
POSTER: Asynchrony versus Bulk-Synchrony for a
Generalized N-body Problem from Genomics

Marquita Ellis, Aydın Buluç, Katherine Yelick
The University of California at Berkeley & Lawrence Berkeley National Laboratory

Berkeley, California, U.S.A.
{mme,abuluc,yelick}@berkeley.edu

Abstract
This work examines a data-intensive irregular application
from genomics, a long-read to long-read alignment problem,
which represents a kind of Generalized N-Body problem,
one of the “seven giants” of the NRC Big Data motifs [5]. In
this problem, computations (genomic alignments) are per-
formed on sparse and data-dependent pairs of inputs, with
variable cost computation and variable datum sizes. In partic-
ular, there is no inherent locality in the pairwise interactions,
unlike simulation-based N-Body problems, and the interac-
tion sparsity depends on particular parameters of the input,
which can also affect the quality of the output. We examine
two extremes to distributed memory parallelization for this
problem, bulk-synchrony and asynchrony, with real work-
loads. Our bulk-synchronous implementation, uses collective
communication in MPI, while our asynchronous implemen-
tation uses cross-node RPCs in UPC++. We show that the
asynchronous version effectively hides communication costs,
with a memory footprint that is typically much lower than
the bulk-synchronous version. Our application, while simple
enough to be a kind of proxy for genomics or data analytics
applications more broadly, is also part of a real application
pipeline. It shows good scaling on real input problems, and
at the same time, reveals some of the programming and ar-
chitectural challenges for scaling this type of data-intensive
irregular application.

CCS Concepts: • Computing methodologies → Paral-
lel computing methodologies; Distributed computing
methodologies; • Applied computing → Computational
genomics; Bioinformatics; Molecular sequence analysis; Com-
putational proteomics.

Keywords: HPC, genomics, bioinformatics, big data

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8294-6/21/02.
https://doi.org/10.1145/3437801.3441580

ACM Reference Format:
Marquita Ellis, Aydın Buluç, Katherine Yelick. 2021. POSTER: Asyn-
chrony versus Bulk-Synchrony for a Generalized N-body Problem
from Genomics. In 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’21), February 27-March
3, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3437801.3441580

1 Extended Abstract
Per the 2013 National Academies report on Big Data Fron-
tiers, “Generalized N-body problems (Gray and Moore, 2001)
include virtually any problem involving distances, kernels, or
other similarities between (all ormany) pairs (or higher-order
n-tuples) of points”. This describes classic, well-understood
N-Body problems like particle simulation. It also describes
currently challenging problemswith non-Euclidean or higher-
dimensional similarity metrics, proliferating from bioinfor-
matics, computer vision, computational chemistry, and other
Big Data domains [3, 5, 15]. Long-read to long-read align-
ment, a genomics problem, is representative of this challeng-
ing subclass.

To achieve acceptable fidelity for genomic analysis in the
presence of sequencing errors, pairwise alignment is used
to compute similarity or “distance” between reads (strings
representing DNA fragments) from a set of input reads.
For a read pair with maximum length 𝑛, pairwise align-
ment is 𝑂 (𝑛2) in general (Needleman-Wunsch 1970, Smith-
Waterman 1981) [10, 12]. However, average-case 𝑂 (𝑛) meth-
ods, such as X-drop [16] can achieve good accuracy for long-
read to long-read alignment in particular [7]. Yet, individual
long reads vary widely in length, roughly 𝑛 ∈ (102, 105),
and while algorithms like X-drop offer significantly lower
expected complexity, they also entail much more irregular-
ity due to their dynamic adaptation and early-termination
heuristics. The overall problem can be solved by computing
the pairwise alignment of each input read to each other in-
put read in 𝑂 (𝑁 2 × 𝑛2). However, the size of the input read
sets vary with the size of the underlying genomes and the
sequencing depth; in practice, the all-to-all approach is in-
tractable for all but the smallest workloads. Domain-specific
analysis [2, 4, 7–9, 14] can effectively reduce the number of
interactions (alignments). However, these analyses also typi-
cally yield unstructured sparse (data-dependent) interaction

https://doi.org/10.1145/3437801.3441580
https://doi.org/10.1145/3437801.3441580


PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Ellis, et al.

patterns across the input reads, over which the many-to-
many pairwise alignment must be performed. This poses
challenges for parallel load balancing and communication
cost minimization, and remains the dominant scalability bot-
tleneck of practical pipelines [6]. Similar challenges appear
in other computational biology problems as well, such as
protein alignment [11] and protein searches in massive data
sets [13].
This work examines practical approaches, near the bulk-

synchronous and asynchronous extremes, for many-to-many
long read alignment. Our bulk-synchronous approach in MPI
2.0 uses collective communication for the many-to-many
read exchange, supporting independently parallel compu-
tation of many alignments in subsequent compute steps. It
utilizes all available memory to minimize the number of
supersteps and maximize bandwidth-utilization. The data-
intensive nature of the application and the fact that there is
no perfect partitioning strategy (in general) as we illustrate,
motivates alternative one-sided or asynchronous approaches.
Our asynchronous approach, retrieves reads required for sets
of local alignment tasks asynchronously, and overlaps re-
trievals with unrelated computations. Given its performance
and programmability for the target use-case, the asynchro-
nous version is implemented in UPC++ [1] with RPCs. From
the outset, it is unclear whether the latency of many fine-
grained messages, with asynchronous framework overheads,
can compete with a small number of bisection-bandwidth-
bound exchanges. Our analysis considers both communica-
tion performance and memory footprint for fixed workloads.

