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A B S T R A C T

We present a novel moving immersed boundary method (IBM) and employ it in direct numerical simulations
(DNS) of the closed-vessel swirling von Kármán flow in laminar and turbulent regimes. The IBM extends
direct-forcing approaches by leveraging a time integration scheme, that embeds the immersed boundary forcing
step within a semi-implicit iterative Crank–Nicolson scheme. The overall method is robust, stable, and yields
excellent results in canonical cases with static and moving boundaries. The moving IBM allows us to reproduce
the geometry and parameters of the swirling von Kármán flow experiments in (F. Ravelet, A. Chiffaudel, and F.
Daviaud, JFM 601, 339 (2008)) on a Cartesian grid. In these DNS, the flow is driven by two-counter rotating
impellers fitted with curved inertial stirrers. We analyze the transition from laminar to turbulent flow by
increasing the rotation rate of the counter-rotating impellers to attain the four Reynolds numbers 90, 360, 2000,
and 4000. In the laminar regime at Reynolds number 90 and 360, we observe flow features similar to those
reported in the experiments and in particular, the appearance of a symmetry-breaking instability at Reynolds
number 360. We observe transitional turbulence at Reynolds number 2000. Fully developed turbulence is
achieved at Reynolds number 4000. Non-dimensional torque computed from simulations matches correlations
from experimental data. The low Reynolds number symmetries, lost with increasing Reynolds number, are
recovered in the mean flow in the fully developed turbulent regime, where we observe two tori symmetrical
about the mid-height plane. We note that turbulent fluctuations in the central region of the device remain
anisotropic even at the highest Reynolds number 4000, suggesting that isotropization requires significantly
higher Reynolds numbers.
1. Introduction

Engineering flows operated in closed vessels, such as internal com-
bustion engines and stirred tank reactors, are often subject to high
levels of shear and velocity fluctuations. In these flows, the interaction
between moving surfaces and the flow controls macroscopic quanti-
ties such as mixing rates and power consumption [1]. In the present
aper, we develop a moving immersed boundary (IB) strategy that
nables the study of highly turbulent flows interacting with moving
omponents. We validate the method in canonical cases then apply it
n direct numerical simulations (DNS) of the inertially-driven swirling
on Kármán flow, a closed vessel flow of fundamental and practical
nterest. We show that laminar and turbulent regimes of the swirling
on Kármán flow can be reproduced successfully by DNS with our IB
ethod and analyze the homogeneity and anisotropy of the flow in the
ully developed turbulence regime.
Owing to its fundamental nature, the swirling von Kármán flow

eceived significant attention. In his pioneering work, Theodor von

∗ Corresponding author.
E-mail address: houssem.kasbaoui@asu.edu (M.H. Kasbaoui).

Kármán [2] considered the flow over an infinite disk rotating at a rate
𝛺. Von Kármán noted that the flow is self-similar and that the Navier–
Stokes equations may be reduced to a pair of non-linear ordinary
differential equations. Batchelor [3] further generalized the analysis to
include a second coaxial disk at a distance 𝐻 . The solution to these
equations is chaotic and offers key insights into the non-linearity of
the Navier–Stokes equations. The earlier work of von Kármán and
Batchelor was followed by sustained research efforts to analyze the
flow characteristics in various regimes (see review of 4). More recently,
the case of counter-rotating finite disks of radius 𝑅 received significant
attention. While the flow is characterized by symmetry at low Reynolds
number Re𝛺, several authors reported the appearance of symmetry-
breaking hydrodynamic instabilities with increasing Re𝛺 [5–8]. Here,
the Reynolds number is defined as Re𝛺 = 𝛺𝑅2∕𝜈, where 𝜈 is the
kinematic viscosity. The resulting flow structures are stable and persist
for a wide range of intermediate Reynolds numbers before the onset
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of additional symmetry-breaking instabilities [9,10]. At large Reynolds
numbers, a turbulent shear layer forms between two stacked toroidal
cells of size comparable to the disk diameter.

From an experimental perspective, the case of counter-rotating disks
is of particular interest as it produces high Reynolds number turbulence
inside a closed and compact device. Maurer et al. [11] produced a
turbulent von Kármán flow with Taylor micro-scale Reynolds number
Re𝜆 ∼ 2100 in a device of disk radius and separation 𝑅 = 3.2 cm and
𝐻 = 4.8 cm, respectively. Odier et al. [12] achieved a macroscopic
Reynolds number Re𝛺 = 𝛺𝑅2∕𝜈 = 𝑂(106) with 𝑅 = 𝐻 = 10 cm. Curved
nertial-stirrers mounted on the disks increase velocity fluctuations and
re used to tune flow structures [9,13,14]. Access to such high Reynolds
umber regimes enables studies of fundamental turbulence properties
uch as intermittency, energy dissipation, and the turbulence cascade
15–18].
Further work on the fine scale structures of the von Kármán flow

equires spatial and temporal resolutions for which numerical studies
re in principle better suited. Unlike the vigorous experimental effort
eployed so far, investigations of the von Kármán flow relying on
irect numerical simulations remain scarce. Few studies resolved the
low around the blades [19,20]. While the existence of numerous
xperimental data sets enables insightful comparisons between experi-
ents and simulations, it remains to be shown that current numerical
ethods are able to reproduce experimental findings. Addressing this
ssue requires a computational strategy that manages computational
ost while ensuring an accurate representation of the flow near the
mpellers.
Immersed boundary (IB) methods are a natural choice for simu-

