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Abstract

We argue that developmental hormones facilitate the evolution of novel phenotypic innovations
and timing of life history events by genetic accommodation. Within an individual’s life cycle,
metamorphic hormones respond readily to environmental conditions and alter adult phenotypes.
Across generations, the many effects of hormones can bias and at times constrain the evolution
of traits during metamorphosis; yet, hormonal systems can overcome constraints through shifts
in timing of, and acquisition of tissue specific responses to, endocrine regulation. Because of
these actions of hormones, metamorphic hormones can shape the evolution of metamorphic
organisms. We present a model called a developmental goblet, which provides a visual
representation of how metamorphic organisms might evolve. In addition, because developmental
hormones often respond to environmental changes, we discuss how endocrine regulation of
postembryonic development may impact how organisms evolve in response to climate change.
Thus, we propose that developmental hormones may provide a mechanistic link between climate

change and organismal adaptation.
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1. The role of hormones in metamorphosis

Approximately 80% of animals undergo metamorphosis — the transition from a larval to
an adult stage (Fig. 1) (Werner, 1988). One key tenant of metamorphosis is that the pre-
metamorphic or larva stage and its subsequent adult stage often occupy different habitats (Bishop
et al., 2006). The change in habitat (such as from aquatic to terrestrial, or terrestrial to aerial)
may be accompanied by a shift in nutrition and feeding behavior or different means of
locomotion which necessitates distinct morphological, physiological and/or behavioral
adaptations. In many metamorphic species, such as frogs and insects, the larvae devote much of
their resources to growth, whereas the adults divert much of their energy towards reproduction
and dispersal. In other species, especially marine invertebrates, the larval stage is dedicated
towards dispersal and much of their growth commences once they settle. Because of their
distinct roles, the larvae and adults often look nothing like each other. Metamorphosis then
serves as a transitional period during which tissue remodeling and adult development can occur.
Moreover, metamorphosis allows larval and adult life stages to evolve independently although
certain aspects of the adult stage may depend on the larval development and experiences (Collet
and Fellous, 2019; Lee et al., 2013; Moore and Martin, 2019; Moran, 1994).

Hormones play salient roles during metamorphosis. In response to either internal or
environmental signals, dynamics of endocrine regulators begin to change towards the end of the
larval life. These endocrine regulators are secreted into the circulatory system and orchestrate
complex metabolic and/or morphogenetic processes in target tissues. In organisms that have
adult body plans that differ radically from larval body plans, key body plan regulators that were
involved in embryonic development, such as Hox genes, play major roles in shaping the adult

body (Chesebro et al., 2009; Chou et al., 2019; Gaur et al., 2001; Hrycaj et al., 2010; Lombardo
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and Slack, 2001; Tomoyasu et al., 2005). Although these endocrine regulators act during other
developmental stages, metamorphosis is a time when they coordinate drastic changes in gene
expression and morphogenesis in multiple tissues (Alves et al., 2016; Arbeitman et al., 2002;
Helbing et al., 2003; Li and White, 2003; Wang et al., 2019; White et al., 1999; Zhao et al.,
2016). In addition, hormones play an important role in determining body size by impacting both
how fast and how long an animal grows (Lorenz et al., 2009; Nijhout et al., 2014).

Below, we discuss how these endocrine processes might influence organismal evolution
in the face of climate change. We will first discuss how hormones orchestrate the dramatic
morphological changes that occur during metamorphosis. We then discuss how hormones
respond to environmental conditions. Next, we will explore how hormones may bias evolution
and how organisms might overcome constraints imposed by hormones. Furthermore, we will
introduce the concept of “developmental goblet” to offer a visual representation of how
hormones might impact the evolution of metamorphic organisms. Finally, we will explain how
hormones can facilitate the evolution of novel traits by a process called genetic accommodation
and discuss how climate change might impact the evolution of organisms by impacting their
endocrine system.

Despite the prevalence of metamorphosis across the animal kingdom, metamorphosis
likely evolved several times independently (Wolpert, 1999) although the molecular machinery
used for metamorphosis was likely present in the common ancestor of all bilaterians (Fuchs et
al., 2014). Therefore, the specific developmental events during metamorphosis differ between
taxa. Our review focuses on vertebrates and insects where endocrine regulation of development
has been best studied. Amphibians are one of the models for understanding the impacts of

ecological changes as they are particularly susceptible to ecological disturbances (Hopkins,
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2007). Insects are the most diverse group of organisms. In particular, those that undergo
complete metamorphosis (the Holometabola, which have distinct larval, pupal and adults stages),
have enjoyed extraordinary success (Yang, 2001). Ecological services of insects provide major
economic contributions (Losey and Vaughan, 2006). With global climate change leading to
mismatches in the timing of metamorphosis and flowering time, both insect and plant
communities face dire consequences (Forrest, 2016; Hegland et al., 2009; Hgye et al., 2013;

Kudo and Ida, 2013).

1.1. Metamorphic hormones in vertebrates and non-insect invertebrates

Within a particular phylum, the specific endocrine regulators involved in metamorphosis
appear to be similar. In most vertebrates, thyroid hormone signaling is a key endocrine pathway
that regulates growth, development/morphogenesis and metabolism (Rabah et al., 2019). Thyroid
hormone is produced and secreted from the thyroid gland and plays a chief role in
metamorphosis in amphibians and fish (Gudernatsch, 1912). The main form of thyroid hormone
secreted from the thyroid gland is thyroxine (T4), which is biologically inactive and is
subsequently converted to the biologically active triiodothyronine (T3), which coordinates
metamorphosis (Denver et al., 2002). This conversion is mediated by the enzyme type II
iodothyronine deiodinase (Davey et al., 1995). In target tissues, thyroid hormone enters the cell
and regulates the expression of target genes in several different ways. In vertebrates, T3 typically
binds to the nuclear Thyroid hormone receptor (TR) (Sap et al., 1986; Weinberger et al., 1986),
which together with the co-receptor retinoid co-receptor (RXR), bind to DNA and regulate
transcription (Zhang and Lazar, 2000; Zhang and Kahl, 1993). The peak in thyroid hormone

