Catalytic Alkene Difunctionalization via Imidate Radicals
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ABSTRACT: The first catalytic strategy to harness imidate
radicals has been developed. This approach enables alkene di-
functionalization of allyl alcohols by photocatalytic reduction of
their oxime imidates. The ensuing imidate radicals undergo
consecutive intra- and inter-molecular reactions to afford either
(1) hydroamination, (ii) aminoalkylation, or (iii) aminoarylation —
via three distinct radical mechanisms. The broad scope and utility
of this catalytic method for imidate radical reactivity is presented,
along with comparisons to other N-centered radicals and
complementary, closed-shell imidate pathways.

I n pursuit of a new hydroamination reaction, Overman
serendipitously discovered a synthetically valuable reaction
wherein allyl imidates are rapidly converted to allyl amines by
sigmatropic rearrangement.'> Nonetheless, the original goal of
converting allyl imidates to 1,2-amino alcohols via
hydroamination remains unsolved — likely because the Brensted,
Lewis, and w-acids that could activate alkenes toward amination,
efficiently promote rearrangement instead. To solve this ongoing
challenge, we proposed an N-centered radical mechanism* may
bypass the two-electron pathway and afford the long-sought
hydroamination® to access valuable B-amino alcohols (Figure 1a).
Moreover, we anticipated imidate radicals may enable several
new classes of reactivity for the synthesis of functionalized amino
alcohols.

In developing a catalytic strategy to harness the reactivity of
imidate radicals,%” we proposed allyl imidate A may be
selectively reduced by a single-electron via photocatalysis®
(Figure 1b). We envisioned that such oxime imidates are readily
accessed by the combination of alcohols and imidoyl chlorides in
a modular and tunable manner (to access radical precursors with
variable N-OR bond strengths). In analogy, the incorporation of
weak N-OR bonds within analogs of ketones and amides has
afforded other N-centered radicals (e.g. iminyl, amidyl).>'> We
thus proposed this tunability may enable us to discover a catalytic
method to access imidate radicals. In our proposed mechanism,
excitation of a photocatalyst (M" to *M") precedes reductive
quenching by an amine to provide a strong reductant (M™!). We
postulated single-electron reduction of allyl imidate A to its
radical anion, and subsequent mesolytic cleavage, could then
afford imidate radical B and regenerated photocatalyst (M"). Next,
rapid, 5-exo-trig cyclization'® of the N-centered radical would
provide C, which contains a Ce adjacent to the new C—N bond.
Upon combination with a variety of intermolecular radical traps, a

resulting o-substituted oxazoline D may be hydrolyzed under
acidic conditions to afford a family of
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Figure 1. New reactivity modes enabled by imidate radicals.

1,2-amino alcohols. Importantly, we postulated that three distinct
mechanisms could be employed to intercept the C-centered
radical (Figure 1c). For instance, homolytic substitution (Su2) of a
radical trap containing a weak C-H bond'* may provide
hydroamination. Alternatively, intermolecular radical m-addition
of alkenes would afford aminoalkylation.' Lastly, a rare, radical-
radical coupling mechanism'® could incorporate y-arenes in a net,
aminoarylation. Crucially, each of these three radical termination
mechanisms affords reactivity that is complementary to classic,
two-electron strategies.

With this hypothesis in mind, we combined allyl alcohol with a
pair of imidoyl chlorides (Figure 2). The resulting allyl imidates



were then subjected to reductive, photoredox catalytic conditions
in the presence of a reductant, ‘ProNEt, an H-atom donor, 1,4-
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Figure 2. Hydroamination of allyl alcohols via imidate radicals.

cyclohexadiene (CHD), and a blue LED light. Unsurprisingly, the
N-OMe oxime 1a, which has a large reduction potential (Ered > —2
V),!7:18 affords minimal hydroamination — yielding 10% oxazoline
2, only with a highly reducing catalyst (IIT). Alternatively, the N-
OPh oxime 1b is more easily reduced (—1.6 V) and efficiently
provides 2’ (up to 80% yield) with commercially available Ir
photocatalysts (I or III). Notably, subsequent hydrolysis of
oxazoline 2> with HCI (aq) unveils the privileged 1,2-amino
alcohol pharmacophore 2. Interestingly, when imidate 1b is
combined with a Pd catalyst, rearrangement to an allyl amide is
observed exclusively, instead (97% yield)'® — demonstrating the
divergent reactivity of one- and two-electron pathways for

imidates.
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Figure 3. Comparison of N-centered radical precursors.

We were also intrigued by the complementarity of imidate
radical reactivity with other N-centered radicals, such as those of
imines and amides.”!? First, they are synthetically orthogonal, as
these imidate-based radicals are accessed from alcohols, whereas
iminyl and amidyl radicals are derived from ketones or acid

chlorides, respectively (Figure 3). Moreover, we noted each of
these N-centered radical precursors reacts differently. For
example, when a simple N-OPh is incorporated, a competition
between all three radical precursors exclusively results in
cyclization of the imidate radical. In this case, only oxazoline 2’ is
formed amongst all three possible hydroamination products — with
both the imine and amide radical precursors remaining. This
competitive hydroamination of the imidate (versus iminyl or
amidyl) precursor is also observed with strongly reducing catalyst
I (-2.2 V).
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Figure 4. Hydroamination of allyl imidates. Isolated yields
of hydroamination (and hydrolysis) are indicated.

