This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

Scheduling Coflows With Dependency Graph

Mehrnoosh Shafiee

Abstract— Applications in data-parallel computing typically
consist of multiple stages. In each stage, a set of intermediate
parallel data flows (Coflow) is produced and transferred between
servers to enable starting of next stage. While there has been
much research on scheduling isolated coflows, the dependency
between coflows in multi-stage jobs has been largely ignored.
In this paper, we consider scheduling coflows of multi-stage jobs
represented by general DAGs (Directed Acyclic Graphs) in a
shared data center network, so as to minimize the total weighted
completion time of jobs. This problem is significantly more chal-
lenging than the traditional coflow scheduling, as scheduling even
a single multi-stage job to minimize its completion time is shown
to be NP-hard. In this paper, we propose a polynomial-time algo-
rithm with approximation ratio of O (1 log(m)/ log(log(m))),
where g is the maximum number of coflows in a job and m
is the number of servers. For the special case that the jobs’
underlying dependency graphs are rooted trees, we modify the
algorithm and improve its approximation ratio. To verify the
performance of our algorithms, we present simulation results
using real traffic traces that show up to 53% improvement over
the prior approach. We conclude the paper by providing a result
concerning an optimality gap for scheduling coflows with general
DAGs.

Index Terms— Multi-stage job, coflow, scheduling algorithms,
approximation algorithms, data centers.

I. INTRODUCTION

ODERN parallel computing platforms (e.g. Hadoop [1],

Spark [2], Dryad [3]) have enabled processing of big
data sets in data centers. Processing is typically done through
multiple computation and communication stages. While a
computation stage involves local operations in servers, a com-
munication stage involves data transfer among the servers in
the data center network to enable the next computation stage.
Such intermediate communication stages can have a significant
impact on the application latency [4]. Coflow is an abstrac-
tion that has been proposed to model such communication
patterns [4]. Formally, a coflow is defined as a collection of
flows whose completion time is determined by the last flow
in the collection. For jobs with a single communication stage,
minimizing the average completion times of coflows results in
the job’s latency improvement. However, for multi-stage jobs,

Manuscript received December 18, 2020; revised June 11, 2021 and
September 25, 2021; accepted September 25, 2021; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor V. Aggarwal. This work was
supported by NSF under Grant CNS-1717867 and Grant CNS-1652115.
(Corresponding author: Mehrnoosh Shafiee.)

The authors are with the Department of Electrical Engineering, Columbia
University, New York, NY 10027 USA (e-mail: s.mehrnoosh@columbia.edu;
jehaderi@ee.columbia.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2021.3116133, provided by the authors.

Digital Object Identifier 10.1109/TNET.2021.3116133

, Student Member, IEEE, and Javad Ghaderi

, Senior Member, IEEE

minimizing the average coflow completion time is not be the
right metric and might even lead to a worse performance, as it
ignores the dependencies between coflows in a job [5]-[7].

There are two types of dependency between coflows of a
multi-stage job: Starts-After and Finishes-Before [7]. A Starts-
After constraint between two coflows represents an explicit
barrier that the second coflow can start only after the first
coflow has been completed [8]. A Finishes-Before constraint
is common when pipelining is used between successive
stages [3], where two dependent coflows can coexist but
the second coflow cannot finish until the first coflow finishes.
In this paper we focus on scheduling coflows of multi-stage
jobs with Starts-After dependency, however, our techniques
and results can be easily extended to the other case. Each
job is represented by a DAG (Directed Acyclic Graph) among
its coflows that capture the (Starts-After) dependencies among
the coflows. As in [5], [6], [9]-[11], the data center network is
modeled as an m x m switch where m is the number of servers
(see Section II for the formal job and data center network
model). As an illustration, Figure 1 shows one multi-stage job
in a 2 x 2 switch.

In this paper, we focus on the algorithmic task of scheduling
flows of different coflows in the data center network. We con-
sider two optimization problems:

1. Given a set of jobs, minimize the total time to schedule
flows of all the coflows (makespan), while respecting the
dependencies among the coflows as well as the capacity
constraints imposed by the data center network.

2. Given a set of weights, one for each job, minimize the
total weighted completion time of jobs, where the com-
pletion time of a job is determined by the completion
of the last coflow in its DAG. The weights can capture
priorities for different jobs.

We state the results as approximation ratios in terms of
m (the number of servers), and g (the maximum number of
coflows in a job).

A. Related Work

The problem considered in this paper can be thought of
as a generalization of coflow scheduling that has been widely
studied from both theory and system perspectives [7], [9]-[18].
In these papers, different models and scheduling scenarios are
considered. For instance, in [9], [11]-[13], [19], preemption of
flows is allowed, while [17], [18] focus on the non-preemptive
scenario. Further, scheduling coflows in the case that flow sizes
are not specified or only their destinations are known is studied
in [7], [18]. However, there are only a few works [5]-[7],

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 16,2021 at 16:29:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4558-4746
https://orcid.org/0000-0001-8038-550X

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

—
— S

S1 S2

(a) A multi-stage
job with 7 coflows.

(b) Flows of coflows 1, 2, and 4 and their
dependencies in a 2 x 2 switch.

Fig. 1. A multi-stage job in a 2 x 2 switch. Part of the DAG (in the dashed
box) consisting of coflows 1, 2, and 4 is shown in the switch. Coflows 1
and 2 can share the network resources at the same time because they are
independent (see S1). Once all their flows are transmitted, flows of coflow 4
will be ready to be transmitted (Sg after S1).

[20] that consider the multi-stage generalization, with only
one algorithm with theoretical performance guarantee [5], [6].
Among the heuristics, Aalo [7] mainly focused on coflow
scheduling problem and only provides a brief heuristic to
incorporate the multi-stage case. The paper [20] proposed a
two-level scheduling method based on the most-bottleneck-
first heuristic to find the jobs to schedule at each round,
and a weighted fair scheduling scheme for intra-job coflow
scheduling.

The recent papers [5], [6] are the most relevant to our
work. They consider the problem of scheduling multi-stage job
(with Starts-After dependency) to minimize the total weighted
job completion times and provide an LP (Linear Program)-
based algorithm with O(m) approximation ratio. This algo-
rithm utilizes the technique based on ordering variables, that
was also used for coflow scheduling. Their analysis for this
algorithm relies on aggregating the load on all the m servers
which results in the loss of O(m) in the approximation
ratio. In this paper, we exponentially improve this result
by proposing an algorithm that achieves an approximation
ratio of O(pug(m)), where p is the maximum number of
coflows in a job, and g(m) = log(m)/ log(log(m)). Moreover,
in the case that the multi-stage job’s dependency graph is
a rooted tree, we propose an algorithm that achieves an
approximation ratio of O(y/fzg(m)h(m, 1)), where h(m,) =
log(mu)/(log(log(mu)). We would like to emphasize that the
O(m) approximation in [5], [6] will not improve if the graph is
a rooted tree rather than a general DAG. Note that in practice,
the number of coflows in a job is some constant which is much
smaller than the number of servers in real-world data centers
with hundreds of thousands of servers, i.e., u < m. Also,
unlike the O(m) algorithm [5], [6], both of our algorithms are
completely combinatorial and do not need to solve a linear
program explicitly, hence reducing the complexity. A key
reason behind the performance improvement in our algorithms
is that they utilize the network resources more efficiently by
interleaving schedules of coflows of different jobs, unlike the
O(m) algorithm [5], [6] that schedules coflows one at a time.

Since we represent the dependencies between coflows of a
multi-stage job with a Directed Acyclic Graph (DAG), DAG
scheduling problem is a related line of work. In traditional
DAG scheduling, each node represents a task with some

IEEE/ACM TRANSACTIONS ON NETWORKING

processing time and an edge between two nodes indicates the
tasks’ dependency. There has been extensive results on DAG
scheduling problem (DAG-SP) where the goal is to assign
tasks to machines in order to minimize the DAG’s completion
time [21]-[26].

There are also results on DAG-shop scheduling prob-
lem (DAG-SSP) [27]-[30] in which, unlike the DAG-SP,
the machine on which each task has to be processed is
fixed and no two tasks of the same job can be processed
simultaneously. Our problem of scheduling coflow DAGs is
different from the aforementioned problems in several aspects:
First, a node in our DAG represent a coflow which itself is
a collection of data flows, each with a given pair of source-
destination servers. Such couplings are fundamentally different
from DAG-SP. Second, flows of the same coflow and different
unrelated coflows can be scheduled at the same time, which
is different from DAG-SSP. Hence, algorithms from DAG-SP
and DAG-SSP cannot be applied to our problem.

B. Main Contributions

Define g(m) := log(m)/log(log(m)), and h(m,pu) :=
log(mu)/ log(log(mu)). Our main results in this paper can
be summarized as follows.

1. We first prove that even scheduling a multi-stage job to
minimize its completion time (makespan) is NP-hard.
We then propose an algorithm for minimizing the time to
schedule a given set of multi-stage jobs. Our algorithm
runs in polynomial time and constructs a schedule in
which the makespan is within O(ug(m)) of the optimal
solution for the case that jobs have general DAGs, and
O(\/mg(m)h(m, ;1)) when each job is represented as
a rooted tree. The algorithms rely on random delaying
and merging the greedy schedules of jobs, followed by
enforcing the bandwidth constraints.

2. We propose two approximation algorithms for mini-
mizing the total weighted completion time of a given
set of multi-stage jobs. For general DAGs, the approx-
imation ratio of our algorithm is O(ug(m)). For
the case of rooted trees, the ratio is improved to
O(\/rg(m)h(m,). Our algorithms are completely
combinatorial and do not rely on an explicit solution
of a linear program (LP), thus reducing the complexity
dramatically. Our approximation algorithms are signifi-
cant improvements over the LP-based O(m)-algorithm
of [5], [6].