titers coincides with the beginning of metamorphosis and coordinates myriad morphological and
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physiological changes from resorption of the tail to growth of limbs and remodeling of the gut
(Brown and Cai, 2007; Shi, 2000). Different tissues of a tadpole undergo metamorphic changes
at distinct time points. For example, a metamorphosizing tadpole grows its limbs before losing
its tail so that it can continue to swim while the limbs grow out. This tissue specific timing of
metamorphosis is regulated by the distinct timing of appearance of mRNAs encoding TR, RXR
and type II iodothyronine deiodinase (Cai and Brown, 2004; Kawahara et al., 1991; Shi et al.,
1996; Yaoita and Brown, 1990, Wong and Shi, 1995). Thyroid hormone is both necessary and
sufficient for metamorphosis in teleost fishes. For example, when flounder larvae are exposed to
T4, they can accelerate metamorphosis, leading to small juveniles, whereas disruption of thyroid
hormone production by thiourea leads to retention of larval traits (Inui and Miwa, 1985).
Exogenous thyroid hormone is also sufficient to induce early metamorphosis in larvae of the
grouper, Epinephelus coioides (de Jesus et al., 1998).

Thyroid hormone is part of the hypothalamic—pituitary—thyroid (HPT) axis (Fig. 2A). As
in mammals, thyroid stimulating hormone (TSH), which is secreted from the pituitary gland,
stimulates the production of thyroid hormone. In amphibians, TSH release is in turn regulated by
corticotropin releasing hormone (CRH) from the hypothalamus rather than the thyrotropin-
releasing hormone as is the case in mammals (Denver, 1999). CRH is a potent regulator of
metamorphosis and appears to overcome the negative feedback of thyroid hormone on TSH
release (Manzon and Denver, 2004). In teleost fishes, the role of CRH in regulating thyroid
production appears to be limited to some species (Campinho et al., 2015; Larsen et al., 1998),

The HPT axis interacts with the hypothalamic—pituitary—interrenal (HPI) axis, which

responds to stress. The HPT axis begins with the hypothalamus releasing CRH, which stimulates
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the anterior pituitary to release adrenocorticotropic hormone (ACTH) (Fig. 2A). ACTH acts on
the interrenal glands to release corticosteroids, the key mediator of stress responses.

Corticosteroids also interact with the thyroid hormone pathway and regulate the
developmental changes induced by thyroid hormone. The application of hydrocortisone
accelerates T3- and T4-induced metamorphosis in Bufo bufo, Rana hechsheri and Rana pipiens
(Frieden and Naile, 1955). Corticosterone was also found to stimulate T3-induced
metamorphosis in Xenopus laevis (Gray and Janssens, 1990). Corticosteroids act on tissues by
enhancing tissue sensitivity to thyroid hormone: Aldosterone and corticosterone increase T3
binding in tadpole tails (Niki et al., 1981; Suzuki and Kikuyama, 1983), and cultured tadpole
tails exposed to corticosteroids express higher transcript levels of type Il deiodinase and TR
(Bonett et al., 2010; Krain and Denver, 2004). It is thus possible that the production of
corticosteroids due to environmental stressor can accelerate metamorphosis by enhancing tissue
sensitivity to thyroid hormone (Denver, 2021; Wada, 2008) (Fig. 2). The evidence for teleost
fishes is more ambiguous: Although cortisol can enhance the impacts of T3 on fin-ray resorption
of the Japanese flounder, Paralichthys olivaceus, in vitro, the timing of metamorphosis is not
impacted by cortisol in vivo (de Jesus et al., 1990). The lack of in vivo effects may be because
sufficient amount of cortisol is produced endogenously (de Jesus et al., 1990).

Thyroid hormone can play an essential role during metamorphosis of other
Deuterostomes (Box 1), including several Echinoderm species (Chino et al., 1994; Heyland and
Hodin, 2004; Heyland et al., 2006) and possibly also ascidians (Patricolo et al., 2001; Patricolo et
al., 1981). Whether thyroid hormone acts via TR is not as well-established in these non-
vertebrate Deuterostomes although TR is present in all Deuterostomes studied to date (Taylor

and Heyland, 2017). Intriguingly, recent studies have also suggested the involvement of thyroid
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hormone signaling in accelerating molluscan metamorphosis (Fukazawa et al., 2001; Taylor and
Heyland, 2017). Although regulators of corticosteroid action have been identified outside
vertebrates (Baker, 2010), the role of corticosteroids during metamorphosis in these species

remains unknown.

1.2. Metamorphic hormones in insects

Before undergoing metamorphosis, most insects undergo several larval molts — the
process involving the shedding of the exoskeleton to allow for growth. Within insects, the main
developmental hormones are juvenile hormone (JH) and ecdysteroids (Nijhout, 1998; Truman,
2019) (Fig. 1). Generally, periodic surges of the ecdysone 20-hydroxyecdysone (20E) trigger
larval-larval molting as well as the initiation of metamorphosis. During the larval stage, JH
prevents a larva from undergoing metamorphosis and therefore came to known as the “status-
quo hormone” (Riddiford, 1996). JH alters the effects of 20E action and inhibits metamorphic
genes from being activated (Jindra et al., 2015; Jindra et al., 2013; Liu et al., 2009; Nijhout,
1998). When bound to the Ecdysone receptor (EcR), 20E activates a transcriptional cascade of
genes which induces molting (Riddiford et al., 2000) and adult tissue morphogenesis by
activating a transcription factor called Ecdysone-induced protein 93 (E93) (Belles and Santos,
2014; Jindra, 2019; Truman and Riddiford, 2019). Conversely, JH binds to its receptor
methoprene-tolerant (Met) and induces the expression of Kriippel homolog 1 (Kr-h1), which
represses E93 (Belles and Santos, 2014). Together, these regulators comprise the MEKRE93
pathway, which appears to be highly conserved across most insects studied to date (Belles, 2019;
Belles, 2020). During metamorphosis, these regulators play critical roles in regulating

metamorphic timing (Hatem et al., 2015; Mirth et al., 2005; Nijhout, 2015; Rountree and
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Bollenbacher, 1986; Yamanaka et al., 2013) and hence the final body size (Caldwell et al., 2005;
Callier and Nijhout, 2013; Nijhout et al., 2014; Nijhout and Williams, 1974). We will discuss
how hormones impact body size in Section 2. In addition, tissue proliferation and morphogenesis
are also regulated by these hormones by impacting the expression of many target genes
(Champlin and Truman, 1998a, b; Herboso et al., 2015; Mirth et al., 2009; Truman and
Riddiford, 2002, 2007).