Results were collected on a CrayXC40, Cori KNL at NERSC,
using three real workloads. Strong scaling results up to 32K
cores are shown, with runtime breakdowns and memory
footprints. Within a node, both codes effectively reduce the
runtime from just under 1 hour on a single core to just un-
der 1 minute on 64 cores. For another larger workload, both
codes reduce the runtime from an estimated ≈ 7 hours on a
single core to under 10 seconds on 4K cores (64 nodes).

While both versions achieve good scalability, the asynchro-
nous version effectively hides communication costs, despite
the irregularity of remote-lookups and alignment compu-
tations, resulting in up to 20% better efficiency. The asyn-
chronous version also maintains a typically lower memory
footprint over the bulk-synchronous version. Across work-
loads, implementations, and architectures, we expect that
bandwidth for many-to-many exchanges supporting bulk-
synchronous approaches, versus the (balance of) alignment
computation to one-sided or asynchronous message latency
supporting asynchronous approaches, will determine the
relative performance and scalability of each approach.

Acknowledgments
This work was supported in part by the Exascale Comput-
ing Project (17-SC-20-SC), a collaborative effort of the U.S.

Department of Energy Office of Science and the National
Nuclear Security Administration as part of the ExaBiome
project at Lawrence Berkeley National Laboratory and by
the National Science Foundation as part of the SPX program
under Award number 1823034 at UC Berkeley.

References
[1] John Bachan, Scott Baden, Steven Hofmeyr, Mathias Jacquelin, Amir

Kamil, Dan Bonachea, Paul Hargrove, and Hadia Ahmed. 2019. UPC++:
A High-Performance Communication Framework for Asynchronous
Computation. 963–973. https://doi.org/10.1109/IPDPS.2019.00104

[2] Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake,
Jane M Landolin, and Adam M Phillippy. 2015. Assembling large
genomes with single-molecule sequencing and locality-sensitive hash-
ing. Nature biotechnology 33, 6 (2015), 623–630.

[3] Nicolas Bock, Matt Challacombe, and Laxmikant V Kalé. 2016. Solvers
for O(N) Electronic Structure in the Strong Scaling Limit. SIAM Journal
on Scientific Computing 38, 1 (2016), C1–C21.

[4] Mark J. Chaisson and Glenn Tesler. 2012. Mapping single molecule se-
quencing reads using basic local alignment with successive refinement
(BLASR): application and theory. BMC Bioinformatics 13, 1 (2012), 238.

[5] National Research Council et al. 2013. Frontiers in massive data analysis.
National Academies Press.

[6] Marquita Ellis, Giulia Guidi, Aydin Buluç, Leonid Oliker, and Katherine
Yelick. 2019. DiBELLA: Distributed Long Read to Long Read Align-
ment. In 48th International Conference on Parallel Processing (ICPP 2019)
(Kyoto, Japan). https://doi.org/10.1145/3337821.3337919

[7] Giulia Guidi, Marquita Ellis, Daniel Rokhsar, Katherine Yelick, and
Aydın Buluç. 2018. BELLA: Berkeley efficient long-read to long-read
aligner and overlapper. bioRxiv (2018), 464420.

[8] Heng Li. 2018. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34, 18 (2018), 3094–3100.

[9] GeneMyers. 2014. Efficient Local Alignment Discovery amongst Noisy
Long Reads. In Algorithms in Bioinformatics, Dan Brown and Burkhard
Morgenstern (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
52–67.

[10] Saul B Needleman and Christian D Wunsch. 1970. A general method
applicable to the search for similarities in the amino acid sequence of
two proteins. Journal of molecular biology 48, 3 (1970), 443–453.

[11] Oguz Selvitopi, Saliya Ekanayake, Giulia Guidi, Georgios Pavlopoulos,
Ariful Azad, and Aydın Buluç. 2020. Distributed many-to-many pro-
tein sequence alignment using sparse matrices. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–14.

[12] Temple F. Smith and Michael S. Waterman. 1981. Identification of
Common Molecular Subsequences. Journal of Molecular Biology 147,
1 (1981), 195–197.

[13] Martin Steinegger and Johannes Söding. 2017. MMseqs2 enables sen-
sitive protein sequence searching for the analysis of massive data sets.
Nature biotechnology 35, 11 (2017), 1026–1028.

[14] Chuan-Le Xiao, Ying Chen, Shang-Qian Xie, Kai-Ning Chen, YanWang,
Yue Han, Feng Luo, and Zhi Xie. 2017. MECAT: fast mapping, error
correction, and de novo assembly for single-molecule sequencing reads.
Nature Methods 14, 11 (2017), 1072.

[15] Katherine Yelick, Aydın Buluç, Muaaz Awan, Ariful Azad, Benjamin
Brock, Rob Egan, Saliya Ekanayake, Marquita Ellis, Evangelos Geor-
ganas, Giulia Guidi, et al. 2020. The parallelism motifs of genomic data
analysis. Philosophical Transactions of the Royal Society A 378, 2166
(2020), 20190394.

[16] Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb Miller. 2000.
A greedy algorithm for aligning DNA sequences. Journal of Computa-
tional biology 7, 1-2 (2000), 203–214.

https://doi.org/10.1109/IPDPS.2019.00104
https://doi.org/10.1145/3337821.3337919

	Abstract
	1 Extended Abstract
	Acknowledgments
	References

