
JANUS: Benchmarking Commercial and Open-Source Cloud and Edge Platforms for
Object and Anomaly Detection Workloads

Karthick Shankar, Pengcheng Wang, Ran Xu, Ashraf Mahgoub, Somali Chaterji

Purdue University, West Lafayette, IN, USA

Abstract—With diverse IoT workloads, placing compute
and analytics close to where data is collected is becoming
increasingly important. We seek to understand what is the
performance and the cost implication of running analytics on
IoT data at the various available platforms. These workloads
can be compute-light, such as outlier detection on sensor data,
or compute-intensive, such as object detection from video feeds
obtained from drones. In our paper, JANUS, we profile the
performance/$ and the compute versus communication cost
for a compute-light IoT workload and a compute-intensive
IoT workload. In addition, we also look at the pros and
cons of some of the proprietary deep-learning object detection
packages, such as Amazon Rekognition, Google Vision, and
Azure Cognitive Services, to contrast with open-source and
tunable solutions, such as Faster R-CNN (FRCNN). We find
that AWS IoT Greengrass delivers at least 2X lower latency
and 1.25X lower cost compared to all other cloud platforms
for the compute-light outlier detection workload. For the
compute-intensive streaming video analytics task, an open-
source solution to object detection running on cloud VMs saves
on dollar costs compared to proprietary solutions provided by
Amazon, Microsoft, and Google, but loses out on latency (up
to 6X). If it runs on a low-powered edge device, the latency is
up to 49X lower.

Keywords-sensor data outlier detection, object detection,
AWS EC2, AWS IoT Greengrass, AWS Lambda

I. INTRODUCTION

Cloud computing (a.k.a Infrastructure-as-a-service) is be-

coming the main execution environment for many users due

to its ease of management, scalability, and fault-tolerance.

By removing the need for hardware and cluster management,

users can now focus on their application needs and have a

finer-granularity pricing model for their resource usage, even

more so with the advent of serverless computing where the

billing is compute-driven rather than time-driven [2, 22].

For example, Amazon AWS provides a virtualized server-

based computing service Amazon Elastic Compute Cloud or
Amazon EC2. Amazon also provides a serverless computing

service, AWS Lambda, which allows users to execute their

code without having to provision or manage servers. Users

essentially pay for the exact amount of allocated resources

and the compute time (in 100ms increments) with no charge

for idle time. With serverless computing, applications can

automatically scale instantaneously by running code in re-

sponse to events or triggers. Amazon IoT Greengrass further

extends the AWS infrastructure to the edge and provides

lower latency computation through running code on the same

IoT device(s) that collects the data.

The three services vary in their strengths and deciding

which service to use for a given workload is not trivial

for several reasons: (1) Users have different $ budget and

performance requirements. (2) Real-world workload charac-

teristics often vary over time [25, 26, 27, 33], e.g., streaming

video analytics can be compute-intensive in case of fast-

changing scenes and becomes lighter for relatively static

scenes. (3) The $ cost with each service varies with time and

geographical regions. (4) Different services have different

types of limitations, which may make it impossible to run

a particular application on some service. For example, in

AWS Lambda, a function has a time limit of 15 minutes,

which makes running complex, stateful algorithms difficult.

Also, picking exact configurations for the instances that run

the serverless code is not possible (users can only specify

the memory requirements, and other resources are scaled

accordingly). Therefore, quantitative evaluation is needed

with representative applications in order to identify the

appropriate computing framework for the applications, to

explore the trade-off between accuracy, performance, $ cost,

and configurability.

In JANUS1, we compare several cloud computing services

for two representative IoT applications that vary in com-

plexity. The first is a simple outlier detection application for

sensor data, and the second, is a complex object detection

application on streaming video. Both of these algorithms

are ubiquitous in IoT, rely on online data streaming, and

provide contrasting bandwidth requirements and algorithmic

processing capabilities [29, 36]. Therefore, we select these

two applications as representative workloads for compute-

light vs. compute-intensive IoT applications. IoT devices are

used for simple data acquisition in many scenarios, like in

farms [11, 21] and for self-driving cars [9, 12]. Since the

volume of data acquired through these sensors is high, it

is often run through an outlier detection program to ensure

proper analysis of data and to discover faulty sensors. For

instance, in the case of farm sensor data, a farmer would

1Our system’s name is inspired by the Greek God who presides over
passages, doors, gates, and endings. We aim for our system JANUS to be
able to carve out the correct transition to right-sized algorithms for the
world to get maximum performance per dollar cost, since he looks to the
future and to the past.

590

2020 IEEE 13th International Conference on Cloud Computing (CLOUD)

2159-6190/20/$31.00 ©2020 IEEE
DOI 10.1109/CLOUD49709.2020.00088

want to know the real-time temperature and humidity of

the farm, and any delayed intervention may lead to losses

in yield and consequent financial losses. For the object

detection workload, many works like [19] use different

object detection algorithms on IoT devices for a variety of

situations like gaze detection and surveillance in smart cities.

Real-time object detection is essential to security-critical

or latency-critical scenarios like self-driving cars, or less

critically, yet increasingly prevalent, in large crowds at mass

entertainment events. Thus, these two workloads represent

popular options for IoT applications while showing variety

in compute requirements.

We perform benchmarking experiments with these appli-

cations on two different platform types—edge computing
and cloud computing platforms [31]. Within the edge com-

puting platform type, we explore the commercial offerings,

AWS Greengrass and Google IoT Edge and two different

types of compute nodes, a Raspberry Pi and a Docker

container, the latter to emulate more resource-rich devices

like the Nvidia Jetson series. Within the cloud computing

platform type, we conduct experiments on three commercial

offerings, Amazon EC2, Google Compute, and Microsoft

Azure Virtual Machine. Our goal is to aid in selection of the

best platform for each target application. In addition, given

the huge increase in demand for streaming video analytics

(such as object detection), we profile three leading com-

mercial offerings, Amazon Rekognition, Google Vision, and

Azure Cognitive Services, to benchmark against a popular

open-source region-based CNN using attention mechanisms

called Faster R-CNN (FRCNN) [28]. We also use FRCNN

to show possible trade-offs between latency and accuracy

that can impact the end-to-end $ cost. We use FRCNN,

as opposed to other popular object detection algorithms

e.g., YOLO and SSD, since it has a higher accuracy with

classification and bounding box-regression in consecutive

stages, at the expense of computational complexity (useful

to showcase JANUS’s compute-intensive use case).