Having developed the first catalytic reaction of an imidate
radical, we sought to investigate the generality and utility of this
hydroamination on a range of allyl imidates (Figure 4). To this
end, we found that allyl alcohols with both terminal and internal
olefins are hydroaminated smoothly (2-4), as well as tri-
substituted olefins (5). These results illustrate that primary,
secondary, benzylic, and tertiary radicals are all viable
intermediates in the translocation of an imidate N-centered radical
to a y C-radical. If chloro- or silyl-substituted olefins are
employed (grey products bearing heteroatom
functionality at three adjacent carbons are obtained (6—7). Several

circles),



natural products are also hydroaminated (8-10), including those
containing multiple alkenes — demonstrating chemoselectivity of
this protocol for allyl alcohols. In the case of secondary alcohols,
exclusive syn-diastereoselectivity (> 20:1) is observed in all cases
(11-15), likely due to geometric constraints of the five-membered
oxazoline intermediate. Interestingly, and complementary to our
previous studies on H-atom abstraction by imidate radicals,’
hydroamination outcompetes  C—H abstraction — even of weak,
allyl or benzyl C—H bonds (13-14, highlighted with grey circles).
Additionally, 5-exo-trig (vs 6-exo-trig) cyclization is solely
observed. The imidate of gibberellic ester is also efficiently
converted to its [ amino-alcohol (15) - illustrating
chemoselectivity in the presence of esters, lactones, and
unprotected allyl alcohols, as well as orthogonal selectivity to

other radical-mediated hydroamination methods. '
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Figure 5. Aminoalkylation and aminoarylation of imidates.

The robust reactivity observed for these imidate radicals in the
case of hydroamination via Su2 led us to question if other
trapping mechanisms might also be viable by this catalytic
pathway. Replacing CHD with various olefins, we investigated
the amino-alkylation of imidates by radical m-addition (Figure 5).
Notably, both acrylates (16—18) and styrenes (19-23) function as
capable partners to effect a three-component radical coupling of
imidates, alkenes, and an H-atom. In these cases, both 1,1- and
1,2- di-substitution is tolerated, as well as incorporation of
heteroarenes, such as 2- and 4- vinyl pyridines. Although tertiary

radicals (from tri-substituted allyl alcohols) afford greater
efficiency in this radical w-addition, simple allyl alcohols (that
incorporate a primary radical intermediate), are also suitable for
this aminoalkylation (e.g. 20 vs 21).

In the hopes of incorporating an aryl trap within this cascade,
we sought to develop an aminoarylation by a radical-radical
coupling mechanism (Figure 5). Although such a mechanism is
rare, especially in the absence of persistent radicals as traps,'® we
proposed cyanoarenes may selectively combine with the transient,
imidate-derived tertiary radicals. This hypothesis was realized by
aminoarylation with various aryl precursors, such as di-cyano-
benzene (DCB; 24-25), its perfluorinated analog (26), and 4-
cyano-pyridine (27). In these unique couplings, we propose that a
radical anion of the arene is photocatalytically generated in
parallel with formation of the imidate radicals — both by reductive
quenching mechanisms. The ensuing cyclohexadienyl radical and
the translocated alkyl radical selectively combine with one
another to afford the observed products in preference to
dimerization of either radical.

Given the scarcity of such a cascade (radical cyclization
terminated by radical-radical coupling), we further probed this
mechanism by regioisomers of di-
cyanobenzene in the reaction (Figure 6). We proposed if a

employing several
conjugate addition mechanism is operative, then an arene with
reinforcing 1,3-di-substituted electron-withdrawing groups (e.g.
CN) should be an especially efficient radical trap. However, no
aminoarylation is observed with 1,3-dicyanobenzene. Instead, 1,2-
or 1,4- dicyano-benzene, which are more easily reduced (by up to
200 mV),% afford significant product formation, likely as a result
of a greater concentration of cyclohexadienyl radical anion
formed by the Ir photoreductant. Moreover, ortho- and para- CN
di-substitution are not as conducive to conjugate addition as the
meta isomer, further supporting a radical-radical coupling
mechanism.
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Figure 6. Mechanistic support for radical-radical coupling.

To further investigate the different radical-trapping
mechanisms employed in this study, we appended a 1,6-diene on
the allyl imidate to serve as a radical clock (Figure 7). In the



presence of CHD, rapid cyclization (keyc > 1210° s1)!3 precedes
trapping, thereby interrupting the hydroamination with an
intermediary radical cyclization cascade. However, in the
presence of an acrylate trap, aminoalkylation is uninterrupted,
indicating intermolecular radical m-addition is faster than
intramolecular cyclization.
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Figure 7. Radical clock experiments for each mechanism indicate the
following rates: acrylate addition > cyclization > Su2.

In summary, a series of catalytic reactions have been developed
that harness imidate radicals. Oxime imidates, readily prepared
from alcohols, are mildly and selectively reduced by an Ir
photocatalyst in the presence of visible-light to generate imidate
radicals. Subsequent cyclization and trapping with (a) an H-atom,
(b) electronically diverse range of olefins (e.g. acrylates,
styrenes), or (c) a cyanoarene enables access to the following
transformations: hydroamination, aminoalkylation, and
aminoarylation. We expect this strategy will facilitate further
development of radical mechanisms that are complementary to
classic, two-electron reactivity of imidates.
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