ations that involve complex geometries, such as the inertially-driven
wirling von Kármán flow. These methods remove the cumbersome task
f generating body-conformal meshes and enable the use of straightfor-
ard Cartesian grids for the discretization of the volume occupied by
he fluid. Various approaches are summarized in [21]. The so-called
irect-forcing IB method [22] relies on a forcing term added to the
ight hand-side of the momentum equation in order to impose no-slip
oundary conditions. This class of methods is amenable to efficient
iscretization and can handle moving immersed boundaries robustly
23–25]. Since the original work of Peskin, various improvements have
een proposed [26–31]. In particular, Uhlmann [32] proposed that the
orcing be applied on Lagrangian points distributed on the surface of
he immersed solid. This method is characterized by its robustness and
tability. Variations of Uhlmann’s Lagrangian direct-forcing method
ave been proposed [33,34].
In the present work, we conduct DNS of the swirling von Kármán

lows using a novel moving IB method derived from Uhlmann [32]’s
ethod. First, we show that the properties of the Lagrangian markers
position and size) can be obtained from a triangular tessellation of
he IB surface. Second, we couple the IB forcing to the update of
he velocity and pressure fields by means of operator-splitting within
semi-implicit iterative Crank–Nicolson scheme for the advancement
f momentum in incompressible flows [35–37]. The overall scheme
llows a rapid workflow, whereby a mesh of the von Kármán flow
nclosure and impellers generated by a CAD software is loaded in a
irect numerical simulation flow solver without further adjustment.
ata generated with this approach is compared to the experiments of
avelet et al. [10] in the laminar and turbulent regimes.
The paper is organized as follows. The governing equations and

umerical discretization are introduced in Section 2. In Section 3, we
alidate the method in three benchmark cases including static and
oving IBs. Simulations of the inertially-driven swirling von Kármán
low are presented in Section 4. Two laminar cases at Re𝛺 = 90 and
e𝛺 = 365 are considered in Section 4.1. Two additional cases at
e𝛺 = 2000 and Re𝛺 = 4000 are considered in Sections 4.2. Final
2

emarks are given in Section 5.
Fig. 1. No-slip boundary conditions on an immersed solid are enforced using a forcing
term applied to the right hand-side of the momentum equation. To maintain a sharp
representation of the interface, the term has a compact support of three mesh widths
applied to the cut-cells (red) and closest neighbors (blue). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

2. Equations and methods

2.1. Governing equations

Consider a solid with boundary surface 𝑆IB immersed in an incom-
pressible fluid of density 𝜌 and viscosity 𝜇. The fluid obeys mass and
momentum conservation equations

∇ ⋅ 𝒖 = 0 (1)

𝜌
( 𝜕𝒖
𝜕𝑡

+ 𝒖 ⋅ ∇𝒖
)

= −∇𝑝 + 𝜇∇2𝒖 + 𝑭 IB, (2)

where 𝒖 is the fluid velocity and 𝑝 is the pressure. In the direct-forcing
approach [22,24], the IB forcing term

𝑭 IB(𝒙, 𝑡) = ∬𝒚∈𝑆IB

𝒇 IB(𝒚, 𝑡)𝛿(𝒙 − 𝒚)𝑑𝑆 (3)

enforces no-slip boundary conditions on the surface of the immersed
solid. The field 𝒇 IB represents the Lagrangian forcing at a location 𝒚
belonging to the immersed surface 𝑆IB. Multiple immersed bodies are
addressed by splitting 𝑆IB into an arbitrary number of sets (see Fig. 1).

In addition to (1) and (2), additional equations describing the mo-
tion of the solid may be added and coupled to the governing equations
for the fluid. The IB forcing term (3) provides the coupling force
between the immersed solid and the fluid. In the present work, we
consider immersed solids with a prescribed rigid body motion.

2.2. Overview of the algorithm

The governing equations are discretized and solved by the massively-
parallel code NGA [38]. The algorithm is shown in Fig. 2. The immersed
boundary is discretized using a tessellation of 𝑁 triangular facets 𝑆𝑚,
such that 𝑆IB = ∪𝑁

𝑚=1𝑆𝑚. At the beginning of each time step, the
position of the immersed boundary is updated by moving the centroids
of the triangles from their previous locations 𝒙𝑛𝑚 to new positions 𝒙𝑛+1𝑚
according to the prescribed rigid body motion.

Next, the velocity field is updated while enforcing mass conser-

vation. The time integration scheme for the momentum and pressure
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Fig. 2. Algorithm flow chart showing the successive momentum, IB and pressure steps. The time integration relies on a semi-implicit iterative Crank–Nicolson scheme and operator
splitting.
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relies on the semi-implicit iterative Crank–Nicolson scheme introduced
by [39] and further developed in [35,36]. We use an operator splitting
approach to update the momentum and pressure, while considering the
effects of the immersed solids, in three consecutive updates.

Consider the (𝑘+1)th sub-iteration. First, we perform a conventional
omentum update, where the IB forcing term and pressure term are
mitted. The update reads

̃𝑛+1𝑘+1 = 𝒖𝑛 + 𝛥𝑡(𝒖𝑛+1∕2𝑘+1 ) + 𝛥𝑡 𝜕
𝜕𝒖

(

𝒖̃𝑛+1𝑘+1 − 𝒖𝑛+1𝑘

2

)

. (4)

In the above, the mid-step velocity is 𝒖𝑛+1∕2𝑘+1 = (𝒖𝑛 + 𝒖𝑛+1𝑘 )∕2 and 
s the operator comprising both convective and viscous terms

(𝒖) = −∇ ⋅ (𝒖𝒖) + 𝜇
𝜌
∇2𝒖. (5)

The Jacobian 𝜕𝑀∕𝜕𝒖 in Eq. (4) allows the treatment of the non-linearity
with a Newton–Raphson method [35]. The momentum equation is
solved with the approximate factorization technique of Choi and Moin
[37] based on the Alternating Direction Implicit (ADI) method. The
method conserves mass, momentum and kinetic energy discretely [35,
37,38].

