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1. Introduction

Natural and manufactured phenomena abound where thin materials develop internal stresses, deform out of plane and
exhibit nontrivial 3d shapes. Nematic glasses [30,31], natural growth of soft tissues [22,38] and manufactured polymer gels
[25,26,37] are chief examples. Such incompatible prestrained materials may be key constituents of micro-mechanical devices
and be subject to actuation. A model postulates that these plates may reduce internal stresses by undergoing large out of
plane deformations u as a means to minimize an elastic energy E[u] that measures the discrepancy between a reference
(or target) metric G and the orientation preserving realization u of it. The strain tensor € (Vu), given by

€c(Vu) := %(VuTVu— G), (1)

measures such discrepancy and yields the following elastic energy functional for prestrained isotropic materials in a 3d
reference body B and without external forcing

E[u] := fp,‘c*%ec(w)c;*% |2 5 %tr(G*%eG(Vu)c*%)z, )
B
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Fig. 1. A trapezoidal-like plate is glued at the three edges of a square of unit size and is free at the remaining side, as suggested in [17] (left). For s small,
the plate cannot sustain the in-plane compression and buckles up. The deformation y(x1, x2) = (x; ,xz,x%(l —xl)zx%)T mimics this configuration and yields
a target metric g =I[y]; y and g are thus compatible. Upon freeing the boundary conditions, the plate changes shape to a non-planar configuration with
the same metric (right).

where jt, A are the Lamé constants [17,18,36]. A deformation u: B — R3 such that €5(Vu) =0 is called isometric immer-
sion. If such a map exists, then the material can attain a stress-free equilibrium configuration, i.e., E[u] = 0. However, the
existence of an isometric immersion u of class H2(B) for any given smooth metric G is not guaranteed in general and it
constitutes an outstanding problem in differential geometry. In the absence of such a map, the infimum of E[u] is strictly
positive and the material has a residual stress at free equilibria.

Slender elastic bodies are of special interest in many applications and our main focus. In this case, the 3d domain B can
be viewed as a tensor product of a 2d domain €2, the midplane, and an interval of length s, namely € x (—%, %). Developing
dimensionally-reduced models as s — 0 is a classical endeavor in nonlinear elasticity. Upon rescaling E[u] with a factor of
the form s~#, several 2d models can be derived in the limit s — 0. A geometrically nonlinear reduced energy was obtained
formally by Kirchhoff in his seminal work of 1850. An ansatz-free rigorous derivation for isotropic materials was carried out
in the influential work of Friesecke, James and Miiller in 2002 [19] via I'-convergence for g = 3. This corresponds to the
bending regime of the nonlinear Kirchhoff plate theory.

If the target metric G is the identity matrix, there is no in-plane stretching and shearing of the material leaving bending
as the chief mechanism of deformation; an excellent example examined in [19] is the bending of a sheet of paper. For a
generic metric G that does not depend on s and is uniform across the thickness, Efrati, Sharon and Kupferman derived a 2d
energy which decomposes into stretching and bending components [17]; the former scales linearly in s whereas the latter
does it cubically. The first fundamental form of the midplane characterizes stretching while the second fundamental form
accounts for bending. The thickness parameter s appears in the reduced energy and determines the relative weight between
stretching and bending.

The asymptotic limit s — 0 requires a choice of scaling exponent B. The bending regime B8 =3 has been studied by
Lewicka and collaborators [29,8], while [20,7,27,28] discussed other exponents S. For instance, 8 = 5 corresponds to the
Foppl von Karman plate theory, which is suitable for moderate deformations. Different energy scalings select specific asymp-
totic relations between the prestrain metric G and deformations u. For instance, for 8 =3 and metrics G of the form

gx) 0
0

G(x’,x;):G(x’):[ 1

} VX' eQ, x3 € (—5/2,5/2), (3)

with g: & — R?*2 a symmetric uniformly positive definite matrix, considered for instance in [29,17], the first fundamental
form I[y] of parametrizations y : 2 — R3 of the midplane must satisfy the following pointwise metric constraint as s — 0

Iylx)=gx) VX' eQ; (4)

this accounts for the stretching and shearing of the midplane. Moreover, the scaled elastic energy s~3E[u] turns out to
I'-converge to the reduced bending energy

1 2 172
Ely] :=% f g tmyig | + (g imyigt), (5)

Q

A
2+ A

which depends solely on the second fundamental form II[y] of y in the absence of external forcing [29,8]. It is known that
E[y] > 0 provided that the Gaussian curvature of the surface y(£2) does not vanish identically [29,8]. We illustrate this in
Fig. 1.

In this article, we present a numerical study of the minimization of (5) subject to the constraint (4) with either Dirichlet
or free boundary conditions. We start in Section 2 with a justification of (2) followed by a formal derivation of (4) and (5)
as the asymptotic limit of s~3E[u] as s — 0 when the 3d target metric is of the form (3). Moreover, we show an equivalent
formulation that basically replaces the second fundamental form II[y] by the Hessian D2y, which makes the constrained
minimization problem amenable to computation. This derivation is, however, trickier than that in [3,12] for single layer
plates and [5,4,11] for bilayer plates.

