
Mesh Reconstruction from Aerial Images for Outdoor Terrain Mapping

Using Joint 2D-3D Learning

Qiaojun Feng Nikolay Atanasov

Abstract— This paper addresses outdoor terrain mapping
using overhead images obtained from an unmanned aerial
vehicle. Dense depth estimation from aerial images during flight
is challenging. While feature-based localization and mapping
techniques can deliver real-time odometry and sparse points
reconstruction, a dense environment model is generally re-
covered offline with significant computation and storage. This
paper develops a joint 2D-3D learning approach to reconstruct
local meshes at each camera keyframe, which can be assembled
into a global environment model. Each local mesh is initialized
from sparse depth measurements. We associate image features
with the mesh vertices through camera projection and apply
graph convolution to refine the mesh vertices based on joint
2-D reprojected depth and 3-D mesh supervision. Quantitative
and qualitative evaluations using real aerial images show the
potential of our method to support environmental monitoring
and surveillance applications.

I. INTRODUCTION

Recent advances in sensors, processors, storage and com-

munication devices have set the stage for mobile robot

systems to significantly contribute in environmental mon-

itoring, security and surveillance, agriculture, and many

other applications. Constructing terrain maps onboard an

unmanned aerial vehicle (UAV) using online sensory data

would be very beneficial in these applications. With inertial

measurement unit (IMU), GPS, and camera sensors, a UAV

can localize itself and incrementally reconstruct the geomet-

ric structure of the traversed terrain. Near infrared cameras

can additionally provide normalized difference vegetation

index measurements for vegetation assessment and semantic

segmentation can enrich the map.

This paper considers the problem of building a terrain

model in the form of a mesh of an outdoor environment

using a sequence of overhead RGB images obtained onboard

a UAV. We assume that the UAV is running a localization

algorithm, based on visual-inertial odometry (VIO) [1] or

simultaneous localization and mapping (SLAM) [2] , which

estimates its camera pose and the depths of a sparse set of

tracked image keypoints. One approach for outdoor terrain

mapping is to recover depth images at each camera view

using dense stereo matching. The depth images can be fused

to generate a point cloud and triangulate a mesh surface.

While specialized sensors and algorithms exist for real-time

dense stereo matching, they are restricted to a limited depth

range, much smaller than commonly seen in aerial images.

Moreover, due to the limited depth variation, the recovered

We gratefully acknowledge support from NSF NRI CNS-1830399.
The authors are with the Department of Electrical and Computer En-

gineering, University of California San Diego, La Jolla, CA 92093, USA
{qjfeng,natanasov}@ucsd.edu

Fig. 1: This paper develops a method for 3-D mesh reconstruction
(right) from aerial RGB images and noisy sparse depth measure-
ments (left) to support outdoor terrain mapping.

point cloud might not be sufficiently dense for accurate mesh

reconstruction. Recently, depth completion methods [3], [4]

using deep learning have shown promising performance on

indoor [5] and outdoor datasets [6]. However, aerial images

are different from the ground-level RGBD datasets used to

train these algorithm. Due to the limited availability of aerial

image datasets for supervision, learning-based methods have

not yet been widely adopted for outdoor terrain mapping.

We propose a learning-based method for mesh reconstruc-

tion using a single RGB image with sparse depth measure-

ments. Fig. 1 shows an example input and mesh reconstruc-

tion. Our main contribution is to show that depth completion

and mesh reconstruction are closely related problems. In-

spired by depth completion techniques, we propose a coarse-

to-fine strategy, composed of initialization and refinement

stages for mesh reconstruction. In the initialization stage,

we use only the sparse depth measurements to fit a coarse

mesh surface by minimizing a 2-D rendered depth loss. In

the refinement stage, we leverage both the RGB image and

the sparse depth information. We extract deep convolutional

image features and associate them with the vertices of

the initial mesh through camera projection. The mesh is

subsequently refined using a graph convolution model to

predict vertex deformations that minimize a weighted 3-D

geometric surface loss and 2-D rendered depth loss. Given

the camera poses, we can fuse the optimized local meshes

into a global mesh model of the environment. We build an

aerial image dataset with ground-truth depth, noisy sparse

depth measurements, and multiple camera trajectories based

on WHU MVS/Stereo dataset [7] and details can be found

on https://github.com/FengQiaojun/TerrainMesh.

