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ABSTRACT:  A polarity-reversing radical cascade strategy for  
alkene di-functionalization by vicinal C-C and C-P bond-formation 
has been developed. This new approach for concurrently adding 
phosphorous and a heteroarene across an olefin is enabled by pho-
tocatalytic generation of electrophilic P-centered radicals. Upon 
chemoselective addition to an olefin, the resulting nucleophilic C-
centered radical selectively combines with electrophilic het-
eroarenes, such as pyridines. This multi-component coupling 
scheme for phosphinylalkylation complements classic two-compo-
nent methods for hydrophosphinylation of alkenes and C-H phos-
phinylation of arenes. Included competition and photo-quenching 
experiments provide insight into the selectivity and mechanism of 
this polarity-reversal pathway.  

Alkene di-functionalization is among the most useful instru-
ments in the synthetic toolbox.1 Notably, radical-mediated ap-
proaches offer complementarity to two-electron strategies, with re-
spect to both reactivity and selectivity.2,3 For example, electrophilic 
P-centered radicals4 add to alkenes to afford hydrophosphinylation 
with anti-Markovnikov selectivity (Figure 1a).5,6 Alternatively, P• 
may also directly add to arenes in a net C-H phosphonation.7 Yet, 
in contrast to these couplings with p-nucleophiles, P• combination 
with electron-deficient heteroarenes is less favored.8 Given the me-
dicinal importance of both motifs,9 we sought to develop a method 
for adding biologically relevant phosphines and heteroarenes to al-
kenes in a single transformation. Since Minisci’s pioneering work, 
nucleophilic radicals have been employed to construct C-C bonds 
directly onto heteroarenes.10,11 Recently, Herzon and Baran have 
shown that H• addition to an alkene affords alkyl radicals that may 
also engage in the Minisci heteroarylation mechanism.12 Given the 
requirement of nucleophilicity for the alkyl radicals to combine 
with electrophilic, protonated heteroarenes by this mechanism, we 
postulated that a three-component coupling reaction could be de-
signed wherein polarity effects would dictate chemo- and regio- se-
lectivity (Figure 1b). 

In our design, a polarity-reversal radical cascade strategy could 
selectively convert phosphine oxides to electrophilic P-centered 
radicals. Subsequent addition to an olefin (rather than to electron-
deficient heteroarenes) would render the resulting open-shell inter-
mediate nucleophilic. This C-centered radical may then chemose-
lectively combine with heteroarenes to afford a three-component 
coupling adduct. To our knowledge, only Minisci, Barriault, Liu, 
and Hong have reported examples of heteroaryl difunctionalization  

 

Figure 1. Polarity-reversal strategy for radical C-P couplings. 

of alkenes, albeit initiated by alkyl or azide radicals.13 Despite this 
inspiration, we were cognizant that hydrophosphinylation via the 
Pudovik reaction may be a competing pathway.5 A second side-
product pathway might include direct two-electron addition to pyr-
idines, as recently developed by McNally.14 Moreover, the selec-
tive, radical combination of alkenes and heteroarenes remains quite 
rare, with limited examples of alkene hydroarylation that include 
Herzon and Baran’s stoichiometric protocols12 and Jui’s inverted 
approach entailing addition of pyridyl radicals.15 Despite these 
challenges, we surmised catalytic generation of P• at low concen-
trations relative to the alkene and heteroarene components may en-
able a chemoselective cascade. 

To test the viability of this radical cascade strategy for multi-
component C-P and C-C coupling, diphenyl phosphine oxide, 1-
hexene, and phenanthridine were combined in the presence of an 
acid, photocatalyst, and blue LED irradiation (Figure 2). To our de-
light, the heteroarene phosphinylalkylation was promoted quite ef-
ficiently in the presence of 1 mol% Ir(ppy)2(dtbbpy)PF6 photocata-
lyst (entry 1). Interestingly, we noted that some protonated quino-
lines (e.g. phenanthridine) may autocatalyze this transformation. 
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However, we observed lower and inconsistent yields (entry 2) in 
the absence of 1 mol% catalyst (and limited scope), and thus re-
tained the photocatalyst for further optimization. The addition of an 
acid (1.2 equiv TFA) and water (5.5 equiv) were also found to be 
crucial components for reaction efficiency – in order to protonate 
and solubilize the terminal heteroarene electrophile (entries 3-4). 
Although, this reaction is amenable to varying solvents, concentra-
tions, and non-aerobic conditions, most are inferior, frequently af-
fording Pudovik adducts rather than phosphinylalkylation (entries 
5-10). Furthermore, the multi-component coupling does not pro-
ceed well in the absence of LED irradiation (entry 11). 