Next, the velocity is updated by applying the IB forcing

𝒖̂𝑛+1𝑘+1 = 𝒖̃𝑛+1𝑘+1 + 𝛥𝑡𝑭 𝑛+1
IB,𝑘+1∕𝜌. (6)

Lastly, a pressure-projection step is performed to enforce continuity by
solving a Poisson equation and later correcting the velocity

∇2𝑝𝑛+1𝑘+1 = 𝜌
∇ ⋅ 𝒖̂𝑛+1𝑘+1

𝛥𝑡
, (7)

𝒖𝑛+1𝑘+1 = 𝒖̂𝑛+1𝑘+1 −
𝛥𝑡
𝜌
∇𝑝𝑛+1𝑘+1. (8)

hese sub-iterations are embedded within the iterative Crank–Nicolson
oop. Typically, two to three subiterations per time step are used [35].
3

ote that if the Jacobian term is omitted and only two sub-iterations
re retained, the time discretization becomes equivalent to an explicit
econd order Runge–Kutta scheme.

.3. Treatment of the immersed boundaries

We now focus on the discretization of the forcing term in Eq. (6).
Since 𝑆IB = ∪𝑁

𝑚=1𝑆𝑚, the forcing can be written as the sum of discrete
contributions

𝑭 𝑛+1
IB,𝑘+1(𝒙) =

𝑁
∑

𝑚=1
∬𝒚∈𝑆𝑚

𝒇 𝑛+1
IB,𝑘+1(𝒚)𝛿ℎ(𝒙 − 𝒚)𝑑𝑆, (9)

where, in the actual implementation, the Dirac delta is replaced by a
regularized delta of finite width ℎ [24]. Note that, in this approach, in-
ternal cells are not forced. The integrals on the facets are approximated
to second-order accuracy using the mid-point rule

𝑭 𝑛+1
IB,𝑘+1(𝒙) =

𝑁
∑

𝑚=1
𝒇 𝑛+1
𝑚,𝑘+1𝛿ℎ(𝒙 − 𝒙𝑚)𝐴𝑚, (10)

where 𝐴𝑚 is the surface area of facet 𝑆𝑚 and 𝒇 𝑛+1
𝑚,𝑘+1 is the Lagrangian IB

forcing at the centroid 𝒙𝑛+1𝑚 . Following Uhlmann [32], no-slip boundary
conditions are enforced on the immersed surface 𝑆IB by ensuring that
the fluid velocity equals the IB velocity 𝒖IB,𝑚 at the centroid 𝒙𝑚. This
yields the following Lagrangian forcing terms

𝒇 𝑛+1
𝑚,𝑘+1 = 𝜌ℎ

𝒖𝑛+1IB,𝑚 − 𝒖̃𝑛+1𝑘+1(𝒙𝑚)

𝛥𝑡
. (11)

Thus, the resulting Eulerian forcing term in (6) reads

𝑭 𝑛+1
IB,𝑘+1 =

𝑁
∑

𝜌

(

𝒖𝑛+1IB,𝑚 − 𝒖̃𝑛+1𝑘+1(𝒙𝑚)
)

𝛿ℎ(𝒙 − 𝒙𝑚)ℎ𝐴𝑚. (12)

𝑚=1 𝛥𝑡
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Table 1
Strouhal number, drag and lift coefficients for the case of a cylinder placed
asymmetrically in a channel at Re = 100.

𝐷∕𝛥𝑥 St 𝐶𝐷,𝑚𝑎𝑥 𝐶𝐿,𝑚𝑎𝑥

Present 24.4 0.308 3.544 0.783
Present 48.8 0.306 3.575 0.886
Present 97.6 0.303 3.442 0.907
Schäfer et al. [40] – 0.3 ± 0.005 3.23 ± 0.01 1.0 ± 0.01

Table 2
Strouhal number, drag and lift coefficients for the case of a cylinder in free stream at
Re = 100.

𝐷∕𝛥𝑥 St 𝐶̄𝐷 𝐶 ′
𝐷 𝐶 ′

𝐿

Present 24.4 0.167 1.500 0.004 0.250
Present 48.8 0.167 1.526 0.005 0.289
Present 97.6 0.167 1.531 0.007 0.299
Liu et al. [41] – 0.165 1.350 0.012 0.339
Williamson [42] – 0.164 – – –

The fluid velocity at the centroids is obtained by interpolation from
eighboring nodes on the Eulerian grid with 𝛿ℎ as interpolation kernel.
Here, we use the regularized Dirac delta proposed by Roma et al. [23],
which has a compact support of width ℎ. By choosing ℎ = 3𝛥𝑥, where
𝛥𝑥 is the homogeneous mesh spacing, we ensure a sharp representation
of the IB and efficient summation in (12).

3. Validation cases

In this section, we evaluate the accuracy and performance of the IB
method against experimental and numerical data in canonical laminar
flows. Three cases are discussed: the flow around a static cylinder
placed asymmetrically in a channel, the flow around a static cylinder
in free stream, and the flow around a transversely oscillating cylinder.

3.1. Static cylinder placed asymmetrically in a channel

We first consider the two-dimensional configuration in the bench-
mark flow of Schäfer et al. [40]. A cylinder of diameter 𝐷 is placed in
a channel of height 𝐻 = 4.1𝐷 and length 𝐿 = 22𝐷. The static cylinder
is placed asymmetrically at 𝑥 = 𝑦 = 0.3. A parabolic inflow with
average velocity 𝑈 is prescribed at the inlet 𝑥 = 0. The fluid kinematic
viscosity 𝜈 is such that Re𝐷 = 𝑈𝐷∕𝜈 = 100. Three spatial resolutions
are considered where 𝐷∕𝛥𝑥 equals 24.4, 48.8 and 97.6, respectively.
In all configurations, the maximum Courant–Friedrichs–Lewy number
CFL is ∼ 0.25.

