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Abstract
This work examines a data-intensive irregular application
from genomics, a long-read to long-read alignment problem,
which represents a kind of Generalized N-Body problem,
one of the “seven giants” of the NRC Big Data motifs [5]. In
this problem, computations (genomic alignments) are per-
formed on sparse and data-dependent pairs of inputs, with
variable cost computation and variable datum sizes. In partic-
ular, there is no inherent locality in the pairwise interactions,
unlike simulation-based N-Body problems, and the interac-
tion sparsity depends on particular parameters of the input,
which can also affect the quality of the output. We examine
two extremes to distributed memory parallelization for this
problem, bulk-synchrony and asynchrony, with real work-
loads. Our bulk-synchronous implementation, uses collective
communication in MPI, while our asynchronous implemen-
tation uses cross-node RPCs in UPC++. We show that the
asynchronous version effectively hides communication costs,
with a memory footprint that is typically much lower than
the bulk-synchronous version. Our application, while simple
enough to be a kind of proxy for genomics or data analytics
applications more broadly, is also part of a real application
pipeline. It shows good scaling on real input problems, and
at the same time, reveals some of the programming and ar-
chitectural challenges for scaling this type of data-intensive
irregular application.

CCS Concepts: • Computing methodologies → Paral-
lel computing methodologies; Distributed computing
methodologies; • Applied computing → Computational
genomics; Bioinformatics; Molecular sequence analysis; Com-
putational proteomics.
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1 Extended Abstract
Per the 2013 National Academies report on Big Data Fron-
tiers, “Generalized N-body problems (Gray and Moore, 2001)
include virtually any problem involving distances, kernels, or
other similarities between (all ormany) pairs (or higher-order
n-tuples) of points”. This describes classic, well-understood
N-Body problems like particle simulation. It also describes
currently challenging problemswith non-Euclidean or higher-
dimensional similarity metrics, proliferating from bioinfor-
matics, computer vision, computational chemistry, and other
Big Data domains [3, 5, 15]. Long-read to long-read align-
ment, a genomics problem, is representative of this challeng-
ing subclass.

To achieve acceptable fidelity for genomic analysis in the
presence of sequencing errors, pairwise alignment is used
to compute similarity or “distance” between reads (strings
representing DNA fragments) from a set of input reads.
For a read pair with maximum length 𝑛, pairwise align-
ment is 𝑂 (𝑛2) in general (Needleman-Wunsch 1970, Smith-
Waterman 1981) [10, 12]. However, average-case 𝑂 (𝑛) meth-
ods, such as X-drop [16] can achieve good accuracy for long-
read to long-read alignment in particular [7]. Yet, individual
long reads vary widely in length, roughly 𝑛 ∈ (102, 105),
and while algorithms like X-drop offer significantly lower
expected complexity, they also entail much more irregular-
ity due to their dynamic adaptation and early-termination
heuristics. The overall problem can be solved by computing
the pairwise alignment of each input read to each other in-
put read in 𝑂 (𝑁 2 × 𝑛2). However, the size of the input read
sets vary with the size of the underlying genomes and the
sequencing depth; in practice, the all-to-all approach is in-
tractable for all but the smallest workloads. Domain-specific
analysis [2, 4, 7–9, 14] can effectively reduce the number of
interactions (alignments). However, these analyses also typi-
cally yield unstructured sparse (data-dependent) interaction
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patterns across the input reads, over which the many-to-
many pairwise alignment must be performed. This poses
challenges for parallel load balancing and communication
cost minimization, and remains the dominant scalability bot-
tleneck of practical pipelines [6]. Similar challenges appear
in other computational biology problems as well, such as
protein alignment [11] and protein searches in massive data
sets [13].
This work examines practical approaches, near the bulk-

synchronous and asynchronous extremes, for many-to-many
long read alignment. Our bulk-synchronous approach in MPI
2.0 uses collective communication for the many-to-many
read exchange, supporting independently parallel compu-
tation of many alignments in subsequent compute steps. It
utilizes all available memory to minimize the number of
supersteps and maximize bandwidth-utilization. The data-
intensive nature of the application and the fact that there is
no perfect partitioning strategy (in general) as we illustrate,
motivates alternative one-sided or asynchronous approaches.
Our asynchronous approach, retrieves reads required for sets
of local alignment tasks asynchronously, and overlaps re-
trievals with unrelated computations. Given its performance
and programmability for the target use-case, the asynchro-
nous version is implemented in UPC++ [1] with RPCs. From
the outset, it is unclear whether the latency of many fine-
grained messages, with asynchronous framework overheads,
can compete with a small number of bisection-bandwidth-
bound exchanges. Our analysis considers both communica-
tion performance and memory footprint for fixed workloads.

Results were collected on a CrayXC40, Cori KNL at NERSC,
using three real workloads. Strong scaling results up to 32K
cores are shown, with runtime breakdowns and memory
footprints. Within a node, both codes effectively reduce the
runtime from just under 1 hour on a single core to just un-
der 1 minute on 64 cores. For another larger workload, both
codes reduce the runtime from an estimated ≈ 7 hours on a
single core to under 10 seconds on 4K cores (64 nodes).

While both versions achieve good scalability, the asynchro-
nous version effectively hides communication costs, despite
the irregularity of remote-lookups and alignment compu-
tations, resulting in up to 20% better efficiency. The asyn-
chronous version also maintains a typically lower memory
footprint over the bulk-synchronous version. Across work-
loads, implementations, and architectures, we expect that
bandwidth for many-to-many exchanges supporting bulk-
synchronous approaches, versus the (balance of) alignment
computation to one-sided or asynchronous message latency
supporting asynchronous approaches, will determine the
relative performance and scalability of each approach.
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