Just as the major metamorphic hormones of vertebrates are regulated by the brain, the
production of metamorphic hormones in insects is also regulated by the brain, which can
integrate various environmental cues (Fig. 2B). Ecdysteroids production and release is regulated
by prothoracicotropic hormone (PTTH), which is synthesized in the brain and released by the
corpora cardiaca. JH synthesis and release is stimulated and inhibited by neuroendocrine factors
called allatotropins and allatostatins, respectively, although the roles of these factors in the
regulation of metamorphosis remain poorly understood (Goodman and Granger, 2005; Nijhout et
al.,2014). Based on studies done in the silkworm, Bombyx mori, the allatostatins appear to act
directly on the corpora allata whereas allatotropins appear to act indirectly by inhibiting Short
neuropeptide F (sNPF), an inhibitor of JH biosynthesis that is produced in the corpora cardiaca
(Kaneko and Hiruma, 2014) (Fig. 2B). JH activity is also modulated by JH degradation enzymes,
JH esterase (JHE) and JH expoxide hydrolase (JHEH).

In addition to these two metamorphic hormones, Insulin-like peptides act on the
Insulin/Target of rapamycin (TOR) signaling pathway and impact growth of insects (Koyama et
al., 2020). This pathway plays an important role in regulating growth rate and determining the
overall body size of the adult (Brogiolo et al., 2001; Geminard et al., 2009). Nutritional

availability influences growth in almost all animals, and this pathway links growth of organisms
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to nutrient availability (Geminard et al., 2009; Ikeya et al., 2002; Masumura et al., 2000). In
addition, this pathway plays a major role during metamorphosis to control tissue specific growth
(Shingleton et al., 2005; Tang et al., 2011). Insulin-like peptides are often released in response to
nutrients (Park et al., 2014) although in many cases, the interaction is indirect. For example, in
the fruitfly larvae, different tissues sense amino acids and sugars and release factors that then
travel to cells that release insulin-like peptides (Fig. 2B; Agrawal et al., 2016; Colombani et al.,
2003; Geminard et al., 2009; Kim and Neufeld, 2015; Koyama and Mirth, 2016; Néssel and
Broeck, 2016; Sano et al., 2015). Once released, Insulin-like peptides travel to other parts of the
body where they bind to the Insulin receptor, which activates a signal transduction cascade that
ultimately leads to phosphorylation of the forkhead transcription factor, Forkhead box O (FoxO),
which regulates many developmentally and physiologically relevant genes (Koyama et al.,
2020). The Insulin/TOR signaling interacts with the ecdysteroid signaling pathway in a complex
manner: Insulin/TOR signaling regulates the production of ecdysone, thus impacting the timing
of metamorphosis (Mirth et al., 2005), while ecdysteroids also act to suppress Insulin signaling

(Colombani et al., 2005; Mirth et al., 2014).

2. Environmental impacts on metamorphic hormones

Although the production of the hormones mentioned above are regulated by gene
products, they also respond readily to environmental conditions. In this section, we address how
the environment can impact hormonal systems. Where possible, we also review how

metamorphic hormones respond to these environmental cues and impact phenotypes.

2.1. Environmental impacts of vertebrate metamorphic hormones

10



222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

In vertebrates, various environmental cues have been shown to influence hormone titers.
For example, thyroxine, triiodothyronine (T3) and corticosteroid levels all increase rapidly when
tadpoles of the Western spadefoot toad, Scapiopus hammondii encounter decreasing water levels
(Denver, 1998). These environmental changes are sensed by the brain neurons, which trigger an
increase in CRH release from the hypothalamus activating the HPT axis (Boose and Denver,
2002; Denver, 1998). These changes are correlated with an earlier onset of and small body size at
metamorphosis (Denver et al., 1998).

Temperature also impacts T3 and corticosteroid levels. In leopard frog tadpoles,
Lithobates pipiens, corticosteroid levels peak earlier and T3 levels are elevated at higher
temperatures (Freitas et al., 2017). Similarly, and tadpoles of the American bullfrog, Lithobates
catesbeianus, also have elevated T3 levels at higher temperatures (Freitas et al., 2016). Higher
temperatures are associated with faster growth and earlier onset of metamorphosis and smaller
sizes at metamorphosis (Alvarez and Nicieza, 2002; Leips and Travis, 1994; Smith-Gill and
Berven, 1979). Although hormonal changes could explain some of these changes, it is also
possible that the phenotypic effects could also result from increased rates of intrinsic
biochemical reactions and an overall reduction in cell size (Atkinson and Sibly, 1997).

Nutrition also impacts the timing of metamorphosis of anurans. There is a critical size
above which food deprivation accelerates metamorphosis (Leips and Travis, 1994) and leads to
smaller body sizes at the time of metamorphosis (Denver et al., 1998; Nicieza, 2000). These
impacts appear to be regulated by hormones. T3 and corticotropin-releasing hormone levels are
increased in food restricted mid-prometamorphic S. hammondii tadpoles (Boorse and Denver,
2003), and thyroid glands from starved late pre- to early prometamorphic Rana catesbeiana

tadpoles also produce significantly higher amounts of T4 (Wright et al., 1999).

11
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2.2. Environmental regulation of insect metamorphic hormones

In insects, a complex interaction between various endocrine regulators determines the
timing of metamorphosis (Koyama et al., 2020). Within a particular species, the timing of
metamorphosis can shift depending on environmental conditions, such as temperature and
nutrient availability (Davidowitz et al., 2003). Both heritable differences in developmental time
and plastic responses to the environment may involve alterations in endocrine regulators. In the
lab, higher temperatures almost always lead to small adult body sizes by shortening the growth
period (Davidowitz et al., 2003; Davidowitz et al., 2004; Klok and Harrison, 2013). Observations
in the field are much more complex and appear to depend on several factors including the
number of generations, temperature, survival, and photoperiod (e.g. Atkinson, 1994; Horne et al.,
2015; Imasheva et al., 1994; James et al., 1997; Roff, 1980).