The flow around the cylinder results in an oscillating wake, as
shown in Fig. 3(a). Vortex shedding leads to fluctuating drag and lift
coefficients as in Figs. 3(b) and 3(c). Once a stationary state sets in after
𝑡𝑈∕𝐷 ∼ 200, we collect statistics from the time histories of drag and lift
forces.

Comparison with the data in Schäfer et al. [40] is shown in Ta-
ble 1. We report the Strouhal number, maximum drag coefficient and
maximum lift coefficient for increasing resolution from 𝐷∕𝛥𝑥 = 24.4 to
97.6. For the case with the highest resolution, the shedding frequency
𝑓0 yields a characteristic Strouhal number St = 𝑓0𝐷∕𝑈 ∼ 0.303 well
within the range 0.295 − 0.305 in [40]. The maximum drag coefficient
nd maximum lift coefficient fall within 7% and 0.6% of the values
eported in the literature, respectively.

.2. Static cylinder in uniform crossflow

Next, we consider a static cylinder of diameter 𝐷 = 0.3 placed in
free stream with uniform inlet velocity. The computational domain has
a size 26𝐷 × 26𝐷. The cylinder is located at 𝑥𝑐 = 6𝐷 and 𝑦𝑐 = 4𝐷
from the bottom left corner. A uniform free-stream velocity 𝑢∞ = 1 is
4

prescribed at the left inlet boundary, and convective outflow conditions
Table 3
Strouhal number, drag and lift coefficients for the case of a cylinder
oscillating transversely at Re = 185 and 𝑓𝑒∕𝑓0 = 0.8.

𝛥𝑡𝑈max∕𝐷 𝐶̄𝐷 𝐶 ′
𝐷

Present 0.0100 1.490 0.048
Present 0.0050 1.394 0.047
Present 0.0025 1.323 0.044
Lu and Dalton [43] – 1.25 –

are applied to the remaining boundaries. The Reynolds number is
Re𝐷 = 𝑢∞𝐷∕𝜈 = 100. The domain is discretized on a uniform grid of
size 1282, 2562 or 5122. The resulting resolution is 𝐷∕𝛥𝑥 = 24.4, 48.8
nd 97.6. Note that the timestep 𝛥𝑡 is also adjusted to maintain CFL
pproximately constant at 0.25.
Fig. 4(a) shows the vortex street created by the immersed cylinder.

he vortices are shed from the top and bottom sides of the cylinder at
natural frequency 𝑓0. We obtain a Strouhal number St = 𝑓0𝐷∕𝑢∞ =
.167 sensitively close to 0.164 and 0.165 determined from the experi-
ents of Williamson [42] and body-fitted simulations of Liu et al. [41],
espectively.
Figs. 4(b) and 4(c) show the time history of drag and lift coefficients.

For the runs with highest resolution 𝐷∕𝛥𝑥 = 97.6, we find an average
𝐶𝐷 = 1.531 and a root mean square (rms) fluctuation 𝐶 ′

𝐷 = 0.007.
The mean lift coefficient is vanishingly small, as expected, while the
fluctuation is 𝐶 ′

𝐿 = 0.299. These values are compared with those in [41]
and shown in Table 2. We note that there is an over-prediction of the
drag coefficient by 13% and under-prediction of the rms lift coefficient
by 12%. This behavior is similar to the observations of Uhlmann [32],
from which the method is derived.

3.3. Cylinder oscillating transversely in free stream

The configuration described in the previous section is now mod-
ified to allow oscillations of the cylinder. The latter moves trans-
versely whereby the displacement of the center is given by 𝛥𝑦𝑐 =
0.2𝐷 sin(2𝜋𝑓𝑒𝑡). The forcing oscillation frequency is 𝑓𝑒 = 0.8𝑓0, where
𝑓0 is the natural shedding frequency for a fixed cylinder at Reynolds
number Re = 185. These parameters follow the simulations in [43]
using a body-fitted method. For this case, we maintain a fixed spatial
resolution at 512 × 512, giving a ratio 𝐷∕𝛥𝑥 = 48.8, while the
timestep 𝛥𝑡 is set at 0.01𝑈max∕𝐷, 0.005𝑈max∕𝐷, or 0.0025𝑈max∕𝐷. The
corresponding CFL is 0.5,0.25, and 0.125, respectively.

Fig. 5 shows the evolution of the drag coefficient for the case with
𝛥𝑡 = 0.0025𝑈max∕𝐷. As seen in Fig. 5(a), the drag coefficient reaches
a stationary state after approximately 130𝐷∕𝑈 . For the case where
𝛥𝑡 = 0.0025𝑈∕𝐷, the average drag coefficient (see Table 3) is within 6%
of the value reported by Lu and Dalton [43]. The drag curve plotted as a
function of displacement in Fig. 5(b) follows a figure eight shape similar
to the one found in [32]. We note the presence of spurious oscillations
in Fig. 5(b) that increase the rms drag coefficient fluctuations. As
argued in [32], these spurious oscillations can be reduced with larger
discrete Dirac delta support than considered here.

4. The swirling von Kármán flow

We now apply the immersed boundary method described in Sec-
tion 2 to simulations of the swirling von Kármán flow.