3. To demonstrate the gains in practice, we present exten-
sive simulation results using real traffic traces. The
results indicate that our algorithms outperform the
O(m)-algorithm [5], [6] by up to 36% and 53% for
general DAGs and rooted trees, respectively, in the same
settings.

4. We illustrate the existence of instances for which the
optimal makespan for a single job with a general DAG
is Q(,/;) factor larger than two lower bounds for the
problem.

While we utilize classical techniques, such as “random
delay” from job shop scheduling [28], [29] and LP relaxation

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 16,2021 at 16:29:54 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHAFIEE AND GHADERI: SCHEDULING COFLOWS WITH DEPENDENCY GRAPH

from single-stage coflow scheduling [9], [11], [13]-[15], our
setting of scheduling coflow DAGs is considerably more
complex, and we need to add new ideas to such classical
techniques and carefully adjust them to our setting to prove
that our algorithms provide good solutions in polynomial time
(see Section IX for details.). Further, our result concerning the
optimality gap is new.

C. Organization

We start with the network and job model and the problem
statement in Section II. We then present some preliminaries
and a few definitions in Section III that are used in the
rest of the paper. Section IV is devoted to the problem of
minimizing the total time to schedule a set of general DAG
jobs, while Section V considers the same problem in the case
that each job’s DAG is a rooted tree. Using these results,
in Section VI we present our approximation algorithm for min-
imizing the total weighted completion time of multi-stage jobs
with release times. Empirical evaluation results are presented
in Section VII. We further provide an insight concerning the
optimality gap of our approximation results in Section VIIL.
The detailed proofs of the theorems is provided in Section IX.
Finally, we conclude the paper in Section X.

II. MODEL AND PROBLEM STATEMENT

Network Model: We consider a cluster of m servers, denoted
by the set M. Each server has 2 communication links, one
input and one output link with capacity (bandwidth) con-
straints. For simplicity, we assume all links have equal capacity
and without loss of generality, we assume that all the link
capacities are normalized to one. Similar to the models in [6],
[9]-[11], we abstract out the data center network as one giant
non-blocking switch. Each server in the set M is represented
by one sender server and one receiver server. Therefore,
we have an m X m switch, where the m sender (source)
servers on one side, denoted by set Mg, connected to m
receiver (destination) servers on the other side, denoted by
set Mpg.

Job Model: There is a collection of n multi-stage jobs,
denoted by the set N. Each job j € N consists of p;
coflows that need to be processed in a given (partial) order.
Each coflow ¢ of job j is a collection of flows denoted by
an m x m demand matrix D(%)), Every flow is a quadruple
(s,7,¢,7), where s € Mg is its source server, r € Mg is its
destination server, and ¢ and j are the coflow and the job to
which it belongs. The size of flow (s, 7, ¢, j), denoted by d,
is the (s,7)-th element of the matrix D). For two coflows
c1,co € j, we say coflow ¢y precedes coflow co, and denote
it by ¢1 < co, if all flows of D) should complete before
we can start scheduling any flow of D(¢27) (i.e., Starts-After
dependency). We use a DAG G to represent the dependency
(partial ordering) among the coflows in job 7, i.e., nodes in
G represent the coflows of job j and directed edges represent
the dependency (precedence constraint) between them. We use
[= max;ecn ft; to denote the maximum number of coflows
in any job. Figure 1 illustrates a multi-stage job in a 2 x 2
switch network.

Scheduling Constraints: Without loss of generality,
we assume file sizes of flows are integers and the smallest file
size is at least one which is referred to as a packet. Scheduling
decisions are restricted to such data units (packets), i.e., each
sender server can send at most one packet in every time unit
(time slot) and each receiver server can receive at most one
packet in every time slot, and the feasible schedule at any
time slot has to form a matching of the switch’s bipartite
graph. Note that the links’ capacity constraints are captured by
matching constraints, similarly to models in [5], [6], [9], [11].
Further, in a valid schedule, all the precedence constraints in
any DAG G, have to be respected.

Optimization Objective: A job is called completed only
when all of its coflows finish their processing. Define C.; to
be the completion time of coflow (c, 7). Then, the completion
time of job j, denoted by C}, is equal to completion time
of its last coflow, i.e., C; = max.c; Cc;. The total time
that it takes to complete all the jobs in the set N is called
makespan which we denote it by C"). Note that by definition
CHN) = max;en C;. Given a set of jobs, our first objective is
to minimize CXV). Next, given positive weights w;, j € N,
we consider the problem of minimizing the sum of weighted
job completion times defined by > JEN w;C;. The weights
can capture different priority for different jobs. In the special
case that all the weights are equal, the problem is equivalent
to minimizing the average job completion time.

III. DEFINITIONS AND PRELIMINARIES

We first present a few definitions and preliminaries regard-
ing complexity of the scheduling problem, and how to opti-
mally schedule a single job whose graph is a path using known
results.

A. Definitions

Definition 1 (Server Load and Effective Size of a Coflow):
Suppose a coflow D = (ds,n)m | is given. Define

s,r=
ds = Z dsr; dp = Z s,
reMpg SEMg

then ds (d.) is called the load that needs to be sent from
sender server s (received at receiver server r) for coflow D.
Further, the effective size of the coflow is defined as

ey

D= ds, d,}. 2
N T @

Thus D is the maximum load that needs to be sent or
received by a server for the coflow. Note that, due to nor-
malized capacity constraints on links, we need at least D time
slots to process all its flows.

Definition 2 (Aggregate Size of a Set of Coflows): Given a
set of coflows, consider an aggregate coflow D =" D¢ for
c’s in the set. Then, aggregate size of the set is defined as the
effective size of D based on Definition 1. Similarly, aggregate
size of job j is defined as the aggregate size of its set of coflows
and is denoted by A;.

Definition 3: (Size of a Directed Path and Critical Path in
a Job) Given a job j € N and its DAG G}, size of a directed
path p in G is defined as Tp; = ZcepD(Cj), where D(¢7) is

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 16,2021 at 16:29:54 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE I
TABLE OF NOTATIONS

Definition Symbol
Set of servers, Number of servers M, m
Set of source (sender) servers M
Set of destination (receiver) servers M,
Set of jobs, Number of jobs N, n
Flow of coflow ¢ in job j from sender s to receiver r (s,7,¢,7)
Size of flow (s, 7, ¢, j) dgjr
Demand matrix of coflow c of job j Dled)
Number of coflows of job j g
Maximum number of coflows of all jobs o
DAG representation of job j G;
Coflow ¢ precedes coflow ca c1 < c2
Completion time of coflow ¢ of job j Cej
Completion time of job j C;
Weight of job j w;
Makespan for completing all jobs of set N/ cN
Effective size of coflow ¢ of job j D<)
Aggregate size of job j Aj
Size of directed path p in job j Ty
Size of critical path of job j Tj
Root of job j whose graph (G) is a rooted tree R;
Height of job j H;

Set of coflows of job j with no in-edge SS

Set of coflows of job j whose longest path to some coflow j

of set S} has length 4 Si

the effective size of coflow c of job j, and c € p denotes that
coflow ¢ appears in path p.

Critical path of job j is a directed path that has the
maximum size among all the directed paths in G;j. We use
T; = max, T),; to denote its size.

Definition 4 (A Path Job): We say a job is a path job if
its corresponding dependency graph is a path, i.e., there is a
total ordering of its coflows according to which they should
get scheduled.

Definition 5 (A Rooted-Tree Job): We say a job is a
rooted-tree job if its corresponding dependency graph is a
rooted tree, i.e., it is a tree and there is a unique node called
the root and either all the directed edges point away from this
node (fan-out tree) or point toward this node (fan-in tree). For
each rooted-tree job G, we use R; to denote its root.

Definition 6 (Height and Coflow Sets for a Job): Given a
job j € N and its graph G;, we define H; to be the height
of Gj, ie., the length of the longest path in G; (in terms of
number of coflows). Further, we define S;) to denote the set of
coflows with no in-edge. Similarly, define S7, i =1,...,H;j—1
to denote the set of coflows whose longest path to some
coflow of set S} has length i. Note that coflows in G; are
partitioned by st, ie., Ufijo_le =G, and Sglﬂ Sg/ = g,
for i,i'’ =0,...,H; — 1, i # i'. We refer to S!s as coflow
sets of job j.

Table I summarizes the model parameters and the notations
defined in this section.

B. Complexity of Minimizing Makespan

Scheduling a multi-stage job to minimize its completion
time (makespan) is NP-hard. To show this, we consider a
single multi-stage job whose DAG is a rooted tree. The
proof is through a reduction from preemptive makespan min-

IEEE/ACM TRANSACTIONS ON NETWORKING

imization for Flow Shop Problem (FSP) which is known to
be NP-complete [31]-[33]. This is in contrast to traditional
coflow scheduling where a single coflow can be scheduled
optimally as we see in Section III-C. This also shows that the
known complexity results for preemptive FSP holds for single
multi-stage job scheduling. For FSP, there is no algorithm with
an approximation ratio less than 5/4, unless P = NP [34].

Theorem 1: Given a single multi-stage job represented by a
rooted tree, scheduling its coflows to minimize makespan over
an m x m switch is NP-hard.

Proof: We prove the theorem using a reduction from
preemptive makespan minimization for Flow Shop Prob-
lem (FSP). In FSP, there is a set of n jobs each of which
consists of m tasks that need to be processed in a given order
on m machines. Task ¢ of job j must be scheduled on machine
i for p;; amount of time (all the jobs require the same order
on their tasks.). Preemptive makespan minimization of FSP is
known to be NP-complete [31], [33].

