reference time scale r. The parameters n and tg
were obtained by least squares fit to the eddy turnover time 7 =
(t +tg)/n. The decay exponent n falls in the range 1.55 <n < 1.78,
increasing from R1 to R4.

3. Mathematical framework

The focus of this study is on the development of the turbulent
flame brush, on the mechanisms that affect its growth rate, and on
identifying turbulence and flame scales relevant to each of these
processes. To this end, we develop a framework based on the sur-
face density formalism. Comparison with the turbulent diffusion
theory of Taylor [14] is made where possible.

We identify the instantaneous flame surface as an infinitesi-
mally thin iso-level of the reaction progress variable C, which is
defined as

b
0, o,

In the above expression, Yp, denotes to the mass fraction of
molecular oxygen and superscripts u and b refer to the unburnt
(reactants) and fully burnt (products) states, respectively. In partic-
ular, we consider the isolevel C = c¢* = 0.73, corresponding to the
peak conditional heat release rate and thus marking the middle of
the reaction layer. Although not shown, all results presented in this
article hold over a broad range of isolevels between 0.3 and 0.9.
Similarly, other choices for progress variable such as temperature
are not expected to affect the results.

The local normal to the flame surface n = —VC/|V(| is defined
such that it points towards the reactants (C = 0). The flame surface
moves in the direction of the normal with a speed S relative to the
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Fig. 1. Flame brush thicknesses é;r = v2wo with o defined as in Eq. (7) (solid
lines) and &7 as in Eq. (9) (symbols). For a description of symbols and colors re-
fer to Table 1.

local fluid velocity [38]
1 DC wc V. (pDVC) 6
= Ve bt = pive T pve (©)
where D/Dt = d/dt +u -V is the material derivative, u is the lo-
cal fluid velocity vector, D the molecular diffusion coefficient, and
wc the reaction rate for the progress variable. Computationally, we
evaluate the displacement speed as the material derivative (left
hand side of Eq. (6)) instead of the sum of the reactive and dif-
fusive components for computational convenience within the con-
fines of the operator-split temporal advancement.

A statistical description of the turbulent spherical flame is con-
sidered by recognizing that the radial distance of the flame sur-
face from the center of the domain is a random variable, denoted
henceforth by ¢. The radial distance ¢ of the flame surface follows
closely a Gaussian distribution around the mean radial distance. Of
particular interest to our analysis is the standard deviation o of
the radial distance, defined as

00 1/2
a(r)=[ /0 (go—R(t))ZP(qb:go;r)dgo] , (7)

where P(¢;t) denotes the probability density function (PDF) of
the radial distance, ¢ the sample space variable and R(t) the mean
radial distance of the flame surface,

R(t) = /Owww — i) dg. (8)

We define the thickness of the flame brush as é; = +/27o. In-
clusion of the factor +/27 in the definition of d; ensures its con-
sistency with the commonly used definition,

S = 1/ max {|dCdr|}, (9)

where C denotes the Reynolds averaged progress variable field. The
two definitions are equivalent under the assumption of a Gaussian
distribution of the flame surface [16]. Figure 1 demonstrates a good
agreement between the two. The former definition will be used in
the remainder of this article, since it is less susceptible to statisti-
cal noise.

Figure 3 shows two-dimensional planar cuts of the spherical
turbulent flame for configuration R4. The region R—47/2 <r <
R+ 67/2 is marked in red hue and contains about 80% of the flame
surface area. The turbulent flame brush develops over time and its
thickness grows monotonically.

3.1. The surface density function

Next, we relate the PDF P to the surface density function X%,
which allows us to obtain an ordinary differential equation for §t.
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Fig. 2. y — z planar slice of the turbulent spherical flame R4. The four snapshots are taken at t/7o = 0.3, 1.2, 2.1, and 3.0 (left to right). The instantaneous flame surface is
shown in black color. The shaded red region corresponds to R — r/2 <r < R+ 8r/2, containing about 80% of the total flame surface area.

Table 1

Simulation parameters at the initial time. The reference scales refer
to flame scales at initial time and are constant across simulations:
laminar flame speed S; = 1.0 m/s, thermal thickness §, = 0.11 mm,
flame time scale 7, = §;/S; = 0.11 ms.

R1 R2 R3 R3s R4
Symbol o [m] &
N 5123 10243 20483 10243 17283
Ax (uwm) 20 20 20 20 20
Ro/Ry 0.2015  0.1511 0.1012  0.2015  0.2015
u'/Sy 7.4 8.5 9.8 9.8 11.21
178, 34 5.2 7.8 7.8 12.14
Su/n 11.3 113 11.5 11.5 11.2
Re; 44 59 77 77 102
Ka 25 25 25 25 24.4
Da 0.69 0.91 1.12 1.12 1.62
n 1.55 1.57 1.58 1.72 1.78

The surface density function is the statistical expectation of the
flame surface area per unit volume [39,40]

B(cirt) = (|VC||C = c*Pe(C = ¢ m. ). (10)

In the equation above, P- denotes the PDF of the progress vari-
able and angular brackets indicate statistical expectation. The ex-
plicit dependence of the isolevel C = c* is dropped hereafter for
conciseness. By definition, the statistical expectation of the flame
surface area A(t) at time t is given by the volumetric integral of
the surface density function,