The von Kármán flow considered in our work is generated in a
closed cylindrical vessel between two counter-rotating disks fitted with
curved blades as shown in Fig. 6. The numerical setup is a reproduction
of the experimental apparatus analyzed by Ravelet et al. [10] given
available information in [9,10]. The disks have radius equal to 0.925𝑅,
where 𝑅 is the inner cylinder’s radius, and separation 𝐻 = 1.8𝑅. The
impellers act as centrifugal pumps that ingest fluid along the centerline
and expel it radially towards the cylindrical walls. Inertial stirring is
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Fig. 3. Flow past an asymmetrically placed cylinder at Re = 100. Data for 𝐷∕𝛥𝑥 = 48.8 and CFLmax ∼ 0.25.
Fig. 4. Drag and lift coefficients over an immersed cylinder in a uniform free stream at Re𝐷 = 100. Data for 𝐷∕𝛥𝑥 = 48.8 and CFL ∼ 0.25.
a
ided by 16 blades mounted on the disks. The stirrers correspond to
he TM60 design in [9]. They have a height ℎ𝑏 = 0.2𝑅, a thickness
= 0.02𝑅, and radius of curvature 𝐶 = 𝑅∕(2sin𝛼), where the curvature
5

𝑏 r
ngle is 𝛼 = 72◦. All 16 blades are connected to a cylindrical hub of

adius 0.1𝑅 and height equal to that of the blades. Flow ejected towards
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Fig. 5. Drag coefficient for a transversely oscillating cylinder in free stream at Re = 185. Data for 𝐷∕𝛥𝑥 = 48.8 and 𝛥𝑡𝐷∕𝑈max = 0.0025.
Fig. 6. Geometry of the device. The top and bottom disks rotate in opposite directions at a constant rotation rate. The impeller design corresponds to the configuration TM60
analyzed in [10].
d
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the walls by the impellers may enter a recirculation regions behind the
disks of height 0.4𝑅.

We consider four simulations at Reynolds numbers Re𝛺 = 𝛺𝑅2∕𝜈 =
0, 360, 2000 and 4000. A summary of the parameters is given in Ta-
le 4. The Reynolds number is adjusted by increasing the rotation rate
f the disks. In all configurations, the grid is uniform with a constant
esh size 𝛥𝑥. The discretization of the IB surfaces is obtained from a
elaunay triangulation with an approximate element size ∼ 𝛥𝑥∕2. The
urface of the von Kármán flow device consists of 3 sets: a cylindrical
nclosure, top, and bottom impellers. The cylindrical enclosure is static.
he top and bottom impellers rotate in opposite directions at a constant
ate with the concave face of the blades pointing forward in the
irection of motion. This is generally referred to as the (-) direction of
otation. Note that the opposite direction of rotation is not equivalent
6

R

ue to the asymmetry of the curved blades. No-slip boundary conditions
mposed on the immersed boundaries constrain the flow to the interior
f the swirling von Kármán flow device.
The four configurations correspond to different regimes of the

wirling von Kármán flow. As documented by Ravelet et al. [10], the
low undergoes regime transitions from laminar to fully turbulent with
ncreasing Re𝛺. The transitions are characterized by gradual loss of
ymmetries. The flow at Re𝛺 = 90 falls in the laminar regime described
n [10], where the flow is steady, axisymmetric, and symmetric about
he mid-height plane. At Re𝛺 = 360, the flow is steady and laminar and
he symmetry about the mid-height plane is disrupted by an azimuthal
ave of mode 2. Ravelet et al. [10] report transitional turbulence at

e𝛺 = 2000 and fully developed turbulence past Re𝛺 ∼ 3300. The mean
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Table 4
Simulation parameters for the five cases at Re𝛺 = 90, 360, 2000 and 4000.
Parameter Symbol Laminar Turbulent

Case 1 Case 2 Case 3 Case 4

Reynolds number Re𝛺 𝛺𝑅2∕𝜈 90 360 2000 4000
Spatial resolution 𝑅∕𝛥𝑥 128.0 128.0 128.0 256.0
Temporal resolution 𝛥𝑡𝛺∕2𝜋 3.2 × 10−4 3.2 × 10−4 3.2 × 10−4 1.6 × 10−4

Kolmogorov scale 𝜂∕𝛥𝑥 – – 3.4 3.9
Taylor-micro scale Reynolds Re𝜆 – – 8 40
flow is made of a shear layer centered on the mid-height plane formed
between two toroidal structures.

We maintain sufficient resolution for all four runs. For the run at
Re𝛺 = 4000, 90 grid points lie between each blade at the tip of the
rotating disks (𝑟 = 0.9𝑅). This ensures that the resolution is sufficient
to capture the fluid stresses on the impellers, as shown in the grid
convergence study in Appendix. Good agreement with experimental
torque data discussed below further supports that the fluid stresses on
the impellers are captured adequately. The central region of the flow
is also well resolved. The ratio of the Kolmogorov length scale to mesh
width spacing is 𝜂∕𝛥𝑥 ≃ 3.4 and 3.9 for the runs at Re𝛺 = 2000 and
4000, respectively. The Kolmogorov scale is computed at the center of
the device from dissipation rate.

4.1. Laminar regime

We start with the flow at Re𝛺 = 90. Fig. 7 shows instantaneous
isocontours of the velocity magnitude from 𝑡𝛺∕2𝜋 = 1 to 20, i.e.,
over 20 revolutions. The isocontours are visualized in a circumferential
cut at the radial distance 𝑟 = 0.8𝑅. It is apparent that a steady
state is reached in less than one revolution of the impellers. Similarly
to the experimental observation in [10], the flow obtained in these
simulations is axisymmetric and planar symmetric about the mid-height
plane.

Fig. 8 shows streamlines of the velocity field in a plane going
through the axis. The figure shows the existence of a flat shear layer at
the mid-height plane between two toroidal structures. These vortical
structures are the result of the impellers drawing fluid towards their
center and expelling it towards the cylinder walls. The fluid recircu-
lates along the cylindrical enclosure’s walls and returns to the center
of the device at the mid-height plane thus creating the shear layer.
The patterns observed from DNS are in excellent agreement with the
structures seen in the photographs of Ravelet et al. [10] at the same
Reynolds number.

