Closing-the-Loop: A Data-Driven Framework for
Effective Video Summarization

Ran Xu
Saurabh Bagchi
Purdue University
Email: {xu943, sbagchi}@purdue.edu

Abstract—Today, videos are the primary way in which infor-
mation is shared over the Internet. Given the huge popularity of
video sharing platforms, it is imperative to make videos engaging
for the end-users. Content creators rely on their own experience
to create engaging short videos starting from the raw content.
Several approaches have been proposed in the past to assist
creators in the summarization process. However, it is hard to
quantify the effect of these edits on the end-user engagement.
Moreover, the availability of video consumption data has opened
the possibility to predict the effectiveness of a video before it
is published. In this paper, we propose a novel framework to
close the feedback loop between automatic video summarization
and its data-driven evaluation. Our Closing-The-Loop framework
is composed of two main steps that are repeated iteratively.
Given an input video, we first generate a set of initial video
summaries. Second, we predict the effectiveness of the generated
variants based on a data-driven model trained on users’ video
consumption data. We employ a genetic algorithm to search
the space of possible summaries (i.e., adding/removing shots to
the video) in an efficient way, where only those variants with
the highest predicted performance are allowed to survive and
generate new variants in their place. Our results show that the
proposed framework can consistently improve the effectiveness
of the generated summaries with minimal computation overhead
compared to a baseline solution — 28.3% more video summaries
are in the highest effectiveness score class than those in the
baseline.

I. INTRODUCTION

Video content is ubiquitous nowadays. Given the sheer
amount of content shared on video platforms every day, it
becomes increasingly important to create short and effective
videos that can provide a high-level of engagement with
the end-users. Quantifying the effectiveness of a video is
a non-trivial task for content creators, as effectiveness not
only depends on the content itself but also on the target
audience and publishing channels. Content creators usually
rely on their experience and preference to create a short
summary starting from a long video, which is not guaranteed
to produce the best possible result. Machine Learning (ML)-
assisted tools are used more and more to assist creators in
this process, as they can greatly accelerate and improve the
video summarization task. However, many of these techniques
only focus on video-level characteristics (e.g., aesthetics)
to generate the video summary [1], [2]), without explicitly
reasoning on the effectiveness of the generated output from
an end-user’s perspective. As an example, Gu et al. propose
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a GAN-based approach for video summarization that aims to
minimize the difference in feature space between the original
video and the summarized version [3]. While these approaches
can generate visually appealing results, there is no guarantee
that the final result is the most effective. Moreover, we now
have access to a large amount of video content consumption
data. All these rich, contextual data can be used to predict
how effective a particular video will be, even before it is
published [4]. For example, Lou et al. [S] propose an LSTM-
based network to predict the watchability of a video based on
audio-visual features. The proposed method is trained using
historical data about the effectiveness of other videos. These
insights can be potentially used to further optimize the video
summarization process. However, being able to predict the
content effectiveness alone is not enough for content creators,
as it remains unclear what edits should be performed on the
video to improve its effectiveness.

In this paper, we therefore propose to close the feedback
loop in the video summarization process, by bridging the
gap between automatic video summarization and its data-
driven effectiveness prediction. Particularly, our Closing-the-
Loop (CTL) framework iteratively searches the best video
summary variant maximizing a data-driven metric, which is
used to evaluate the effectiveness of the video. We formulate
the problem of finding the near-optimal variant as an incre-
mental genetic search problem. A Creation App is responsible
to generate possible summaries, based on the input content
and editing parameters. An Evaluation App evaluates these
variants and predicts their effectiveness. A genetic algorithm
intelligently improves the video summary generation, iteration
after iteration, by selecting only a subset of the variants with
the highest predicted performance. The selected variants are
then used as new inputs for the Creation App. Ultimately,
this iterative process produces the video summary with the
highest predicted effectiveness by the Evaluation App. The
main contributions of this paper are therefore two-fold:

o We design Closing-the-Loop, a data-driven video summa-
rization framework that allows to automatically summa-
rize an input video in order to maximize its predicted
effectiveness, using a combination of a Creation App,
to generate possible variants, and an Evaluation App, to
evaluate these variants;



o« We leverage a genetic algorithm to efficiently search
across all possible video summary variants and focus the
process on the most promising ones. This allows to search
the large and complex space of possible summaries in
an efficient and scalable way, with minimal computing
overhead. Different from deep learning models, which
are hard to interpret, our approach is more interpretable
as it shows the incremental editing path leading to the
final video summary with highest effectiveness.