The numerical treatment of the ensuing fourth order problem is a challenging and exciting endeavor. In [3,5,4], the
discretization hinges on Kirchhoff elements for isometries y, i.e., g = I, € R2%2 is the identity matrix. The approximation
of y in [12,11] relies on a discontinuous Galerkin (dG) method. In all cases, the minimization problem associated with the
nonconvex constraint (4) resorts to a discrete H2-gradient flow approach. In addition, a I'-convergence theory is developed
in [3,5,12]. In this paper, inspired by [15], we design a local discontinuous Galerkin method (LDG) for g # I, that replaces
D%y by a reconstructed Hessian Hy[yy] of the discontinuous piecewise polynomial approximation y;, of y. Such discrete

2



A. Bonito, D. Guignard, R.H. Nochetto et al. Journal of Computational Physics 448 (2022) 110719

Hessian Hj[yy] consists of three distinct parts: the broken Hessian Dﬁyh. the lifting Ry, ([Vyyi]) of the jump of the broken
gradient Vyyy of yu, and the lifting By ([yn]) of the jumps of y; itself. Lifting operators were introduced in [6] and analyzed
in [13,14]. The definition of R, and By is motivated by the liftings of [32,33] leading to discrete gradient operators.

It is worth pointing out prior uses of Hp[yy]. Discrete Hessians were instrumental to study convergence of dG for the
bi-Laplacian in [35] and plates with isometry constraint in [12]. In the present contribution, Hy[yy] makes its debut as a
chief constituent of the numerical method. We introduce Hy[yy] in Section 3 along with the LDG approximation of (5) and
the metric defect Dy[y,] that relaxes (4) and makes it computable. We also discuss two discrete H2-gradient flows, one to
reduce the bending energy (5) starting from yﬁ, and the other to diminish the stretching energy and make Dy [yg] as small
as possible. The former leads to Algorithm 1 (gradient flow) and the latter to Algorithm 2 (initialization) of Section 3. We
reserve Section 4 for implementation aspects of Algorithms 1 and 2. We present several numerical experiments, some of
practical interest, in Section 5 that document the performance of the LDG approach and illustrate the rich variety of shapes
achievable with the reduced model (4)-(5). We close the paper with concluding remarks in Section 6.

2. Problem statement

Let Q1= x (—s/2,5/2) C R3 be a three-dimensional plate at rest, where s > 0 denotes the thickness and © c R2 is
the midplane. Given a Riemannian metric G : s — R3*3 (symmetric uniformly positive definite matrix), we consider 3d
deformations u: Q5 — R3 driven by the strain tensor €¢(Vu) of (1) that measures the discrepancy between Vu! Vu and
G; hence, the 3d elastic energy E[u] =0 whenever €;(Vu) = 0. We say that G is the reference (prestrained or target) metric.
An orientable deformation u: Qs — R3 of class H2(Q) satisfying €c(Vu) = 0 is called an isometric immersion. Following
[29,17], we assume that the 3d target metric G has the form (3) with g: Q@ — R%*2 symmetric uniformly positive definite,
namely that: (i) it does not depend on x3; (ii) it is uniform throughout the thickness; (iii) no stretching is allowed in the
normal direction. If g% denotes the symmetric positive definite square root of g, we have

1 g o 1 g3 0
cz_[o 1}, cz_[o 1] (6)

In Section 2.1 we rederive, following [17], the elastic energy E[u] advocated in [29,8]. We reduce the 3d model to a
2d plate model in Section 2.2. To this end, we perform a formal asymptotic analysis as s — 0 but also consider the pre-
asymptotic regime s > 0. We discuss the notion of admissibility in Section 2.3 and derive an equivalent reduced energy
better suited for computation in Section 2.4.

We will use the following notation below. The i™ component of a vector v € R" is denoted v; while for a matrix
A e R"™™M, we write A;; the coefficient of the ith row and jt* column. The gradient of a scalar function is a column vector
and for v: R™ — R", we set (Vv);j :=3d;v;, i=1,.,n, j=1,..,m. The Euclidean norm of a vector is denoted | - |. For
matrices A, B € R™™, we write A:B:=tr(BTA) =Y, Z’J’;l AjjBij and |A| :=+/A: A the Frobenius norm of A. To have a
compact notation later, for higher-order tensors A = (Ap),_; € R™™ with A, e R™™, 1 <k <n, we set

1
n 2
tr(A) = (tr(Av),_, and |A|= (Z |Ak|2) ; (7)
k:l
Furthermore, we will frequently use the convention