In this paper, we ask three questions vis-à-vis the com-

puting platforms and software packages described above.

1) What platform to run an IoT workload on, on the cloud

and on the edge, respectively for a compute-intensive

and for a compute-light workload?

2) What is the latency and $ cost of running on each

platform?

3) What is the advantage of using an open-source object

detection framework on a cloud-based virtual machine

over using the commercial offerings?

Following are the chief insights that come out of JANUS.

1) Our benchmarking of the compute-light IoT workload

reveals that AWS Greengrass delivers at least 2X lower

latency and 1.25X lower cost compared to all other

platforms for this workload (Tables III and IV).

2) Our benchmarking of the compute-intensive object

detection algorithm on streaming video on Amazon

Rekognition, Google Vision, and Faster R-CNN (on

Amazon EC2) reveals that Faster R-CNN is 12.8X to

21.0X cheaper than Amazon Rekognition and Google

Vision solutions but is also much slower than the

others (Table IX). Also, we propose a novel ap-

proximation of Faster R-CNN and show that we can

flexibly navigate the space of latency versus accuracy.

In contrast, for the commercial offerings, no such

tradeoff is possible. Among the commercial offerings,

Google Vision is faster but less performant in latency/$

terms than Amazon Rekognition (55% less) and Azure

Cognitive Services (11% less).

3) To delve deeper into the open source Faster R-

CNN, we execute it on the three commercial

cloud platforms—Amazon EC2, Microsoft Azure, and

Google Compute. We find that we can execute more

frames per $ on Google Compute than EC2 (94%) and

Azure (153%). We also see that one approximation

knob (the number of region proposals in FRCNN)

has significant effect on the running time—the run-

ning time is reduced by 57.3% when approximating

aggressively compared to the default parameter value

while the accuracy is reduced by only 9% (Table IX).

This tunability also has the additional interpretability

benefit, which is helpful in several domains [23].

II. BACKGROUND

Here we give a brief description of the foundational plat-

form and the different commercial edge computing platforms

and the vision services that we benchmark in this paper.

We also describe the open-source object detection software

package, Faster R-CNN. Since the commercial cloud com-

puting platforms we consider here are so commonplace, we

omit their background information.

Edge computing is the practice of placing computing

resources at the edges of the Internet in close proximity to

devices and information sources. This, much like a cache

on a CPU, increases bandwidth and reduces latency for

applications but at a potential cost of dependability and

capacity [10]. This is because these edge devices are often

not as well maintained, dependable, powerful, or robust as

centralized server class cloud resources.

The edge paradigm supports the large scale IoT devices,

where real-time data is generated based on interactions with

the local environment. This complements more heavy-duty

processing and analytics occurring at the cloud level. This

structure serves as the backbone for applications, such as

augmented reality and home automation, which utilize com-

plex information processing to analyze the local environment

to support decision making. In the IoT domain, functional

inputs and outputs are physically tied to geographically

distributed sensors and actuators. If this data is processed

in a central location, immense pressure will be placed on

591

”last mile” networks, and cloud-leveraged IoT deployments

will become impractical.

Figure 1: AWS Greengrass Architecture[5]

Figure 2: Google IoT Core Architecture[16]

AWS Greengrass is a service offered by Amazon (ini-

tially as an IoT gateway, now morphed into an edge

computing service) that enables data management, durable

storage, cloud analytics, and local computing capabilities for

connected edge devices. Notice that Greengrass does not

provide any compute power itself and should be looked upon

more as an orchestrator among devices that are outside of

the AWS framework and provided by the user. Connected

devices can run AWS Lambda functions or Docker contain-

ers, while data and control flow to these devices through the

Greengrass framework. Subsets of the information generated

at the edge can be communicated back to the AWS Cloud.

Greengrass also keeps devices’ data in sync, and securely

communicates with other devices, even when not connected

to the Internet. This means that Greengrass-connected IoT

devices can still respond quickly to local triggers, interact

with local resources and minimize the costs associated with

transmitting IoT data to the cloud. Its architecture is shown

in Figure 1

Cloud IoT Core is a service offered by Google that allows

secure connectivity, management, and ingestion of data from

millions of globally dispersed devices for operational effi-

ciency. [16]. Cloud IoT Core runs on Google’s serverless in-

frastructure, which adaptively scales horizontally in response

to real-time events. Like in the Greengrass case, the user has

to provide the device on which the computation of the Cloud

IoT Core will run. Cloud IoT core supports the standard

MQTT (Message Queue Telemetry Transport, essentially the

messaging protocol for IoT) and HTTP protocols, making it

easier for devices to be registered to Cloud IoT Core. Its

architecture is shown in Figure 2

AWS Greengrass versus Cloud IoT Core: For AWS Green-

grass, AWS IoT Greengrass Core provides local services

(compute, messaging, state, security), and communicates

locally with devices that run the AWS IoT Device SDK [6].

For Google Cloud, the IoT Core provides the services

to communicate with the various IoT devices that have

been registered to it. As such, a key difference between

the two is that Greengrass works with devices by running

AWS Lambda functions and communicating through the

SDK while Google IoT Core uses the standard MQTT (a

machine-to-machine telemetry protocol) or HTTP protocol

for communications. AWS Greengrass and Google IoT Core

both present a gateway between the edge IoT devices and

more powerful cloud services. They act as connectors to

move data between the edge and the cloud. With AWS

Greengrass, Lambda functions are run between the edge

machines through the AWS Greengrass SDK while with

Google IoT core, MQTT commands are used.