Consider an instance I of FSP with n jobs and m machines.
We convert the makespan minimization for I to makespan
minimization of an instance I’ of a single multi-coflow job
with a rooted tree topology. The instance I’ consists of m
source and m destination servers and n x m+1 coflows where
each has a single flow. Further, the corresponding dependency
graph of I’ is a tree with a root node and n branches. The
root node is a dummy coflow which has one flow of size one
from source server 2 (or any other source server) to destination
server 1. Each of the n branches of the tree represents a job in
I and consists of m coflows. The nodes in the [-th level of the
tree, [= 1,...,m—1 (the level of root node is zero) represent
coflows that each has a single flow from source server [to
destination server [+ 1 with sizes py;, j = 1,...,n. Similarly,
the nodes at level m are coflows with a single flow from source
node m to destination server 1 with sizes p,,;, j = 1,...,n.

If one can find the optimal makespan for the instance I’
of a single multi-coflow job, the solution gives an optimal
scheduling for the instance I by ignoring the first time unit
that is used to schedule the dummy coflow in I’. Therefore,
the theorem is proved. 0

Using Theorem 1 it is easy to see that minimizing makespan
for multiple jobs and total weighted completion time of jobs
are NP-hard.

C. Optimal Makespan for a Path Job

In this section, we first show how one can schedule a single
coflow optimally and in a polynomial time using the previous
results. As a result of Birkhoff-von Neumann Theorem [35],
given a coflow D = (dST):nTzl there exists a polynomial-time
algorithm which finishes processing of all the flows in an
interval whose length is equal to the coflow effective size
D (see Equation (2)). We present one example of such an
algorithm in Algorithm 1, which was proposed originally
in [36], and refer to it as BNA that stands for Birkhoff-von
Neumann Algorithm. BNA returns a list of matchings L and a
list of times 7. To schedule flows of D, we use each matching
L(k) for 7(k + 1) — 7(k) time units, for k =1,...,|L|.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 16,2021 at 16:29:54 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHAFIEE AND GHADERI: SCHEDULING COFLOWS WITH DEPENDENCY GRAPH

Algorithm 1 BNA for Single Coflow Scheduling

Algorithm 2 DMA for Scheduling a General DAG G

Given a coflow D = (dsr):?r:r

1) Let L be the list of matchings and 7 be the list of starting
times for each matching. Initially, L = @, 7 = [0].

2) For any s € Mg and r € Mp, compute dg, d,, and D
according to Definition 1.

3) Find the set of tight nodes as 2 = (arg maxse am, ds) U
(arg max,eamy, dr).

4) Find a matching M among the source and destination

nodes such that all the nodes in €2 are involved.
5) Find

{ = min { min(s,r)EM dsr, mins:(s,r)gEM(D - ds)a
minr:(s,r)%]\l (D - dr)}

6) Add M and ¢+ 7[end] to the lists L and 7, respectively.
7) Update the flow sizes as dg, < dg — t, V(s,7) € M.
8) While D # 0, repeat Steps 2 — 7.

9) Return L and 7.

It is immediate that the optimal makespan for a path job
can be found in polynomial time, by optimally scheduling its
coflows successively using BNA.

Lemma 1: Optimal makespan for a path job j is equal to
S D) where D<) is the effective size of coflow ¢ of
job j and the corresponding schedule can be constructed in
polynomial time by successively using BNA.

We will use BNA in our algorithms in the rest of the paper.

IV. MAKESPAN MINIMIZATION FOR SCHEDULING
MULTIPLE GENERAL DAG JOBS

A. DMA (Delay-and-Merge Algorithm)

For each job j, we consider a topological sorting of nodes
in Gj, i.e., we sort its coflows (nodes) such that for every
precedence constraint ¢; < co (directed edge ¢y — ¢2), coflow
c1 appears before cp in the ordering. This ordering is not
unique and can be found in polynomial time [37]. For example,
for the job in Figure la, the orderings ¢, co, c3, c4, Cs5, Cg,
¢y and co, cs3, c1, C5, C4, Cg, C7 are both valid topological
sorts. We then re-index coflows from 1 to y; according to this
ordering.

Further, we use A; to denote the maximum load that
a server should send or receive considering all of job j’s
coflows. Formally, for job j, consider an aggregate coflow
DI =", D). Then, A, is the effective size of D’ based
on Definition 1. We also use A to denote the maximum load
a node has to send or receive considering all the jobs.

Algorithm 2 (DMA) describes our algorithm for scheduling
multiple general DAG jobs.

Note that in DMA, in each of the isolated schedules in
Step 1 all the precedence constraints among coflows are
respected. However, in Step 3, the link capacity constraints
may be violated. In Step 4, in the final schedule, both link
capacity constraints and precedence constraints among coflows
are satisfied. The parameter 3 > 1/e in DMA is a constant

1) For each job j, compute a topological sorting of nodes in
G;. Then, find a feasible schedule by optimally schedul-
ing its coflows successively using BNA, i.e., L.j, 7¢j =
BNA(D(?)), for coflow ¢ = 1, . .. , . We refer to these
schedules as isolated schedules of jobs.

2) Delay each isolated schedule by a random integer time
chosen uniformly in [0, A/f], for a constant 8 > 1/e,
independently of other isolated schedules, i.e., 7.; «
Tej +t; where t; is the random delay of job j.

3) Greedily merge the delayed isolated schedules. L.e., for
any time slot ¢, add corresponding matchings of different
jobs.

4) Construct a feasible merged schedule. Let oy, > 1 denote
the maximum number of packets that a server needs to
send or receive at time slot ¢ in the merged schedule
in Step 3. For each time slot ¢, consider an interval
of length a4, and use BNA to feasibly schedule all its
packets.

ingof c;att ing of c; att

010) 0 0 0 0 1
0 0)

001 + (00 0) + 000

00 0 1 00 100

Merge

ingof c; att

Fig. 2. Applying DMA on 3 multi-stage jobs. On the left side, a topological
ordering and a random delay for each job are computed. On the right side,
the merging procedure and BNA output is shown for some time t.

and has no effect on the theoretical result. However, it can be
used to control the range of delays in practice.

As an illustration, Figure 2 shows the procedure of DMA
on 3 multi-stage jobs in a 3 x 3 switch network. On the left
side, DMA computes a topological ordering for the coflows
of each job and chooses a random delay for each job. The
diameter of each node is proportional to the effective size of
its corresponding coflow. Consider time slot £, DMA merges
the matchings of coflow 3 of the red job, coflow 2 of the green
job, and coflow 4 of the blue job, and inputs the result to BNA.
Then, BNA computes two matchings, where each should be
used for one time slot.

B. Performance Guarantee of DMA

The following theorem states the main result regarding
the performance of DMA. The proof can be found in
Section IX-A.

Theorem 2: Given a set N of jobs with general DAGs,
DMA runs in polynomial time and provides a feasible solu-
tion whose makespan CWN) is at most O(ug(m)) of the
optimal makespan with high probability, where g(m) =

log(m)/ log(log(m)).

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 16,2021 at 16:29:54 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Fig. 3. A rooted tree with 3 path sub-jobs.

C. De-Randomization

Step 2 of DMA involves random choices of delays. There
exist well-established techniques that one can utilize to
de-randomized this step and convert the algorithms to deter-
ministic ones. For instance, one approach for selecting good
delays is to cast the problem as a vector selection problem
and then apply techniques developed in [28], [38], [39].

V. MAKESPAN MINIMIZATION FOR SCHEDULING
MULTIPLE ROOTED TREE JOBS

Now we consider the case where each job is represented
by a rooted tree (Definition 5). We propose an algorithm with
an improved performance guarantee compared to the case of
general DAGs. We would like to emphasize that the O(m)
approximation algorithm [5], [6] will not be improved if the
graph is a rooted tree rather than a general DAG.

A. Delay-and-Merge for a Single Rooted Tree (DMA-SRT)

In this section, we develop an approximation algorithm for
minimizing makespan of a single rooted-tree job and show that
its solution is at most O(,/jtlog(myu)/log(log(mp))) of the
optimal makespan. Recall Definitions 5 and 6. In what follows,
we assume that the rooted tree G; has an orientation towards
the root I2; (i.e. fan-in tree). For the case that edge orientations
points away from the root (i.e. fan-out tree), the algorithm is
similar. Recall that Sy is the set of coflows with no in-edge in
rooted tree G;. For each coflow ¢ € Sy, we can find a directed
path starting from ¢ and ending at coflow (node) ;. We call
each of these paths a path sub-job of job j. We use P; to
denote the set of all path sub-jobs of job j. Recall that T}, ;
is the size of directed path p € P; and T} is the size of the
critical path (see Definition 3). Figure 3 shows a rooted tree
with 3 path sub-jobs.

Algorithm 3 provides description of DMA-SRT. Note that
the algorithm calculates the starting time of each coflow, t.,
such that all the precedence constraints of the coflow are
satisfied. In other words, t. is equal to the smallest time £ ,
(starting time of c¢ based on path p) that all its preceding
coflows in G; are completed. We say that c is scheduled
according to p if t. = t.,. Therefore, the merged sched-
ule satisfies all the precedence constraints among coflows,
although the link capacity constraints may be violated. DMA-
SRT constructs a feasible merged schedule using BNA. Note
that in Step 5, D is multiplied by [; since each matching
L.(i) runs for [; time units in its corresponding isolated

IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 3 DMA-SRT for Scheduling a Rooted Tree G

1) Find the set of path sub-jobs P; of job j. For each
path sub-job p € P;, Choose a random integer time
d, uniformly in [0,A;/53], for a constant 3 > 1/e,
independent of other isolated schedules. Next, for each
coflow ¢ € p, p € P,, calculate the starting time of
coflow ¢ according to p, tep = dp + Yo~ vep DV

2) Find the coflow sets S;, i = 0,...,H; — 1 of job j
according to Definition 6. For i = 0,...,H; — 1, and
for each coflow ¢ in S;, find starting time of coflow ¢
as to = min{tep|te, > maxeen, (te + DED)},

3) For each coflow c in G}, find an optimal schedule for
each coflow ¢ using BNA, ie., L.,7. =BNA(D(%)),
We refer to these schedules as isolated schedules. Then,
delay the scheduling times by t¢., 7. < 7. + t..