We evaluate the proposed CTL framework on the video
summarization task, using the data-driven effectiveness score
proposed by Lou et al. [5] as the feedback metric. Compared
to a baseline ML solution that only consider video-level
characteristics to generate a summary [3], we show how
the proposed approach can generate new video summaries
with the highest possible effectiveness score for 28.3% more
videos in the analyzed dataset [4] compared to the baseline.
Our proposed framework only adds marginal execution time
overhead compared to the baseline.

The rest of the paper is organized as follows. Section II in-
troduces related works in the area of ML-based video summa-
rization. Section III presents our closing-the-loop framework,
with details on the genetic algorithm we used to efficiently
search among the possible video summaries. In Section 1V,
we evaluate our framework for the video summarization task,
while Section V concludes the paper and presents several
directions for future research in this domain.

II. RELATED WORK

Several ML-based works have been proposed in the past to
automate and streamline the video summarization process, and
to predict the effectiveness of a video before it is published.

In terms of video summarization, Gao et al. [6] use a
combination of color, motion, and audio features to select the
most important frames of the video. The advent of deep neural
networks (DNNs) have brought consistent advancements to
this task. Jiao et al. [7], [8] propose a three-dimensional
attention model to fully explore the spatial and temporal
features in the video. Ranking models for video segments are
popular solutions for video highlight detection. Specific mod-
els include EM-like self-paced model selection procedures [9]
and deep learning techniques [10], [11]. Researchers are also
exploring new model architectures. Zhang et al. [12] have
been the first to propose Long Short-Term Memory (LSTM)
networks to model the temporal dependency among frames and
build representative summaries. Gu et al. [3] and Mahasseni
et al. [13] use a generative model where the summarizer
network aims to generate summaries that the discriminator
network cannot distinguish from the input. Even though these
approaches can generate visually appealing results, they only
consider video-specific objectives when creating a summary.
In other words, these works can be categorized as open-loop,
as content effectiveness is not explicitly taken into account.

In terms of video performance prediction, several works
have investigated how to predict the effectiveness of a video
for a particular user segment or publishing platform. This

prediction is particularly important for creators, as it indicates
how much impact the created content will have on the target
audience. To achieve this goal, Lou et al. [5] use visual and
metadata information associated with a video to predict its
effectiveness using a mixture of LSTM network and logistic
regression model. Particularly, this is the model used as Eval-
uation App in our CTL framework. Hussain et al. [4] collect
several datasets to analyze and evaluate the effectiveness of
image and video advertisements. The datasets contain infor-
mation on the topic and sentiment of the ad, what actions are
performed etc. We use the Video Ad dataset collected by the
authors for our evaluation. Li et al. [14], Figueiredo ef al. [15],
Ding et al. [16], Vallet et al. [17], and Jing et al. [18] predict
the popularity of videos or micro-videos on online social
networks, which can also be considered an indirect prediction
of effectiveness. Similarly, Giirsun et al. [19] describe and
forecast the daily video access patterns of YouTube videos.
Even though using the predicted performance to drive the
content creation is possible in theory, it is hard to apply
this concept in practice since very often these models lack
interpretability (especially for deep-learning-based solutions).
Although a few approaches have been proposed to solve this
issue [20], [21], it remains challenging to fully interpret the
decision taken by the effectiveness prediction model.