BAB := (BAB)}_, € R¥*?*2 (8)

for A e R3*2%2 and B € R?*2, In particular, for y: R? — R3, we will often write

_1 _1 _1 _1)\3
g 1D%g 2 =(g 2D%yr g E)H, (9)
which, combined with (7), yields
1
1 1 : 1 1.2 ?
g2 Dlyg 2| = (E le72 Dy g 2| ) :
k=1 (10)

tr(g~2 Dryg~#) = (ir(e ™% Dy gi%));l '

Finally, I, will denote the identity matrix in R"*",
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2.1. Elastic energy for prestrained plates

We present, following [17], a simple derivation of the energy density W (VuG~") for prestrained materials. This hinges
on the well-established theory of hyperelasticity, and reduces to the classical St. Venant-Kirchhoff model provided G = Is.
Such model for isotropic materials reads

A 1
W (F) := ple;® + Etr(e,)z, €(F) =3 (FTF = 13) . (11)

Here, F is the deformation gradient, €; is the Green-Lagrange strain tensor and A and p are the (first and second) Lamé
constants. This implies

_F+FT
=——

We point out that in [19], the strain tensor €; = €;(F) of (11) is set to be €;(F) =~/ FT F — I3, which yields the same relation
(12), and thus the same I'-limit discussed below.

Given an arbitrary point xg € £, we consider the linear transformation ro(x) := G% (X0)(x — Xg); hence Vrp(x) = G% (o).
The map rg can be viewed as a local re-parametrization of the deformed 3d elastic body, and z = ry(x) is a new local
coordinate system. This induces the deformation U(z) := u(X) and

D?W (I3)(F, F) =2ule|® + Atr(e)?, e:

(12)

u=Uor, = VuX) = VU G?(x),

where V, denotes the gradient with respect to the variable z. The deviation of Vu! Vu from the reference metric G at
X =Xo is thus given by (1)

1 T 1 1 T 1 1 1
eG(Vu)=§(Vu Vu—G):icz(VzU VoU—13)Gz =Gz€;(VU)G2.

The energy density W (V; U) at z=ro(x) with x =X associated with €;(V;U), which minimizes when €;(V,;U) vanishes, is
governed by (11) for isotropic materials according to the theory of hyperelasticity. What we need to do now is to rewrite
this energy density in terms of Vu at x =Xg, namely W (V,U) = W (Vu G‘%), whence

2 ) 2
W (VuG1) =“‘G,% EG(Vu)G’%’ + itr(G’%eG(Vu)G’%) . (13)
This motivates the definition of hyperelastic energy for prestrained materials

E[u] :=[W(Vu(x)G(x)_%)dx—ffs(x)-u(x)dx, (14)
Qs Qs

where f; : 5 — R3 is a prescribed forcing term and W is given by (13).

Note that the pointwise decomposition G(xg) = Vro(%g)” Vro(Xg) is always possible because G(xg) is symmetric positive
definite. However, a global transformation r such that Vr’ Vr = G everywhere need not exist in general because G is not
required to be immersible in IR3. This is referred to as incompatible elasticity in [17]. Moreover, the infimum of E[u] in (14)
should be strictly positive if the Riemann curvature tensor associated with G does not vanish identically [29].

2.2. Reduced model

It is well-known that the case E[u] ~ s corresponds to a stretching of the midplane & (membrane theory) while pure
bending occurs when E[u] ~ s> (bending theory); see [20]. We examine now the formal asymptotic behavior of s3E[u] as
s — 0; see also [17].

We start with the modified Kirchhoff-Love assumption [21,29,8]

ux) =yx) +x3ax)vx) + %x%ﬁ(x’)v(x’) VX' €Q, x3 €(—5/2,5/2), (15)

where y: Q@ — R? describes the deformation of the mid-surface of the plate, v(x) := wgiﬁmgﬁm is the unit normal
vector to the surface y(£2) at the point y(X'), and «, 8 : 2 — R are functions to be determined. Compared to the usual

Kirchhoff-Love assumption

uX,x3) =yx)+x3vx) VX eQ, x3€(-5/2,5/2), (16)

(15) not only restricts fibers orthogonal to € to remain perpendicular to the surface y(€2) but also allows such fibers to be
inhomogeneously stretched. We rescale the forcing term in (14) as follows

4
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5/2
fx) == lim+ g f f,(x',x3)dx3 VX' eQ, (17)
s—0
—s/2

and assume the limit to be finite. However, for the asymptotics below we omit this term for simplicity from the derivation
and focus on the energy density W in (14).
Denoting by V' the gradient with respect to X' and writing b(x') := a¢(X)v(x’) and d(x) := B(X')v(X'), we have for all
x= (X, x3) € Qs
1