A(t):/Vz(x,t)dv:4n/0°°r22(r,t>dr. (11)

The probability P that a surface element dA has a radial dis-
tance ¢ < g is equal to the ratio of the expectation of surface area
inside a sphere of radius ¢ to the surface area A:

IP’{¢<<p}=A‘1/0(p4n$22($,t)d§. (12)

Here, & is a dummy variable of integration. The probability density
function P(¢;t) is thus proportional to the surface density func-
tion and is given by

P(p = @;t) =dP/dp = 4nA ' @?’ T (r =, t). (13)

Connecting the PDF to the surface density function allows us to
obtain its evolution equation as follows. We begin with the surface
density transport equation [39,40], simplified to retain only deriva-
tives in r and ¢t
ax 190

ot r2or
where e, = x/||x|| is the unit vector in the radial direction and K
is the flame stretch rate [41]

K= [_nT(Vu)n+v.u]_25K (15)

(r*((u+5n)-e),%) = (K),X, (14)

with k¥ = —(V -n)/2 the flame curvature. The flame stretch rate
features contributions from hydrodynamic tangential strain (terms
in the square brackets) and flame propagation in the presence
of mean surface curvature. In Eq. (14), {.),, denotes the surface
weighted average,

Qlvai

(veny

Integrating Eq. (14) over the domain gives the following expres-
sion for the logarithmic time rate of change of the expected area

Qw= (16)

1dA _ [~ 47’y Y
e _/ > (K),, dg _/0 P(g; t)(K),, d. (17)

Since the transport terms integrate to zero, the logarithmic rate of
change of the expected area in Eq. (17) is termed global stretch rate
and denoted henceforth by K; = dInA/dt.

Using Eqgs. (13), (14) and (17), the rate of change of the PDF is
given by

9P 4nr? (0% X dA

a4 (E%_Adt) (18)
0 S K’ 19

= 5 ({ur +5n7),,P) + PK'),. (19)

where K’ = K — K is the differential flame stretch rate. In Eq. (19),
the subscript r denotes the radial components of the appropriate
vectors, i.e. ur =u-e- and n, =n-e;.

3.2. Governing equation for 87

An ordinary differential equation for the flame brush thickness
ét is obtained by differentiating Eq. (7) with respect to time and
substituting into Eq. (19),

d(ST _27T © , 2w [ _
E‘ﬁfo <ur)w(r—R)77dr+¥/0 u(r—R)Pdr

2 o0
+ i/ (Sny),, (r — R) P dr +
or Jo

T,
E/o (K)W(r—R)ZPdr.
(20)

All divergence terms have been dropped using integration by
parts. Decomposing the radial velocity field into its unconditional
Reynolds average u; and the corresponding fluctuation u) = u, — U,
allows us to isolate the effect of changes in density across the
front on the development of the flame brush. Note that the sur-
face weighted mean of the Reynolds fluctuation (u} w is not zero.
In order to compare the development of the flame brush and
its growth rate across different flames in the database, we con-
sider Eq. (20) in dimensionless form. We choose the instantaneous
eddy turnover time T = k/€ in the reactants as the reference time
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scale in order to account for decaying turbulence. The time deriva-
tive d/dt is replaced by the corresponding derivative in the loga-
rithmic time coordinate s with ds = dt/nt. Consistently, we choose
the instantaneous integral scale | = u’3/e on the reactants’ side as
a reference length scale.

The evolution of the normalized flame brush thickness ST =
67/l in the logarithmic time coordinate s is given by

dér _d(Sr/l)  3n dsy  Srdl

S Ta TIud B (21
3n d(ST R

=g~ (1-12) 51, (22)

since 7/l = (k/e)(u3/€)~' =3/(2u’) and the integral length scale
evolves as [/l = exp((1 —n/2)s). The two terms on the right hand
side of the above equation quantify the effect of the growing brush
and the evolution of the reference length scale itself.

Substituting for déy/dt from Eq. (20), we obtain

dgT _ fng o , ~ ? TlC,g © A
el (1),0Pd0 — (1 ~n/2) 6+ T [R/a T, 6P do
I, I,
G [ (o), 0Pd0+ "I [T (i) 02Pde, (23)
v J g 2 Jgp' W

I3 Iy

where C5 =3,/m/2 is a constant, 6 = (r —R)/o the normalized
flame brush coordinate, and ? = 0P the corresponding normal-
ized probability density function. The spatial transformation from
r to the brush coordinate 6 attaches the frame of reference to the
mean radial location of the flame surface.

In the order that they appear in Eq. (23), the terms account
for turbulent dispersion in decaying turbulence (term IT;), mean
velocity (term IT,), flame propagation (term Il3), and differential
flame stretch (term ITy).

Eq. (23) identifies four mechanisms that affect the evolution of
turbulent flame brush. Term IT; accounts for turbulent dispersion
of flame surface elements in decaying turbulence, much like the
dispersion of material points in isotropic turbulence. Apart from
turbulent dispersion, any spatial inhomogeneities in the mean ra-
dial velocity (term I1,) and flame propagation speed (term I153)
across the flame brush also contribute to changes in the flame
brush thickness. Finally, inhomogeneity in the flame stretch rate
across the brush lead to different rates of production of flame sur-
face and affect the PDF ? and brush thickness (term IT4).