II. RELATED WORK

Depth Completion. Predicting depth from RGB images

enables artificial perception systems to recover 3-D environ-

ment structure [8], [9]. While depth prediction from RGB

images alone may be challenging, sparse depth measure-

ments, e.g., obtained from keypoint triangulation, simplify

the problem and lead to improvements in efficiency and

accuracy [10]. Depth completion is the task of predicting

dense depth images from sparse depth measurements and

corresponding RGB images. Ma et al. [3], [11] develop

methods for supervised training, relying on ground truth

depth images, as well as self-supervised training, using pho-

tometric error from calibrated image pairs. Chen et al. [10]

pre-process sparse depth images by generating a Euclidean

Distance Transform of the depth sample locations and a

nearest-neighbor depth fill map. The authors propose a multi-

scale deep network that treats depth completion as residual

prediction with respect to the nearest-neighbor depth fill

maps. Chen et al. [4] design a 2-D convolution branch to

process stacked RGB and sparse depth images and a 3-

D convolution branch to process point clouds and fuse the

outputs of the two branches.

Mesh Reconstruction. Online terrain mapping requires ef-

ficient storage and updates of a 3-D surface model. Storing

dense depth information from aerial images requires signifi-

cant memory and subsequent model reconstruction. Explicit

surface representations, e.g., based on polygon meshes, may

be quite memory and computationally efficient but their

vertices and faces need to be optimized to fit the environ-

ment geometry. FLaME [12] performs non-local variational

optimization over a time-varying Delaunay graph to obtain

a real-time inverse-depth mesh of the environment. Terrian

Fusion [13] performs real-time terrain mapping by generating

digital surface model (DSM) meshes at selected keyframes.

It converts the local meshes into grid-maps and merges them

using multi-band fusion. Pixel2Mesh [14] treats a mesh as a

graph and applies graph convolution [15] for vertex feature

extraction and graph unpooling to subdivide the mesh for

detailed refinement. Mesh R-CNN [16] simultaneously de-

tects objects and reconstructs their 3-D mesh shape. A coarse

voxel representation is predicted first and then converted into

a mesh for refinement.

Our setting differs from existing work because aerial im-

ages cover large regions with significantly more subtle depth

variation compared to indoor or outdoor ground settings. Our

approach uses the same inputs as a depth completion problem

but recovers a 3-D mesh model, which provides smoother

depth estimates with fewer parameters (only vertices and

faces) compared to dense depth prediction. Instead of relying

on a priori known object categories, our method provides

whole image mesh reconstruction.

III. PROBLEM FORMULATION

Consider a UAV equipped with a camera, whose position

pk ∈ R
3 and orientation Rk ∈ SO(3) are estimated

at discrete time steps k by a VIO or SLAM localization

algorithm. Denote the RGB images corresponding to the

discrete-time keyframes by Ik. Obtaining dense depth images

during outdoor flight is challenging but it is common for

localization algorithms to track and estimate the depth of a

Fig. 2: Loss function illustration: ℓ2 compares a depth image D to
rendered mesh depth ρ(M); ℓ3 compares a mesh M to an elevated
mesh MD obtained from a depth image D.

sparse set of image feature points. Let D∗
k denote the dense

ground-truth depth image, which is unknown during real-

time operation. Let Dk be a sparse matrix that contains

estimated depths at the image feature locations and zeros

everywhere else. Our goal is to construct an explicit model

of the camera view at time k using a 3-D triangle mesh

Mk := (Vk, Ek,Fk), where Vk ∈ R
nk×3 are the vertex

coordinates in the camera frame, [nk] := {1, . . . , nk} is the

set of vertex indices, Ek ⊆ [nk] × [nk] are the edges, and

Fk ⊆ [nk]× [nk]× [nk] are the faces.