As seen above, the problem of closing the feedback loop
between video summarization and its performance evalua-
tion/prediction is currently not addressed. Previous works
mostly focus on: (1) predicting the effectiveness of existing
videos or (2) automatically generating summaries without
directly taking into account how effective the created content
would be. This paper closes this gap by allowing an iterative,
step-by-step search to find the optimal video summary. To per-
form this search, we use a Genetic Algorithm (GA) [22], [23].
GAs have been studied extensively in the past in the context
of search and optimization, and they have been used for video
summarization as well [24], [25], particularly because of their
flexibility and time efficiency. GAs have also been applied to
generate sports video summaries, like cricket video events [26]
and soccer videos [27]. More generally, such evolutionary
approach can be used for automatic video editing [28] and
video production [29]. GAs are particularly effective when the
search space is large, non-convex or discontinuous, as in our
video summarization case. They are also modular in nature,
which is an important aspect of the data-driven framework
proposed in this paper. Finally, the incremental nature of the
optimization carried out by a GA can be used to expose the
editing decisions to the creator, and to allow the creator to
decide whether to accept the edits or not.

III. THE CLOSING-THE-LOOP FRAMEWORK

Our proposed CTL framework automates the process of
finding the best video summary that maximizes the pre-
dicted content effectiveness and engagement for the end-users.
Particularly, we use a Creation App to generate different
video summary variants, and an Evaluation App to assess
the performance of the generated variants. A GA allows
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Fig. 2. Visualization of the Intermediate Representation for a video
summarization application. A video shot is labelled in green if it is included in
the summary, and in white otherwise. In this example, the summary includes
five shots, namely Oth, 3rd, 10th, 15th, and 23rd shots. The first video frame
of each shot is also shown.

to connect these two steps and efficiently search the best
video summary variant. This design choice allows to plug any
Creation and Evaluation Apps in the proposed framework to
optimize the video summarization process, according to the
specific requirements of the content creator. Figure 1 shows
an overview of the process, which can be described as follows:

1) Given an input video, generate a set of initial variants
using the Creation App;

2) Generate a set of candidate variants from the initial
variants, based on the generation policy of the GA and
the Creation App;

3) Use the Evaluation App to predict the effectiveness of
each candidate variant, in the form of a numerical score;

4) Based on the survival policy of the GA, select a subset of
the variants that are going to be carried over to the next
generation, also called the cutting-edge video variants;

5) Loop between steps 2-4 until the termination condition
1S met.

The final result of this iterative search process is a video
summary that maximizes the effectiveness score as indicated
by the Evaluation App. In the reminder of this section, we will
present each step of the CTL framework in detail. Without loss
of generality, we assume that the input video is pre-processed
and divided into shots, a set of consecutive frames belonging
to the same scene. Particularly, we denote with L the number
of shots and with x; the i*" shot of the video. Thus, the video
summarization algorithm can be simplified as an L binary
selection problem.

A. Intermediate Representation

To simplify the search process, we design a compact
representation of the different summarization variants, which
we call an Intermediate Representation (IR). An IR, R, is
an L-long binary array, where r; = 1 means that the shot,

x;, is selected for the video summary. Figure 2 provides a
visualization of an IR, for a video composed of 30 shots, of
which 5 are included in the summary.

B. Creation App and Search Initialization

In our data-driven framework, the Creation App is a generic
open-loop algorithm that, given an input video, generates a
summary with a user-specified duration. Our CTL framework
can support any kind of summarization algorithm that falls
in this category. As it will be detailed in Section IV, we
choose the GAN-based approach [3], which aims to minimize
the difference between the visual features of the input video
and those of the generated summary. In this context, this
solution is open-loop because it does not consider any user
video consumption data to generate the final summary.

The Creation App is in charge of generating the first video
summary, before the genetic algorithm starts searching for the
best variant. The initial IR is the Creation App’s choice of
video shots to include in the summary. This initialization is
an important part of our framework. A naive approach would
be to generate a random initial summary, which will likely be
associated with a low effectiveness score. Instead, we decide to
use the Creation App for initialization. Intuitively, even though
the Creation App does not directly optimize the effectiveness
of the content, it can still provide a reasonable starting point
that is easier to optimize. The CTL framework will then further
improve this initialization.