4) Follow Step 3 of DMA.

5) Follow Step 4 of DMA.

schedule. In the final schedule, both link capacity constraints
and precedence constraints among coflows are satisfied.

B. Multiple Rooted Tree Jobs

Now consider the case where we have multiple jobs where
each job is a rooted tree. We seek to find a feasible schedule
that minimizes the time to process all the jobs (makespan).
Recall that 4 is the maximum number of coflows in any job.
We use A to denote the aggregate size of coflows of all the
Jjobs (Definition 2).

The scheduling algorithm is based on DMA-SRT described
in Section V-A. Specifically, we apply DMA-SRT to find
a feasible schedule for each job in the set. Then we apply
Steps 2, 3 and 4 of DMA, namely, we choose a random delay
in [0, A /(] for a constant 3 > 1/e for each individual schedule
and delay it. Next, we merge the delayed schedules. Finally
we use BNA algorithm to resolve any collisions in the merged
schedule. We refer to this algorithm as DMA-RT.

C. Performance Guarantee of DMA-SRT and DMA-RT

Theorem 3: Given a single job j with rooted tree Gj,
DMA-SRT runs in polynomial time and provides a feasible
schedule whose makespan Cj is at most O(,/fi;h(m, j15)) of
the optimal makespan with high probability, where h(m, p) =
log(my)/ log(log(mp)).

Theorem 4: Given a set N of jobs, each represented
as a rooted tree, DMA-RT runs in polynomial time, and
achieves a solution whose makespan CWN) is at most
O(/rg(m)h(m, i) of the optimal makespan with high prob-
ability.

The proofs of Theorems 3 and 4 are presented in
Section IX-B.

VI. TOTAL WEIGHTED COMPLETION TIME MINIMIZATION

We are now ready to present our combinatorial approx-
imation algorithm for minimizing the total weighted com-
pletion time of multi-stage jobs with release times. In this

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 16,2021 at 16:29:54 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHAFIEE AND GHADERI: SCHEDULING COFLOWS WITH DEPENDENCY GRAPH

section, we assume that the jobs have general DAGs, however,
the results can be customized for the case that all the jobs
are represented by rooted trees. We use p; to denote the
release time of job j, which implies that job j is available
for scheduling only after time p;.

A. Job Ordering

To formulate a relaxed LP (Linear Program) for our prob-
lem, we note that if we ignore the precedence constraints
among coflows of a job and aggregate all its coflows, we obtain
a single-stage job (a coflow), and our problem is reduced to
traditional coflow scheduling problem [9], [11], [13], [40].
Here, we use an LP formulation for such constructed single-
stage jobs, but with an extra constraint for each job which
roughly captures the barrier constraints among its coflows.

Formally, for each job j, consider the aggregate coflow
DI =" D). Let M := MgUMp. We use &, i € M
to denote the load of coflow D7 on server 4 (see Definition 1).
Recall Definition 3 and note that 7 is the lower bound on
the required time to schedule multi-stage job j (in the original
problem). Let 7 be any subset of jobs in A/. We formulate
the following LP:

minijCj (LP) (3a)
JEN
' 1 , , o
DA > 5 (@) + (Yo dl)), ieM TN
jeTg JjeT JjeTg
(3b)
Cj=Tj+pj, jeN. (3¢)

Constraints (3b) capture the links’ capacity constraints and
are used to lower-bound the completion time variables. To see
this, consider a (source or destination) server ¢ and a subset
of jobs J. For each j in J, the completion time C; of its
aggregate coflow D7, has to be at least the summation of loads
of coflows D?" on server i that finish before 7 plus its own load
on server 7. Also note that for every two coflows in the set 7,
one finishes before the other lone. Therefore, > jeT df c; >
dieg @dl + 3 5c s < A1), where j' < j means Cj <
C;. From this, Constraint (3b) is derived easily.

Note that this LP has exponentially many constraints, since
we need to consider all the subsets of A/. However, we do
not need to explicitly solve this LP and we only need to
find an efficient ordering of jobs. To do so, we utilize the
combinatorial primal-dual algorithm that first proposed in [41]
and later generalized in [13] to capture constraints of the
form (3c) for parallel scheduling problems. The algorithm
builds up a permutation of the jobs in the reverse order
iteratively by changing the corresponding dual variables to
satisfy some dual constraint. We have provided the detailed
description of the combinatorial algorithm in Appendix X
(Algorithm 5) for completeness. We show how we use this
ordering to find the actual schedule of jobs’ coflows in the
next section.

Remark 1: Algorithm 5 in Appendix X runs in
O(n(log(n) + m)) time where n is the number of jobs
and m is the number of servers. However, the time complexity

of the best known algorithm for solving the LP used in [5],
[6] is O((n?+m)“ log((n?+m)/€)), where w is the exponent
of matrix multiplication and € is the relative accuracy [42].
For the current value of w =~ 2.37 [43], the time complexity
of Algorithm 5 is dramatically lower than the time complexity
of solving the LP used in [5], [6].

B. Grouping Jobs

Let D; denote the maximum load that a server has to send or
receive considering all coflows of the jobs up to and including
job j according to the computed ordering. In other words, D
is the effective size of an aggregate coflow constructed from
coflows of the first j jobs. Recall that T is size of the critical
path in job j (Definition 3). Define v = min . j d%. which
is a lower bound on the time required to process any job.
Also let T' = max; p; + EjeN Ecej ZsEMS Ere]WR dgl.
The algorithm groups jobs into B groups as follows.

Choose B to be the smallest integer such that WZB > T,
and consequently define

ap =~2°, forb=—-1,0,1,...,B. 4)

Then the b-th interval is defined as the interval (ap—_1, ap]
and the group 7, is defined as the subset of jobs whose T; +
pj + Dj fall within the b-th group, i.e.,

Ty ={j€N:Tj+pj+Dj € (ap-1,ap]}; 0<b< B. (5)

This partition rule ensures that every job falls in some group.

C. Scheduling Each Group [J,

To schedule jobs of each group J,, b € {1,---,B},
(defined by (5)), we use the DMA algorithm. We refer to
this algorithm as G-DM algorithm which stands for Grouping
Jjobs, followed by Delay-and-Merge algorithms. We summarize
G-DM in Algorithm 4.

Algorithm 4 G-DM for Scheduling Multi-Stage Jobs

1) Find an efficient permutation of jobs using Algorithm 5
and re-index them.

2) Let D; be effective size of the aggregate coflow con-
structed from coflows of the jobs up to and including
job j. Also, let T} be size of the critical path in job j.

3) Partition jobs into disjoint subsets 7, b = 0,..., B as
in (5).

4) For each group b = 1,..., B, wait until all jobs in J;
arrive, then apply the makespan minimization algorithm
DMA to schedule them.

D. Performance Guarantee of G-DM

Recall that g(m) = log(m)/log(log(m)), and h(m,pu) =
log(mu)/(log(log(muy)). The following theorem states the
main result regarding the performance of G-DM. Its proof
can be found in Section IX-C.

Theorem 5: G-DM is a polynomial-time O(ug(m))-
approximation algorithm for minimizing the total weighted
completion time of multi-coflow jobs with release times.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 16,2021 at 16:29:54 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

For the case that we are given a set N of jobs, each
represented as a rooted tree, we modify G-DM by using DMA-
RT as the subroutine in the last step of G-DM. We denote
the modified version as G-DM-RT. The proof of following
Corollary can be found in Supplementary Materials.

Corollary 1: G-DM-RT is a polynomial-time algorithm
with approximation ratio O(\/ng(m)h(m, (1)) to minimize the
total weighted completion time of rooted-trees with release
times.

VII. EMPIRICAL EVALUATION

To demonstrate the gains in practice, we conducted exten-
sive evaluations using a real workload. This workload has
been widely used in coflow related research [6], [9]-[11].
We compared the performance of our algorithm G-DM-RT
with the O(m)-algorithm in [5], [6] which is the previous
state-of-the-art algorithm and compare its performance with
that of our algorithm. In [5], [6], the authors have shown that
their algorithm outperforms single-stage coflow scheduling
algorithms by around 83%, and Aalo [7] by up to 33% for
the case of equal weights for job (as Aalo cannot handle
the weighted scenario). Hence, we only report comparison
with this algorithm. The results indicate that our algorithm
outperforms the O(m)-algorithm [5], [6] by up to 53% in
the same settings. We also investigate the performance of the
algorithms for different values of delaying parameter 3, and
problem size i and m.

Workload: The workload is based on a Hive/MapReduce
trace at a Facebook cluster with 150 racks, and only contains
coflows information. The data set contains 267 coflows with
p; ranging from 10 to 21170. Further, size of the smallest
flow is equal to v = 1, size of the largest flow is equal to
2472, and effective size of coflows, Aj, is between 5 and
232145. Finally, the maximum load a server should send or
receive considering all the coflows, i.e., the effective size of
the aggregate coflow, is equal to A = 440419.

To assess performance of algorithms under different traffic
intensity, we generate workloads with different number of
machines (servers) by mapping flows of the original 150 racks
to m machines with various values of m. This is done in a
random fashion, e.g., for m = 50 every 3 randomly selected
machines in the original data set are mapped to 1 machine in
the new data set. To generate multi-stage jobs, we randomly
partition the coflows into multi-stage jobs that each has
coflows on average. To generate the corresponding rooted
tree, we first generate a random graph in which probability of
picking each of the edges is 0.5, and then converting it to a tree
by removing its cycles. We ran the algorithms for two cases
of equal weights for all jobs and randomly selected weights
from interval [0, 1]. We also consider the online scenario where
multi-stage jobs arrive over time and their release (arrival)
times follow a Poisson process with a parameter 6.