Isocontours of the normalized velocity magnitude of the flow at
Re𝛺 = 360 are shown in Fig. 9. The simulations show that the flow
starts with a symmetrical shear layer for 𝑡𝛺∕(2𝜋) < 8. During this time,
the shear layer becomes progressively thinner, which is indicative of
increasing shear rate at the mid-height plane. A sudden instability of
the shear layer breaks the axisymmetry at 𝑡𝛺∕(2𝜋) ∼ 8 and leads to the
emergence of an azimuthal velocity wave with mode 𝑚 = 2. Unlike the
lower Reynolds number case, the flow does not reach a steady state
until 𝑡𝛺∕(2𝜋) ∼ 14 when the mode 𝑚 = 2 stabilizes.

The physics revealed in our simulations are in accordance with
the experimental observations of Ravelet et al. [10]. Long-exposure
photographs of tracers in [10] at Re𝛺 = 345 show the existence of an
𝑚 = 2 azimuthal mode. Nore et al. [6] argue that the 𝑚 = 2 mode is due
to a Kelvin–Helmholtz instability of the equatorial shear layer. Ravelet
et al. [10] also note that the azimuthal mode in their experiments
rotates slowly around the axis. They find that the shear layer completes
a full revolution every 300 revolutions of the impellers. However, it is
not clear what would cause the rotation of the mode in a preferred
direction given that the top and bottom impellers are symmetrical.
While we do not observe any noticeable rotation of the shear layer in
the 20 rotations simulated here, ruling out the slow dynamics would
7

require significantly longer integration time than we have considered.
4.2. Turbulent regime

4.2.1. Regime identification and torque measurements: Validation against
experimental data

We now consider the flow at the three higher Reynolds numbers,
Re𝛺 = 2000 and 4000. The normalized velocity magnitude at radial
location 𝑟 = 0.8𝑅 is shown in Figs. 10 and 11. At these higher
Reynolds numbers, the symmetries characterizing the low Reynolds
number regimes are absent. In these two cases, the transition to tur-
bulence occurs when an azimuthal mode 𝑚 = 4 breaks into turbulent
fluctuations. The transition takes approximately 5 revolutions of the
impellers. Once a statistically stationary state establishes, we observe
intense velocity fluctuations sustained in the device with large vortical
structures of size comparable to the disk radius traversing the shear
layer. The corrugation of isocontours of the velocity magnitude display
an increasing distribution of scales with increasing Reynolds number
indicating a widening of the inertial range.

The flow regime can be determined from analysis of the velocity
fluctuations at a reference point. Following Ravelet et al. [10], we
measure the azimuthal velocity at a radial location 𝑟 = 0.9𝑅 on the
mid-height plane. The time series are shown in Fig. 12, where the
velocity is normalized by the blade-tip speed 𝑅𝛺. It is noteworthy
that the inertially-driven turbulent von Kármán flow achieves high
turbulence intensity. The root mean square (rms) of the azimuthal
velocity fluctuations at the sampling location is 𝑢′𝜃∕(𝑅𝛺) = 0.30, 0.51
for Re𝛺 = 2000 and 4000, respectively. In comparison, the experimental
fit in [10] gives 𝑢′𝜃∕(𝑅𝛺) = 0.44 at Re𝛺 = 2000 and 𝑢′𝜃∕(𝑅𝛺) = 0.52
at Re𝛺 = 4000. The lower turbulence intensity at Re𝛺 = 2000 could
be due to the shorter averaging period compared to the experiments,
where approximately 1000 revolutions are used. The compensated
power spectra of the time series are shown in Fig. 13. Normalization
by the −5∕3 power-law shows the establishment of the inertial range
where the curve is flat. We note that for the Re𝛺 = 2000, the extent
of the inertial range is smaller than a decade, which is indicative of
transitional turbulence. This observation is in agreement with those of
Ravelet et al. [10] who found that fully developed inertial turbulence
is achieved for values of Reynolds number above ∼ 3300. This regime is
achieved in the present DNS at Re𝛺 = 4000 as evidenced by the inertial
range extends beyond one decade in Fig. 13.

Another macroscopic observable of interest is the torque exerted by
the impellers in order to induce the fluid motion. In laboratory devices,
torque is related to the power consumption by the motors driving the
impellers. To calculate this quantity, we measure first the total power
associated with the force exerted by the immersed boundaries, which
is determined from the IB forcing term as

IB = ∭ 𝒖 ⋅ 𝑭 IB𝑑𝑉 . (13)

Because the impellers rotate at a constant rate 𝛺, the relationship
between power generated by the IB and torque 𝑇 is

𝑇 =
IB
𝛺

. (14)

According to Ravelet et al. [10], the non-dimensional torque 𝐾𝑝 =
𝑇 ∕(𝜌𝑅5𝛺2) reaches an asymptotic value 𝐾𝑝 ≃ 0.14, independent of
the Reynolds number, for Re𝛺 > 3300. In order to compare with the

experiments, we report the temporal evolution of 𝐾𝑝 in Fig. 14. After a
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Fig. 7. Isocontours of the normalized velocity magnitude at Re𝛺 = 90 from 𝑡∕𝜏𝑓 = 1 to 20, where 𝜏𝑓 = 𝛺∕2𝜋 is the time it takes to complete a full revolution of the disks. The
circumferential cut is taken at the radial distance 𝑟∕𝑅 = 0.8. At this Reynolds number, the flow is laminar, axisymmetric and planar symmetric about the mid-height plane.
Fig. 8. Streamlines of the velocity field in a vertical plane through the axis at Re𝛺 = 90. The flow presents a shear layer formed in between two-toroidal cells similar to what has
een reported experimentally in [10].
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ransient of about 4 revolutions of the impellers, the non-dimensional
orque reaches a stationary state. The mean 𝐾𝑝 establishes at 0.1267
and 0.1462 for Re𝛺 = 2000 and 4000, respectively. The values found
from these simulations are in excellent agreement with Ravelet et al.
[10] since 𝐾𝑝 is within a few percent of the experimentally determined
symptotic value.