Problem. Given a finite set of RGB images {Ik}k and

corresponding sparse depth measurements {Dk}k, define a

mesh reconstruction function M = f(I,D;θ) and optimize

its parameters θ to estimate the ground-truth depth {D∗
k}k:

min
θ

∑

k

ℓ(f(Ik,Dk;θ),D
∗
k) (1)

where ℓ(M,D) is a loss function measuring the error

between a mesh M and a depth image D representing the

same camera view.

The choice of loss function ℓ is discussed in Sec. IV.

We develop a machine learning approach to this problem,

consisting of an offline training phase and an online mesh

reconstruction phase. During training, the parameters θ are

optimized using a training set D := {Ii,Di,D
∗
i }i with

known ground-truth depth images. During testing, given

streaming RGB images Ik and sparse depth measurements

Dk, the optimized parameters θ
∗ are used to construct

mesh models Mk = f(Ik,Dk;θ
∗). The local mesh Mk =

(Vk, Ek,Fk) can be converted into the global frame by

transforming the vertex coordinates VkR
⊤
k +1p⊤

k using the

camera poses pk, Rk and multiple meshes can be assembled

[17] to model the whole environment.

IV. LOSS FUNCTIONS FOR MESH RECONSTRUCTION

We propose several loss functions to measure the error

between a mesh M and a depth image D representing the

same camera view. Since our problem focuses on optimizing

the mesh representation M, the loss function must be

differentiable with respect to the vertices of M.

A loss function can be defined in the 2-D image plane by

rendering a depth image from M and comparing its pixel

values to those of D. We rely on a differentiable mesh

renderer [18], [19] to generate a depth image ρ(M) and

define a 2-D loss function:

ℓ2(M,D) :=

∑

ij∈U(ρ(M),D) |ρij(M)−Dij |

|U(ρ(M),D)|
, (2)

where U(ρ(M),D) is the set of pixels where both the

depth image D and the rendered depth ρ(M) have valid

depth information. While ℓ2 is a natural choice of a loss

function in the image plane, it does not emphasize two

important properties for mesh reconstruction. First, since

ℓ2 only considers a region in the image plane where both

depth images have valid information, its minimization over

M may encourage the mesh M to shrink. Second, ℓ2 does

not emphasize regions of large depth gradient variation (e.g.,

the side surface of a building), which may lead to inaccurate

reconstruction of 3-D structures.

To address these limitations, we propose a supplementary

loss function, defined in the 3-D spatial domain over point

clouds PM and QD obtained from M and D, respectively:

ℓ3(M,D) :=
1

2
λ(PM,QD) +

1

2
λ(QD,PM), (3)

where λ is the asymmetric Chamfer point cloud distance:

λ(P,Q) :=
1

|P|

∑

p∈P

‖p− argmin
q∈Q

‖p− q‖2‖2. (4)

To generate PM, we sample the faces of M uniformly.

Since samples on the mesh surface can be represented using

barycentric coordinates with respect to the mesh vertices,

the loss function is differentiable with respect to the mesh

vertices. To generate QD, we may sample the depth image

D uniformly and project the samples to 3-D space but this

will not generate sufficient samples in the regions of large

depth gradient variation. Instead, we first generate a pseudo

ground-truth mesh MD by densely sampling pixel locations

in D as the mesh vertices and triangulating on the image

plane to generate faces. We then sample the surface of MD

uniformly to obtain QD.

Fig. 2 illustrates the loss functions ℓ2 and ℓ3. We also

define two regularization terms to measure the smoothness

of M = (V, E ,F). The first is based on the Laplacian

matrix L := G −A ∈ R
n×n of M, where G is the vertex

degree matrix and A is the adjacency matrix. We define a

vertex regularization term based on the ℓ2,1-norm [20] of the

degree-normalized Laplacian [21] G−1L:

ℓV(M) :=
1

n

∥

∥G−1LV
∥

∥

2,1
. (5)

We also introduce a mesh edge regularization term to dis-

courage long edges in the mesh

ℓE(M) :=
1

|E|

∑

(i,j)∈E

‖vi − vj‖2, (6)

where vi ∈ R
3 are the mesh vertices. The complete loss

function is:

ℓ(M,D) := w2ℓ2(M,D) + w3ℓ3(M,D)

+ wVℓV(M) + wEℓE(M),
(7)

where the first two terms evaluate the error between M
and D and the last two terms encourage smoothness of the

mesh structure. The scalars w2, w3, wV, wE allow appropri-

ate weighting of the different terms in (7).