Although studies have explored the cellular basis of temperature-dependent differences in
body size (Atkinson and Sibly, 1997; Partridge et al., 1994; Zwaan et al., 2000), we still do not
have a clear understanding of how temperature during the growth period impacts endocrine
events that regulate life history transitions. However, the environment can impact hormones that
regulate growth. A recent study on the cricket Modicogryllus siamensis demonstrated that higher
rearing temperatures lead to enhanced Insulin/TOR signaling, leading to faster growth rate (Miki
et al., 2020). Insulin/TOR signaling, however, does not impact the number of instars in M.
siamensis; instead, the timing of JH decline impacts the duration of the juvenile growth period in
a photoperiod-dependent manner (Miki et al., 2020). Thus, body size determination appears to

rely on a complex interaction of endocrine regulators that respond differently to distinct
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environmental cues. Furthermore, we still do not understand how temperature influences the
duration of larval stage, and more studies are needed to address this issue.

In addition, the environment can impact the timing of diapause and adult eclosion.
Diapause is a dormant stage in insects that is equivalent to hibernation in vertebrates. Depending
on the species, different life history stages diapause, but metamorphic hormones often play
prominent roles in regulating both the entry and duration of diapause (Chippendale and Yin,
1975; Sim and Denlinger, 2008, 2013; Zdarek and Denlinger, 1975). Environmental conditions,
such as temperatures, can impact metamorphic hormones to influence the timing and duration of
diapause (Cambron et al., 2021; Green and Kronforst, 2019; Turnock et al., 1986). We suspect
that hormonal responses to environmental conditions are the norm, and that species can utilize
these cues to coordinate life history transitions and phenotypic outcomes.

We end this section by discussing how hormones play prominent roles in polyphenisms.
Polyphenic organisms can produce two or more distinct phenotypes from one genotype
depending on the environment. A classic example of a polyphenism includes the polyphenisms
of horned beetles where smaller male beetles have no horns on the head or the thorax, whereas
larger male beetles grow horns (Kijimoto et al., 2013). These alternative morphs are both
adaptive: Horned males use their horn as weapons to engage in male-male combat and guard the
tunnels in which females are found, whereas hornless males “sneak by” the males by creating
side-tunnels and gain access to the females (Emlen, 1997). Other examples of polyphenisms
include the diet-induced polyphenisms of the caterpillars of Nemoria aizonaria, which can either
develop into oak twig-resembling larvae or catkin-resembling morphs (Greene, 1989), and
butterfly wing polyphenisms, where adult morphs adopt distinct wing color patterns depending

on the season (Nijhout, 2003).
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In polyphenisms, hormones play a salient role in instructing identical genomes to give
rise to distinct adult morphologies that are adapted to particular environments (Nijhout, 1999,
2003). Because of the major effects developmental hormones have on adult tissue
morphogenesis, small changes in the endocrine system can lead to profound changes during
metamorphosis that results in distinct, and at times spectacular, adult phenotypes (Fig. 3). In
many polyphenisms, the endocrine centers integrate environmental stimuli encountered by the
larva and adjusts the amount and timing of hormone production/release/response. For example,
in the squinting bush brown butterfly Bicyclus anynana, the adult wing has eyespots that serve as
defense against potential predators. Depending on the environment, both the ecdysteroid titers
and the amount of ecdysone receptors expressed on the wing discs change (Monteiro et al., 2015)
and impact the size of eyespots. In another butterfly, Precis coenia, the wings can be red and
brown depending on the photoperiod and the temperature and their impacts on ecdysteroid levels
during the early pupal stage (Rountree and Nijhout, 1995). Similarly, the alternative morphs of
horned beetles are regulated by the titers of JH and ecdysteroids that are modulated by the

amount of nutritional consumption (Emlen and Nijhout, 1999; Emlen and Nijhout, 2001).

3. The role of hormones in biasing evolution

Metamorphosis is a time when the same developmental hormone coordinates change in
multiple tissues at once (known as hormonal pleiotropy or hormonal integration) (Box 1; Fig.
4A). Hormonal pleiotropy may influence the evolutionary trajectory of organisms. The effect of
hormonal pleiotropy on the evolution of organisms is dependent on the way each tissue responds
to hormones (Ketterson et al., 2009). If increases in hormones enhance fitness of all traits,

hormonal systems will likely evolve rapidly. In contrast, if increases in hormones leads to fitness
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enhancing changes in some tissues but not others, antagonistic selection may constrain the
evolution of the traits involved (McGlothlin and Ketterson, 2008). For example, a hormone
might promote the growth of a body part which might contribute to increased fitness. If the same
hormone also promotes growth of another structure which reduces fitness, hormonal pleiotropy
may prevent one trait from increasing in size while reducing the size of the other trait. Although
tissue responses to hormones can evolve over time, in the short term, hormonal pleiotropy can
prevent rapid adaptive changes (Ketterson and Nolan, 1999). In addition, because the same
metamorphic hormone can also regulate myriad of other traits beyond metamorphosis (Deal and
Volkoff, 2020; Flatt et al., 2005; Hayes, 1997), endocrine regulation that has been shaped by
natural selection during another life history stage could also impact endocrine regulation during
metamorphosis. For example in insects, JH plays roles in behavior (Huang et al., 1991; Sullivan
et al., 2000; Zhang et al., 2020), reproduction (Bilen et al., 2013; Santos et al., 2019) and aging
(Yamamoto et al., 2013). The non-metamorphic roles of thyroid hormone has not been studied as
extensively in metamorphic vertebrates, but in fishes, it appears to impact embryonic survival,
larval growth (Alinezhad et al., 2020; Ayson and Lam, 1993), and gonadal sex ratios (Sharma
and Patino, 2013).

In particular, in insects, many adult tissues (e.g. eyes, legs, wing) arise from the
proliferating tissues called imaginal cells that proliferate in response to ecdysteroids (Champlin
and Truman, 1998b; Herboso et al., 2015; Nijhout and Grunert, 2002; Nijhout et al., 2007).
Death of larval cells in various tissues is also coordinated by ecdysteroids (Nicolson et al., 2015).
A change in the production of, or response to, metamorphic hormones can lead to catastrophic
changes in the development of larvae, typically resulting in the death right before pupation

(Cherbas et al., 2003; Davis et al., 2005; Ohhara et al., 2015; Tan and Palli, 2008). Moreover,
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tissue growth is coordinated by hormones such that disruption of one tissue can impact
metamorphosis of the whole organism (Cherbas et al., 2003; Colombani et al., 2012).