Algorithms: We simulate our multi-stage job algorithms
(referred to as G-DM and G-DM-RT) and the algorithm in [5],
[6] (referred to as O(m)AIlQ). For each algorithm, we present
two versions, one with no backfilling and one with backfilling.
Backfilling is a common technique in scheduling to increase

IEEE/ACM TRANSACTIONS ON NETWORKING

Value of g

Fig. 4. Performance of G-DM-RT for different number of servers and
different values of 3, and & = 5.

utilization of system resources by allocating the underutilized
link capacities (or servers, depending on the problem) to
other jobs. We apply the same backfilling strategy to both
algorithms for a fair comparison. We use G-DM-BF, G-DM-
RT-BF, and O(m)AIg-BF to refer to the versions of algorithms
with backfilling.

Metrics: We compare the total weighted completion times
of jobs under the two algorithms for various workloads and
scenarios. We present results for offline and online scenarios
with equal and random job weights. We also investigate the
performance of the algorithms for different values of m, [, 6.

A. Impact of Random Delays and 3

The current implementations of G-DM and G-DM-RT have
a random component as it uses DMA and DMA-SRT as a
subroutine. To show that in practice running the algorithm
once is sufficient to achieve a satisfactory solution, we need
to show that its relative standard deviation (RSD) is small.
RSD is defined as standard deviation divided by the mean
(average). Hence, to analyze the effect of random delays in the
performance of our algorithm, we ran it on some instances,
each for 10 times. Based on our experiments, RSDs of
G-DM and G-DM-RT are always less than 0.5% and RSDs
of G-DM-BF and G-DM-RT-BF are always less than 0.9%,
which both are very small. In the rest of simulations, we run
our algorithms only once on each instance.

Furthermore, we studied the effect of parameter [(see
Sections IV and V) on the performance of our algorithms.
For each algorithm, we ran the algorithm using a wide range
of (3 values. Based on our experiments, for smaller m (higher
traffic intensity) it is better to choose a small value of G (1
or 2) to reduce the collision probability (13), while choosing
larger B (100 or 500) for larger m helps the algorithm to use
the unused capacity to schedule flows of other coflows in the
system. Moreover, the amount of improvement by optimizing
over 5 was less than 16% in all the experiments. Figure 4
shows the results for different values of 5 and m when i is
set to 5 for G-DM-RT.

B. Evaluation Results for General GADs

1) Offline Setting: In the offline scenario, all the jobs are
available at time 0. For each set of parameters (m, i), we gen-
erate 10 different instances randomly and report the average
and standard deviation of each algorithm’s performance.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 16,2021 at 16:29:54 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHAFIEE AND GHADERI: SCHEDULING COFLOWS WITH DEPENDENCY GRAPH

5 x107

[G-DM
[o(m)Alg-BF
I O(m)Alg

Ind
o

n

Total Completion Time

I
2

10 30 50 75 150
Number of Servers

(a) Performance of G-DM and O(m)Alg
with and without backfilling for different
numbers of servers, and i = 5.

x10°

<

[G-DM-BF
il [G-DM

[o(m)Alg-BF
I O (m)Alg

o

Total Completion Time
N

5 10 20
Average Number of Coflows

(b) Performance of G-DM and O(m)Alg
with and without backfilling for different
average numbers of coflows per job, and

6
7 =10

[G-DM
[C——Jom)Alg-BF
I O(m)Alg

Total Completion Time
N @ s o o

o

1 2 10 25 100)
Rate of Job Arrival

(c¢) Performance of G-DM and O(m)Alg
with and without backfilling for different
arrival rates, and i = 5, m = 150.

m = 150.

Fig. 5.

<107 108

Performance of G-DM and O(m)Alg for scheduling general DAGs with and without backfilling.

3 7

[G-DM-RT-BF
[G-DM-RT . h
25+ C——1o(m)-Aig-BF | {
) I O(m)Alg @
£ E 5l
[L L=
2
5 S
kel =4t
ko) @
S 15 o
£ €5l
S S
(&) o
s 'f ot
5 o
2 =
05f 1 b
0 S|

10 30 50 75 150 5

Number of Servers

(a) Performance of G-DM-RT and (b) Performance
O(m)Alg with and without backfilling for
different numbers of servers, and & = 5.

job, and m = 150.

10
Average Number of Coflows

of G-DM-RT
O(m)Alg with and without backfilling for
different average numbers of coflows per

[G-DM-RT-BF
[| gmﬁ;sr I G-DM-RT
CJomngsT || or =
I O(m)Alg

Total Completion Time

20 1 2 10 25 100
Rate of Job Arrival

(c) Performance of G-DM-RT and O(m)Alg
with and without backfilling for different
arrival rates, and i = 5, m = 150.

and

Fig. 6. Performance of G-DM-RT and O(m)AIg for scheduling rooted tree jobs with and without backfilling.

Figure 5a and 5b depict some of the results for the case
that jobs have general DAGs and equal weights. Figure Sa
shows the performance of G-DM and O(m)Alg for the case
that average number of coflows per job, ji, is 5 and different
number of servers. G-DM performs as well as O(m)Alg for
m = 10. It outperforms O(m)Alg from 9% for m = 30 to
about 36% for m = 150. Moreover, Figure 5b shows that
our algorithm outperforms O(m)AIg for all values of average
coflows per job, by 36% to 11%. The results for the case of
random job weights are very similar and omitted.

2) Online Setting: For the online scenario, jobs arrives
to the system according to a Poisson process with rate 6.
Every time that a job arrives both G-DM (G-DM-RT) and
O(m)AIg suspend the previously active jobs, update the list
of jobs and their remaining demands, and reschedule them.
Moreover, completion time of a job in the online scenario is
measured from the time that the job arrives to the system.
The job arrival rate is determined as follows: § = a x 6y
for a = {1,2,10,25,100}, and 6y = E—ZE%
> j Hj is the total number of coflows among all jobs. The
denominator, Y-, 3, D, is summation of coflows’ effective
sizes and an upper bound on the jobs’ makespan.

Figure 5c shows the results under G-DM and O(m)Alg
for the case that m = 150 (original data set), i = 5, and

in which

all the jobs have equal weights. G-DM always outperforms
O(m)Alg, from 20% to 36%. Furthermore, G-DM-RT-BF
always outperforms O(m)AIg-BF, by 30% to 37%.

C. Evaluation Results for Rooted Trees

Now we provide the simulation results for the case that all
the jobs are rooted trees.

1) Offline Setting: Figure 6a shows the performance of
two algorithms for different number of servers, ;i = 5, and
equal weights for jobs. As we can see, G-DM-RT always
outperforms O(m)Alg, for about 53% for m = 10 to about
46% for m = 150. For all values of average coflows per
jobs, our algorithm outperforms O(m)Alg, by 46% ro 18%
as depicted in Figure 6b.

2) Online Setting: Figure 6¢c shows the results with and
without backfilling for the case that m = 150 (original data
set), i1 = 5, and all the jobs have equal weights. G-DM-RT
always outperforms O(m)Alg, from 10% to 46%. Furthermore,
G-DM-RT-BF always outperforms O(m)AIg-BF, by 22% to
36%.

We would like to point out that, as we expect, the gain under
G-DM-RT is greater than G-DM, as the former algorithm
utilizes the network resources more efficiently by interleaving
schedules of different coflows of the same job as well as inter-
leaving schedules of coflows of different jobs. Furthermore,

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 16,2021 at 16:29:54 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

o
)

,‘—\‘ ,’-"\‘ ,’_‘\\
Lt} (3)i ca)
. c6) c7 | ¢

P
v
\ c5 8 |

ARSI
-
-
-
-
—

(b) Scheduling of coflows.

(a) A DAG job with 16 coflows.

Fig. 7. An example of a DAG with Copt = Q(\/u(A +1T)).

backfilling strategy generally yields a larger improvement
when combined by G-DM and O(m)AIg compared to G-DM-
RT, as they leave more resources unused.

VIII. DISCUSSION ON APPROXIMATION RESULTS

An interesting research direction is to improve the approxi-
mation ratios for the algorithms. As we showed in the previous
sections, once we have an algorithm for scheduling a single
job whose solution is a factor 7) of the simple lower bounds A ;
and T (Definitions 2 and 3), we can directly utilize the rest of
our approach and get approximation algorithms with approx-
imation ratio O(nlog(m)/loglog(m)) for the problems of
makespan minimization and total weighted completion time
minimization for multiple jobs.

To improve the result for the case of general DAGs, one
approach is to first consider scheduling a single job (with a
general DAG), and try to generalize DMA-SRT to a general
DAG by careful construction of paths in the algorithm, so that
we do not need to consider all the paths in the DAG which
could be exponentially many. However, even if one could
show that O(u;) paths is sufficient to construct a feasible
schedule, it is challenging to analyze the performance through
computing the probability of collisions or the average number
of collisions in the merged schedule as we did in proof of
Lemma 4. This is due to the underlying dependency among
the unrelated coflows in G; (these are coflows among which
there is no directed path in G, thus they can collide) which
appears in the probability that a given coflow is assigned to
start scheduling at a given time, given that O(yu;) paths are
generated by the algorithm.

Besides these challenges for scheduling a job with a general
DAG, we can show the existence of instances for which the
optimal makespan is €2(,/fz;) factor larger than the two simple
lower bounds, A; and T}, as stated it in the following lemma.

Lemma 2: There exist arbitrary sized instances of DAG job
scheduling such that its optimal makespan is Q(\/1j(A; +
T;)).