Pricing differences: In Amazon’s AWS IoT Greengrass,

payments are structured per the number of AWS IoT Green-
grass Core devices that are connected and interact with the

AWS Cloud in a given month. This price depends on the

region that is configured with Greengrass and ranges from

$0.16–$0.18 per month per IoT Greengrass Core device.

There is no additional cost for the number of AWS IoT SDK
enabled devices locally connected to any IoT Greengrass
Core [7]. However, there can be additional charges with AWS
IoT Greengrass if data transfer or any other AWS service

is involved in the application, the pricing of which depends

on the service used. Amazon S3 is commonly used when

there is a large quantity of data that needs to be stored and

processed elsewhere. In compute-light applications where

the edge device does some processing and sends just a

simple result, e.g., outlier detection where the number of

outliers are sent as a result, S3 is not needed. In contrast, for

compute-intensive applications that involve images or large

data sets, S3 can be used to store the entire data set while

the edge devices download and process small chunks. In our

evaluations, we do all the processing in the device with no

extra storage overhead for the outlier detection. For object

detection, we store the videos on the sensor device and

upload to the services API for processing, thus incurring no

cost for cloud storage. In contrast, Google’s IoT Core pricing

is tiered according to the data volume used in a calendar

month [17]. This volume is based on all data exchanges

between the devices connected to Google IoT Core. Cloud

IoT Core is priced per MB of data exchanged by IoT devices

with the service after a 250MB free tier. After that, in the

initial range, the price is $0.0045 per MB and goes down

to $0.00045 per MB at the high end of the range, beyond a

592

certain threshold of data usage.

Amazon Rekognition, Google Vision, and Azure Vision
Services for our object detection application: Amazon

Rekognition provides an API for analyzing images (Amazon

Rekognition Image) which we use for streaming video

analysis. Rekognition uses deep learning algorithms with

SDKs for many programming languages and requires no

machine learning expertise. With Amazon Rekognition, one

can identify objects, people, text, scenes, and activities in

images and videos, as well as flag inappropriate content.

Amazon Rekognition also provides facial analysis and facial

search capabilities that one can use to detect, analyze, and

compare faces for user verification, people counting, and

public safety use cases [4]. It provides an easy-to-use API

that returns the results of computation but without being

able to control the backend of the computation. In addition,

although we are able to control the AWS availability zone for

the VM selection (for latency considerations), the selection

may be too coarse for applications with strict low latency

requirements such as in autonomous driving.

Google Vision and Azure Cognitive Services are similar to

Amazon Rekognition in that they are also an image analysis

service that offer powerful pre-trained machine learning

models through REST and RPC APIs. Google Vision can de-

tect objects and faces, read printed and handwritten text, and

build valuable metadata into an image catalog [18]. Azure

Cognitive Services also provides form and ink recognition

to analyze written documents and handwriting.

The use cases for these services greatly depend on the

application and the problem that needs to be solved. Ama-

zon Rekognition platforms have support for popular tasks

like object detection, celebrity recognition, face recognition,

content moderation, and text detection. Amazon Rekognition

also offers the Pathing option that allows users to run videos

through the service and see the paths that the people in

the video take [4]. Google Vision on the other hand offers

product search options to scan a product and quickly find

similar listings [18]. Azure Vision also has face recognition

technology similar to Amazon Rekognition.

Customized vision applications versus commercial of-
ferings—engineering challenges and solutions for the
data engineer: The APIs in all three platforms ease the pro-

cess of prototyping a computer vision application. However,

we also notice that the developers are not able to specify

the backend compute infrastructure on which it will run.

For example, we are not able to leverage our edge device

to force the services to run next to our data storage. The

developers are also not able to use their own model or

select a model to run or tune the configuration knobs of the

model for desired accuracy/runtime/energy specifications.

Considering the two challenges above, data engineers can

leverage their own computer vision applications on AWS

EC2, AWS Lambda, or AWS IoT Greengrass. This is where

an open-source software package like Faster R-CNN comes

into play.

Faster R-CNN (FRCNN) [28]: FRCNN is a state-of-

the-art object detection algorithm based on using region

proposal networks to hypothesize object locations and speed

up upon its earlier versions—both R-CNN and Fast R-

CNN use selective search to find region proposals [14, 15].

Selective search is slow, affecting the performance of the

network. In contrast, FRCNN uses a separate network to

predict the region proposals (Region Proposal Networks,

RPNs). RPNs are designed to efficiently predict region

proposals (with a high recall), with a wide range of sizes

and aspect ratios, by using novel “anchor” boxes to serve

as references at differential scales and aspect ratios. Region

proposals are then reshaped using a region of interest (RoI)

pooling layer, which essentially uses inputs of non-uniform

sizes to obtain fixed-size feature maps. This RoI pooling

layer then classifies the image within the proposed region

and further refines the bounding boxes (regressor). We add

to FRCNN, different levels of approximation that can be

tuned at runtime, for different points in the latency vs.

accuracy space. An easy-to-adjust approximation parameter

is the number of proposals that an RPN generates, which by

convention is set to be the largest possible number of objects

in the image. Since the classifier and bounding box regressor

are region-wise, a smaller number of proposals reduces the

execution cost, at the risk of reduced accuracy when a large

number of objects exist in the image. This notion of context-

aware approximation has been introduced in some domains,

like genomics [24], and closer to our application context,

streaming video processing [34, 35]. Here our objective is

to expose this novel approximation knob and to show that

this kind of configurability is present only in the open source

options.