The four terms and their balance are shown for flame configu-
ration R2 in Fig. 3. Turbulent dispersion (term I1;) dominates early
in the evolution leading to a rapid increase in the thickness of the
brush. The contributions from mean velocity (term I1,) and differ-
ential stretch (term I14) increase in magnitude with time, while
that of turbulent dispersion decreases. The contribution of flame
propagation to the growth of the brush (term Il3) is negligible.
As a result, the rate of growth of the turbulent flame brush slows
down with time, so that its thickness appears to admit an asymp-
tote or a maximum. The remainder of this article analyzes these
mechanisms and the development of the turbulent flame brush,
proposing suitable scaling laws whenever possible.

4. Results and discussion
4.1. Turbulent dispersion

For slow, thin fronts with no gas expansion, the evolution of
the turbulent flame brush mimics the dispersion of an ensemble of
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Terms in dér/ds

0 0.3 0.6 0.9 1.2 1.5
s = IOg(l +t/ty)

Fig. 3. Terms in Eq. (23) for flame R2: turbulent dispersion term IT; (blue circles),
mean velocity term IT, (green squares), flame propagation term IT3 (yellow trian-
gles), and differential stretch term IT4 (red diamonds). Their sum (solid black line)
and its difference with respect to the unsteady DNS data (black circles) are also
shown. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

material elements [3] and follows Taylor’s theory of turbulent dis-
persion [14]. Within the proposed Eulerian framework, the effect of
turbulent dispersion is described by IT; (Eq. (23)). This allows us
to compare I1; to its equivalent from Taylor’s theory after appro-
priate modifications are made for decaying turbulence and changes
to the radial direction along Lagrangian trajectories. These modifi-
cations were discussed in detail in our past work [26] and are only
briefly summarized below.

We consider the evolution of variance of the radial distance &2
of an ensemble of material elements released at r = Ry. For the
purpose of comparing against term I1; alone, we consider decay-
ing isotropic turbulence with exponent n and zero mean velocity.
Following Taylor [14], the rate of change of G2 is given by

1dc? dr(a,t)
>7dr <dt(r(a’ t) - R0)>

t
- <u(a, £)-e(a.t) /0 u(a. p) - e-(a. p) dp>, (24)

where p is a dummy variable, a the element index in the ensemble,
u(a, p) the local fluid velocity at particle position x(a, p), r(a, p) =
||x(a, p)| its radial distance, and e, = x(a, p)/r(a, p) the unit vector
in the radial direction. Angular brackets denote averaging over the
ensemble.

Simplifying Eq. (24) for isotropic turbulence, we obtain

~9 t
2 v [ v orfitp.0) (cos e d. (25)

where f; denotes the Lagrangian auto-correlation function of the
velocity component in any fixed direction uy,

<ux(a, t1)ux(a, f2)>
filti,t) = EETAIORE

normalized by the RMS velocity fluctuation u’. The orientation
factor (cosap:) = (er(a, p)-er(a,t)) accounts for changes to the
radial direction e, along Lagrangian trajectories. For a detailed
derivation of Eq. (25), the reader is directed to our previous
work [26, Appendix B].

Since the orientation factor is less than or equal to unity, the
standard deviation of the radial distance is lower than the corre-
sponding dispersion thickness in Cartesian coordinates. A quanti-
tative analysis of the orientation factor requires the simulation of
Lagrangian trajectories and is out of the scope of the present work.
Instead, we investigate the limiting behavior cosap: — 1 and in-
terpret ¢ as an upper bound on the standard deviation of the ra-
dial distance.

(26)
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Fig. 4. (a) Turbulent dispersion term IT; for different simulations (symbols) against
the logarithmic time coordinate s = log(1 + t/t;). Comparison with the temporal
derivative d& /ds for the range of values n € (1.55, 1.78), evaluated using Eq. (27) is
also shown as a shaded gray area. (b) Normalized turbulent flame brush against
the normalized flame radius. Both quantities are normalized by [, the instantaneous
integral length scale in the reactants. Refer to Table 1 for a description of symbols.

The self-similarity of the Lagrangian auto-correlation func-
tion in freely decaying isotropic turbulence was demonstrated
by Huang and Leonard [37]. The two-time Lagrangian auto-
correlation function f; depends only on the lag in the logarithmic
time coordinate, f;(As) = fi(s(t;) —s(t7)). Transforming the tem-
poral derivative in Eq. (25) to that in the logarithmic time coordi-
nate s, we obtain

s P
=2 _ 2 _ _ _
G —(9nn>/0dp/0 dqf.(q p)exp{a n/2)(p+q 2s)},
(27)

where p and g are dummy variables and & = 276/l is the
normalized dispersion thickness, consistent with the definition of
the turbulent flame brush thickness ér. The expression for & in
Eq. (27) is obtained by using an exponential model for f; as pro-
posed by Huang and Leonard [37].

The rate of change do /ds is compared to I1; in Fig. 4(a). The
rate of change was evaluated for each configuration using the cor-
responding value for the decay exponent n and predictions from
theory fall in the shaded gray region.