This does not necessarily mean that developmental events regulated by metamorphic
hormones cannot evolve. If changes in the same hormone exert favorable changes across most
tissues, selection on the endocrine system can allow for the rapid evolution of coordinated
changes in multiple tissues and lead to dramatically altered phenotypes. The evolution of
organisms that retain juvenile traits as reproductive adults (for example, the Mexican axolotl, the
strepsipteran Xenos vesparum or the Japanese mealybug, Planococcus kraunhiae) often arise
from changes in endocrine-dependent regulators (Chafino et al., 2018; Rosenkilde and Ussing,
1996; Vea et al., 2019). Thus, hormonal pleiotropy, at least in the short term, likely biases the
way traits evolve and can acts as a developmental constraint (Smith et al., 1985) or a

developmental drive (Box 1) (Arthur, 2001).

4. The role of hormones in facilitating the evolution of adult phenotypes

Although the highly pleiotropic developmental physiology might temporarily slow the
evolution of metamorphic processes, the same endocrine regulators can also contribute to
phenotypic diversification. Two distinct processes can lead to phenotypic diversification of adult

morphologies: heterochrony and modularization or co-option of endocrine-dependent processes.

4.1. Heterochronic shifts of metamorphosis can promote adult size diversity
A glance at the organisms living around us highlights the diversity of body sizes across
species. Although body sizes and hence the timing of metamorphosis can be impacted by

environmental conditions, these differences can be explained by specific-specific differences: No
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matter how much a fruit fly larva eats, it will never grow as large as a bullfrog. At least some of
the diversity of body size can be explained by genetic changes in the timing of metamorphosis
(heterochrony).

Heterochronic shifts in the timing of thyroid hormone-mediated metamorphosis can
impact adult sizes in Deuterostomes. In amphibians, premature exposure to thyroid hormone can
cause the tadpole to initiate metamorphosis at a much smaller size than normally observed
(Gudernatsch, 1912; Shi et al., 1996). In contrast, experimental ablation of thyroid glands can
cause the tadpole to continue feeding and grow to an enormous size (Allen, 1916). An extreme
case of heterochronic shifts has been documented in the direct-developing anuran,
Eleutherodactylus coqui (Callery and Elinson, 2000). In this species, thyroid hormone
production is initiated during embryogenesis such that the tadpole state is bypassed and a
miniature adult frog hatches from the eggs. Shifting the timing of metamorphosis thus has
profound impacts on the size of the adult. Similarly, exposure to thyroid hormone or thyroid
hormone inhibitors can accelerate or delay, respectively, the timing metamorphosis in
echinoderms (Heyland and Hodin, 2004).

In insects, body size can respond readily to artificial selection with corresponding shifts
in the timing of metamorphosis (Grunert et al., 2015). In fact, it is the heritable changes in the
endocrine response to the environment that often appears to be under selection and to underlie
the divergent life history strategies. For instance, insects have evolved distinct responses to
starvation depending on the feeding ecology (Callier and Nijhout, 2013; Hatem et al., 2015;
Helm et al., 2017; Nagamine et al., 2016; Nijhout, 2015; Xu et al., 2020). In species that feed on
ephemeral food sources, starvation often triggers an immediate switch to metamorphic induction

by activating ecdysteroid production, ensuring that the larvae regardless of their size will initiate
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metamorphosis (Helm et al., 2017; Mirth et al., 2005). In species that have reliable food supply,
starvation halts ecdysteroid synthesis, leading to a delay in the timing of metamorphosis
(Nijhout, 2015; Xu et al., 2020). Moreover, different species have distinct threshold sizes, which
is the size checkpoint that determines when a larva can metamorphose (Nijhout, 1975).
Threshold size plays a critical role in the final size of the adult and does so by determining the
timing of JH decline (Chafino et al., 2019; He et al., 2020).

In species with larvae that feed and grow, changes in the timing or rate of metamorphic
hormone synthesis, release or sensitivity can influence final adult size (Fig. 3). Because the
endocrine regulators themselves do not change, such changes can occur without disrupting the
process of metamorphosis itself. Thus, heterochronic shifts in the timing of metamorphosis, and
hence the evolution of final adult size, may occur over just a few generations. We note that
heterochronic changes can also occur at the level of individual tissues or behavior. Such
heterochronic shifts can occur when traits become modularized and respond to hormones in a

trait-specific manner (see next section).

4.2. Modularization and co-option of hormone action promotes adult phenotypic
diversification

Although the pleiotropic effects of metamorphic hormones might temporarily constrain
evolution of metamorphic events, the sensitivity of target tissues to hormones may not be
constrained in the same manner. Adaptive change in the sensitivity of tissues allows individual
traits to be regulated independently from the rest of the body. Modularization (Box 1), or the
evolution of a unique set of responses to hormones, releases the constraints imposed by the

pleiotropic effects of endocrine regulators. Endocrine regulators can also be recruited to regulate
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new developmental event in a tissue specific manner (a process known as co-option) (True and
Carroll, 2002).

The most obvious demonstration of modularization and/or co-option of hormonal
pathways in adult development is seen in insect polyphenisms. A recent survey of nymphalid
butterflies has demonstrated that 20E titers fluctuate in a thermally sensitive manner regardless
of the effect on wing coloration (Bhardwaj et al., 2020). Thus, in polyphenic butterflies, the
pigment specification and/or synthesis pathways appear to have co-opted the pre-existing
thermally-sensitive ecdysteroid peak of metamorphosis so that the adult wing coloration can be
modulated by the larval environment. This example suggests that 1) hormonal levels respond
readily to the environment and 2) target tissues can evolve to respond uniquely to the fluctuating
hormones.

In other polyphenic traits, hormones that regulate growth of the body can have an
exaggerated effect on specific parts of the body. The impressive weapons of rhinoceros beetles
grow larger because insulin signaling has an outsized effect on the growth of the head horns
(Emlen et al., 2012). Similarly, the disproportionate growth of the horns and mandibles in some
beetle species is regulated by localized effects of hormones that arise due to tissue specific
sensitivities to metamorphic hormones (Emlen and Nijhout, 1999, 2001; Gotoh et al., 2011;
Gotoh et al., 2014). Thus, when individual tissues acquire the ability to uniquely respond to
hormones, phenotypes can overcome hormonal pleiotropy and diversify (Fig. 4B). Such changes
could arise, for example, by the increased production of the hormone receptor or by more
efficient conversion of the prohormone to an active hormone in a particular tissue (Fig. 4B).