C. Evaluation App

Given a video, the Evaluation App is in charge of pre-
dicting its effectiveness score. Our framework can support
any algorithm that, given a video, produces a numerical
score indicating its effectiveness. For example, the approach
proposed by Lou et al. [5] used in Section IV generates a score
s € {1, 2, 3, 4, 5}, where a higher score indicates better
effectiveness, and an associated confidence score ¢ € [0, 1],
where a higher value means higher confidence. Both the
effectiveness score class s and confidence value c¢ provide
useful information about the video effectiveness. We generate
a final score, given by the summation of these two values,
to drive the search towards a video variant with the highest
possible score class and higher confidence (secondary).

We assume in this paper that the Evaluation App is designed
to predict the effectiveness of a video based on historical video
consumption data. It is worth stressing that the quality of
our framework is strictly connected with the quality of the
Evaluation App itself. Despite this, our proposed framework
is flexible enough to support a wide range of effectiveness
prediction algorithms, such as the popularity on a particular
platform, or an engagement score representing the time spent
by the users watching the video.

D. Incremental Genetic Algorithm

Given an input video V, the goal of our framework is to find
a video summary V' that maximizes the predicted effectiveness
as follows:
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Fig. 3. Ilustration of the incremental generation policy in the video

summarization application. The existing IR on the left indicates that 7 out of
32 video shots have been included in the summary so far. On the right, three
candidates generated from this IR by including an additional shot (highlighted
with a red circle). Note that the deletion of a shot is also possible.

R= argm}%xE(C’(R))
V =C(R)

where R is the intermediate representation associated with
V, and C and E indicate the Creation and Evaluation App,
respectively. We design our search algorithm according to the
following principles:

o The search should be time and computationally efficient;

o Each search iteration step should be incremental in order

to show the effect of one edit (i.e., adding/removing one
shot from the summary) on the performance of the newly
generated variant. This information can be surfaced to the
content creator to provide an insight on how the different
edits have impacted the final predicted effectiveness of
the summary.

Based on these design principles, we propose an Incremen-

tal Genetic Algorithm (IGA) to search for the best summary.
IGA is an iterative algorithm that includes a generation policy
and a survival policy. At iteration n + 1, the generation policy
defines how to generate a set of candidate summary variants
and associated IRs R[C"+1], based on the IRs R of the
previous iteration. The survival policy selects a subset of
the variants RI"*1 with the highest effectiveness scores (as
defined in Section III-C), which provides the starting point for
the next iteration.
Random-M Incremental Generation Policy In the proposed
generation policy, we introduce the constraint that only one
video shot can be added to or removed from an existing
summary variant to generated a new variant. More formally,
this entails that only one element can be changed from an IR
in iteration n to generate the variant in iteration n + 1:

D(RI"U RIMy =1

where D(-) denotes the hamming distance between the two
one-hot coded vectors. Figure 3 provides an example of this
incremental generation policy.

Despite this constraint, a very large number of variants can
still be generated (as an L-long IR can produce L candi-
date IRs). To improve speed and reduce the computational
overhead, we randomly select M variants to be part of the
candidate set to be evaluated by the Evaluation App. In our
experiments, we set M = 20, while L (the number of shots
composing the video) is usually between 30 and 200.

Top-k Survival Policy Among all the candidate variants
generated as described above, only the k candidates with the
highest effectiveness score (as calculated by the Evaluation
App) will survive and be used to generate new variants in the
next iteration. In our experiments, we set k = 3.

Per-duration Top-k Survival Policy Alternatively, as in the
video summarization task we might be interested in generating
a summary with a user-specified duration, we first group the
candidate variants based on their duration (e.g., all summaries
whose duration is between 10 and 11 seconds), and then select
the top-k candidates for each duration group. It is worth noting
that variants in a group are likely to affect variants in other
groups as well, since the duration of the variants can change
during the incremental search.

History Hash Map To prevent an infinite cycle between
two IRs, we set up a historical seen set to track the IRs
that have already been evaluated. This guarantees that an IR
is considered at most once during the search process. The
memory consumption is negligible since the IR is a light-
weight representation (an array) and the number of IRs are
bounded by the maximum number of iterations and M.