Proof: Consider a DAG job with p; coflows to be
scheduled in an m x m switch, with p; = (2K)? for some
K and m > 2K. Recall that T} and A; denote the size of its
critical path and its aggregate size, respectively. For simplicity,
we drop the subscript j. We construct the job as follows. First,
we describe the demand matrix of each coflow. For coflows
c=1,...,2K, each coflow has a single flow of size d from

IEEE/ACM TRANSACTIONS ON NETWORKING

server 1 to server 2, where 2K = /i by assumption. These
coflows are the root nodes in the job’s DAG. For coflows
c=i2K)+1,...,(i +1)(2K),i=1,...,(2K) — 1, each
coflow has a single flow of size d from server ¢ + 1 to server
i + 2. Now we specify the precedence constraints among
coflows. We construct Gi; such that its height is \/p = 2K
and each of its coflow set has /u = 2K coflows (see
Definition 6). Consider coflow c € S; fori=1,...,H; — 1.
If i(2K)+1 < ¢ < (i + 1/2)(2K), then the parent set
of coflow ¢ is 7. = {djc — 2K < ¢ < ¢— K — 1}.
If (i +1/2)2K)+1 < ¢ < (i+ 1)(2K), then the parent
set of coflow ¢ is 7. = {d|[c = 3K +1 < ¢ < ¢—2K}.
Figure 7a shows an example with ;4 = 16. For the constructed
DAG, it is easy to see that T'= A = 2Kd = V.

Next, we specify an optimal schedule for the constructed
DAG, and compute its makespan denoted by C,,:. We first
schedule coflows 1,... K, which takes K'd amount of time.
We then schedule coflows K + 1 and 2K + 1 simultaneously.
This is feasible since there is no precedence constraint between
these two coflows, all the parents of coflow 2K + 1 has been
scheduled, and the two coflows do not share a server. Similarly,
we schedule coflows 2(i — 1/2)K + ¢ and 2iK + ¢, for
i=1,...,2K—1and c=1,..., K at the same time. Finally,
we schedule the last K coflows, c =4K? — K +1,...,4K?
back to back which takes K'd amount of time. For instance,
consider the example of Figure 7. Coflow ¢; and cy are
scheduled back to back from time 0 to 2d. Then coflow c3
and c¢5 get scheduled from 2d to 3d and so on. Figure 7b
shows the instance at which the first ten coflows (the coflows
with dashed lines) are scheduled. The coflows with the same
color (that are also linked by an arrow) have been scheduled
at the same time.

By scheduling coflows in this fashion, all the precedence
constraints and capacity constraints are respected. Moreover,
the length of the schedule is Cypr = (2K +1)K xd = Q(pud).
Therefore, C,pe = Q(\ /(A +T)). O

IX. PROOFS OF MAIN RESULTS

In this section, we provide detailed proofs of the theorems
stating performance guarantees for the proposed algorithms.
Recall that g(m) = log(m)/log(log(m)), and h(m,pu) =

log(my) /(log(log(mpu)).

A. Proofs Related to DMA

To prove Theorem 2, we first bound the length of the
infeasible solution that is constructed at the end of Step 3 of
DMA (Lemma 3). We then show a result (Lemma 4) that
bounds the average number of packet collisions occurred in the
infeasible solution and use it to prove that the final solution
is bounded with a hight probability. This last step uses the
ideas in the proof of Theorem 1.2 in [29]. Finally we show
that DMA runs in polynomial time by carefully dividing the
time horizon into the intervals on which the algorithm has to
compute matching of source nodes to destination nodes for
flow transmission (Lemma 6).

Lemma 3: The length of the infeasible merged schedule
(Step 3) is at most (u+ 1/06)A.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 16,2021 at 16:29:54 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHAFIEE AND GHADERI: SCHEDULING COFLOWS WITH DEPENDENCY GRAPH

Proof: First note that the isolated schedule for job j in
Step 1 spans from 0 to at most ;A ;, since the effective size
of each of its coflows is at most A;. By delaying the isolated
schedules by at most A/, length of the infeasible merged
schedule is at most max;(x;A;j) + A/F which is bounded
from above by (u+ 1/8)A. O

Lemma 4: Let oy > 1 denote the maximum number of
packets that a server needs to send or receive at time slot t
in the merged schedule (Step 3). For any t € [0, (u+1/6)A],
Ela] = O(g(m)).

Proof: Let M := Mg U Mg. To prove the lemma,
we define random variable z;;; to be 1 if some flow of job
7 with an end point on server ¢ is scheduled at time slot ¢.
Then o = max; g > JeN Zijt- Further, note that due to the
random delay of jobs’ isolated schedules, variables z;;¢, j € N
are mutually independent. Let 6 = ag(m) for some constant
a such that § > 1. Therefore,

E[§%] = E[§™a%icm Zyen 2iit] < E[Z 5 ien } (6)
i€eM
Define p;j; to be the probability that z;;; = 1. By the
independent property of z variables, we can write

E{ézjeN Zi.ﬂ} = ;enE [5%”}
= ILien (pijed + (1 = pije))
< HjeNepijt((S_l) — 6(5*1) > jen Pijt
= (O—DEX e n #iji] < 66(6_1),

@)

where the last inequality is due to E {Zje./\f Zijt:| < B. This is
because by choosing delays uniformly at random, E[z;;;] is at
most the load of job j on server i divided by A/f, i.e., Bdl /A,
where d/ is the load of job j (or equivalently the aggregate
coflow D7) on server i (see Definition 1). Thus,

B[Y wue] = 3 Eleud <6
JEN JEN
as Zje]\/ d{ < A by definition.
Combining Inequality (6) and (7), and by Jensen’s inequality
we can write,
5E[at] < E[(Sat] < Z 65(571) _ 2meﬁ(5*1).
ieM

@)

Now, note that if we choose a sufficiently large, then
2mef0=1) < 59 by definition of g(m). Therefore, we can
conclude that E[a;] < 6, and the proof is complete. O

Lemma 5: For any € > 0, the probability that the length of
the final schedule (Step 4) is greater than O(g(m))(u-+1/8)A,
is less than e.

Proof: Recall that the constructed merged schedule (Step
3) spans from time 0 to at most (u + 1/6)A due to
Lemma 3. Note that, the length of the final schedule is at most
ZtE[O,(uH/B)A) ay. Using Lemma 4 and Markov’s inequality,

Pl Y az(@/ogmu+1/8)a) <e ©)
te[0,(u+1/8)A)
Therefore, the proof is complete. (]

11

Lemma 6: Steps 3 and 4 in DMA can be executed in
polynomial time.

Proof: In view of Steps 3 and 4 in DMA algorithm,
we may need to run BNA for (1 + 1/8)A times. However,
in the case that A is not polynomially bounded in m, n,
and u, we can modify the last step of DMA to ensure that
it runs in polynomial time. To do so, define H = {7 |c €
Gj.j € N} and L = {L.jlc € G;,j € N}, to be the set
of all scheduling times and matchings. we sort H, and let
7 be the set of time intervals created from elements of B,
T = {[hk, hey1)|k = 1,...|H| — 1}. Thus, Z consists of the
time intervals during which the corresponding matching of
every coflow is fixed.

For each interval I in Z, we merge the matchings of
coflows, namely L.; (k)’s, for which the interval I is entirely
in the corresponding time interval [7.;(k), 7c;(k+1)). In other
words, we compute

>

Cvjvk:Ig[Tw (K),Tej(k+1))

D= Lej(k).

Finally, for each merged matching D, we find an optimal
schedule using BNA, ie., L,7 =BNA(l; x D), where [; is
length of the interval I of merged matching D. Then we
schedule demand matrix [; x D according to L and 7.

Note that whenever we run BNA, the number of elements
in the list L, output of BNA, is at most m?. This is because
according to line 5 in BNA, at each iteration, ¢ is computed
such that at least one node becomes tight (i.e., it appears in
the set €2 of line 3 in the next iteration) or a flow completes.
Further, |7| = |L| 4+ 1 and the last element of 7 is D. Hence,
in view of Steps 3 and 4 in DMA algorithm, we need to run
BNA for at most O(unm?) times as the number of intervals
in the set Z is O(unm?). Combining this with the fact that
BNA runs in polynomial time, the proof is complete. O

Proof: [Proof of Theorem 2] Steps 1 and 2 in DMA can be
executed in polynomial time. Combining this with Lemma 6,
we can easily conclude that DMA runs in polynomial time.

Moreover, given that A is a lower bound for the optimal
makespan, 3 is a constant, and Lemma 5, we conclude that
makespan of the final schedule is at most O(ug(m)) of the
optimal makespan with high probability. 0

B. Proofs Related to DMA-SRT and DMA-RT

Consider DMA-SRT. Let a; > 1 denote the maximum
number of packets that a server needs to send or receive at
time slot ¢ in the infeasible merged schedule (Step 5). Note
that, Step 5 in our algorithm and the following proof is more
involved than the corresponding steps in the scheduling algo-
rithm designed for DAG-SSP (DAG-shop scheduling problem)
in [28], as the constraint of scheduling one task at a time in
the latter problem converts the job’s DAG to a path job.