Finally, we note that modularity facilitates heterochronic shifts of modules. Hormones

can act on individual modularized traits and either speed up or slow down development relative
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to an ancestral trait. Thus, heterochronic changes and modularization can both facilitate
phenotypic diversification. For example, changes in thyroid hormone have been suggested to
underlie the diversification of barb species in Lake Tana: Experimental alterations of thyroid
hormone levels in Lake Tana barbs Labeobarbus intermedius, for example, can accelerate or
slow down craniogenesis and produce a bony skull that resembles that of Labeobarbus
brevicephalus and Labeobarbus megastoma, respectively (Shkil and Smirnov, 2016; Smirnov et
al., 2012). Thyroid hormone does not uniformly impact craniogenesis. Rather, different skull
bones have distinct sensitivities to thyroid hormones, allowing thyroid hormone to
heterochronically alter the development of skull bones in a modular fashion (Shkil et al., 2012;

Shkil and Smirnov, 2016).

5. The developmental goblet: Metamorphosis as both a constrained and evolvable stage in
development

In embryos, the phylotypic stage (Box 1) has been proposed to be a time when
development is highly constrained and embryos resemble each other across species (Raff, 1996).
This understanding led to the conceptualization of a developmental hourglass (Box 1), which has
a broad base and broad top that sandwiches a narrow opening, representing the conserved
phylotypic stage (Duboule, 1994; Raff, 1996). During the phylotypic stage, complex gene
regulatory interactions pattern the major body plans, and any alterations in the interactions are
likely to have profound changes in the body plan and the survival of an embryo (Galis and Metz,
2001). Because of these developmental constraints (Smith et al., 1985), gene interactions are
predicted to be relatively stable across different species of a phylum, which share similar body

plans.
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451 We have discussed how pleiotropy of hormone action can bias development and how
452  release from pleiotropic regulation via modularization and/or co-option of endocrine regulation
453  can allow for diversification of traits. Across species, we propose that the amount of constraint
454  could still be larger during metamorphosis than during the larval or adult stage. We, therefore,
455  suggest that the early portion of metamorphosis represents a second developmentally constrained
456  stage, during which the endocrine mechanisms controlling life history transitions are conserved.
457  Drost et al (2017) have also hypothesized that metamorphosis may be another constrained stage.
458  Conversely, the larval and late metamorphic stages are less constrained and developmentally
459  uncoupled from each other, allowing divergent stage-specific adaptations (Moran, 1994). If we
460  were to graphically depict the amount of phenotypic and/or developmental variability across
461  post-embryonic development of various metamorphic species within a phylum, we expect an
462  hourglass shape to emerge where the constriction corresponds to metamorphosis, and the broad
463  base and the broad top correspond to the larger phenotypic and/or developmental variability of
464  larvae and adults, respectively (Fig. 5). The width of the constriction would then depend upon
465  the degree to which tissues have become modularized or uniquely sensitive to hormones: the
466  more modularized the tissues, the less constricted the hourglass.

467 The phenotypic diversity of metamorphic animals can then be depicted as two stacked
468  developmental hourglasses, composed of an embryonic and a post-embryonic hourglass (Fig. 5).
469  The resulting goblet shape may therefore be more appropriate for metamorphic animals with
470  complex life cycles: the base and the cup representing early embryogenesis and adult

471  development, respectively, and the bulge in the stem of a goblet representing the late

472  embryo/larval stage (Fig. 5). We call this the developmental goblet (Box 1).
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We suspect that hormonal pleiotropy will constrain the metamorphic stage. However,
unlike the embryonic phylotypic stage, the constraints could be more easily overcome by
modularization of hormonally regulated traits, and co-option of endocrine regulation can lead to
diversification of particular body parts or specific metabolic process. In animals that undergo
drastic changes in body plans, metamorphosis is a post-embryonic developmental stage when the
expression and/or activity of conserved developmental genes, such as homeobox genes, are
modulated by the action of metamorphic hormones and their targets (Gaur et al., 2001; Monier et
al., 2005; Mou et al., 2012). In insects undergoing metamorphosis, ecdysteroids activate various
signaling networks in a tissue-specific manner (Li and White, 2003). In anurans, Hox genes
involved in limb development are activated during limb outgrowth (Lombardo and Slack, 2001),
and thyroid hormone-induced metamorphosis in axolotls has been shown to activate the
expression of Hox5a in the heart (Gaur et al., 2001). In flatfish, developmental genes are also
regulated by thyroid hormone in a tissue-specific manner during metamorphosis (Alves et al.,
2016). Thus, hormones coordinate metamorphic events across a variety of tissues, but individual
tissues can respond at different times and in distinct ways by activating target developmental
genes in a tissue-specific manner. Thus, metamorphosis offers opportunities for innovation and
phenotypic diversification.

Finally, we note that the shape of the goblet will likely depend on the taxon. In
metamorphic organisms that undergo dramatic tissue reprogramming and remodeling (e.g.
insects with complete metamorphosis), the constriction during metamorphosis maybe more
pronounced than organisms in which adult organs develop from preexisting larval organs

changes (e.g. fishes).
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6. Developmental homeostasis as a driver of evolution by genetic accommodation under a
changing climate

Phenotypic plasticity is the ability of an organism with the same genotype to give rise to
different phenotypes depending on the environment (Box 1). Phenotypic plasticity has been
recognized as an important of how populations might respond to climate change (Merila and
Hendry, 2014; Reed et al., 2011; Rodrigues and Beldade, 2020). Moreover, phenotypic plasticity
has been proposed to facilitate phenotypic evolution by allowing organisms to explore novel
morphospace under altered environmental or genetic backgrounds (Nijhout et al., 2021; West-
Eberhard, 2003). Specifically, when genetic differences underlie the organisms’ variable
phenotypic responses to the novel environment, natural selection can act on the induced
phenotypes. The genetic variation underlying the phenotypic variation under the novel
environment is called cryptic genetic variation (Box 1), which is normally hidden but is exposed
under stressful or novel environments (Gibson and Dworkin, 2004). Selection on these revealed
cryptic genetic variants can lead to evolution of novel phenotypes. Genetic accommodation (Box
1) is the name given to such an evolutionary process (West-Eberhard, 2003).