.2.2. Characterization of homogeneity and isotropy in fully developed
urbulence
Due to the canonical nature of the turbulent swirling von Kármán

low, it is worthwhile to characterize the nature of the turbulent
luctuations in the fully developed turbulence regime at Re𝛺 = 4000.
n particular, we seek to understand whether the turbulent fluctuations
n the central region of the flow, i.e., close to the axis and near the
id-height plane are isotropic.
8

In the present DNS, flow averages and fluctuating quantities are
onsidered once the flow achieves a statistically stationary state, i.e.,
fter 5 revolutions of the disks. Averaging is conducted from the
erspective of an observer on a rotating blade using 750 snapshots
athered over 15 rotations. Averages are obtained by grouping data
t grid points at equal angles ahead of any one blade (from 0 to 45◦).
amples at different times are rotated by the corresponding angle.
Figs. 15, 16, and 17 show the mean and the rms velocity compo-

nents normalized by the blade-tip speed 𝑅𝛺. It is interesting to note
that despite the symmetry-breaking instabilities activated at intermedi-
ate Reynolds numbers [5,8,10], the mean flow in the fully developed
turbulence regime displays axial and planar symmetries. Much like in
the laminar regime at Re𝛺 = 90, the mean flow field consists of two
toroidal cells created by fluid ejected radially outward from the blades
towards the cylindrical walls, which is then redirected along the walls
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Fig. 9. Isocontours of the normalized velocity magnitude at Re𝛺 = 360. The circumferential cut is taken at the radial distance 𝑟∕𝑅 = 0.8. A sudden transition occurs at 𝑡𝛺∕2𝜋 ∼ 8
leadings to the growth of an azimuthal velocity wave with mode 𝑚 = 2.

Fig. 10. Isocontours of the normalized velocity magnitude at Re𝛺 = 2000. The circumferential cut is taken at the radial distance 𝑟∕𝑅 = 0.8. An early instability of the shear layer
grows rapidly into intense velocity fluctuations. Large vortical structures of size comparable to the disk radius traverse the shear layer.
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Fig. 11. Isocontours of the normalized velocity magnitude at Re𝛺 = 4000. The circumferential cut is taken at the radial distance 𝑟∕𝑅 = 0.8. The flow is fully turbulent and reaches
statistically stationary state in about 2 revolutions of the impellers.
Fig. 12. Time series of the normalized azimuthal velocity measured at a reference
point located at a radial distance 𝑟 = 0.9𝑅 on the mid-plane. The fluctuation rms
are 0.30 and 0.51 for the present DNS at Re𝛺 = 2000 and Re𝛺 = 4000, respectively,
ompared to 0.44 and 0.52 in the experiments of Ravelet et al. [10].

owards the mid-plane (Figs. 15(a) and 17(a)). Cortet et al. [44] note
that symmetry-breaking transitions may arise in the averaged flow as
well, albeit at higher Reynolds numbers than considered here, which
raises questions on the stability of the mean flow.

The presence of strong shear in the mid plane due to the two
counter-rotating stacked toroidal structures generates large velocity
fluctuations, which reach about 30% the tip speed for the azimuthal
and radial components. Shear in the boundary layers at the walls of
the cylindrical enclosure generates large fluctuations in the axial and
azimuthal velocity components also. The central region of 0 ≤ 𝑟∕𝑅 ≤ 0.5
10
and 𝑧∕(𝐻∕2) < 1∕3 is of particular interest since it features small mean
velocities and little spatial variation in the rms fluctuations.

Turbulence in the central region is not isotropic, since the axial
fluctuations are smaller than the other two components, as shown in
Figs. 15(b), 16(b), and 17(b). The radial and azimuthal fluctuations
decrease in magnitude as we move axially towards the blades. At two
thirds of the distance, the rms values of three velocity components are
nearly equal and turbulence approaches isotropy.

In order to characterize the anisotropy of the velocity fluctuations,
we investigate the Reynolds stress tensor 𝑏𝑖𝑗 = ⟨𝑢𝑖𝑢𝑗⟩∕⟨𝑢𝑘𝑢𝑘⟩ − 𝛿𝑖𝑗∕3
and display it in the Lumley triangle [45] shown in Fig. 18. Here,
II𝑏 = 𝑏𝑖𝑗𝑏𝑗𝑖∕2 and IIIb = (𝑏𝑖𝑗𝑏𝑗𝑘𝑏𝑘𝑖)∕3 correspond to the second and third
invariants of the tensor 𝑏𝑖𝑗 , while 𝜁 = (IIIb∕2)1∕3 and 𝜂 = (−II𝑏∕3)1∕2

correspond to the transformed invariants. The data is presented for
various radial locations at three axial planes: 𝑧∕(𝐻∕2) = 0, 1∕3 and 2∕3.
It is apparent that turbulence in the central region (black circles) is
neither fully isotropic nor axisymmetric. Moving outwards in the radial
direction, the flow transitions to axisymmetric turbulence where the
two eigenvalues of the anisotropy tensor are equal and smaller than the
third larger eigenvalue. The near wall region displays characteristics of
a single component turbulence (labeled ‘1C’ at the top right corner),
consistent with the presence of boundary layers near the walls of the
enclosure.