Vu(x) = [V’y(x’) +x3V'b(x) + 5xgv’d(x’), bx) + X3d(x’)] eR¥3.
Using the relations

pIv=1 and v"Vy=v"Vr=d' Vv=d"Vy=b'Vv=b"Vy=0,

we easily get

vylvy 0 vVyI'v'b+Vb'Vy V'b'b
Ty —
Yu© V= [ 0 o2|T® bTV'b 2ap
L 1VYIVA+VATVy) + VBIVD 1vidTh+ v'bTd LHAE
3 %bTvrd_'_dTVrb ﬁZ wHebe

Moreover, since
v2=1, 9b=(@j)v+adjv and v.9;y=0 forj=1,2,
we have
Vb Vy=aVv'Vy and Vb'b=aVa.
Therefore, the expression 26‘5EG(VU)G‘% becomes
G 2vu VUG~ 7 — I3 = Ay + 2x3A; + 2 A3 + O(3),
where

A| gt E - 0 ]
2 »
0 a—1

Ay | —0g 1 yIET Jag iV
' %aV’aTg_% ap ’

Azi=

[ g3 (vb Vb + L(vyTVd+ V'd Viy)g—i lg=1(v'dTb+2V'bd)
I L(v'dTh+2v'bld) g2 B2

are independent of x3 and
Iyl=Vy'Vy and I[y]=-Vv'VYy

are the first and second fundamental forms of y(£2), respectively. To evaluate the two terms on the right-hand side of (13),
we split them into powers of x3. We first deal with the pre-asymptotic regime, in which s > 0 is small, and next we consider
the asymptotic regime s — 0.

Pre-asymptotics. Let 0 < s <« 1 be fixed and let A be such that
_3 —1 .
s |G 2ec(VU)G 2| < A.
Qs
We first note that
- _12 1 2 X% 2 2
|6 tec(vurGi| =1+ X182 + 2 AriAs + 1Azl +hot,

all the terms with odd powers of x3 integrate to zero on [—s/2,5/2], and the higher order terms involving x’; k>3,
integrate to an (O(s%) contribution after rescaling by s—3. We next realize that

5
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5/2
58 f dx3[!A1|2dx =5 f|A1|2dx
—5/2
s/2
1
g3 f X%dX3/A1:A3dx’=E Aq:Aszdx
—s/2 Q Q
5/2
1
573 f x%d)g[EA2|2dx’=ﬁf|A2|2dx’,
—5/2 Q Q

and exploit that 572 [, 7|A1|%dx =573 [, 7|A1|2dx < A to find that

1

1 e
|[A1:A3dx’| 55(5*2]‘EAllzdx’)i(flAﬂzdx’)z <2CA%s
Q Q Q
is a higher order term because fﬂ |A3|2dx’ < C? for some constant C > 0 independent of s. We thus obtain the expression
s_3f G- Tec(Vu)G—[*dx = 2 f A+ — / |A22dx’ + O(s).
452 12
Q Q

We proceed similarly with the second term in (13) to arrive at
| 2 1 2 1,5 2 2 3
tr(GZec(Vu)G~2) = tr(A1)* + x3 tr(A1) tr(A2) + §x3tr(A1)tr(A3)+x3 tr(A2)” + O(x3),
and

*3/tr(G*%eG(Vu)G*%)2 412 [tr(Al) dx/ +~ftr (A2) 24x’ + O(s).
Q

Qs

In view of (13) and (14), we deduce that the rescaled elastic energy s—3E[u] ~ Eg[y] + Eg[y] for s small, where the two
leading terms are the stretching energy

1 2 2
Eslyl:= Q/(ZM|A1| + Atr(A1) )dx’ (18)
Q
and the bending energy

1
Egly]:= 24[(2;L|A2| + Atr(A2) )dx (19)

with Ay and A, depending on I[y] and II[y], respectively.

Asymptotics. We now let the thickness s — 0 and observe that for the rescaled elastic energy s~ E[u] to remain uniformly

bounded, the integrand of the stretching energy must vanish with a rate at least s2, By definition of A1, this implies that
_— . . . 1 1 . . . . .

the parametrization y must satisfy the metric constraint g~2 I[y]g~2 = I, or equivalently y is an isometric immersion of g

Vy ' Vy=g ae.in®, (20)

and a2 = 1. Since Es[y] =0, we can take the limit for s — 0 and neglect the higher order terms to obtain the following
expression for the reduced elastic energy

lim — /W(VuG’i)dx_—f 2,LL|A2|2+)Ltr(A2)2) (21)
§—
Q =w(p)

where, using the definition of A, w(B) is given by
_1 _1 1 _1
w(B)=2pulg 2 Tlylg 2 * +2up> + A(—tr(g 2 Tlylg 2) + B)*

6
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because o2 = 1. In order to obtain deformations with minimal energies, we now choose B = B(x’) such that w(B8) is
minimized. Since

2
‘%=4uﬁ+zx(—tr(g*%]1[y]g*%)+ﬁ)=o and %:4,u+21>0,
we get
Bt (g i Mylg?),
2u+A

which gives
2uh
A+2u

Finally, the right-hand side of (21) has to be supplemented with the forcing term that we have ignored in this derivation
but scales correctly owing to definition (17). In the sequel, we relabel the bending energy Ep[y] as E[y], add the forcing
and replace X’ by x (and drop the notation ’ on differential operators)