Figure 4 (a) demonstrates that turbulent dispersion is largely
similar to the dispersion of material elements for identical turbu-
lence statistics. Term I, is similar to do /ds, albeit lower in mag-
nitude. The difference likely originates from the orientation factor
and deviations from Lagrangian trajectories.

This hypothesis is supported by the following observations.
Early on, when the thickness of the turbulent flame brush is small,
any movement of flame surface elements in a direction perpen-
dicular to the radial direction is small compared to their radial
distance, leading to {(cosap;) ~ 1. Accordingly, we see agreement
between term I1; and Eq. (27) at early times. Subsequently, the
thickness of the turbulent flame brush grows rapidly compared to
the rate of change of the mean radial distance (see Fig. 4(b)), lead-
ing to a decreasing orientation factor. In the long time limit, the
mean radial distance of the flame surface grows large compared to
the thickness of the brush and (cosa,) is expected to increase
to unity again. The differences between I1; and do /ds follow this
qualitative trend.
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Fig. 5. Turbulent dispersion term IT; for simulation R3s: (a) Integrand of the turbu-
lent dispersion term 6 P (u}),,/u’ at four instants, (b) PDF of the normalized brush
coordinate P = 0P, and (c) Normalized gradient weighted radial velocity fluctua-
tion (u;),,/u’. Simulation time increases in the direction of the arrow, i.e. from light
to dark color, corresponding to t/7o = 0.81, 1.63, 2.44, and 3.25.

We note here that the decrease in the magnitude of IT; in time
is not due to the decay of turbulence on the reactants side, since
the decay is accounted for by the reference velocity scale v/, which
changes in time. Instead, the decrease results from the decorrela-
tion of the radial velocity fluctuations in time, consistently with
Taylor’s theory.

In the Eulerian framework, the decorrelation manifests itself as
a decrease in the magnitude of the normalized radial velocity fluc-
tuation (uﬁ)w/u’, while the distribution of the surface density in
the normalized brush coordinate remains virtually identical (see
Fig. 5). Flame surface elements that experience higher (resp. lower)
radial velocity fluctuations than global mean are transported to-
wards the leading (resp. trailing) edge of the brush. Then, the sub-
sequent decrease in the magnitude of the radial velocity fluctua-
tion with time points to a decaying correlation of the velocity fluc-
tuation at the flame surface as expected.

In summary, the development of the turbulent flame brush due
to turbulent dispersion is rather similar to that predicted by Tay-
lor’s theory. The contribution of this mechanism to the growth of
the flame brush decreases with time due to decorrelation of the
radial velocity fluctuation.

4.2. Mean velocity gradient term

The development of the flame brush is affected also by the
mean velocity field introduced by the propagating turbulent flame
and associated density change across the brush. Since the mean
radial velocity in the reactants is higher than that in the products,
the flame surface closer to the reactants (leading edge) propagates
faster than that closer to the products (trailing edge), resulting in
the broadening of the brush [42]. In the proposed framework this
effect is quantified by IT,, which reads

M, — / "Gl o5 dp, (28)
—R/o u

We investigate, qualitatively, the dependence of IT, on select
configuration parameters. The Reynolds averaged continuity equa-
tion, simplified considering spherical symmetry, reads
10r°0,
2 ar ~  p ot

1 arp'ul
o dr pr2 or

(29)
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Further simplifications are made by adopting the following as-
sumptions. First, the Bray-Moss-Libby [43] model for the mean
density p is employed, so that

p@r.t) ~ pu(1-C) + pC
= puo (p/po)"" [1— (1 -1/¢)C]. (30)

In the equation above py(t) and p,(t) denote the time dependent
densities of the reactants and products, respectively. The effects of
radiation and viscous heating are ignored and the compression of
reactants away from the flame front is found to be isentropic, so
that the reactant density changes as pu/py0 = (p/po)"/7. Lastly,
the ratio of specific heats y and the density ratio ¢ = py/p, are
assumed to be constant.
With these models, the continuity equation reads

19, _ 1dlog(p/po) _ 1 3r’p'u;
2 or ~y dt or2  or

1-1¢ (9T, 0C
+1_(1_1/§)c<3t+ur8r>’ (31)

The equation above identifies the contributions of background
pressure rise in the closed domain, flame propagation, and turbu-
lent mass flux.

A dimensionless form of the equation above is obtained by
transforming the coordinates to s and 6 with (3/0s)y = nt(d/0¢t);
and (0/060)s = o (3/01)¢:

. 2@ 8r 9log(p/po)
2 9400 /R (@) _ _ _OT
(1+60/R) o =Gy 35
pressure
5 1 (14+00/R)?p'u, —ow -V
_ 2 | (UACO/R)7pUr o 5 OW - VO
A +00/R) =7 30 FE:O— (32)

turbulent flux

4 OB (VCo)

u'/S ’

flame propagation

where F(¢;C) = (1-1/¢)/[1—(1-1/¢)C] is the coefficient that
scales the gradient weighted displacement speed. The velocity field
is normalized by the instantaneous RMS velocity fluctuation u’'.
The spatial and temporal derivatives of mean progress variable are
substituted from the Reynolds-averaged progress variable equation
(Eq. (6)).