Lemma 7: For any € > 0, max; a; < ké\//Tjh(m, 1;), with
probability greater than (1 — €), for a constant k. depending
on e forte[0,A;/6+ 1T}

Proof: To prove the lemma, let P denote the probability
that any server at any time is assigned more than « packets
(to be specified shortly). In what follows we first bound Py

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 16,2021 at 16:29:54 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

the probability that at least a packets are scheduled to be
sent or received by a server ¢ at time {. Note that there
are at most (Aaj) ways to choose « packets from those that
have an end point (source or destination) on server i. For
packet u, the probability that it is scheduled at time ¢ is at
most (|Py ;|/A;, where, P, ; C P; is the set of path-jobs
containing packet u (or equivalently, the coflow to which
packet u belongs.). That is because of the random uniform
delay for scheduling coflows in Sy. More precisely, let £, ;
be the event that a specific packet u is scheduled at time ¢ and
P, be the probability that I, ; happens. Furthermore, let F,,¢,,
denote the event that scheduling of w in the final schedule is
according to the schedule of path-job p. Then,

1%
P, = Z P{Eu,hEuEp (:) Z P{dp:tpaEuEP}
PEPu,; PEPu,j
= Z P{Eu6p|dp = tp}P{dp = tl)}' (10)
PEPu,;

Equality (1%) is because the probability that packet u is
scheduled at ¢ and according to the path-job p is equal to
the probability that path-job p is delayed by some specific
time ¢, and packet u is scheduled according to the path-job
p. Regardless of the value of ¢, the probability that path-job p
is delayed by ¢, is either 3/A; or zero (if ¢, < 0). Hence,

6 ﬁlpu,'|
Py < A Z P{Euepldp = tp} < A—J

J PEPu,; J

(1)

Moreover, for two different packets w and v with at least
a common (source or destination) server, the probability that
they collide (i.e., are assigned to the same time slot) is zero
if they both belong to the same coflow or same path-job,
due to the feasible scheduling of each coflow and satisfac-
tion of precedence constraints at each path-job. Otherwise,
the probability that the two events F, ; and E, ; happen can
be upper-bounded by multiplications of two terms of the form
BIP_;1/A; (using arguments similar to (10) and (11)), since
the random delays are chosen independently. Therefore,
eAj 6

A
R < (2\me P, < (2L
v< () = (DS

@ XTI [P, 4
a j) ’L—l| um]l

(2%) ¢ .
< (Dhiye. (12)

Note that the size of set P; is bounded by | S| (and therefore
/t;) as there is only one path for any coflow in S to coflow R;.
Therefore, Y i |Pu,.;| < |P;j| < p;. Combining this with
the fact that II_ ;| Py, ;| is maximized when |P,, ;| = p;/a,
Inequality (2x) follows.

If we choose o = k. /7z; then Py < (mpu;)~ <=1, Hence,
the probability that any server at any time is assigned more
than o packets can be bounded by P < 2m(A; +T;)Py <
2m(A; + T;)(mu;)~*e=1. This last step is similar to the
argument in [28], [44], for job shop scheduling problem.
To specify ke, note that we require P to be less than ¢ > 0,
which is satisfied by choosing k. as

ZW(AJ + Tj)

.)+ 1.

ke > 10g,,., ((13)

IEEE/ACM TRANSACTIONS ON NETWORKING

We now need to show that k. is a constant by showing that
A +Tj is polynomially bounded in m and p;. Let ¢; denote
the maximum size of a flow in job j. Note that A; 4 7} is
polynomially bounded in m, p; and ;. In the case that J;
is polynomially bounded in m and p;, it is easy to see that
by choosing k. according to (13), with probability (1 — €),
there is at most kc(,//jh(m, ;) packets on any server at
any time. If 0; is not polynomially bounded in m and p;,
we round down each flow size d</ to the nearest multiple of
§;/m?u; and denote it by d'%/. This ensures that we have at
most m?p; distinct values of modified flow sizes. Therefore,
we can treat d'/ as integers in {0, 1,...,m?u;} and trivially
retrieve a schedule for d’</ by rescaling. Let S’ denote this
schedule. If we increase the flow sizes from d'%/ to 5. in S’ by
increasing the length of the last matching that flow (s, 7, ¢, j)
is scheduled in and achieve schedule S, we can argue that
the length of S and &’ differs in at most ¢; amount. This is
because there are at most m?/; number of flows. Thus, length
of S is at most (ke + 1),/mjh(m, p;) as §; < Tj. O

We are now ready to prove Theorem 3 and Theorem 4.
Proof: [Proof of Theorem 3] It is easy to see that steps 1-3 of
DMA-SRT can be done in polynomial time. By Lemma 6,
Steps 4 and 5 of DMA-SRT are also executed in polynomial
time. Therefore, DMA-SRT is a polynomial time algorithm.

Moreover, the completion time of each coflow is bounded
by A;/f + Tj, since the maximum delay is A;/F and the
maximum starting time of coflow ¢ is T; — D()). Using
Lemma 7, we conclude that the length of the final schedule is
at most O(/fijh(m, pij))(A;/B+T;) with a high probability.
Given that both A; and T} are lower bounds for the optimal
makespan, the proof is complete. 0

Proof: [Proof of Theorem 4] The proof is similar to proof
of Theorem 2. Using DMA-SRT, completion time of job j
is O(,/mjh(m, uj)) x (A;/B + T;). Delaying and merging
these schedules and applying an argument similar to proof
of Lemma 4 and 5, we can conclude that the final solution
is bounded from above by O(\/mg(m)h(m,p)) x (A/B +
max; T;). Combining this with the fact that both A and
max; T are lower bounds on the optimal makespan, we can
conclude the result. U

C. Proofs Related to G-DM

We use C’j to denote the optimal solution to LP (3) for the
completion time of job j, and use OPT = > 5 Wj C’j to denote
the corresponding objective value. Similarly we use C7 to
denote the optimal completion time of job j in the original job

scheduling problem, and use OPT =) y w;C7. The lemma

below establishes a relation between OPT and OPT.

Lemma 8: The optimal value of the LP, OPT, is a lower
bound on the optimal total weighted completion time OPT of
multi-stage coflow scheduling problem, i.e., OPT < OPT.

Proof: 1t is easy to see that an optimal solution for
the original multi-stage job scheduling problem is a feasible
solution to LP (3) from which the lemma’s statement follows.

O

We next prove performance of G-DM given performance of

the subroutine algorithm used in the last step of G-DM.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 16,2021 at 16:29:54 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHAFIEE AND GHADERI: SCHEDULING COFLOWS WITH DEPENDENCY GRAPH

Lemma 9: Consider an algorithm, ALG, that generates a
feasible job schedule such that for any job j, C’;‘LG =
O(Q)(Tj + pj + Dj), for some (. Then if algorithm ALG is
used as the subroutine in the last step of G-DM, we have
2o Wj CHC = O(C) x OPT, where C{*C is completion time
of job j under ALG.

The proof of Lemma 9 is provided in Supplementary
Materials. We now prove the main result of Section VI.

Proof: [Proof of Theorem 5] Recall that C'j is the optimal
completion time of job j according to the LP (3). Let @
denote the actual completion time of job j under G-DM. Also,
let /; be the index of the group to which job j belongs based on
(5). Let j; be the last job in group b, and T} be the maximum
size of critical paths of jobs in group b. Also let C(7%) be the
amount of time spent on processing all the jobs in [J,. Then,

li li
(24)
ety O < a4+ O(ug(m) Y ay

b=0 b=0
(14)

keb,b<l;

where g(m) = log(m)/log(log(m)). Inequality (1x) bounds
the completion time of job j with sum of two terms: the first
term is the maximum release time of the jobs in the first [;
groups (note that maxep,p<i; px can possibly be greater than
p;); The second term is the total time the algorithm spends
on scheduling jobs of previous groups plus the time it spends
on scheduling 7, . Inequality (2x) follows from Lemma 5 and
the fact that maxyepp<i; o < a;, and Dy and T}, are both
bounded by a; for every job k € Jp. From (4),

1 1

Z%Z’Y

b=0
Combining (14) with (15), and the fact that a;, , = a;; /2,

J
2b = ’y2(lj+1) —-1< 20,[] .
b=0

15)

Gy < Olugm)ar,_, ‘< O(ug(m))(Ty + p; + D;)

where (3x) is because T} 4 p; + D; falls in (a;; —1,a;;]. This
inequality combined with Lemma 9, when DMA is replaced
ALG and used as the subroutine, implies the result. O

X. CONCLUSION

In this work, we studied the problem of scheduling coflows
of multi-stage jobs in order to minimize their makespan or
total weighted completion time. This problem is practically
well-motivated, involves new challenges, and deserves further
study. As we showed through an example, it is not possible
for an approximation algorithm to provide a solution that is
within o(,/zz) of the two simple lower bounds for a job with a
general DAG. An interesting future problem will be to improve
the approximation ratio results of this paper.

APPENDIX
COMBINATORIAL ALGORITHM FOR JOB ORDERING

In this section, we provide the detailed explanation of
the combinatorial algorithm used in G-DM to find a good
permutation of jobs and proof of Lemma 9.

13

Recall LP (3). Define f;(J) to be the right-hand side of
Constraints (3b) for server ¢ and subset of jobs 7, i.e.,

F) = 2 (D) + (X).

jeJ JjeT

(16)

We now formulate dual of LP (3) as follows:

max Z Z Xig [i(T) + Z n;(T; + pj) (Dual LP)

iEMICN JEN

(17a)
So> dhig+n <w, GEN (17b)
ieM T JET
n; >0, jeEN (17¢)
XNig 20, ieM, JCN. (17d)

The algorithm is presented in Algorithm 5. Let A/’ be the
set of unscheduled jobs, initially N7 = A. Also, set n; = 0
for j € N. Define A to be the set of \; 7’s that get specified
in the algorithm, and initialize A = @ (to avoid initializing
all the \; v = 0, which takes exponential amount of time)
(line 1). In any iteration, let 5 be the unscheduled job with the
greatest T); + p;, let ¢ be the server with the highest load and
let dy be the load on server ¢ (lines 3 and 4). Now, if T} +p; >
dgs, we raise the dual variable 7); until the corresponding dual
constraint is tight and place job j to be the last job in the
permutation (lines 5-7). However, if T} 4 p; < dg, we choose
job j’ as in line 9. Then we define the dual variable Ay nr,
set it so that the dual constraint for job j’ becomes tight, and
place job j’ to be the last in the permutation (lines 10-12).