III. EXPERIMENTAL SETUP

Here we describe the benchmark data sets used in the

study, the workload analysis performed (Outlier detection

vs. Object detection), and the experimental setup for the dif-

ferent platforms used in our study. These platforms include:

• Edge Devices

1) Raspberry Pi 4 model B

2) Emulated Edge device (using Docker Containers)

• Cloud Platforms

1) Amazon EC2

2) Google Compute

3) Microsoft Azure Virtual Machine

• IoT Managers

1) AWS Greengrass

2) Google IoT Core

• Other Commercial Offerings

1) Amazon AWS Lambda (serverless functions)

2) Amazon Rekognition

3) Google Vision

593

4) Microsoft Azure Cognitive Services

We do an exhaustive assessment of these cloud, edge,

and IoT orchestration platforms to evaluate the efficacy

of different vendors’ hardware platforms, architectures, or

networking protocols. Figures 3 and 4 show the setups for

both workloads.

A. Outlier-Detection data description

The data we used for this benchmarking contains 21k

points collected from February to October 2019 using tem-

perature and humidity sensors deployed in sensorized farms

and manufacturing units on Purdue University’s campus. We

apply extreme value analysis (EVA), which is a popular and

simple statistical analysis to identify outliers in the data. In

this analysis, we fit a Gaussian distribution to the data and

use standard statistical outlier detection. Under the Gaussian

distribution assumption, we expect that 68% of the data

points will be within one Standard deviation from the Mean
and 95% to be within two Standard deviations from the

Mean. We use this distance from the Mean as our outliers’

cut-off threshold. Tables I – VIII show the number of outliers

in both temperature and humidity readings with varying cut-

off thresholds. Figure 5 shows the temperature and humidity

variation of a single device.

B. Object-Detection data description

For the compute-intensive workload analysis, we use

video data from the ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC) 2015 [30] for video object de-

tection. The evaluation data set contains 555 video snippets

with labels of 30 object categories as ground truth. These

videos are good representations of real captured videos from

surveillance cameras or drone cameras. We perform object

detection on these videos—i.e.,, classify rectangular regions

on each frame into one from the 30 object categories. We

assume the video data is stored on the sensor device and the

processing (object detection) is done using different pro-

prietary algorithms through commercial offerings or using

the variants of the Faster R-CNN model on a cloud virtual

machine, which is a widely used custom whitebox model.

C. Infrastructure setup

In our experiments, we use a Raspberry-Pi 4 model B as

our edge device. This model has a Broadcom BCM2711,

Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz,

4GB LPDDR4-3200 SDRAM, which is one of the most

popular edge devices for developers. We also use Docker

containers as additional emulated edge devices with higher

compute capability, similar to higher powered devices like

the NVIDIA Jetson. We use this strategy to be able to adap-

tively control the edge specs while not needing additional

hardware. This, in addition to the real edge devices, this

gives us the opportunity to be able to have a platform for

trying out different edge specifications.

We use 1 CPU and 1 GB RAM as our Docker containers’

specification for sensor and edge devices. Our server, coming

with a six-core Intel Xeon CPU E5-2440 clocked at 2.40GHz

and 48GB RAM, is powerful enough to simulate multiple

sensor and edge devices. Ismal et al. in [20] show that

Docker containers provide fast deployment, small footprints,

elasticity, and good performance, which enable them to sim-

ulate edge devices. Furthermore, Docker images are small

and lightweight, making the CPU, memory, storage, and

network performance similar to physical edge devices [13].

We also use IoT orchestrators (AWS Greengrass and

Google IoT core) for both the outlier detection and object

detection experiments on the Raspberry Pi and Docker

container (emulated edge device). This is to account for

scalability if processing is done on multiple edge devices.

For the cloud platform experiments, this is not necessary

since the data is being sent to a central storage location

and not individually processed by each device. Our cloud

infrastructure is as follows for the different platforms:

1) Amazon EC2: c5.large (2 vCPUs, 4 GiB memory)

2) Google Compute: e2-standard (2 vCPUs, 8 GiB mem-

ory)

3) Microsoft Azure Virtual Machine: Standard F2s v2 (2

vCPUs, 4 GiB memory)

In the cases where we use commercial offerings that

have more sophisticated object detection algorithms, we are

forced to use the APIs provided by the vendors without the

ability to control the backend device or any parameters.

IV. EVALUATION

A. Data Preprocessing

For the outlier-detection application, we use temperature

and humidity data collected from 26 WHIN-IoT devices. We

divide the data into monthly segments. Next, we assume that

the temperature and humidity will be normally distributed

(Gaussian), and we compute the mean and standard devia-

tion of monthly measurements to identify outliers. Here, the

goal and motivation of outlier detection is to track if the

sensors are malfunctioning.

For the object-detection application, we download the

widely used ILSVRC 2015 video dataset [1] to the sensor

device as a stand-in for the captured videos on the sensors.

We use Amazon Rekognition, Google Vision, Azure Cogni-

tive Services, and our custom “service” (Faster R-CNN on

cloud VMs) for object detection on these videos. The video

data is processed in a streaming manner with each frame

being processed separately.

Overall, we wanted to benchmark using the ubiquitous

sensor data sets that are generated in different urban and

rural IoT settings such as smart factories [32] or connected

farms [11]. We do analysis on different platforms offered

by Amazon, Microsoft and Google. These platforms provide

different virtual machine specifications and price structures.