A
2n+ A

w(p) =2pu|g 2 Myl g2 |* + tr(g~ Tyl )%

n 1 _1p2 _1 _1\2
Evi= 15 [ (Je tmmie 3+ 2 a(e e ) )ax— [ £oyex (22)
Q Q
This formal procedure has been justified via I'-convergence in [21,19] for isometries I[y] = I and in [29, Corollary 2.7],
[8, Theorem 2.1] for isometric immersions I[y] = g. Moreover, as already observed in [19], we mention that using the
Kirchhoff-Love assumption (16) instead (15) yields a similar bending energy, namely we obtain (22) but with A instead of

jioy
2p+n"

2.3. Admissibility

We need to supplement (22) with suitable boundary conditions for y for the minimization problem to be well-posed.
For simplicity, we consider Dirichlet and free boundary conditions in this paper, but other types of boundary conditions are
possible. Let I'p C 92 be a (possibly empty) open set on which the following Dirichlet boundary conditions are imposed:

y=¢ and Vy=® onlp, (23)

where ¢ : Q — R3 and @ : @ — R3*2 are sufficiently smooth and ® satisfies the compatibility condition ®T® = g a.e. in
2. The set of admissible functions is

Al@, @) = {ye V(p, ®): Vy'Vy=g ae.in sz] , (24)
where the affine space V (¢, ®) of H(R) is defined by

V(. ®) =y e H@F : yir, =9, Vyir, = ¢} (25)

When I'p = @ (free boundary case), a necessary assumption to have a minimizer of E is that any external forcing f e
[L2(£2)]? has zero average, i.e., fnf = 0. From now on, for simplicity and practical relevance, we assume that f=0 in (22)
when 'p = {@. The case f+0 is discussed in [9].

Our goal is to obtain

y = argminyeA(tp,cb)E(Y)7 (26)

but this minimization problem is highly nonlinear and seems to be out of reach both analytically and geometrically. In fact,
whether or not there exists a smooth globa! deformation y from £ ¢ R" into RV satisfying the metric constraint (20), a
so-called isometric immersion, is a long standing problem in differential geometry [24]. Note that Vy is full rank if y is an
isometric immersion; if in addition y is injective, then we say that y is an isometric embedding. For n = 2, Nash’s theorem
guarantees that an isometric embedding exists for N = 10 (Nash proved it for N = 17, while it was further improved to
N =10 by Gromov [23]). When N = 3, as in our context, a given metric g may or may not admit an isometric immersion.
Some elliptic and hyperbolic metrics with special assumptions have isometric immersions in R3 [24]. In general, to the best
of our knowledge, there is no universal or necessary and sufficient condition to classify isometric immersible metrics when
n=2 and N = 3. We assume implicitly below that A(g, ®) is non-empty, thus there exists an isometric immersion that
satisfies boundary conditions, but now we discuss an illuminating example in polar coordinates [18,34].

Change of variables and polar coordinates. If { = ({1, {2) : Q->Qisa change of variables & — x into Cartesian coordinates
X = (x1,X) € Q and J(§) is the Jacobian matrix, then the target metrics g(£) and g(x) = g(£(§)) satisfy

7
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S(E) — T _|9=6@) 9506
g(8) =J&) gL @ENIE), J("’:)_[B&Q(E) 3524“2(5)]' (27)

Let & = (r,#) indicate polar coordinates with r € I =[0, R] and @ € [0, 2x). If g =I5 is the identity matrix (i.e., I[y] = I2)
and 7(r) =r, then g() reads

- 1 0
r,0)= . 28

We now show that some metrics of the form of (28) with n(r) # r are still isometric immersible provided # is sufficiently
smooth. Consider the case |n’(r)| <1 along with the parametrization

y(r.6) = (1(r) cos6, 1(r) siné, yr(r)". (29)

Since 8,¥- 3¥ =0 and |3s¥|> = n(r)2, if ¥ satisfies |3,¥|%> = ' (r)% + ¢/(r)> = 1, we realize that ¥ is an isometric embedding
compatible with (28). On the other hand, if |5#/(r)] > 1 and a > max,¢; |7’(r)| is an integer, then the parametrization

H /)2
V(. 6) = (@ cos(ag), 7 sinasy, [ J1-2 (,? dt)T (30)
a a a
0

is an isometric immersion compatible with (28) but not an isometric embedding. We will construct in Section 5.5 a couple
of isometric embeddings computationally.