Climate change dependent phenotypic plasticity may lead to adaptive evolution by
genetic accommodation (Kelly, 2019). Although several mechanisms have been proposed to
explain genetic accommodation, developmental hormones may play a role in this process (Fig. 6)
(Kulkarni et al., 2017; Lafuente and Beldade, 2019; Lema, 2020; Lema and Kitano, 2013; Levis
and Pfennig, 2019; Suzuki et al., 2020). Developmental hormones often regulate both trait
development and homeostasis, thus serving as the nexus between the environment and
development (Denver, 2009; Dufty et al., 2002; Xu et al., 2013) (Fig. 3). Hormonal changes can

manifest as phenotypic differences and the degree to which a developmental hormone impacts
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the phenotype and facilitate phenotypic evolution can vary according to the cryptic genetic
variation that is revealed under stressful conditions (Suzuki et al., 2020; Suzuki and Nijhout,
2006, 2008).

Altered temperature and precipitation patterns due to climate change (Intergovernmental
Panel on Climate, 2014; Trenberth, 2011), and resulting changes in food availability, may lead to
such stressful environments that disrupt physiological homeostasis and reveal cryptic genetic
variation. If the population encounters a directional change in environmental conditions (e.g.,
warmer and moister) over multiple generations, hormonally mediated traits may evolve by either
shifting the timing of life history transitions or by altering the adult phenotypes by co-option or
modularization of hormonally mediated traits (Fig. 6). For example, in amphibians, desiccation
stress and nutritional stress have both been shown to lead to changes in stress hormones, which
in turn impacts that timing of metamorphosis and life history transitions (Ledon-Rettig et al.,
2009; Denver, 1997; Denver et al., 2002; Kulkarni and Buchholz, 2014; Wada, 2008). In
spadefoot toads, aridification has been proposed to have led to the evolution of species with
shorter larval periods by adjustments in thyroid hormone titers through genetic accommodation
(Gomez-Mestre and Buchholz, 2006; Kulkarni et al., 2017).

In insects, JH levels increase or fail to decline in larvae exposed to stressful
environments (Browder et al., 2001; Cymborowski et al., 1982; Jones et al., 1990; Rauschenbach
et al., 1987; Suzuki and Nijhout, 2006; Xu et al., 2020), possibly due to the inhibition of the JH
degradation enzyme, JHE (Hirashima et al., 1995), and/or changes in JH binding proteins, which
may alter the bioavailability of JH (Tauchman et al., 2007). Cryptic genetic variation that confers
differential sensitivity to heat or nutritional stress could lead to variation in JH levels that

selection could act upon. Similarly, 20E levels has been shown to increase in response to thermal
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stress in adult Drosophila virilis (Hirashima et al., 2000), and in the common cutworm,
Spodoptera litura, mild thermal stress upregulates the expression of EcR during metamorphosis
(Shen et al., 2014). Thus, environmental stress can impact both JH and ecdysteroid signaling.

Finally, evolution of hormonal systems could also impact insect diapause through genetic
accommodation. Emergence of adults is regulated by hormones, and selection for
environmentally sensitive alleles of endocrine regulators has been proposed for the evolution of
diapause by genetic accommodation (Schiesari and O’Connor, 2013). Moreover, climate change
may impact the timing of entry and exit from diapause (Forrest, 2016). Taken together, genetic
accommodation of hormonal regulation may play a role in the evolution of the timing of
metamorphosis and life history transitions.

Taken together, genetic accommodation mediated by physiological homeostasis can
change the shape of the developmental goblet in two ways: Either the height can change, or the
width of the upper constriction and shape of the “cup” might change (Fig. 7). For example, parts
of the hourglass may lengthen due to changes in diapause, dormancy or the timing of
metamorphosis, each of which would increase the height of the hourglass (Fig. 7A).
Alternatively, the width and shape of the upper cup can change by increased modularity and
release from hormonal pleiotropy (Fig. 7B). Of course, different species respond in disparate
ways to varying environmental conditions. Thus, the overall effect of genetic accommodation on
a group of species will be the total of such changes.

Climate change will impact the length of the growing season, the timing of
metamorphosis and the size of adult organisms which can impact fitness (Blanckenhorn, 2000;
Blanckenhorn and Demont, 2004; Daufresne et al., 2009; Honék, 1993; Sheridan and Bickford,

2011). Although these changes certainly have many proximate causes (Atkinson, 1994; Atkinson
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565 and Sibly, 1997; Verberk et al., 2021), how a species adapts in response to climate change may
566  also depend on the developmental system as well as the amount and nature of cryptic genetic
567  variation: stabilization of the newly induced phenotypes can lead to genetic assimilation (or
568  fixation) of the novel phenotypes (Box 1); selection on the novel phenotypes could lead to

569 increased phenotypic plasticity; or selection in the altered environment could lead to

570  compensatory genetic changes that restores the original phenotype (i.e., genetic compensation)
571  (Grether, 2005). Because so many traits are regulated by hormones, changes in hormonal

572  response requires uncoupling of tissues and subsequent evolution of appropriate tissues specific
573  adaptations — modularization of adaptation. Whether such changes can happen fast enough to
574  keep up with the rapid pace of climate change remains unclear. Therefore, metamorphic

575  organisms may not be able to evolve in all directions depicted in Fig. 7. Instead, certain

576  directions of change may occur more rapidly than others.

577

578 8. Conclusions

579 Climate change in the Anthropocene has dramatically accelerated extinction rates

580 (Waters et al., 2016). However, how evo-devo intersects with climate change remains poorly
581 studied (Campbell et al., 2017; Gilbert, 2021). Recent studies have begun to identify alleles that
582  are involved in organismal response to climate change (Franks and Hoffmann, 2012; Merila and
583  Hendry, 2014), but the mechanistic basis of evolution of organisms in response to climate change
584  is still lacking (Chmura et al., 2019). In metamorphic organism, hormones play critical roles in
585 life history transitions. Because of the multitude of roles they play, hormones can bias the way
586  organisms develop and evolve, leading to changes in the shapes of the developmental goblet.