V. 2D-3D LEARNING FOR MESH RECONSTRUCTION

Inspired by depth completion techniques, we approach

mesh reconstruction in two stages: initialization and refine-

ment. We initialize a coarse mesh from the sparse depth

measurements and refine it by predicting vertex residuals

based on RGB image features.

A. Mesh Initialization

Outdoor terrain structure can be viewed as a 2.5-D surface

that is mostly flat with occasional height variations. Hence,

we initialize a flat mesh and change the surface elevation

based on the sparse depth measurements. The flat mesh is

initialized with regular-grid vertices (1024 in our experi-

ments) over the X-Y ground plane, orthogonal to the gravity

direction (Z axis). See Fig. 3 for an illustration. Subsequently,

our mesh reconstruction approach only optimizes the mesh

vertices and keeps the edge and face topology fixed. We

initialize the Z-axis vertex coordinates by solving an opti-

mization problem with a weighted combination of the 2-D

rendered depth loss ℓ2 in (2) and the Laplacian loss ℓV in

(5) as the objective function:

∆V∗ = argmin
∆V

w2ℓ2(M(V +∆V, E ,F),D)

+ wVℓV(M(V +∆V, E ,F)).
(8)

In (8), D are sparse depth measurements so the rendered

depth error is evaluated only at the sparse pixel locations.

The initialized mesh Mint = (V+∆V∗, E ,F) is used as an

input to the mesh refinement stage.

B. Mesh Refinement

In the refinement stage, we use a learning approach to

extract features from both the 2-D image and 3-D initial

mesh and regress mesh vertex offsets. The ground-truth depth

maps are used for supervision.

The RGB image provides useful information for refine-

ment since man-made objects have sharp vertical surfaces,

while natural terrain has noisy but limited depth variation.

The sparse depth measurements also provide information

about areas with large intensity variation. Inspired by Mesh

R-CNN [16], we design a network that extracts features from

the 2-D image, associates them with the 3-D vertices of the

initial mesh, and uses them to refine the vertex locations.

Our network has 3 stages: feature extraction, vertex-image

feature alignment, and vertex graph convolution.

Feature Extraction. We extract features from three sources:

the RGB image I, the rendered depth ρ(Mint) from the

initial mesh, and a Euclidean distance transform E(D) of the

Fig. 3: Overview of the complete mesh reconstruction architecture. In the mesh initialization stage (Sec. V-A), we use sparse depths to
elevate a flat mesh from the image plane to 3-D space. In the mesh refinement stage (Sec. V-B), we combine the RGB image, the initial
mesh rendered depth and the Euclidean Distance Transform from the sparse depths and extract 2-D features using ResNet-18 [22]. These
features are aligned to the initial mesh vertices using camera projection (Fig. 4). Vertex offsets are regressed using a graph convolution
network (GCN) over the initial mesh. The ResNet-18 and GCN parameters are optimized jointly using the loss function in Sec. IV.

Fig. 4: Illustration of image feature to mesh vertex association.
With known camera intrinsics, each mesh vertex can be projected
in uv coordinates (range [0, 1]) onto the image plane. Bilinear
interpolation is used to associate image feature maps at different
resolutions with the mesh vertices. The features across different
resolutions are concatenated to form a composite vertex feature.

sparse depth measurements D, obtained by computing the

Euclidean distance to the closest valid depth measurement

for each pixel. The three images are concatenated to form

a 5-channel input: C = concat(I, ρ(Mint),E(D)). We use

ResNet-18 [22] to extract image features. Since aerial images

have different properties compared to ImageNet data, we

learn the model weights from scratch. Four layers of features

with different resolution and channels are extracted:

[L1,L2,L3,L4] = φ(C), (9)

where φ is the ResNet-18 model.