594

Figure 3: Overall Setup for Outlier Detection Evaluation. Data is collected from the IoT sensor devices (temperature and

humidity) and stored/streamed to the appropriate storage option for different platforms. For example, we store the data in

Amazon S3, which is a remote storage, for cases where the processing is on the cloud or on AWS Lambda. We store the

data into the device’s local storage when the processing is on the edge device. We then perform the same analysis across

all the platforms and report the latency and $ cost for each service. By tuning the threshold for outlier detection, we can

get different proportions of outliers

Table I: Performance and cost metrics for running our compute-light operation, specifically, outlier detection on AWS-

Lambda.
Metric Temperature outliers (%) Humidity outliers (%) Data-Passing

Duration (ms)
Duration (ms) Billed Duration (ms) Memory Size (MB) $ cost

μ ± 1 × σ 5,978 (28.165%) 5,706 (26.883%) 549.845 1,045.64 1,100 92 $0.000004587

μ ± 2 × σ 446 (2.101%) 561 (2.643%) 605.557 1,104.7 1,200 92 $ 0.000005004

μ ± 3 × σ 6 (0.028%) 5 (0.024%) 545.787 1,063.51 1,100 93 $0.000004587

B. Experiments and Results (Outlier Detection)
1) Processing on AWS Lambda: In this section, we evalu-

ate the performance and $ cost for running our compute-light

workload (outlier detection) on the AWS Lambda service.

We use the temperature and humidity readings from a single

device in the sensor network. Since AWS-Lambda has a

number of limitations [8] (such as the maximum timeout

of 15 minutes on a single lambda execution), analysis of

data points from all 26 devices on our campus network is

infeasible for a single Lambda. Therefore, we use a single

Lambda per device and report the average performance and

$ cost across all devices. We set the Lambda’s max memory

to 256 MB. We notice that all other resources (such as

CPU compute capacity) is scaled proportionally to the max

memory specified. We store the data in Amazon S3 and

have the Lambda function download directly from S3. We

draw several insights. First, the number of outliers decreases

with increase in the cut-off threshold [Table I]. However,

the runtime is almost identical across the three thresholds.

Another major advantage of using AWS Lambda is that

it has finer-granularity billing for short-lived jobs vis-à-vis

other platforms that have a per minute minimum-charge

duration (e.g., EC2 charges for a 60s minimum duration [3]).
2) Processing on Emulated device with AWS IoT Green-

grass: Now we show the performance and $ cost of running

our outlier detection workload on an emulated edge device

using the AWS Greengrass IoT platform. Moreover, we load

the data directly from the container’s file-system instead of

querying the data from S3. This is performed to show the ad-

vantage of running the analysis on the edge, closer to where

the data is being collected, hence having a lower execu-

tion latency. Table II shows the corresponding performance

and execution costs for the three cut-off thresholds. AWS

Greengrass provides flat pricing per device, so the costs are

independent of the execution time. Moreover, we notice the

very low execution time compared to AWS Lambda (52–54

msec for emulated edge device with Greengrass vs. > 1 sec

for Lambda) without the data-passing overhead.

3) Processing on Raspberry-Pi 4B with AWS IoT Green-
grass: Now we show the analysis using a Raspberry-Pi

4B edge device that is connected to AWS Greengrass IoT

platform. Again, we load the data directly from the device’s

file-system rather than querying the data from S3. Table III

shows the corresponding performance and execution costs

for the three cut-off thresholds. We notice that the execution

times are higher than the execution times for the emulated

edge device but less than AWS-Lambda (1 sec for AWS-

Lambda > 163–178 msec for Raspberry-Pi with Greengrass

> 52–54 msec for emulated edge device with Greengrass)

since there is no data-passing overhead.

595

Table II: Performance and cost metrics for performing outlier detection on an emulated edge device with AWS Greengrass

as the IoT manager. Greengrass provides a flat monthly billing.
Metric Temperature outliers (%) Humidity outliers (%) Data-Passing

Duration (ms)
Duration (ms) Billed Duration (ms) Memory Size (MB) $ cost

μ ± 1 × σ 5,978 (28.165%) 5,706 (26.883%) - 52.099 - 92 $ 0.0000037

μ ± 2 × σ 446 (2.101%) 561 (2.643%) - 54.577 - 92 $ 0.0000037

μ ± 3 × σ 6 (0.028%) 5 (0.024%) - 52.490 - 93 $ 0.0000037

Table III: Performance and cost metrics for performing outlier detection on Raspberry-Pi 4B with AWS Greengrass as the

IoT manager.
Metric Temperature outliers(%) Humidity outliers(%) Data-Passing

Duration (ms)
Duration (ms) Billed Duration (ms) Memory Size (MB) $ cost

μ ± 1 × σ 5,978 (28.165%) 5,706 (26.883%) - 178.27 - 12 $0.0000037

μ ± 2 × σ 446 (2.101%) 561 (2.643%) - 172.09 - 12 $0.0000037

μ ± 3 × σ 6 (0.028%) 5 (0.024%) - 163.72 - 12 $0.0000037

Table IV: Performance and cost metrics for outlier detection on an emulated edge device with Google IoT. Unlike AWS

Greengrass, Google IoT charges for only the data transfer between edge devices or between the edge and cloud. We estimate

the price and neglect the initial free data volume per account.
Metric Temperature outliers(%) Humidity outliers(%) Data-Passing

Duration (ms)
Duration (ms) Billed Duration (ms) Memory Size (MB) $ cost

μ ± 1 × σ 5,978 (28.165%) 5,706 (26.883%) - 95.47 - 32 $0.0045

μ ± 2 × σ 446 (2.101%) 561 (2.643%) - 102.7 - 30 $0.0045

μ ± 3 × σ 6 (0.028%) 5 (0.024%) - 85.3 - 31 $0.0045

Table V: Performance and cost metrics for performing outlier detection on Raspberry-Pi 4B with Google IoT as the IoT

manager.
Metric Temperature outliers (%) Humidity outliers (%) Data-Passing

Duration (ms)
Duration (ms) Billed Duration (ms) Memory Size (MB) $ cost

μ ± 1 × σ 5,978 (28.165%) 5,706 (26.883%) - 326.67 - 32 $0.0045

μ ± 2 × σ 446 (2.101%) 561 (2.643%) - 351.41 - 30 $0.0045

μ ± 3 × σ 6 (0.028%) 5 (0.024%) - 291.87 - 31 $0.0045

Table VI: Performance and cost metrics for performing outlier detection on Amazon-EC2. We notice that the billed duration

is 1 minute (unlike AWS-lambda) as that is the minimum charge per-instance in EC2.
Metric Temperature outliers (%) Humidity outliers (%) Data-Passing