Algorithm 5 Combinatorial Algorithm for Job Ordering
Given a set of multi-stage jobs N:
I:N’:N,anOforjEN,A:Q.

2:for k=n,n—-1,...,1do

3 ¢(k) = argmax, 5 d;
4 j =argmaxienr T + pi
5 it T + p; > d(b(k) then 4
6: N =Wj = Y ier Zj,jej a7
7: J(/f) = 7.
8: else .
9: J' = argminjen (wfz/iem?m]ejdi/\i’g)-
(k)
=S e ST eTd N,
10: gt ar = (== di/<k>] ”)
11 A<—AU{)\¢(1€)N/}
12 o(k)=j"
13 end if
14 N —N'/o(k)
150 dj—di—d’®, Vie M
16: end for
17: Output permutation o.
REFERENCES

[1]1 (2019). Apache Hadoop. [Online]. Available: http://hadoop.apache.org

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. HotCloud,
Jun. 2010, p. 10.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 16,2021 at 16:29:54 UTC from IEEE Xplore. Restrictions apply.

[3]

[4]

[5]

[6]

[7

—

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed data-parallel programs from sequential building blocks,” ACM
SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 59-72, 2007.

M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proc. 11th ACM Workshop Hot Topics Netw.
(HotNets), 2012, pp. 31-36.

B. Tian et al., “Scheduling dependent coflows to minimize the total
weighted job completion time in datacenters,” Comput. Netw., vol. 158,
pp. 193-205, Jul. 2019.

B. Tian, C. Tian, H. Dai, and B. Wang, “Scheduling coflows of multi-
stage jobs to minimize the total weighted job completion time,” in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2018, pp. 864-872.
M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior
knowledge,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 393-406, 2015.

(2019). Apache Hive. [Online]. Available: https://hive.apache.org

M. Shafiee and J. Ghaderi, “An improved bound for minimizing the total
weighted completion time of coflows in datacenters,” IEEE/ACM Trans.
Netw., vol. 26, no. 4, pp. 1674-1687, Aug. 2018.

M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with varys,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4,
pp. 443-454, 2014.

Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the total weighted
completion time of coflows in datacenter networks,” in Proc. 27th ACM
Symp. Parallelism Algorithms Archit., Jun. 2015, pp. 294-303.

Y. Zhao et al., “Rapier: Integrating routing and scheduling for coflow-
aware data center networks,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr. 2015, pp. 424-432.

S. Ahmadi, S. Khuller, M. Purohit, and S. Yang, “On scheduling
coflows,” in Proc. Int. Conf. Integer Program. Combinat. Optim.,
Springer, 2017, pp. 13-24.

S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys, and
A. Vahdat, “Sincronia: Near-optimal network design for coflows,” in
Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2018,
pp. 16-29.

M. Chowdhury, S. Khuller, M. Purohit, S. Yang, and J. You, “Near
optimal coflow scheduling in networks,” in Proc. 31st ACM Symp.
Parallelism Algorithms Archit., 2019, pp. 123-134.

S. Im, B. Moseley, K. Pruhs, and M. Purohit, “Matroid coflow schedul-
ing,” in Proc. ICALP, 2019, pp. 1-13.

H. Jahanjou, E. Kantor, and R. Rajaraman, “Asymptotically optimal
approximation algorithms for coflow scheduling,” in Proc. 29th ACM
Symp. Parallelism Algorithms Archit., Jul. 2017, pp. 45-54.

R. Mao and V. Aggarwal, “NPSCS: Non-preemptive stochastic coflow
scheduling with time-indexed LP relaxation,” IEEE Trans. Netw. Service
Manag., vol. 18, no. 2, pp. 2377-2387, Jun. 2021.

X. S. Huang, X. S. Sun, and T. S. E. Ng, “Sunflow: Efficient optical
circuit scheduling for coflows,” in Proc. 12th Int. Conf. Emerg. Netw.
Experim. Technol., Dec. 2016, pp. 297-311.

Y. Liu, W. Li, K. Li, H. Qi, X. Tao, and S. Chen, “Scheduling
dependent coflows with guaranteed job completion time,” in Proc. [EEE
Trustcom/BigDataSE/ISPA, Aug. 2016, pp. 2109-2115.

M. Queyranne and A. S. Schulz, “Approximation bounds for a general
class of precedence constrained parallel machine scheduling problems,”
SIAM J. Comput., vol. 35, no. 5, pp. 1241-1253, Jan. 2006.

S. Li, “Scheduling to minimize total weighted completion time via time-
indexed linear programming relaxations,” SIAM J. Comput., vol. 49,
no. 4, pp. FOCS17-409-FOCS17-440, Jan. 2020.

R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni,
“GRAPHENE: Packing and dependency-aware scheduling for data-
parallel clusters,” in Proc. 12th USENIX Symp. Oper. Syst. Design
Implement. (OSDI), 2016, pp. 81-97.

Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Comput. Surv., vol. 31,
no. 4, pp. 406471, 1999.

R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM J.
Appl. Math., vol. 17, no. 2, pp. 416-429, 1969.

Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An
effective technique for allocating task graphs to multiprocessors,” IEEE
Trans. Parallel Distrib. Syst., vol. 7, no. 5, pp. 506-521, May 1996.
E. G. Coffman and J. L. Bruno, Computer and Job-Shop Scheduling
Theory. Hoboken, NJ, USA: Wiley, 1976.

D. B. Shmoys, C. Stein, and J. Wein, “Improved approximation algo-
rithms for shop scheduling problems,” SIAM J. Comput., vol. 23, no. 3,
pp. 617-632, Jun. 1994.

[29]

(30]

[31]

(32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

q

IEEE/ACM TRANSACTIONS ON NETWORKING

L. A. Goldberg, M. Paterson, A. Srinivasan, and E. Sweedyk, “Better
approximation guarantees for job-shop scheduling,” SIAM J. Discrete
Math., vol. 14, no. 1, pp. 67-92, Jan. 2001.

J. P. Schmidt, A. Siegel, and A. Srinivasan, “Chernoff-Hoeffding bounds
for applications with limited independence,” SIAM J. Discrete Math.,
vol. &, no. 2, pp. 223-250, May 1995.

T. Gonzalez and S. Sahni, “Flowshop and jobshop schedules: Complex-
ity and approximation,” Oper. Res., vol. 26, no. 1, pp. 36-52, Feb. 1978.
E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys,
“Sequencing and scheduling: Algorithms and complexity,” Handbooks
Oper. Res. Manage. Sci., vol. 4, pp. 445-522, Jan. 1993.

M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop
and jobshop scheduling,” Math. Oper. Res., vol. 1, no. 2, pp. 117-129,
May 1976.

D. P. Williamson et al., “Short shop schedules,” Oper. Res., vol. 45,
no. 2, pp. 288-294, Apr. 1997.

G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Rev. Univ.
Nac. Tucumdn, A, vol. 5, pp. 147-151, 1946.

E. L. Lawler and J. Labetoulle, “On preemptive scheduling of unrelated
parallel processors by linear programming,” J. ACM, vol. 25, no. 4,
pp. 612-619, Oct. 1978.

D. E. Knuth, The Art of Computer Programming, vol. 3. London, U.K.:
Pearson Education, 1997.

P. Raghavan and C. D. Tompson, “Randomized rounding: A technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365-374, 1987.

P. Raghavan, “Probabilistic construction of deterministic algorithms:
Approximating packing integer programs,” J. Comput. Syst. Sci., vol. 37,
no. 2, pp. 130-143, Oct. 1988.

M. Shafiee and J. Ghaderi, “Scheduling coflows in datacenter networks:
Improved bound for total weighted completion time,” ACM SIGMET-
RICS Perform. Eval. Rev., vol. 45, no. 1, pp. 29-30, Jun. 2017.

M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and
N. A. Uhan, “Minimizing the sum of weighted completion times in
a concurrent open shop,” Oper. Res. Lett., vol. 38, no. 5, pp. 390-395,
Sep. 2010.

M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear programs in the
current matrix multiplication time,” in Proc. 51st Annu. ACM SIGACT
Symp. Theory Comput., Jun. 2019, pp. 938-942.

F. Le Gall, “Powers of tensors and fast matrix multiplication,” in Proc.
39th Int. Symp. Symbolic Algebr. Comput. (ISSAC), 2014, pp. 296-303.
T. Leighton, B. Maggs, and S. Rao, “Universal packet routing algo-
rithms,” in Proc. 29th Annu. Symp. Found. Comput. Sci., 1988,
pp. 256-269.

Mehrnoosh Shafiee (Student Member, IEEE)
received the B.Sc. degree from the Department of
Electrical Engineering, Sharif University of Technol-
ogy, in 2014, and the M.Sc. and Ph.D. degrees from
the Department of Electrical Engineering, Columbia
University, in 2015 and 2020, respectively. She is
broadly interested in optimization and network algo-
rithms. Her research is on the analysis and design
of resource allocation algorithms for large-scale dis-
tributed systems.

Javad Ghaderi (Senior Member, IEEE) received the
Ph.D. degree in electrical and computer engineering
from the University of Illinois at Urbana-Champaign
in 2013. He is currently an Associate Professor
of electrical engineering with Columbia University.
He spent a one-year Simons Post-Doctoral Fellow-
ship at The University of Texas at Austin before
joining Columbia University. His research interests
include network algorithms, control, and optimiza-
tion. He was a recipient of the Best Paper Award
at ACM CoNEXT 2016, the NSF CAREER Award

in 2017, the Best Student Paper Award at IFIP Performance 2020, and the
Best Paper Award at IEEE INFOCOM 2020.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 16,2021 at 16:29:54 UTC from IEEE Xplore. Restrictions apply.