The three source terms in Eq. (32) are labeled ‘pressure’, ‘tur-
bulent flux’ and ‘flame propagation’ and compared for flames R3
(dotted lines) and R3s (solid line with symbols) in Fig. 6. Recall
that apart from the domain radius R; all other flow parameters are
identical across the two flames.

We observe that all source terms are approximately the same,
indicating that the effect of domain size is negligible. The contri-
bution of flame propagation is greater than those of the other two
source terms. We expect the following scaling analysis to hold for
spherical flames in an open domain also, since the pressure rise
term plays a minor role.

The flame propagation source term in Eq. (32) depends on the
mean gradient weighted displacement speed S|VC| and is param-
eterized by the density ratio ¢ through the coefficient F(Z; C).

We begin by rewriting the scaled gradient weighted speed as:

1
GSS)INClo = (a/SL)/O (SIVCI|C = &) Pe(C = ) de
(" {scCc=0), _
_a/m S C= o (33)

where (.),, denotes the surface weighted average at the iso-level
C = c. The product of the surface weighted displacement speed and
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Fig. 6. Source terms for the mean radial velocity governing differential equation
(Eq. (32)) are shown at t/ty = 2.44. Comparison of source terms for flames R3 (dot-
ted lines) and R3s (solid lines with symbols), showing negligible dependence on
domain size.
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Fig. 7. (a) The temporal variation of the mean radial velocity term I, for all flames.
(b) Compensated term IT,(Sr/u’) against the parameter o /R, (c) Evolution of o /R
in time for all flames. Refer to Table 1 for a description of the symbols.

surface density function is integrated over all isolevels 0 < ¢ < 1.
We exclude the reactants (c = 0) and products (c = 1) from the in-
tegral, where the gradient of the progress variable equals zero. The
explicit dependence of statistics on r and t is dropped for clarity.

Further dividing and multiplying by the peak flame surface den-
sity Ymax(C = c*; t), we obtain

.
B (SC=0)), £(C=0)
GISDIVCIG = Smax0 /0 == S de

~ 2:maxfsT ~ ST/SL (34)

The above scaling relies on self-similar profiles of the surface den-
sity function ¥ (C =c)/Xmax and gradient weighted flame speed
(S),,/S.. for all iso-levels C = ¢, independent of time and across dif-
ferent flames (not shown). Note that ¥« is defined at the par-
ticular isolevel C = c* that represents the flame, while Eq. (34) in-
tegrates the product of the surface density function and displace-
ment speed over all isolevels.

Since the density ratio ¢ is the same for all flames in the
present database, the flame propagation source term and IT, scale
as Sy/u’. Indeed, large variations in IT, with time disappear when
multiplied by the ratio u’/St as shown in Fig. 7. Thus, IT, increases
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with the turbulent burning rates both in time and across flames R1
to R4.

Eq. (32) suggests that the coefficient F(¢;C) and mean radial
velocity increase with ¢, leading to a faster growth of the brush.
While the present database is not suitable for the examination
of such dependence, support for this hypothesis comes from re-
cent experiments on turbulent Bunsen and V-shaped flames by Nie
et al. [10], Tamadonfar and Giilder [23], and Kheirkhah and Giilder
[44]. The researchers report a dependence of the spatial growth
rate of the turbulent flame brush on mixture properties and ob-
serve deviations from Taylor’s theory. We believe that these trends
are in part due to mean velocity effects and can be explained qual-
itatively within our framework, as discussed below.

Tamadonfar and Giilder [23] and Nie et al. [10] report that
the growth rate of the flame brush thickness increased when
the equivalence ratio changed from 0.7 to 1 for premixed tur-
bulent Bunsen flames of various hydrocarbon fuels. Kheirkhah
and Giilder [44] observed a similar increase for turbulent pre-
mixed methane/air V-shaped flames. Since the equivalence ratio
was changed at fixed turbulence intensity and bulk velocity, it is
reasonable to assume that the contribution of the turbulent dis-
persion mechanism to the development of the brush remained the
same.

On the other hand, increases in the equivalence ratio for lean
mixtures bring about an increase in the laminar flame speed and
density ratio ¢, both of which result in a larger mean velocity gra-
dient across the brush. We note that the modification to the dis-
persion relation proposed by Scurlock and Grover [4] to account
for flame propagation suggests a decrease in the brush thickness
with increasing flame speed, contrary to experimental evidence.

Data from Tamadonfar and Giilder [23] for fuel-rich mix-
tures is consistent with our theory also. The researchers observed
that the growth rate decreased when the equivalence ratio in-
creased beyond unity. This trend mimics the dependence of lami-
nar flame speed on equivalence ratio, which peaks near stoichiom-
etry. Moreover, when experiments were repeated at higher turbu-
lence intensity, a lower sensitivity to the equivalence ratio was ob-
served [23,44]. Since a higher turbulence results in a greater rela-
tive contribution of turbulent dispersion (term IT;) compared to
mean velocity (term IT,), the lower sensitivity of the turbulent
flame brush to equivalence ratio is consistent with our proposition.