5. Conclusions

In this study, we presented results from direct numerical simulations
of the swirling von Kármán flow at Reynolds numbers Re𝛺 = 90, 360,
2000 and 4000 in a configuration that reproduces the experiments
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Fig. 13. Compensated power spectra. Unlike the case at Re = 4000, the short bandwidth of the inertial range suggests that turbulence at Re𝛺 = 2000 is not fully developed. Note
that 𝑓0 = 𝛺∕(2𝜋) is the frequency associated with one full revolution of the impellers.
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Fig. 14. Non-dimensional torque. The mean stationary values are 0.1267 and 0.1472
for Re𝛺 = 2000 and 4000, respectively. These values are in good agreement with the
experimentally determined value 𝐾𝑝 = 0.14 [10], represented by the dash-dotted line,
in fully developed turbulence.

of Ravelet et al. [10]. While there has been vigorous experimental
work on the swirling von Kármán flow, DNS of this flow remain
scarce. The numerical simulations presented here display qualitative
and quantitative agreement across a range of flow regimes from laminar
to fully developed turbulence. This shows that a straightforward
implementation of the present IBM on a uniform grid is a powerful tool
for the study of such impeller driven flows.

At Reynolds numbers Re𝛺 = 90, the flow consists of two toroidal
cells stacked on each other. The flow is axisymmetric and planar sym-
metric about the mid-plane. The latter symmetry is lost at Re𝛺 = 360
ue to the sudden onset of a Kelvin–Helmholtz instability. An azimuthal
ode 𝑚 = 2 develops on the shear layer at the mid-plane causing
he distortion of the tori. These flow patterns conform closely to the
ynamics identified in [10] for the laminar regime, whereby succes-
ive symmetry-breaking instabilities appear with increasing Reynolds
umber. Analysis of time series of velocity fluctuations shows that
he case at Re = 2000 is transitional, while simulations at Re =
11

𝛺 𝛺
000 achieve fully developed turbulence. The non-dimensional torque
omputed from DNS matches experimental correlations remarkably
ell.

Results from the DNS in the fully developed regime show that the
ean flow exhibits the same-symmetries as the laminar case Re𝛺 =
0. This suggests that modes created by the low-Reynolds number
nstabilities are overshadowed by fully developed turbulence. Owing
o the strong shear between the two tori, turbulent fluctuations are
ntense, particularly in the radial and azimuthal directions scaling as
0 to 40% of the blade-tip velocity 𝑅𝛺. Using the Lumley triangle, we
ind that the fluctuations in the central region remain anisotropic at
e𝛺 = 4000.

The simulations are enabled by a novel immersed boundary method,
hich extends the approach of Uhlmann [32], and is embedded within
n incompressible semi-implicit framework with a predictor–corrector
tep for mass conservation [38]. The approach consists in decoupling
he momentum and Eulerian IB forcing equations via operator-splitting.
he latter is solved using a backward Euler scheme. Surface integrals
re discretized using a triangular mesh of the surface of the immersed
ody. The forcing terms are computed at the centroids of the triangular
aces, which are tracked in a Lagrangian reference frame for moving
olids. Our strategy results in an update similar to that of Uhlmann
32], although derived differently. The robustness and stability of the
ethodology made the present simulations of the swirling von Kármán
low possible with simple uniform grids.

The use of locally refined grids as in [31] could improve the solu-
ions near the immersed boundaries. However, for moving boundaries,
uch as impellers, it is not clear yet how this refinement can be achieved
ithout incurring the same penalties found in methods using body-
onformal meshes. Coupling the present IBM with overset grids could
rovide a way forward, and shall be investigated in future studies.
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Fig. 15. Radial velocity component. (a) Isocontours of the normalized mean (left half) and rms fluctuations (right half) of the radial velocity at Re = 4000. (b) Radial profile of
the normalized radial velocity fluctuations at three locations along the axis for Re = 4000.
Fig. 16. Azimuthal velocity component. (a) Isocontours of the normalized mean (left half) and rms fluctuations (right half) of the azimuthal velocity at Re = 4000. (b) Radial
profile of the normalized azimuthal velocity fluctuations at three locations along the axis for Re = 4000.
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Fig. 17. Axial velocity component. (a) Isocontours of the normalized mean (left half) and rms fluctuations (right half) of the axial velocity at Re = 4000. (b) Radial profile of the
normalized axial velocity fluctuations at three locations along the axis for Re = 4000.
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Fig. 18. Lumley triangle on the plane of invariants 𝜁 − 𝜂 of the Reynolds stress
anisotropy tensor for Re = 4000 in three planes normal to the axis. Turbulence in
the central region is neither two-component nor truly isotropic.

Appendix. Effect of grid resolution on the measured torque

To demonstrate the grid convergence of our computational method
in the swirling von Kármán flow cases, we present the results from
two auxiliary simulations at Re𝛺 = 4000. Compared to the reference
imulation in Table 4, these two additional simulations are performed
n a coarser and a finer grid. The former is a uniform Cartesian grid
ith 256 × 342 × 256 points, yielding a constant resolution 𝑅∕𝛥𝑥 =

128. The fine grid has 640 × 896 × 640 points corresponding to a
resolution of 𝑅∕𝛥𝑥 = 320. Note that the simulation in Table 4 has a
size 512 × 688 × 512 and resolution 𝑅∕𝛥𝑥 = 256.

Fig. A.19 shows the evolution of the non-dimensional torque from
three runs. The average non-dimensional torque, 𝐾𝑝, computed from
the fifth revolution and onward, converges to 0.1472 for 𝑅∕𝛥𝑥 = 256
and 320. This convergence study shows that the fluid stresses on the
impellers are well captured by resolutions 𝑅∕𝛿𝑥 = 256 and beyond for
13

wirling von Kármán flow at Re𝛺 = 4000.
Fig. A.19. Evolution of the non-dimensional torque at the three mesh resolutions
𝑅∕𝛥𝑥 = 128, 256, and 320. The average non-dimensional torque, 𝐾𝑝, converges to
.1472.
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