Vertex-Image Feature Alignment. Next, we construct 3-

D features for Mint by associating the mesh vertices with

the 2-D image features. This idea is inspired by Pixel2Mesh

[14], which projects mesh vertices onto the image plane

and extracts features at the projected coordinates. To obtain

multi-scale features, we associate the projected mesh vertices

with the intermediate layer feature maps [L1,L2,L3,L4]
from (9). This vertex-image alignment step is illustrated

in Fig. 4. All features with different channel numbers are

concatenated to form composite vertex features:

Vgin = galign(Mint, φ(C)), (10)

where Vgin ∈ R
n×(l1+l2+l3+l4+3) are the vertex features and

li is the number of channels in feature map Li. We add the

3-D vertex coordinates vi as the last 3 dimensions.

Vertex Graph Convolution. The mesh can be viewed as a

graph with vertex features Vgin . A graph convolution network

[15], [16] is a suitable architecture to process the vertex

features and obtain vertex offsets ∆V that optimize the

agreement of the refined mesh Mref = (Vint + ∆V, E ,F)
and the ground truth depth D∗ according to the loss in (7).

To capture a larger region of feature influence, we use 3

layers of graph convolution g1, g2, g3 and set the final vertex

feature dimension to 64. A weight matrix W is applied on

the final 64-D feature to derive the 3-D vertex offsets:

∆V = WVgout := Wg3(g2(g1(V
gin))), (11)

where Vgout ∈ R
n×64 and ∆V ∈ R

n×3. In order to refine the

mesh with more details, we concatenate 3 stages of vertex-

image feature alignment and graph convolution. At stage i,

last stage’s refined mesh Mref
i−1 is set as the initial mesh

Mint
i and new vertex features are extracted via vertex-image

feature alignment and fed to new graph convolution layers.

All 3 refined meshes in different stages (Mref
1 ,Mref

2 ,Mref
3)

are evaluated against the ground-truth depth map D∗ using

the loss functions defined in (7).

VI. EXPERIMENTS

This section compares several variations of our mesh

reconstruction approach to a baseline method on a dataset

generated from aerial images.

A. Dataset

We build an aerial image dataset based on the WHU

MVS/Stereo dataset [7]. The original dataset provides cal-

ibrated RGBD images rendered from a highly accurate 3D

digital surface model which is not publicly available. Hence,

TABLE I: Quantitative evaluation of variations of the proposed method. The SD-tri method triangulates a mesh using all the sparse depth
measurements as vertices. The Regular-n uses the mesh with n vertices. The Initialized model constructs a mesh from the sparse depth
(Sec. V-A). The RGB, RGB+RD, RGB+RD+EDT methods refine the initialized mesh (Sec. V-B), using different inputs respectively. The
loss function used by the different methods is indicated by 3D+2D (uses both ℓ3 and ℓ2) or 3D (uses ℓ3 only). The second column shows
the number of available sparse depth measurements per image and indicates whether the measurements are noisy (Sec. VI-A).

Error
Meshing SD-tri Regular-576 Regular-1024

Inputs (vert

= SD)
Initialized

RGB+RD RGB+RD+EDT
Initialized

RGB RGB+RD RGB+RD RGB+RD+EDT
Loss 3D+2D 3D+2D 3D+2D 3D 3D+2D 3D+2D

ℓ2

500 1.492 2.069 1.670 1.637 1.861 1.575 1.382 1.289 1.252

1000 1.172 1.834 1.596 1.546 1.535 1.298 1.193 1.124 1.097

2000 0.916 1.941 1.551 1.511 1.344 1.144 1.092 1.045 1.024

ℓ3

500 9.815 18.278 13.438 13.763 13.799 7.242 5.412 5.647 6.352
1000 6.494 17.762 12.938 13.574 11.872 5.876 4.538 4.911 5.703
2000 4.649 17.130 12.483 13.506 10.859 5.131 4.069 4.477 5.291