We also point out that (28) accounts for shrinking if 0 < n(r) < r and stretching if n(r) > r. To see this, let () = (r, )7,
0 € [0, 27r), be the parametrization of a circle in © centered at the origin and of radius r, and let T (8) = ¥(y;(9)) be its
image on y(fz) =y(Q). The length £(T;) satisfies

2 2T 271_
d ~
“he :] PO f JHOTET. 0y 0)do = f nods = e ™,
0 0 0

and the ratio n(r)/r acts as a shrinking/stretching parameter. We will present in Section 5.5 a numerical example related to
the metric (28) and associated with physically relevant experiments.

Gaussian curvature. Since E[y] > 0 provided that the Gaussian curvature « = det(II[y]) det(I[y])~' of the surface y(£2) does
not vanish identically [29,8], it is instructive to find x for a deformation ¥ so that I[y] = g is given by (28). Since the
formula for change of variables for II[y] is the same as that in (27) for § =I[y], we realize that « is independent of the
parametrization of the surface. According to Gauss's Theorema Egregium, « = det(II[¥]) detI[§])~! can be rewritten as an
expression solely depending on I[y]. Do Carmo gives an explicit formula for « in case g =I[y] is diagonal [16, Exercise 1,
p. 237], which reduces to

__nm
n(r)

for g of the form (28). Alternatively, we may express I[y];; = 9;;§ - v, where v(r, ) is the unit normal vector to the surface
¥(£2) at the point ¥(r, #), in terms of the orthonormal basis (¥, &¥, 7(r)~'3¥} as follows. First observe that

(31)

|3rv|2 =1 = arry' ary =0, a@rg ' ary =0,
186¥1> =n*(r) = 3re¥- 0¥ =n("IN'(r), 36 - %Y =0,
¥ -%¥=0 = 9,¥ ¥=0.

This yields

arrg = (arrg i ’ﬁ)ﬁv 399? == (396@' * ﬁ)r‘; + (399§ * Brg)ari
whence

H[i]rrﬂ[y]ﬁﬂ = (a'rri ' ﬁ)(aeei i) = arrg : 38637-
We next differentiate 8,y - ¥ = 0 and 3.4y - 3¥ = n(r)n’(r) with respect to @ and r, respectively, to obtain

0¥ - 3po¥ = 3r0¥ - 0¥ — 1’ (N2 — (N ().

We finally notice that 8,4¥ = (3,6¥ - V)V + %aﬁ, whence
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~ 2 o~ o~ ~ ~ P
(I¥Fks)” = (3ro¥ - ¥)* = 8§ - 30¥ — 1 (1)

Therefore, we have derived detI[y] = I[¥]-I[V]ss — (I[[?]ng)2 = —n()n"(r) and as detI[y] = n(r)?, we obtain (31). This
expression will be essential in Section 5.5.

2.4. Alternative energy

The expression (22) involves the second fundamental form I[y] = —V¥TVy = (9 - v)fj=1 and is too nonlinear to be
practically useful. To render (26) amenable to computation, we show now that II[y] can be replaced by the Hessian D%y
without affecting the minimizers. This is the subject of next proposition, which uses the notation (10) for g’% Dzyg’%.

Proposition 1 (Alternative energy). Lety = (yk)f;=1 : 2 — R3 be a sufficiently smooth orientable deformation and let g = I[y] and
TI[y] be the first and second fundamental forms of y(2). Then, there exist functions f1, f2 : € — Rso depending only on g and its
derivatives, with precise definitions given in the proof, such that

7t Dy i = | myigH 4 .

and
|tr(g2 D2y g~ )| =te(g~2 Myl g~2)* + fo. (33)

Proof. First of all, because y is smooth and orientable, the second derivatives d;jy of the deformation y can be (uniquely)
expressed in the basis {91y, o2y, v} as

2
iy =y T oy +1Ilylv, (34)
=1
where v := Igg—ig;% is the unit normal and I‘{-j are the so-called Christoffel symbols of y(£2). Since I‘{.j are intrinsic quanti-
ties, they can be computed in terms of the coefficients g;; of g and their derivatives [16]; they do not depend explicitly on
y.
We start with the proof of relation (32). To simplify the notation, let us write a = g“%. Using (34) we get

2
(allyla);v = din(Tnn[y] V) ay;
m,n=1
2 2 2
= Z aim(amnY)anj - Z aim (Z F'mnaav) Qpj,
m,n=1 m,n=1 1=1

or equivalently, rearranging the above expression,

2 2
(aD*ya)ij = (@Nyla)jv + Y aim (Z i 3:3!) anj.

m,n=1 I=1

Since the unit vector v is orthogonal to both 8,y and 9y, the right-hand side is an l,-orthogonal decomposition. Computing
the square of the I;-norms yields

3

Y @b*y, )} = (alllyla);; + fi; (35)

k=1
with

2 2
I I
fij = Z 8l Z Qim; Aim, Fnlnn] Frﬁznzamjangj-
l1,lp=1 my,mz,n1,n2=1

Functions f;; do not depend explicitly on y but on g and first derivatives of g. Therefore, summing (35) over i, j from 1 to
2 gives (32) with f := Z?,j=1 fij-