In closing, we acknowledge that the mean velocity field and
term I1, are geometry dependent. For spherical flames they are
influenced by the geometric parameter o /R also (see Eq. (32)). In
the limit o /R — 0, the evolution of the flame brush thickness in
a spherical configuration is similar to that of a planar flame. This
corresponds to both the small time limit (o ~ 0) and the long time
limit (R > o). Similar geometry effects are expected in other con-
figurations.

4.3. Differential flame stretch

Flame stretch is responsible for production and destruction of
flame surface. Since flame stretch varies across the brush, the spa-
tial distribution of flame surface is affected due to unequal rates
of production and destruction. In particular, the flame stretch rate
changes from negative at the trailing edge (net destruction) to pos-
itive at the leading edge (net production). This asymmetry is ob-
served for various turbulent flame configurations and acts to re-
duce the thickness of flame brush by modifying the spatial distri-
bution of the flame surface. As we discuss below, the change in
flame stretch across the brush is primarily associated with that in
the flame curvature.

We begin by defining a gradient-weighted displacement speed
Sg = S|VC|/{IVC]), so that the curvature-propagation component
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Fig. 8. Differential flame stretch terms IT§ + IT§ (dot-dashed lines) and IT} (sym-
bols and solid lines) in Eq. (23) for all flames in the database. DNS data for HZ are
shown in symbols, along with a smooth trend-line (lines with same color).

of flame stretch reads

(SCV-m|Vv(])

SV.n), = ———=—" = —2(Ssk). 35
Next, the mean of the product (Sg«) at the flame surface is further
decomposed into the product of the means and a covariance term
as

—2(Sgk’) = —2(S),, (k) — 2 covar(Sg, i} = KP + K*. (36)

Here, the mean curvature (x) and covariance are evaluated at the
flame surface C = c¢*, although not indicated explicitly. Note that
(Sg) = (S),, by definition.

Upon introducing the above definitions, we distinguish between
three contributions to flame stretch, i.e. tangential strain (a),,,
product of mean flame curvature and its displacement speed K?,
and their covariance K¢. Splitting their contributions to term Il4
accordingly, we have

Iy = M4 + 15 + 11§

nfar o

> e ((a),, — K&)6*P do

ntér >

> L (=2(S) (k) — K)6*P db

ntér [

(—2 covar{S,, k'} — KE)6*P d6. (37)
2 —R/o
The three contributions to 14 are denoted as I1¢, HZ, and T1§, re-

spectively and K¢, Kg, and K¢ are their respective global stretch
components:

ke= [ (@ pdo. K=-2[ (), Pde.
—R/o —R/o
KE = —2/ covar{Sg, k} P d6. (38)
—R/o

Figure 8 shows the three stretch terms IT4, I'If’1 and T2 for
all flames in the database. The combined contribution of IT§ and
I1§ is negligible as expected, while HZ is greater in magnitude
for flames with higher initial Reynolds number, which also have
higher initial Damkoéhler number.

Figure 9 shows the spatial variations of the three stretch com-
ponents and integrands in terms I19, HZ, and IT§. The tangential
strain rate and the covariance of the displacement speed and cur-
vature are uniform throughout the brush. Since both these terms
affect the flame surface uniformly, they do not contribute to the
growth of the turbulent brush directly (see Fig. 9(b)).

On the other hand, both the surface-weighted mean displace-
ment speed (S),, and the mean curvature (k) vary significantly
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Fig. 9. (a) Spatial variation of components of the normalized stretch rate; (a), 7,
(blue circles), —2(Sg)(x )7, (red diamonds), and —2 covar{Sg, x}7; (green squares).
(b) Integrands in terms 1Y, I'IZ, and I1§ in Eq. (37). Stretch components and in-
tegrands are normalized by the flame time scale t; = §;/S;. Data shown for flame
R3s at time t/7y = 2.44. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article)
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Fig. 10. (a) Joint-PDF of S; and mean curvature . Mean and most probable values
are marked with circle and cross, respectively. Red line marks conditional mean of
curvature and surface weighted mean of normalized displacement speed at various
locations (—3.5 < 6 < 3.5) across the brush. Arrow marks the direction of increasing
6, i.e. from trailing to leading edge of the brush. Data shown for flame R3s at t/tp =
2.44. (b) Displacement speed across the brush: DNS data (symbols), and predictions
from Eq. (41) (lines of same color).

across the brush. Overall, the flame stretch is negative (resp. posi-
tive) at the trailing edge (resp. leading edge). This behavior is well
documented for spherical [45,46] and planar flames [47,48] and
understood to be universal.

That the mean curvature (k) itself varies across the brush is a
fundamental topological feature of a closed surface; the portion of
a closed surface behind (resp. ahead of) its mean location in the
direction of the mean normal must necessarily be positively (resp.
negatively) curved on average.
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Figure 10 (a) presents the joint probability density function of
the two at the flame surface (conditioned on C = c¢*). The displace-
ment speed is multiplied by the ratio of the density p, at C =c*
and p, in a laminar flame to compensate for differences between
the displacement speed and the laminar flame speed. The presence
of the weight |VC|/{|VC|) in S; de-emphasizes large displacement
speeds in highly curved areas at the trailing and leading edges of
the brush, where |VC|/{|VC|) < 1. As a result, the joint-PDF of Sg
and « is S-shaped as shown in Fig. 10(a) instead of a nearly linear
joint-PDF of S and « in spherical flames [49].