ℓ2

500+noise 1.865 2.294 1.809 1.768 2.155 1.828 1.571 1.486 1.456

1000+noise 1.632 2.056 1.701 1.685 1.826 1.535 1.360 1.319 1.308

2000+noise 1.485 1.717 1.655 1.654 1.629 1.364 1.243 1.236 1.241

ℓ3

500+noise 19.737 18.392 12.974 13.532 14.887 8.351 6.063 6.157 6.865
1000+noise 22.189 17.693 12.258 13.161 12.480 6.447 4.904 5.266 6.075
2000+noise 18.545 17.256 11.856 12.988 11.147 5.452 4.343 4.793 5.620

we recover a dense point cloud from the RGBD images as

a ground-truth 3D model. We generate 20 camera trajectory

sequences, split into 14 for training, 2 for validation, and

4 for testing. Each camera trajectory follows a sweeping

grid-pattern with 10 keyframes per row and 20 keyframes

per column. The keyframes are chosen to ensure 75% row

overlap and 80% column overlap. RGBD images with reso-

lution 512×512 are rendered along each trajectory from the

ground-truth point cloud using PyTorch3D [19]. We obtain

camera pose estimates and sparse depth measurements Dk

for each image by applying OpenSfM [23] to four neighbor

images with known camera intrinsic parameters. Small (500),

medium (1000), and large (2000) number of sparse depth

measurements are obtained from SfM per image. The results

from OpenSfM are treated as the data with noise, and the

noise may come from the feature detection&matching as well

as the bundle adjustment step. We also obtain noiseless depth

measurements with the same sparsity 2-D pattern from the

ground-truth depth images D∗
k.

B. Implementation Details

During training, we use 1000 number of sparse depth

measurements and the mesh vertices number is fixed to

1024. The mesh initialization optimization is performed over

100 iterations with the Adam optimizer [24] and weights

[w2, w3, wV, wE] = [1, 0, 0.5, 0] for the loss function in

(7). The ResNet-18 and GCN parameters are optimized

jointly during the mesh refinement training using the Adam

optimizer with initial learning rate of 0.0005 for 200 epochs.

The loss function in (7) with parameters [w2, w3, wV, wE] =
[3, 1, 0.5, 0.01] is used in this phase. The Chamfer distance

λ in the ℓ3 loss term is computed using 10000 samples.

C. Results

Our experiments report the ℓ2 error in (2) and the ℓ3
error in (3), comparing the reconstructed mesh wit. The ℓ2
emphasizes projected depth accuracy, while the ℓ3 pay more

attention to large depth gradient region.

For comparison, we define a baseline method that triangu-

lates the sparse depth measurements directly to build a mesh.

The baseline method performs Delaunay triangulation on the

2-D image plane over the depth measurements and projects

the flat mesh to 3-D using the known vertex depths. We refer

to the baseline method as sparse-depth-triangulation (SD-

tri). Note that the baseline method uses all avaiable sparse

depth measurements (500, 1000, or 2000) and, hence, may

has a different number of vertices from the other models.

The quantitative results from the comparison are reported in

Table I. Note that all the models are trained with 1024-vertex

meshes and 1000 sparse depth measurements and we directly

generalize them on meshes with different number of vertices

and different number of sparse depth measurements.

Several variations of our approach are evaluated. We

compared three different options for the input provided

to the mesh refinement stage: only the 3-channel RGB

image (RGB), the RGB image plus rendered depth from

the initial mesh (RGB+RD, 4-channels), and the RGB im-

age plus rendered depth from the initial mesh plus Eu-

clidean distance transform obtained from of the sparse depth

map (RGB+RD+EDT, 5-channels). The model using RGB-

only does not perform as well as the other two. The

RGB+RD+EDT model has the best performance according

to the ℓ2 error metric. The RGB+RD method has similar

performance in the ℓ2 metric and smaller ℓ3 error compared

to RGB+RD+EDT. The RGB+RD model is used to generate

our qualitative results using 1024-vertex meshes because it

offers good performance according to both error metrics.