587  We propose that developmental homeostasis may be a contributor for adaptive evolution
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especially in a changing climate (Fig. 8). As organisms face climate change, changes in
homeostatic mechanisms may allow rapid adaptive responses in metabolism that are followed by
phenological and morphological changes that alter the shape of the developmental goblet. In
particular, physiological homeostasis can allow the expression of hidden genetic variation that
can promote adaptive evolution. The amount of hidden genetic variation present in a population
for such adaptive changes may then be a determinant of whether a population thrives or

collapses.
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Box 1 Terms used in this review

Terms used in this
review

Definition

Cryptic genetic

Hidden genetic variation of a trait that is revealed under

variation environmental stress. This genetic variation contributes to genetic
accommodation of a phenotype in a population of organisms
Deuterostomes The animals include chordates and echinoderms and are

characterized by the development of the anus before the mouth
during embryogenesis. Its sister group is called the protostomes,
which develop the mouth before the anus.

Developmental bias

A bias on the production of certain phenotypes due to the underlying
developmental system

Developmental
constraint

A limitation on the production of certain phenotypes due to the
underlying developmental system

Developmental drive

A positive drive that leads to the production of certain phenotypes
due to the underlying developmental system

Developmental goblet

A model for metamorphic organisms depicting that the phylotypic
stage and metamorphosis represent the times when development is
most conserved.

Developmental A model for embryogenesis that shows that the mid-embryonic stage

hourglass called the phylotypic stage is the time of highest developmental
conservation.

Genetic An evolutionary process by which an environmentally or

accommodation mutationally induced novel phenotype either becomes fixed or

becomes readily induced by small environmental fluctuations in a
population. It is characterized by either an increase or decrease in
phenotypic plasticity

Genetic assimilation

A special case of genetic accommodation whereby an
environmentally induced novel phenotype becomes fixed in a
population even without the initial environmental input. In this case,
phenotypic plasticity of the trait disappears and becomes robust (or
canalized)

Hormonal pleiotropy or
hormonal integration

Hormonal pleiotropy or hormonal integration occurs when a
hormonal system influences more than one distinct trait.

Modularity

The degree to which a trait can develop and evolve independently of
another. A module in a biological system can be defined at the
molecular, cellular or tissue level.

Phenotypic plasticity

The ability of an organism with the same genotype to give rise to
different phenotypes depending on the environment
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Phylotypic stage

A developmentally conserved stage that occurs during mid-
embryogenesis. Each phylum is thought to have a characteristic
phylotypic stage

Physiological
homeostasis

The ability of the endocrine system to respond to the environment so
that developmental and metabolic processes can proceed normally.
We propose that physiological homeostasis is key to an organism’s
ability to cope with climate change and suggest that genetic
variation in physiological homeostasis might dive the process of
genetic accommodation

Polyphenisms

A special case of phenotypic plasticity where two or more distinct
phenotypes arise as a consequence of a change in the environment
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Figure legends

Figure 1. Metamorphosis in insects and vertebrates. Holometabolous insects and anurans
grow as a larva and undergoes metamorphosis before developing into an adult. Major hormones
involved in this process are depicted next to the drawings. Insulin-like peptide is Dilp5 from
Drosophila (generated using FirstGlance in Jmol at http://first-glance.jmol.org).

Figure 2. Neuroendocrine regulation of metamorphosis. A. Metamorphic regulation of
amphibians (Modified from Denver (2013)). B. Hormonal regulation of insect growth and
metamorphosis. Many of the regulators secreted by the nutrient-sensing tissues were identified in
Drosophila melanogaster. We do not yet know how conserved these factors are across all
insects. Dotted red line indicates effect of stress on JH esterase activity.

Figure 3. Potential consequences of environmental changes on the timing of metamorphosis
and the development of adult phenotypes during metamorphosis. Adult body size can
become larger or smaller through changes in the timing of metamorphosis (solid red lines), or
distinct morphologies may develop in response to environmental changes (dotted red lines).
These events are often regulated by endocrine processes that respond to environmental cues.

Figure 4. Hormonal pleiotropy and modularization. (A) Hormonal pleitropy occurs when one
hormone impacts many tissues at the same time. (B) Specific tissues can overcome constraints
imposed by pleiotropy by evolving a unique response to hormones. Such changes could arise, for
example, by the cells becoming more sensitive to hormones by producing additional hormone
receptors.

Figure 5. The developmental goblet model for metamorphic organisms. (A) The phenotypic
diversity of metamorphic animals results from two stacked developmental hourglasses, the
developmental goblet, which is composed of an embryonic hourglass and a postembryonic
hourglass. The horizontal width of the hourglass represents phenotypic diversity across a taxon.
The vertical axis represents developmental time with the top of the goblet representing the adult
stage. (B) Components of the postembryonic hourglass. Early larval ecologies are diverse and
are reflected in the diversity of larval phenotypes. During metamorphosis, a small number of
developmental hormones coordinate the activation of a series of conserved genes that pattern the
general adult body plan. Subsequently, developmental trajectories diverge to generate various
adult morphologies.

Figure 6. Genetic accommodation via endocrine changes leads to changes in body size and
morphology. (Left) Developmental plasticity of an individual. Extreme environmental
conditions can lead to changes in the timing of metamorphosis or adult morphogenesis through
changes in the timing and amount of endocrine action (solid red lines). (Right) Such changes can
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be selected for and become genetically accommodated in a population over multiple generations,
leading to changes in phenotypic diversity (dotted red lines).

Figure 7. Changes in developmental endocrinology in response to climate change can lead
to changes in body size and metabolism/morphology. (A) Potential effects of heterochronic
shifts on the shape of the developmental goblet. Changes in endocrine system can lead to
alteration in duration of the larval or metamorphic stages. (B) Potential effects of
modularization/co-option on the shape of the developmental goblet. Changes in endocrine
system can lead to alteration in phenotypic diversity of the adult stages.

Figure 8. Impact of climate change on developmental hormones and their ultimate impacts
on populations and the ecosystem. Climate change can impact developmental physiology of
organisms that can influence their development and life history. Cryptic genetic variation that is
revealed as a consequence of climate change can fuel genetic accommodation of traits. The
degree to which members of a population can adjust their development and physiology
determines whether a population thrives or declines.
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