The normalized gradient-weighted mean displacement speed
0«(Sg)/puS; averaged on the entire surface is approximately equal
to unity as expected. Consistent with the topology of spherical
flames, the surface-averaged flame curvature is negative, i.e. con-
vex towards the reactants on average. The most probable values of
the curvature however, is positive, indicating that concave topolo-
gies (i.e. ridges) are more commonly found.

In general, we observe that the variation of the mean displace-
ment speed across the flame brush is strongly correlated with that
of the mean flame curvature. The mean of the two random vari-
able is plotted across the brush as a red curve on top of the joint-
PDE. As the curvature distribution shifts from largely-positive at
the trailing edge to largely-negative at the leading edge, the con-
ditional mean of the normalized gradient-weighted displacement
speed decreases from a value above unity towards zero.

The variation in the mean displacement speed across the brush
is consistent with Markstein effects, modeled as [50-52]

PuSL

(S = == (1 - Ma(K), 7.) (39)
= P;SL (1 — Ma(a),, 7t + 2Ma(ssﬂ (k)8 +2Mar; covar {Sg, K}),
% L

(40)

where Ma = £/§; is the Markstein number and £ the Marstein

length, which are mixture properties. The density ratio p./p, com-

pensates for the differences between the displacement speed and

the laminar flame speed. Based on calculations of laminar spherical

flames at the same thermo-chemical conditions we find Ma = 0.33.
Isolating (S),, in Eq. (39), we obtain

£:(S)y, (1 — MaKa((a),, — 2 covar{Sg, K})r,,) (a1)

ouSL 1—2Ma (pu/p:) (k)L

The tangential strain rate (a),, is normalized with the instanta-
neous Kolmogorov time scale 7, in accordance with its scaling
for the deformation material elements in isotropic turbulence [53].
A similar scaling is also shown to hold in premixed turbulent
flames [54,55]. Consistently, we use 7, to normalize the covariance
term also and the Karlovitz number Ka = 7 /7y appears in the nu-
merator as a result, although our choice is by no means unique.

Figure 10 (b) shows the variation in the displacement speed
across the brush. Data are shown at three different times for flame
R3s (symbols) and compared with the predictions of Eq. (41) with
Ma = 0.33. A good agreement is observed in the middle of the
brush, when flame stretch is small. At the leading and trailing
edges of the brush, large curvature leads to large flame stretch and
deviations from the linear Markstein model is observed. However,
these differences do not affect the integral in Hﬁ appreciably since
P62 - 0 at the edges of the brush.

The two stretch components and mean curvature across the
brush are shown in Fig. 11. The spatial variation in (S),, at a partic-
ular time originates from its dependence on curvature alone, since
both the tangential strain rate (a),t; and the covariance stretch
K¢ty do not change appreciably across the brush. However, accord-
ing to Eq. (41), they reduce the flame speed (S),, and scale HZ in-
directly.
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Fig. 11. (a) Spatial variation of mean curvature normalized by §;. (b) The sum of
tangential strain rate a and covariance stretch K = —2 covar(Sg, k) terms normal-
ized by the instantaneous Kolmogorov time scale 7,. Data shown for flame R3s at
t/To = 0.81 (blue circles), 1.63 (green squares), and 2.44 (red diamonds). (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article)
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Fig. 12. HZ compensated by 8y Da as suggested by Eq. (42). Refer to Table 1 for a

description of the symbols.

Substituting (S),, from Eq. (41) in Eq. (37), we obtain

—nST Da /
—R/o

0 1-MaKar, ((a)W — 2 covar(Sg, K))
u
1—2Ma(pu/p:) (k)01

= dopo?

E (K)(SL —Kg'L'L s

(42)

where the Damkéhler number Da = 7/7; originates from the
choice of normalizing scales.

Figure 12 presents term l'[f" normalized by the product STDa
as suggested by Eq. (42). The normalization seeks to compensate
for the temporal variation of Il4 due to increasing brush thick-
ness and decreasing Damkdhler number. The magnitude of term
Hf’l increases in time with the brush thickness itself (Eq. (37)). As
with the mean velocity term, flame stretch effects are negligible
early on when turbulent diffusion dominates. As the brush grows,
the flame stretch term increases and hinders further growth of the
brush. However, the magnitude of I14 continues to increase even
as the thickness reaches an asymptotic value (s > 1 for flame R2).
This residual temporal variation may be due to deviations from
Markstein theory, variation in the normalized curvature (k)§;, or
other transient effects.

10

Combustion and Flame 234 (2021) 111640

or =0or/l

(0 z= 1 1 1 1 1
0.6 0.9 1.2 1.5

s = log(1 + t/1y)

Fig. 13. Comparison of the normalized turbulent flame brush thickness 8; = 87/1
for all simulations (lines with symbols). Shaded grey region is bound by the modi-
fied isothermal dispersion relation (Eq. (27)) for n = 1.55 and n = 1.78, the range of
values of the decay exponent observed from DNS data.