We also compare different loss function combinations for

training the RGB+RD method. The 3D+2D loss function

reported in Table I corresponds to training with parameters

[w2, w3, wV, wE] = [3, 1, 0.5, 0.01] for the loss function in

(7), while the 3D loss function, corresponds to parameters

[w2, w3, wV, wE] = [0, 1, 0.5, 0.01]. We can see that training

with the 3D+2D loss leads to balanced performance acorrd-

ing to both the ℓ2 and ℓ3 metrics, while training with the 3D

loss only leads to good performance in the ℓ3 loss but higher

2-D rendering error, according to the ℓ2 metric.

Finally, we compare the mesh reconstruction accuracy

when the sparse depth measurements are noiseless ver-

Fig. 5: Mesh reconstructions visualized as rendered depth images.
The colors indicate the relative depth values. Row 1: RGB images.
Row 2: sparse depth measurements (around 1000). Row 3: meshes
reconstructed from sparse-depth triangulation. Row 4: meshes after
initialization (Sec. V-A). Row 5: meshes after neural network
refinement (Sec. V-B). Row 6: ground-truth depth images.

Fig. 6: Reconstructed meshes painted with RGB texture and color
indicating depth. The sharp vertical transitions of the buildings are
reconstructed accurately.

sus noisy. The baseline SD-tri method performs well in

a noiseless setting but degenerates drastically when noise

from the SfM is introduced. In contrast, our model is more

robust to the noise in the sparse depth measurements. Two

factors might be contributing to this. First, our mesh ini-

tialization and refinement stages both include explicit mesh

regularization terms (in (5) and (6)). Second, the image

features extracted during the mesh refinement process help

to distinguish among different terrains and structures. The

latter is clear from the improved accuracy of the refined,

compared to the initialized, meshes. We also report the

performance using a mesh with only 576 vertices. When the

Fig. 7: Complete environment model obtained by transforming to
the global frame and merging local meshes from 12 camera views.

depth measurements are noisy, it has lower ℓ2 loss compared

with the baseline method with similar number of vertices. It

also has lower ℓ3 loss even compared with meshes with more

vertices generated from the baseline method.

Some qualitative results are presented in Fig. 5. Com-

pared with the sparse-depth-triangulation and the initialized

meshes, the refined meshes have smoother boundaries on

the side surfaces of the buildings. The guidance from the

image features allows the refined meshes to fit the 3D

structure better. Fig. 7 shows a global mesh reconstruction

obtained by transforming and merging 12 local camera-view

reconstructions. The local meshes are transformed to global

frame using the keyframe poses and no postprocessing is

used to merge them into a global model.

The reconstructed mesh models are a more efficient repre-

sentation than the dense depth images. A dense depth image

requires 512× 512 values to represent a camera view, while

our mesh model (with fixed mesh faces topology) only needs

to store the 3D coordinates of the 1024 vertices. Thus, our

model requires only 1% of the depth image parameters to

obtain a high-fidelity reconstruction of a camera view. On a

desktop with NVIDIA 1080 Ti GPU, the Mesh Initialization

step takes about 3 s/frame because we solve it using iterative

gradient descent. However, eq. (8) can be solved much faster

by treating it as a linear system. The Mesh Refinement step

takes about 10 ms/frame.

VII. CONCLUSION

In this work, we introduce a method to reconstruct a 3D

mesh from an RGB image and sparse depth measurements.

We build an outdoor aerial dataset and apply our method

on it for terrain mapping. Quantitative and qualitative results

show that our method outperform the baseline method of

triangulating the sparse depth points. Our method can also

generalize to different number of sparse depth without addi-

tional storage cost. It is also robust to reconstruction noise in

the sparse depth measurements. In the future, we would like

to tightly merge this with a feature-based SLAM algorithm

to upgrade the sparse feature-based map into a dense mesh

map. We would also fuse multi-modal observations into the

map such as the semantic information.