The proof of (33) is similar. Since tr(all[y]a) v = ZL] (aIlfy]a);; v it suffices to take i = j and sum over i in the previous
derivation to arrive at (33) with
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2 2
fai= i, i ok T T e B
2= &l i1my Qigmy L myng L myny Qnaiy Onyisy -
l,l2=1 iy,iz,my,my,ny,np=1

This completes the proof because f, does not dependent explicitly ony. O

Remark 1 (Alternative energy). As stated, Proposition 1 is valid for smooth deformations y and metric g. It turns out that for
ye[H?(2)]? and g € [H' () NL>®(22)]?*2, the key relation (34) holds a.e. in £ and so does the conclusion of Proposition 1.
For the interested reader, we refer to [9].

Proposition 1 (alternative energy) shows that the solutions of (26) with the energy E[y] given by (22) are the same as

those given by the energy
2
)— f f.y. (36)
Q

i _1 _12 A
Bl =15 [ (]g Pplygh
The Euler-Lagrange equations characterizing local extrema y € [HZ(R)]® of (36)

+2u,+k

(g™t DPyg~?)
Q

SE[y;v]=0 Vve[H’()), (37)

can be written in terms of the first variation of E[y] in the direction v given by

SE[y; V] :=%/(g’%D2yg’%):(g’%Dzvg’%)
Q

HA 1 1 1 1 F38)

— 2% | u(g 2D%yg 7)) -tr(g 2 D>vg ) — [ f-v.

* | vl D) e ove ) - [y
Q Q

The governing partial differential equation hidden in (37) (strong form) can be obtained from (38) by rearranging the terms
(rewriting them in indices of tensors and their summations and multiplications) and integrating by parts twice, but the
presence of the trace term makes its formulation tedious. However, when A = 0, we easily get that P :=g ' D%y, g '€
R2%2 for k=1, 2, 3 satisfies

3
6E[y;v]=%2 fdivdiVPka—[diVPk-lle-l-[Pkn-VVk —ff-\',
k=1 \gq e aq 2

where n is the outwards unit normal vector to d92. On the other hand, if g =I> in which case y is an isometry, then E[y]
in (22) and (36) are equal and reduce to

_« 22 _ Bt A)
Evi=5 (102 - £y, =BT (39
Q Q

thanks to the relations for isometries [3,5,12]

|yl = |D*y| = |Ay| = tr(II[y)). (40)

The strong form of the Euler-Lagrange equation for a minimizer of (39) reads « divdiv D%y = ¢ A2y = f. This problem has
been studied numerically in [3,12].

3. Numerical scheme

We propose here a local discontinuous Galerkin (LDG) method to approximate the solution of the problem (26). LDG is
inspired by, and in fact improves upon, the previous dG methods [11,12] but they are conceptually different. LDG hinges
on the explicit computation of a discrete Hessian Hy[yy] for the discontinuous piecewise polynomial approximation y, of y,
which allows for a direct discretization of Ex[yy] in (36), including the trace term. We refer to the companion paper [9] for
a discussion of convergence of discrete global minimizers of E, towards those of E; a salient feature is that the stability of
the LDG method is retained even when the stabilization parameters are arbitrarily small.

We organize this section as follows. In Section 3.1 we introduce the finite dimensional space V,f of discontinuous piece-
wise polynomials of degree k > 2, along with the discrete Hessian Hp[yy]. We also discuss the discrete counterparts E;, and
Aﬁ (@, @) of the energy E and the admissible set A(g, @), respectively. In Section 3.2, we present a discrete gradient flow
to minimize the energy Ej. Finally, in Section 3.3, we show how to prepare suitable initial conditions for the gradient flow
(preprocessing).

10
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3.1. LDG-type discretization

From now on, we assume that £ ¢ R? is a polygonal domain. Let {7;}4-0 be a sequence of shape-regular but possibly
graded partitions of © made of elements T, either triangles or quadrilaterals, of diameter hy := diam(T) < h. In order
to handle hanging nodes (necessary for graded meshes based on quadrilaterals), we assume that all the elements within
each domain of influence have comparable diameters. We refer to Sections 2.2.4 and 6 of Bonito-Nochetto [10] for precise
definitions and properties. At this stage, we only point out that sequences of subdivisions made of quadrilaterals with at
most one hanging node per side satisfy this assumption.

Let & = Sf U S,’: denote the set of edges, where S,? stands for the set of interior edges and Sf?’ for the set of boundary
edges. We assume a compatible representation of the Dirichlet boundary T'p, i.e, if T'p # @ then ' is the union of (some)
edges in 5{1’ for every h > 0, which we indicate with £P; note that I'p and Sfl) are empty sets when dealing with a problem
with free boundary conditions. Let £ := Sf Ué}? the set of active edges on which jumps and averages will be computed.
The unions of these edges give rise to the corresponding skeletons of 7

If:=uUfe:ecgl}, If:=Ufe:ecgl}), ri:=rjury. (41)
If he is the diameter of e € &, then h is the piecewise constant mesh function

h:& — Ry, hle:=he Yee&,. (42)

From now on, we use the notation (-, -);2(q and (., -)Lz(r;z) to denote the L? inner products over © and I'¢, and a similar
d
notation for subsets of £ and I'j.