Termination Condition The search terminates when one of
the following conditions is met: (1) the number of iterations
reaches the maximum limit, (2) the output video summary
meets the requirement (e.g. score-5 and 90% confidence), (3)
the cutting-edge IRs do not change for a few consecutive
iterations (e.g. 3).

IV. EVALUATION
A. Creation/Evaluation Apps, Dataset, and Implementation

To evaluate our closing-the-loop framework, we select the
Creation App and the Evaluation App based on two off-the-
shelf algorithms. We use the video summarization method by
Gu et al. [3] as the Creation App in the CTL framework. Given
the frame-level features of the input video, the network pro-
posed by Gu et al. aims to minimize the difference between the
input features and those of the output summary. Particularly,
the authors propose a GAN-based approach where a variational
auto-encoder operates as generator. This method is completely
unsupervised and does not require human annotations for
training, and it has shown promising results when evaluated
against summaries generated by human experts. Despite that,
this open-loop method generates less optimal video summaries
in terms of the effectiveness from an end-user perspective.
As introduced in Section III-B, the open-loop Creation App
initializes the starting point of our search algorithm. The
summarization generated by the Creation App also acts as the
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baseline in our evaluation. The video effectiveness prediction
network proposed by Lou ef al. [5] is used as Evaluation App
in the CTL framework. This work designs an LSTM-based
mixture model to predict the effectiveness score of an input
video into five classes {1,2, 3,4, 5}, with confidence value on
each class between 0 and 1. The network has been trained
on the Video Ad Dataset [4], which contains rich annotations
encompassing the topic and sentiment of the ads and human-
generated effectiveness scores for a broad range of videos.
These human scores are used as ground-truth effectiveness to
train the prediction model. We use this off-the-shelf network
as proposed by the authors and do not re-train the video
effectiveness prediction model.

As for the dataset used to evaluate our proposed CTL
framework, we use the same test dataset as in [5], which
is a subset of 530 videos from the Video Ad Dataset [4]. We
implement the CTL framework in Python 3 and evaluate in a
container running on top of AWS with Intel Xeon E5-2686 v4
CPU @2.30GHz and NVidia Tesla V100 16GB GPU.

B. Application-specific Speed Optimizations

We briefly describe in this Section the optimizations we
carried out to improve the efficiency of our framework given
our specific Creation App and Evaluation App. Figure 4(a)
shows one iteration step for a vanilla CTL framework, depict-
ing the process to go from a candidate IR to the effectiveness
prediction of the associated video variant. The Creation App
converts the IR R into a video variant V. Next, the Evaluation
App samples a fixed number of frames from the video variant
V', extracts the features of the sampled frames and computes
the effectiveness score of the video variant. In this case, the
execution time is dominated by the creation of the video
summary variants and the prediction of their effectiveness
scores. As we need to evaluate multiple IRs in our IGA, we
propose the following optimizations to reduce the execution
time of each iteration (see Figure 4(b)):

1) Instead of generating a video variant V' out of a can-
didate IR R, use the index of the selected frames from
the input video to present the concatenated video variant

V:{f17 f27 PIEREE) fp}a
2) Sample the index set as if sampling the video variant
‘/S = {f817 f827 y oty f‘ik},

3) Establish a request pool P of sampled frames, motivated
by the fact that the many sampled frames of different

IRs are in common, P = UV;

4) Batch the frame extraction and feature extraction on the
sampled frames;

5) Store the features of the sampled frames for future
iterations.