REFERENCES

[1] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator,” IEEE Transactions on

Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.
[2] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,

I. Reid, and J. J. Leonard, “Past, Present, and Future of Simultaneous
Localization and Mapping: Toward the Robust-Perception Age,” IEEE

Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.
[3] F. Ma and S. Karaman, “Sparse-to-Dense: Depth Prediction from

Sparse Depth Samples and a Single Image,” in IEEE International

Conference on Robotics and Automation (ICRA), 2018, pp. 4796–
4803.

[4] Y. Chen, B. Yang, M. Liang, and R. Urtasun, “Learning Joint 2D-
3D Representations for Depth Completion,” in 2019 IEEE/CVF Inter-

national Conference on Computer Vision (ICCV), 2019, pp. 10 022–
10 031.

[5] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2012, pp.
573–580.

[6] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[7] J. Liu and S. Ji, “A Novel Recurrent Encoder-Decoder Structure for
Large-Scale Multi-View Stereo Reconstruction From an Open Aerial
Dataset,” in IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2020, pp. 6049–6058.
[8] C. Godard, O. M. Aodha, M. Firman, and G. Brostow, “Digging

Into Self-Supervised Monocular Depth Estimation,” in IEEE/CVF

International Conference on Computer Vision (ICCV), 2019, pp. 3827–
3837.

[9] A. Gordon, H. Li, R. Jonschkowski, and A. Angelova, “Depth From
Videos in the Wild: Unsupervised Monocular Depth Learning From
Unknown Cameras,” in IEEE/CVF International Conference on Com-

puter Vision (ICCV), 2019, pp. 8976–8985.
[10] Z. Chen, V. Badrinarayanan, G. Drozdov, and A. Rabinovich, “Esti-

mating Depth from RGB and Sparse Sensing,” in Computer Vision –

ECCV, 2018, pp. 176–192.
[11] F. Ma, G. V. Cavalheiro, and S. Karaman, “Self-Supervised Sparse-to-

Dense: Self-Supervised Depth Completion from LiDAR and Monocu-

lar Camera,” in International Conference on Robotics and Automation

(ICRA), 2019, pp. 3288–3295.
[12] W. N. Greene and N. Roy, “FLaME: Fast Lightweight Mesh Esti-

mation Using Variational Smoothing on Delaunay Graphs,” in IEEE

International Conference on Computer Vision (ICCV), 2017, pp. 4696–
4704.

[13] W. Wang, Y. Zhao, P. Han, P. Zhao, and S. Bu, “TerrainFusion:
Real-time Digital Surface Model Reconstruction based on Monocular
SLAM,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2019, pp. 7895–7902.
[14] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang,

“Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images,”
in Computer Vision – ECCV, 2018, pp. 55–71.

[15] T. N. Kipf and M. Welling, “Semi-Supervised Classification with
Graph Convolutional Networks,” in International Conference on

Learning Representations (ICLR), 2017.
[16] G. Gkioxari, J. Johnson, and J. Malik, “Mesh R-CNN,” in IEEE/CVF

International Conference on Computer Vision (ICCV), 2019, pp. 9784–
9794.

[17] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum,
“Mesh editing with poisson-based gradient field manipulation,” ACM

Trans. Graph., vol. 23, no. 3, p. 644–651, Aug. 2004.
[18] S. Liu, T. Li, W. Chen, and H. Li, “A General Differentiable Mesh

Renderer for Image-based 3D Reasoning,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, pp. 1–1, 2020.
[19] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. Johnson,

and G. Gkioxari, “Accelerating 3D Deep Learning with PyTorch3D,”
arXiv:2007.08501, 2020.

[20] F. Nie, H. Huang, X. Cai, and C. H. Ding, “Efficient and robust feature
selection via joint ℓ2,1-norms minimization,” in Advances in Neural

Information Processing Systems 23, 2010, pp. 1813–1821.
[21] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-

P. Seidel, “Laplacian Surface Editing,” in Proceedings of the 2004

Eurographics/ACM SIGGRAPH Symposium on Geometry Processing,
2004, p. 175–184.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016, pp. 770–778.
[23] “OpenSfM,” https://github.com/mapillary/OpenSfM.
[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-

mization,” in International Conference on Learning Representations

(ICLR), 2014.