Duration (ms)
Duration (ms) Billed Duration (ms) Memory Size (MB) $ cost

μ ± 1 × σ 5,978 (28.165%) 5,706 (26.883%) 404 657 60000 37 $0.001417

μ ± 2 × σ 446 (2.101%) 561 (2.643%) 404 666 60000 37 $0.001417

μ ± 3 × σ 6 (0.028%) 5 (0.024%) 404 675 60000 37 $0.001417

Table VII: Performance and cost metrics for performing outlier detection on Google Compute Engine.
Metric Temperature outliers (%) Humidity outliers (%) Data-Passing

Duration (ms)
Duration (ms) Billed Duration (ms) Memory Size (MB) $ cost

μ ± 1 × σ 5,978 (28.165%) 5,706 (26.883%) 512 770 60000 32 $0.00112

μ ± 2 × σ 446 (2.101%) 561 (2.643%) 512 776 60000 30 $0.00112

μ ± 3 × σ 6 (0.028%) 5 (0.024%) 512 768 60000 31 $0.00112

Table VIII: Performance and cost metrics for performing outlier detection on Microsoft Azure Virtual Machine.
Metric Temperature outliers (%) Humidity outliers (%) Data-Passing

Duration (ms)
Duration (ms) Billed Duration (ms) Memory Size (MB) $ cost

μ ± 1 × σ 5,978 (28.165%) 5,706 (26.883%) 373 633 1000 32 $0.000003

μ ± 2 × σ 446 (2.101%) 561 (2.643%) 373 645 1000 30 $0.000003

μ ± 3 × σ 6 (0.028%) 5 (0.024%) 373 463 1000 31 $0.000003

596

Figure 4: Overall Setup for Object Detection Evaluation.

The video data set is ILSVRC VID 2015 and is stored

on the embedded device (Raspberry Pi or an Emulated

device using a Docker Container). It is directly uploaded

using the vendor’s API if needed, and uploaded to AWS S3

for processing on cloud platforms. Our custom algorithm

Faster R-CNN (FRCNN), where the customization knob is

the number of proposals, is used for comparison with three

commercial services in their corresponding platforms. We

report execution time/frame and $ cost for each service on

each platform.

4) Processing on Emulated device with Google IoT Core:
Here we use Google IoT platform and a Docker container

that emulates an edge device. We use the same data set as

with the previous three platforms and show the performance

and cost metrics in Table IV. We notice that running

outlier detection on an emulated device with Google IoT

performs slightly slower than AWS Greengrass. We also

notice that in terms of price, Google IoT’s pricing model

(which is based on the volume of data transfer) shows the

highest $ cost across the 4 platforms. This is because the

minimum data size used for billing is 1 MB (which costs

$0.0045). However, Google IoT still provides significantly

better performance (i.e.,, lower latency) compared to AWS-

Lambda and AWS-EC2.

5) Processing on Raspberry Pi 4B with Google IoT
Core: Now we evaluate the performance and $ cost for

outlier detection on Raspberry-Pi 4B using the Google IoT

platform. Similar to the previous subsection, we notice that

running this on the Raspberry Pi with Google IoT performs

slightly slower than corresponding platform in AWS.

6) Processing on Amazon-EC2: Here we execute the

outlier detection application on an AWS EC2 instance

(c5.large). As stated earlier, EC2 has a minimum billing

duration of 60 sec [3], which makes it more expensive for

short-lived jobs compared to AWS Greengrass or AWS-

Lambda. Accordingly, we find EC2 to be the most expensive

service compared to the other platforms (Table VI). In terms

of latency, EC2 also suffers from the data-passing overhead

(similar to AWS-Lambda). However, it performs better than

AWS-Lambda since it has higher compute capacity.

(a) Humidity Variation for Device 30

(b) Temperature Variation for Device 30

Figure 5: Device 30’s temperature and humidity variation

and outlier detection thresholds

7) Processing on Google Compute Engine: We show the

analysis on Google Compute with an e2-standard machine.

As seen with Amazon EC2, the min billed duration is 60s,

making it expensive for short-lived jobs. Plus, it suffers from

a data-passing overhead.

8) Processing on Microsoft Azure Virtual Machine: Here

we show the analysis on Microsoft’s Azure Virtual Machine.

Unlike Amazon EC2 or Google Compute, the minimum

billed duration is 1 sec, which makes it more suitable for

short-lived jobs. As such, the cost seen on Table VIII is the

least compared to all other costs. However, it also suffers

from the data-passing overhead, as outlined above.

C. Experiments and Results (Object Detection)

Here, we show the performance and $ cost of the object

detection workload on various platforms. In the case of

processing on the edge device, the video frames are stored on

the device for processing. In the case of cloud platforms and

other commercial offerings, the video frames are uploaded

to Amazon S3 and streamed from there.

We also show results with different number of proposals

for Faster RCNN to highlight the advantage of tunability

of open source algorithms. This can have an impact on

the execution time as shown in Table IX. The running

time decreases by 57.3% when approximating aggressively

compared to the default parameter value for the number

597

of partitions. It can also have an impact on the mean

Average Precision (mAP), as seen in the table. For the same

aggressive approximation setting, accuracy decreases by 9%

compared to the default value.

Table IX: Performance and cost metrics for running

compute-intensive operations, specifically, object detection

on Amazon Rekognition, Google Vision, and Microsoft

Cognitive Services and an open-source software package,

FRCNN.