Overall, the model for (S),, in Eq. (41) highlights the role of the
Markstein number in the growth of the flame brush through term
I'IZ. Since a lower Markstein number leads to a smaller variations
of (S),, across the brush, we expect I1, to decrease in magnitude
with decreasing Markstein number. While the present database is
inadequate to explore such dependence, Fairweather et al. [56] in-
deed report that methane-hydrogen mixtures with lower Mark-
stein number burn faster than may be attributed to changes in the
laminar flame speed alone. Based on the above analysis, we postu-
late that this might be due to a smaller contribution of 14 towards
hindering the growth of the brush. In turn, a thicker brush implies
a higher turbulent flame speed.

We note here that Darrieus-Landau (DL) instabilities may affect
the flame surface wrinkling and the growth of the flame brush.
It has been demonstrated that in the presence of Darrieus-Landau
instabilities, the PDF of curvature departs from a Gaussian distri-
bution and exhibits a skewness towards negative curvatures [57].
The accompanying changes to the curvature statistics will affect
the stretch terms HZ and IT§ and influence the evolution of the
brush. While hydrodynamic instabilities thus may play a role in
the evolution of the brush, such effects are minimal in the present
configurations due to large values of u//S; [26]. Similarly, differen-
tial diffusion effects for non-unity Lewis number are expected to
change the response of the flame speed to the curvature and affect
the flame stretch term.

4.4. The growth of the turbulent flame brush

In this article we identified and discussed several mechanisms
that control the growth of the flame brush for a spherical turbu-
lent flame. Figure 13 compares the normalized brush thickness ST
across different flames and against the modified dispersion rela-
tion. The dimensional flame brush thickness 87 changes by a fac-
tor of four from R1 to R4 (see Fig. 1), yet the normalized thickness
ST evolves similarly across flame configurations. This demonstrates
that the integral scale [ is the most appropriate normalizing scale
for the thickness of the turbulent flame brush, even as turbulence
in the reactants decays freely and in the presence of additional
mechanisms.

The shaded region in Fig. 13 shows the predictions of the mod-
ified turbulent dispersion relation for the range of values of the
decay exponent n observed in the database. A better agreement
between the two is seen early on as the initial growth of the tur-
bulent brush is governed by turbulent dispersion. More important
differences appear as the mean velocity gradient and differential
stretch terms grow in magnitude. The normalized turbulent flame
brush thickness appears to saturate, contrary to the thickness of
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the region occupied by material points, which continues to grow
even in decaying isotropic turbulence [37].

A characterization of the various terms points to universal
mechanisms that are likely to apply in flame configurations other
than the one considered in this study. We observed that the role
of turbulent dispersion weakens in time compared to other effects.
This decline is due to the decorrelation of the velocity fluctuation
experienced by the flame surface elements, consistent with Tay-
lor’s theory. Thus, a similar behavior is also expected in statistically
stationary homogeneous isotropic turbulence. On the other hand,
differential stretch and mean transport become more important as
the brush thickness increases because differences in the mean ve-
locity field and stretch rates between the leading and trailing edges
are amplified. This is clear as these two mechanisms are propor-
tional to the normalized brush thickness.

Based on the preliminary characterization of expanding tur-
bulent flames from our database, the latter seems to domi-
nate the former. The analysis presented in this article suggests
that the thickness of a spherical turbulent flame brush reaches
an asymptotic value at which point a balance between turbu-
lent dispersion, mean velocity, and differential stretch terms is
attained.

5. Conclusions

We developed an Eulerian framework and analyzed the evo-
lution of the turbulent flame brush in spherical turbulent flames
subjected to freely decaying isotropic turbulence. The effects of
flame propagation, mean velocity and flame stretch were identi-
fied.

While the framework based on the surface density function it-
self is general, we adopted the following assumptions in order
to facilitate the task of scaling various terms. To compare term
I1; with the theory of turbulent diffusion, changes to the ra-
dial direction along Lagrangian trajectories were ignored. A ho-
mogeneous isotropic turbulence with no mean flow and shear
was considered. Further, we assumed that the flame is suffi-
ciently thin and the Bray-Moss-Libby model for mean density is
applicable.

We observed that the early development of the brush oc-
curs primarily due to transport of flame surface elements by tur-
bulence, consistent with the isothermal turbulent diffusion the-
ory of Taylor [14]. Large deviations from this theory appear at
later time due to additional effects, which hinder the growth
of the brush. As a result, the turbulent flame brush thickness
attains a maximum value, in contradiction with turbulent dif-
fusion theory, which predicts indefinite growth. The proposed
Eulerian framework explains this behavior and also the depen-
dence of the brush thickness on thermo-chemical parameters,
such as equivalence ratio, due to changes in the density ratio.
We note that, while modifications to Taylor’s theory to account
for these effects have been proposed, they show limited success
and are generally more difficult to incorporate into a Lagrangian
model.

In closing, we remark that more work on select issues is needed
in order to generalize our findings on the growth of the tur-
bulent flame brush thickness. First, we considered homogeneous
isotropic turbulence fluctuations and the mean velocity was due
to flame propagation alone. Practical flow configurations feature
both inhomogeneous and anisotropic turbulent fluctuations in the
presence of mean shear. Secondly, our choice of mixture and op-
erating conditions is such that both differential diffusion effects
and Darrieus-Landau instabilities are suppressed. Influence of these
mechanisms on the development of the brush requires further
investigation.
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