Figure 2. Development of a cascade heteroarene phosphinylalkylation. 

 

Conditions: phenanthridine (0.1 mmol), Ph2P(O)H (2 equiv), Ir(ppy)2(dtbbpy) 
PF6 (1 mol%), DMSO (1 mL), trifluoroacetic acid (1.2 equiv), H2O (5.5 equiv), 
and 1-hexene (2 equiv), blue LED, 25˚C. 1H NMR yields vs standard. 

Having developed an efficient, photocatalytic method to enable 
the phosphinylalkylation of heteroarenes, we next investigated the 
generality of this polarity-reversal radical cascade. As shown in 
Figure 3, the scope of alkenes that can be employed in this trans-
formation is surprisingly wide – tolerating a broad range of func-
tional groups, including esters, ketones, alcohols, halides, and 
ethers (2-6). Notably, these simple, unbiased alkenes can be em-
ployed as suitable P-radical traps. Alternatively, more electron-rich 
enol ethers are also 1,2-phosphinyl-arylated (7) – with even greater 
efficiency, as the intermediary a-oxy alkyl radical has higher nu-
cleophilicity to promote heteroarene addition. 

In order to probe the generality of heteroarenes in this Minisci 
radical addition mechanism,10 we then subjected a series of quino-
lines (8-11) and isoquinolines (12-18) to this reaction. Notably, a 
wide range of steric and electronic substituents were tolerated, in-
cluding halides, esters, and amides. And while, less efficient than 
the enol ether component, non-activated alkene (e.g. hexene) may 
also be employed (9, 13). 

Given the biological significance of phosphorous,9 we also in-
vestigated variation of the phosphine component and were pleased 
to find that a range of electronically diverse aryl and heteroaryl 

phophine oxides may be employed (19-22). Interestingly, even an 
electron-rich, bis-OMe aryl phosphine oxide can undergo polarity-
reversal via its electron-poor P-radical (19-20). Additionally, dial-
kyl phosphine oxides, phosphonate esters, and phosphine sulfides 
are suitable radical precursors (23-25).  

Figure 3. Heteroarene phosphinylalkylation: Reaction scope. 

We next turned our attention to the heteroarene component with 
a specific focus on extending this methodology to simple pyridines 
(Figure 4). Even with an electron-rich enol ether as the nucleophilic 
radical precursor, and a basic lutidine, which should provide a 
strongly electrophilic lutidinium as the terminal trap, we did not 
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observe any desired three-component coupling adduct. Similarly, 
the N-oxide, although frequently employed as a radical coupling 
partner,16 was incompatible with this cascade (with either Brønsted 
or Lewis acids). Ultimately, we were pleased to find that N-OMe 
pyridiniums17 are suitable heteroarene partners for providing phos-
phinylalkylation of 2,6-lutidine (26). Interestingly, we noted a 
strong counterion effect on this radical cascade,18 wherein the oxi-
dizable iodide affords no product, while PF6, BF4, CF3SO3, and 
MeSO3 yield 26 with varying efficiency (65-78%). Fortunately, 
MeSO4, which was the best anion among those we investigated 
(81%), is also the easiest to access synthetically by directly com-
bining N-oxide with dimethyl sulfate. 

Figure 4. Development of a pyridine phosphinylalkylation. 

 

Conditions: pyridinium (0.1 mmol), Ph2P(O)H (2 equiv), Ir(ppy)2(dtbbpy)PF6 (1 
mol%), DMSO (1 mL), H2O (5.5 equiv), and alkene (2 equiv), blue LED, 25˚C. 
1H NMR yields vs standard. 

With this second-generation strategy in hand for direct C-H 
phosphinylalkylation of pyridines, the synthetic generality of the 
radical cascade was further investigated (Figure 5). Noting the high 
electrophilicity of these N-OMe pyridinium partners, we ques-
tioned if they may allow similarly broad scope with respect to the 
phosphine oxide component. Thus, we were pleased to see that 
more acidic and nucleophilic variants, including dibutyl phosphine 
oxide, pinacol phosphonate, and bis-aryl phosphine oxides were 
suitable partners (27-30). However, non-ethereal alkenes are not 
suitable nucleophiles for this reaction mechanism. 

In probing the pyridine component, we noted that an unsubsti-
tuted pyridine is regioselectively functionalized at the 4-position in 
a 3:1 r.r. (31). This selectivity likely results from steric repulsion 
by the N-OMe group, which blocks radical addition at the 2-posi-
tions. However, if a 2-Cl substituent is employed to increase the 
electrophilicity, then regioselectively is decreased to 2:1 (32). On 
the other hand, stabilization of the radical addition by a 2-Ph group 
affords 6:1 r.r. (33). Finally, a 2-Me group sufficiently repels the 
N-OMe to afford >20:1 regioselectively (34). Of note, if the 4-po-
sition is blocked by substituents of varying electronics (Me, OMe, 
CN), then reactivity at the 2-position is observed (35-37). 