Type Platform Accuracy Frames/
$

Time/
frame

Open-source, FRCNN (100
proposals) on
Raspberry-Pi 4B

59.11% - 23.984
sec

Edge
FRCNN (50
proposals) on
Raspberry-Pi 4B

58.53% - 16.945
sec

FRCNN (10
proposals) on
Raspberry-Pi 4B

50.13% - 10.234
sec

Open-source, FRCNN (100 pro-
posals) on Amazon
EC2

59.11% 77,266 2.318
sec

Cloud
FRCNN (100 pro-
posals) on Google
Compute Engine

59.11% 24,666 2.178
sec

FRCNN (100
proposals) on
Microsoft Azure
Virtual Machine

59.11% 59,306 3.02
sec

Commercial, Amazon Rekogni-
tion

- 1000 0.633
sec

Cloud
Google Vision - 444 0.471

sec
Microsoft Azure
Cognitive Services

- 500 0.488
sec

Our first observation for performance is that our custom

service is up to 49X slower than Amazon’s, Google’s and

Microsoft’s commercial object detection services. However,

this is offset by the fact that running a large job with many

images can cost more as shown by the lower frames/$ for

the commercial offerings as opposed to running open-source

algorithms on the cloud. The decision is left up to the user

to evaluate the tradeoff between runtime and cost with the

help of benchmarking efforts like JANUS. This shows the

advantage of more evolved commercial services on reducing

the latency and providing speedy detection results. However,

some drawbacks of commercial offerings are that they are

a black box and do not offer tuning knobs that can trade

latency for accuracy or price. Furthermore, they do not

provide a metric for accuracy, nor they do not allow the

user to pick the backend on which they run.

The next observation is that among the commercial ser-

vices, Google’s is less $ efficient than Amazon’s (55%) and

Microsoft’s (11%). However, it is the fastest performer—3%

faster than Microsoft Azure Cognitive Services and 25%

faster than Amazon Rekognition. This can also be seen

when running the open-source algorithm on the cloud, where

FRCNN on EC2 is the most $ efficient while FRCNN on

Google Compute is the fastest per frame.

V. CONCLUSION

In this paper, we presented JANUS, the first benchmarking

effort of edge computing platforms for different kinds of IoT

workloads. We profile Amazon and Google’s edge offerings

for a compute-light IoT workload (outlier detection on

sensor data) and a compute-intensive IoT workload (object

detection on streaming video). For the object detection

workload, we also use the proprietary Amazon, Google,

and Microsoft computer vision offerings and benchmark

them against an open source package called Faster R-CNN.

Our results show that for compute-light workloads, edge-

based services like AWS Greengrass and Google IoT provide

the best performance and $ cost, with AWS Greengrass

delivering up to 2X lower latency and up to 1.25X lower

cost compared to Google IoT. In contrast, for compute-

intensive workloads, the magnitude of tradeoff between

latency/execution time and cost is non-trivial. We show that

a custom service can be up to 49X slower if run on a slow

edge device and up to 6X slower if run on a cloud virtual

machine vis-à-vis proprietary solutions by Google, Amazon,

or Microsoft. We also show how to speed up the open-source

solution by approximating aggressively, reducing runtime by

57.3% at the cost of 9% drop in accuracy, which highlights

the tunability of custom solutions.

REFERENCES

[1] ImageNet: Large Scale Visual Recognition Challenge 2015
(ILSVRC2015). http://image-net.org/challenges/LSVRC/
2015/#vid, 2015.

[2] AKKUS, I. E., CHEN, R., RIMAC, I., STEIN, M., SATZKE,
K., BECK, A., ADITYA, P., AND HILT, V. SAND: Towards
high-performance serverless computing. In 2018 {Usenix}
Annual Technical Conference (USENIX ATC 18) (2018),
pp. 923–935.

[3] AMAZON. Amazon EC2 per second billing.
https://aws.amazon.com/about-aws/whats-new/2017/10/
announcing-amazon-ec2-per-second-billing/.

[4] AMAZON. Amazon Rekognition. https://aws.amazon.com/
rekognition/.

[5] AMAZON. AWS IoT Greengrass. https://aws.amazon.com/
greengrass/.

[6] AMAZON. AWS IoT Greengrass FAQs. https://aws.amazon.
com/greengrass/faqs/.

[7] AMAZON. AWS IoT Greengrass Pricing. https://aws.amazon.
com/greengrass/pricing/.

[8] AMAZON. AWS Lambda Limits. https://docs.aws.amazon.
com/lambda/latest/dg/limits.html.

[9] BAGCHI, S., AGGARWAL, V., CHATERJI, S., DOUGLIS, F.,
GAMAL, A. E., HAN, J., HENZ, B. J., HOFFMANN, H.,
JANA, S., KULKARNI, M., ET AL. Grand challenges of
resilience: Autonomous system resilience through design and
runtime measures. arXiv preprint arXiv:1912.11598 (2019).

598

[10] BAGCHI, S., SIDDIQUI, M.-B., WOOD, P., AND ZHANG, H.
Dependability in edge computing. Communications of the
ACM 63, 1 (2019), 58–66.

[11] CHATERJI, S., DELAY, N., EVANS, J., MOSIER, N., ENGEL,
B., BUCKMASTER, D., AND CHANDRA, R. Artificial intel-
ligence for digital agriculture at scale: Techniques, policies,
and challenges. arXiv preprint arXiv:2001.09786 (2020).

[12] CHATERJI, S., NAGHIZADEH, P., ALAM, M. A., BAGCHI,
S., CHIANG, M., CORMAN, D., HENZ, B., JANA, S., LI, N.,
MOU, S., ET AL. Resilient cyberphysical systems and their
application drivers: A technology roadmap. arXiv preprint
arXiv:2001.00090 (2019).

[13] FELTER, W., FERREIRA, A., RAJAMONY, R., AND RUBIO,
J. An updated performance comparison of virtual machines
and linux containers. In 2015 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS)
(March 2015), pp. 171–172.

[14] GIRSHICK, R. Fast R-CNN. In Proc. of the IEEE Conf. on
Computer Vision (2015), pp. 1440–1448.