C. Higher effectiveness with higher confidence

We first evaluate our CTL framework on generating video
summaries given a fixed duration, i.e. 5 seconds, and set
the shot granularity as 1 second (i.e., 5 shots are selected
for the summary). We compare the effectiveness score im-
provement over the open-loop Creation App, as introduced in
Section IV-A. Table I presents the distribution of predicted
effectiveness scores for the summaries generated by both the
baseline and our approach. Using our CTL framework, we are
able to increase the ratio of videos in the score-5 class from
71.5% in baseline to 98.8% in CTL. Further explorations will
be discussed in Section IV-D. We also compare the confidence
improvement in the predicted score class. Indeed, we are
also interested in generating summaries whose predicted score
is not only the highest possible, but also with the highest
confidence score. This is especially important to justify the
edits performed on the video with the content creator. Figure 5
shows the distribution of confidence scores for all videos
whose predicted effectiveness score is 5, for both the baseline
and our framework. The mean confidence equals to 49.6% in
the baseline and increases to 65.8% in the CTL framework,
which represents a 15.2% increase over the baseline.

We provide a qualitative visualization of the output video
as a case study. Figure 8(a) shows the 5 representative frames
of the summary generated by the baseline algorithm — the
effectiveness score is equal to 3 with 54.1% confidence.
Figure 8(b) shows the output generated by the CTL framework
— the score class improves to 5 with 80.6% confidence. Again,
further explorations will be discussed in Section IV-D.

Overall, these results confirm that our proposed approach is
able to find the best summary variants for most of the videos
with much higher effectiveness score class and confidence
compared to the baseline.

TABLE I
DISTRIBUTION OF THE VIDEOS IN EACH EFFECTIVENESS SCORE CLASS.

Score  Baseline CTL CTL, flexi- CTL, flexible du-
class ble duration  ration & low-cost
1 0% 0% 0% 0%

2 1.3% 0.4% 0% 0%

3 27.1% 0.8% 0.2% 0.2%

4 0% 0% 0% 0%

5 71.5% 98.8% 99.8% 99.8%

D. Cost and Performance Trade-offs

An important evaluation metric for the proposed framework
is the computation overhead introduced by searching for the
best content variant. We report the runtime cost of the CTL
framework for the fixed video summary duration use case
presented in the previous Section in Table II. Despite the
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exponentially growing search space in the number of video
shots to include/exclude from the summary, the proposed CTL
framework adds only 80.3% overhead given a fixed duration
requirement, compared to the baseline (first and second row
in the Table).

We further explore several cost-performance trade-offs,
based on slightly changed summarization requirements. First,
we relax the constraint on the final summary duration, meaning
that the final summary can be of any length. This configuration
allows to generate more video variant choices and allows the
IGA search to terminate in fewer iterations. The fourth column
in Table I shows that an even higher amount (99.8%) of videos
fall now in the score-5 effectiveness class, which is a 28.3%
increase over the baseline. Figure 6(a) shows the confidence
score distribution for the videos in the score-5 class. The mean
confidence score increases to 71.0%, which is a 5.2% increase
compared to CTL with fixed duration constraint in Figure 5(b).
Qualitative results for this summarization scenario are pre-
sented in Figure 8 (c). In this case, the generated summary has
a duration equal to 4 seconds. We are able to reach the same
highest score class as in the fixed duration summary (Figure 8
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TABLE II
RUNTIME COMPARISON BETWEEN CTL AND BASELINE.

Method (task level)  Execution time per video

159.91 sec

288.29 sec (+80.3%)
259.29 sec (+62.1%)
171.49 sec (+7.2%)

163.93 sec
394.53 sec (+140.7%)

Baseline, fixed duration

CTL, fixed duration

CTL, flexible duration

CTL, flexible duration and low-cost

Baseline, every duration
CTL, every duration

(b)) and even higher confidence — 84.4%. Another benefit of
this configuration is the reduced computational overhead. As
shown in Table II-third row, the overhead of CTL over the
baseline decreases to 62.1%. Consequently, we can conclude
that relaxing the duration requirement improves both score and
confidence while reducing execution costs. This comes with a
reduced flexibility, as the user cannot directly control the final
summary duration anymore.