Having developed protocols for the phosphinylalkylation of pyri-
dines at either their 2 or 4 C−H bonds, we questioned if this strategy 
could also promote functionalization of the electron-rich 3-posi-
tion. This regioselectivity is not typically favored in Minisci 

additions due to a mismatch in polarity (both the alkyl radical and 
C3 are electron-rich). Nonetheless, with this goal in mind, we pre-
pared the 2-alkoxy quinoline (38) and subjected it to the initial TFA 
conditions. We were pleased to find the intermediary 6-exo-trig 
radical cyclization does in fact occur – affording a fused, 2H-py-
rano[2,3-b]quinoline (39) core found in glutamate receptor antago-
nists, potassium-channel activators, and employed as ligands in Pd-
catalyzed C-H functionalization.19 

 

Figure 5. Heteroarene phosphinylalkylation: Pyridine scope. 

 

 

Figure 6. Intramolecular cyclization favors the polarity-disfavored 
C3-regioisomer. 

With two complementary conditions in hand, we were curious 
how they compared to one another. Thus, we performed a compe-
tition experiment in which the protonated phenanthridine and N-
OMe lutidinium were combined and reacted in a 1:1 ratio. As 
shown in Figure 7a, the phenanthridinium partner reacts nearly four 
times faster. Moreover, both partners individually outcompete the 
Pudovik reaction5 handily (Figure 7b) – affording a 7:1 ratio of 
three-component coupling to two-component hydrophosphinyl-
ation in the case of phenanthridine (1), or 6:1 for pyridine (26). 
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Figure 7. Competition experiments: (a) pyridine vs phenanthridine 
acceptors, and (b) three-component coupling vs two-component hy-
drophosphinylation. 

As a further probe of the mechanism, we performed Stern-
Volmer quenching experiments for the excited Ir photocatalyst in 
the presence of each reaction component, including the alkene, 
phosphine oxide, and heteroarene. Interestingly, only the charged 
heteroarenes provide quenching (KSV 4-55). Surprisingly, even in 
the presence of various bases (e.g. Na2CO3), diphenyl phosphine 
oxide is not a quencher (nor is PPh3), suggesting a reductive 
quenching mechanism is unlikely.20 On the other hand, O2 is a 
strong quencher (KSV >600), which suggests oxidative quenching 
is more likely operative.21 

Our proposed mechanism for the multi-component coupling of 
phosphine oxide A, alkene B, and heteroarenes C is shown in Fig-
ure 8. To start, the Ir(III) photocatalyst is excited by visible light 
and quenched by O2 to form superoxide (O2

• -) along with Ir(IV).22 
This strong oxidant (+1.2 V vs SCE)23 is capable of removing an 
electron from neutral phosphine oxide A (+1.0 V vs SCE), or its 
tautomer D,24 to form radical cation E, while regenerating the 
ground state Ir(III) catalyst. This highly electrophilic phosphinium 
radical cation E may then selectively combine with alkenes B (of 
varying nucleophilicity) to afford alkyl radical F. Upon Minisci-
type addition of this C-centered radical to heteroarene C, two di-
vergent mechanistic pathways are then possible, depending on the 
identity of the heteroarene activating group, Z. 

Path A illustrates radical addition into an N-OMe pyridinium, 
which affords G (Z = OMe). This electron-deficient intermediate 
may be reduced by either excited Ir(III) catalyst or superoxide to 
form the neutral radical adduct H. Rearomatization by loss of meth-
anol then affords the phosphinylalkylated pyridine I in a net redox-
neutral reaction. Alternatively, Path B shows a mechanism for di-
rect radical addition into a Brønsted acid-protonated hetero-arene 
to provide G (Z = H). Given the acidity of the a-amino C-H (pKa < 
8),25 its deprotonation would afford neutral a-amino radical J. 
Next, formal loss of H• may occur by aerobic oxidation followed 
by deprotonative aromatization to yield phosphinylalkylated K in a 
net oxidative reaction, wherein air is the terminal oxidant. 

 

 

Figure 8. Proposed mechanism for both classes of heteroarenes. 

In summary, a polarity-reversal radical cascade strategy has en-
abled a multi-component coupling of alkenes, heteroarenes, and 
phosphines. This photocatalytic strategy represents a novel ap-
proach to concurrently add a phosphorous and heteroarene across 
an olefin. We expect the methods and mechanistic insights pre-
sented herein will serve as a foundation for developing more multi-
component couplings based on radical polarity-reversal. 
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