[15] GIRSHICK, R., DONAHUE, J., DARRELL, T., AND MALIK,
J. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proc. of the IEEE Conf. on
Computer Vision & Pattern Recognition (2014), pp. 580–587.

[16] GOOGLE. Cloud IoT Core. https://cloud.google.com/
iot-core/.

[17] GOOGLE. Cloud IoT Core pricing. https://cloud.google.com/
iot/pricing.

[18] GOOGLE. Google Vision. https://cloud.google.com/vision/.
[19] HU, L., AND NI, Q. Iot-driven automated object detection

algorithm for urban surveillance systems in smart cities. IEEE
Internet of Things Journal 5, 2 (2018), 747–754.

[20] ISMAIL, B., MOSTAJERAN, E., KARIM, M., TAT, W., SE-
TAPA, S., LUKE, J.-Y., AND ONG, H. Evaluation of docker
as edge computing platform.

[21] JIANG, X., ZHANG, H., YI, E. A. B., RAGHUNATHAN, N.,
MOUSOULIS, C., CHATERJI, S., PEROULIS, D., SHAKOURI,
A., AND BAGCHI, S. Hybrid low-power wide-area mesh
network for iot applications. IEEE Internet of Things Journal
(2020).

[22] JONAS, E., SCHLEIER-SMITH, J., SREEKANTI, V., TSAI,
C.-C., KHANDELWAL, A., PU, Q., SHANKAR, V., CAR-
REIRA, J., KRAUTH, K., YADWADKAR, N., ET AL. Cloud
programming simplified: A berkeley view on serverless com-
puting. arXiv preprint arXiv:1902.03383 (2019).

[23] KIM, S. G., THEERA-AMPORNPUNT, N., FANG, C.-H.,
HARWANI, M., GRAMA, A., AND CHATERJI, S. Opening
up the blackbox: an interpretable deep neural network-based
classifier for cell-type specific enhancer predictions. BMC
systems biology 10, 2 (2016), 54.

[24] KOO, J., ZHANG, J., AND CHATERJI, S. Tiresias: Context-
sensitive approach to decipher the presence and strength of
microrna regulatory interactions. Theranostics 8, 1 (2018),
277.

[25] MAHGOUB, A., MEDOFF, A., KUMAR, R., MITRA, S.,
KLIMOVIC, A., CHATERJI, S., AND BAGCHI, S. OPTI-
MUSCLOUD: Heterogeneous configuration optimization for
distributed databases in the cloud. In 2020 {USENIX} Annual
Technical Conference USENIX ATC’19 (2020), pp. 1–16.

[26] MAHGOUB, A., WOOD, P., GANESH, S., MITRA, S.,
GERLACH, W., HARRISON, T., MEYER, F., GRAMA, A.,
BAGCHI, S., AND CHATERJI, S. Rafiki: A middleware for pa-
rameter tuning of nosql datastores for dynamic metagenomics
workloads. In Proceedings of the 18th ACM/IFIP/USENIX

Middleware Conference (2017), ACM, pp. 28–40.
[27] MAHGOUB, A., WOOD, P., MEDOFF, A., MITRA, S.,

MEYER, F., CHATERJI, S., AND BAGCHI, S. SOPHIA:
Online reconfiguration of clustered nosql databases for time-
varying workloads. In 2019 {USENIX} Annual Technical
Conference USENIX ATC’19 (2019), pp. 223–240.

[28] REN, S., HE, K., GIRSHICK, R., AND SUN, J. Faster R-
CNN: Towards real-time object detection with region proposal
networks. In Advances in Neural Information Processing
Systems (2015), pp. 91–99.

[29] ROADY, R., HAYES, T. L., VAIDYA, H., AND KANAN, C.
Stream-51: Streaming classification and novelty detection
from videos. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (2020),
pp. 228–229.

[30] RUSSAKOVSKY, O., DENG, J., SU, H., KRAUSE, J.,
SATHEESH, S., MA, S., HUANG, Z., KARPATHY, A.,
KHOSLA, A., BERNSTEIN, M., BERG, A. C., AND FEI-FEI,
L. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3
(2015), 211–252.

[31] SURYAVANSH, S., BOTHRA, C., CHIANG, M., PENG, C.,
AND BAGCHI, S. Tango of edge and cloud execution for
reliability. In Proceedings of the 4th Workshop on Middleware
for Edge Clouds & Cloudlets (2019), pp. 10–15.

[32] THOMAS, T. E., KOO, J., CHATERJI, S., AND BAGCHI,
S. Minerva: A reinforcement learning-based technique for
optimal scheduling and bottleneck detection in distributed
factory operations. In 2018 10th International Conference on
Communication Systems & Networks (COMSNETS) (2018),
IEEE, pp. 129–136.

[33] XU, M., ZHANG, X., LIU, Y., HUANG, G., LIU, X., AND

LIN, F. X. Approximate query service on autonomous iot
cameras. In Proceedings of the 18th International Confer-
ence on Mobile Systems, Applications, and Services (2020),
pp. 191–205.

[34] XU, R., KOO, J., KUMAR, R., BAI, P., MITRA, S.,
MEGHANATH, G., AND BAGCHI, S. ApproxNet: Content
and Contention Aware Video Analytics System for the Edge.
arXiv preprint arXiv:1909.02068 (2019).

[35] XU, R., KOO, J., KUMAR, R., BAI, P., MITRA, S., MIS-
AILOVIC, S., AND BAGCHI, S. Videochef: efficient approxi-
mation for streaming video processing pipelines. In USENIX
Annual Technical Conference (USENIX ATC) (2018), pp. 43–
56.

[36] YU, T., WANG, X., AND SHAMI, A. Recursive principal
component analysis-based data outlier detection and sensor
data aggregation in iot systems. IEEE Internet of Things
Journal 4, 6 (2017), 2207–2216.

599