We next showcase how removing the constraint on generat-
ing a summary with high confidence can lead to consistent
savings in terms of execution time. In this scenario, the
search will terminate as long as a score-5 video summary is
found. Such optimization can significantly reduce the number
of iterations in the IGA. We see in Table I that the ratio
of score-5 video is also 99.8%. Table II-fourth row shows
that the computation cost over the baseline is now only
7.2%. Considering the number of summaries belonging to the
highest predicted effectiveness score class is much higher in
CTL compared to the baseline even for this scenario, this
configuration choice provides a low-cost option to quickly find
an effective video summary.

Finally, we further consider the option to output video
summaries at every duration in a given range, i.e. 1, 2, ..., 30
seconds. These output summaries are generated at the same
time by the search algorithm, in one single search pass. This
would allow the user to freely pick the video summary at
the preferred duration. For the baseline algorithm, generating
video summaries of every duration simply means to ensemble
the top-N ranked shots together, where N is the summary
duration (given that, in our experiments, the shot granularity
is set to 1 second). The computation cost increases slightly
with respect to the baseline to 163.93 seconds, on average
(Table II, fifth row). In CTL, the per-duration top-k survival
policy introduced in Section III-D keeps track of the best video
variants at every duration. This allows to share the best variants
across multiple duration in the search process. In Figure 7(a),
we see that using the baseline video summarization approach,
22% to 30% of the output summaries cannot reach the highest
effectiveness score class, for the different duration ranges. On
the other hand, using CTL, almost all videos (92.7% — 99.6%)
can be summarized into a score-5 summary (Figure 7(b)). The
confidence values distribution for all the score-5 summaries
is shown in Figure 6(b). Our CTL framework is able to
consistently improve the confidence of score-5 summaries,
independently of the duration, by 6.0% to 14.4%. Moreover,
CTL is only 1.4X slower than the baseline, despite having to



(d) CTL with flexiable duration and score class target only, effectiveness score = 5, confidence = 57.4%

Fig. 8.

Case study on one test video: (a) baseline achieves lower effectiveness score (b) CTL improves both effectiveness score and confidence, and output

a video at a given duration (i.e. 5 seconds) (c) CTL improves confidence marginally with flexible duration. (d) CTL reaches highest score with minimal cost.

produce a much large number of output summaries in a single
search execution. This happens because during the search pro-
cess, summaries can change duration and therefore end up in
different range duration buckets, which can consistently speed-
up the search. Particularly, this summarization configuration
shows that the proposed IGA design is capable of improving
summaries score and confidence, while allowing an efficient
use of computational resources.

Here we show a second case study, in Figure 9, a 2016
Scion iM TV commercial. Figure 9(a) describes the full story:
Jaleel White drives with “Family Matters” wax museum Steve
Urkel in the passenger seat. The dual zone automatic climate
control keeps both Jaleel warm and his wax-self from melting.
Jaleel finds himself starting to say Urkel’s famous line, "Did
I do that?” only to catch himself mid-phrase, when he sees
Urkel is staring back at him with his iconic smile. As seen
from Figure 9(b), the baseline summarization fails to capture
the story. Instead, it chooses three similar frames in the end.
In Figure 9(c), our approach selects not only the right shots
but also the appropriate number of shots, which captures the
original story well.

V. CONCLUSION

We propose in this paper a data-driven framework for
automatic video summarization, which exploits an incremental
genetic algorithm to efficiently generate the best possible
summary maximizing the predicted content effectiveness. The
incremental nature of this search would also allow content
creators to understand what incremental edits have the most
impact on content effectiveness and, finally, what it takes

to produce an effective video summary. Our evaluation on
a popular video effectiveness dataset [4] shows that our
Closing-The-Loop framework can significantly improve both
the predicted effectiveness score and confidence for most
videos, compared to an open-loop baseline that only considers
video-level objectives to generate a summary. We achieve this
result with only modest execution overhead compared to the
baseline, thanks to the efficient search carried out by the
genetic algorithm.

Future work will focus on three possible directions. First,
alternative summary variant generation methods to speed up
convergence. Second, evaluate the performance of the frame-
work with a user study to better identify the gains of the pro-
posed approach. Third, although the CTL framework presented
in this paper has been tailored for the video summarization
task, it can be applied to optimize the performance of other
video editing tasks and media types as well.
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