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ABSTRACT We report the first complete genome of Microcystis aeruginosa from
North America. A harmful bloom that occurred in the Caloosahatchee River in 2018
led to a state of emergency declaration in Florida. Although strain FD4 was isolated
from this toxic bloom, the genome did not have a microcystin biosynthetic gene
cluster.

Lake Okeechobee is the largest lake in the southeastern United States (1,900 km2)
and serves as a hub for water flow from the north to the Everglades in southern

Florida. When flood control releases are necessary, water is directed to the Atlantic and
Gulf coasts through two waterways, the St. Lucie River and the Caloosahatchee River,
respectively (1). Since the 1980s, Lake Okeechobee and its waterways have suffered
from chronic eutrophication problems and harmful cyanobacterial blooms (2). A recent
Microcystis aeruginosa bloom that occurred in the Caloosahatchee River in 2018 led to
a state of emergency declaration in Florida (3).

M. aeruginosa FD4 was isolated from surface water collected from the Caloosa-
hatchee River at the Fort Denaud Bridge (26.7444N, 81.5103W) on 27 June 2018 during
the bloom (3). The water quality parameters determined were as follows: water
temperature, 32.4°C; pH 7.7; dissolved oxygen, 3.0 mg/liter; total iron, 1.32 mg/liter;
chlorophyll a, 72.5 �g/liter; microcystin, 450.5 �g/liter; and hydrogen peroxide, 9.2 �g/
liter (3). Surface scum was originally incubated with ultrapure water with pyruvic acid
(8.8 �g/liter) at room temperature and then transferred to pyruvic acid-amended 10%
BG-11 with germanium dioxide (10 mg/liter) and cycloheximide (100 mg/liter) to inhibit
the growth of diatoms and other eukaryotes, respectively. Once we microscopically
confirmed that the culture was unialgal, strain FD4 was maintained in BG-11 medium
at 25°C under fluorescent light with a 12:12-h light/dark cycle. Genomic DNA was
extracted using the Quick-DNA miniprep plus kit (Zymo Research). The DNA was made
into SMRTbell libraries using the Express Template prep kit 2.0 (Pacific Biosciences). The
sample was multiplexed with other samples into a single library and size selected using
BluePippin (Sage Sciences) according to the manufacturer’s recommendations using
the 0.75% DF Marker S1 high-pass 6-kb to 10-kb v3 run protocol and S1 marker (BPstart
value of 8,000). The size-selected SMRTbell library was annealed and bound according
to the SMRT Link setup and sequenced with the PacBio Sequel II system (Pacific
Biosciences). Raw PacBio reads were converted to FASTA format with samtools fasta
and then assembled with Flye version 2.6 (4). Default parameters were used for all
software. The assembled genome was annotated with Prokka version 1.11 (5). The
genome was annotated with SEED Viewer (6) and the NCBI Prokaryotic Genome
Annotation Pipeline (GeneMark S-2� version 4.10) (7). The final assembly of the
genome comprised 5.45 Mbp at 125-fold coverage (N50 and N90, 10,352 and 6,453 bp,
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respectively) and consisted of two completely closed contigs, one chromosome, and
one plasmid (Table 1).

Although strain FD4 was isolated from the toxic algal bloom (3), the genome did not
have a microcystin biosynthetic gene cluster. It was confirmed by the annotations of
the predicted open reading frames and homology searches against the genome. The
presence of nine secondary metabolite gene clusters, including piricyclamide (8),
micropeptin, and aeruginosin, were identified using antiSMASH version 5.1.2 (9). These
numbers were quite small in comparison with those of M. aeruginosa NIES-2481
(GenBank accession number CP012375.1), in which 28 secondary metabolite gene
clusters were found (10). Haft et al. (11) found that all bacteria with a short C-terminal
homology domain that includes a highly conserved motif proline-glutamate-proline
triad (PEP-CTERM) have both an outer membrane and exopolysaccharide production
genes. Notably, 62 clusters of PEP-CTERM sorting domain-containing protein were
found along with genes of exopolysaccharide biosynthesis polyprenyl glycosylphos-
photransferase, polysaccharide pyruvyl transferase (CsaB), and WecB/TagA/CpsF family
glycosyltransferase in the genome, suggesting the possible association of these genes
for Microcystis colony formation (11). Consistent with the colony-forming ability of
strain FD4, we found a coding gene of gas vesicle protein GvpC and psb and apc
photoregulation clusters, which confer an ecological advantage to M. aeruginosa FD4
to compete with other phytoplankton through surface scum formation (12). Kardinaal
and colleagues (13) reported that nontoxic strains of Microcystis were better compet-
itors for light than toxic strains. Further genome annotation and genome comparisons
with other strains of M. aeruginosa will provide additional insights into the ecological
adaptation of this cyanobacterium.

Data availability. The genome sequence information has been deposited under
BioProject number PRJNA595771 (GenBank accession numbers CP046973.1 [chromo-
some] and CP046974.1 [plasmid]). The PacBio reads have been deposited in the SRA
under the accession number SRR12188899.
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TABLE 1 Genome statistics of Microcystis aeruginosa FD4a

Attributeb Value

Total genome size (bp) 5,493,112
Chromosome size (bp) 5,449,501
Plasmid size (bp) 43,611
G�C content (%) 42.59
Total no. of genes 5,455
Total no. of CDSs 5,403
No. of coding genes 4,679
No. of CDSs with protein 4,679
No. of RNA genes 52
No. of rRNA sets (5S, 16S, 23S) 2
No. of tRNAs 42
No. of ncRNAs 4
Total no. of pseudogenes 724
No. of CRISPR arrays 3
a Annotation is based on the total genome and the NCBI Prokaryotic Genome Annotation Pipeline.
b CDS, coding sequences; ncRNAs, noncoding RNAs; CRISPR, clustered regularly interspaced short palindromic
repeat.
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