Broken spaces. For an integer k > 0, we let P, (resp. @) be the space of polynomials of total degree at most k (resp.
of degree at most k in each variable). The reference unit triangle (resp. square) is denoted by T and for T € Ty, we let
Fr: T — T be the generic map from the reference element to the physical element. When 7} is made of triangles the map
is affine, i.e., Fr € [P1]1%, while Fr € [Q1]* when quadrilaterals are used.

If k > 2, the (broken) finite element space V,ff to approximate each component of the deformation y (modulo boundary
conditions) reads

Vh = {vh €12(Q): vyiroFr e Py (resp.Qy) VT € n} (43)

if 7 is made of triangles (resp. quadrilaterals). We define the broken gradient Vpvp of vy € V}i‘ to be the gradient computed
elementwise, and use similar notation for other piecewise differential operators such as the broken Hessian Dﬁvh = VpVpvh.
We now introduce the jump and average operators. To this end, let n, be a unit normal to e € 5,? (the orientation is

chosen arbitrarily but is fixed once for all), while for a boundary edge e Sﬁ, n. is the outward unit normal vector to 952.
For vy € V¥ and e € &0, we set

hlle:==v, — v}, [Vavplle:=Vav, — Vav}, (44)

where vhi(x) :=limg_, o+ vo(X £ sn,) for x € e. We compute the jumps componentwise provided the function v; is vector or
matrix-valued.

In order to deal with Dirichlet boundary data (¢, ®) we resort to a Nitsche approach; hence we do not impose essential
restrictions on the discrete space [Vfl‘]3. However, to simplify the notation later, it turns out to be convenient to introduce
the discrete sets V,f((p, ®) and V}l‘(ﬂ, 0) which mimic the continuous counterparts V (¢, ®) and V (0, 0) but coincide with
[VA‘P. In fact, we say that v, € [VA‘F belongs to Vr’f (@, ®) provided the boundary jumps of v, are defined to be

Ville :=Vh — @, [VaVlle:=VaVp — @, Vee&y. (45)
We stress that “["h]”Ll(I‘P) — 0 and ”[Vh"h]”L?(r,?) — 0 imply v, - ¢ and Vpv; — @ in L*(I'p) as h — 0; hence the

connection between Vf((p, @) and V (¢, ®). Therefore, we emphasize again that the sets [VJ.’:]3 and 'V,f (@, ®) coincide but
the latter carries the notion of boundary jump, namely

Vi@, ®) = {vh € [VEP 2 [hlle, [VaVi]|e given by (45) for all e € g,?]. (46)

When free boundary conditions are imposed, i.e., I'p =@, then we do not need to distinguish between ‘fo(qa, @) and [VA‘P.
However, we keep the notation VA‘((p, @) in all cases thereby allowing for a uniform presentation.

We define the average of vy, € V,f across an edge e € &, to be
1+ - 0

ig"h +v,) eegfg (47)
vy, ecéy,

(v} e := [

11
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and apply this definition componentwise to vector and matrix-valued functions.

Discrete Hessian. To approximate the elastic energy (36), we propose an LDG approach. Inspired by [12,35], the idea is
to replace the Hessian D2y by a discrete Hessian Hp[yn] € [LZ(Q)]3><2><2 to be defined now. To this end, let I1,l, be non-
negative integers (to be specified later) and consider two local lifting operators re : [L2(e)]> — [V,:l]z"2 and b, : L2(e) —
[V,iz]zxz defined for e € £ by

re(@) € [V P72 f re(@) : Th = f (Th)ne-¢ Vi € [VI1P2, (48)
Q e

be@ € (V22 [ be(@): 7= [ (divea)-mep vay € VR (49)
Q e

It is clear that supp(re(¢)) = supp(be(¢)) = we, where w, is the patch associated with e (i.e., the union of two elements
sharing e for interior edges e € S,? or just one single element for boundary edges e € Sfl’). We extend r, and b, to [L2(e)]>*2

and [L%(e)]3, respectively, by component-wise applications.
The corresponding global lifting operators are then given by

I I
Ry:= Y re:[L2THP — [V, 172, Bpi= Y be: [A(IT)) - [V21P2 (50)
ecEf ecsf
This construction is simpler than that in [12] for quadrilaterals. We now define the discrete Hessian operator Hy, : Vt’f (@, ®) >
2 3x2x2
[22(@)] to be

Hy[Vn] := DEv — Ry ([Vhvh]) + Br([vh]). (51)

For a given polynomial degree k > 2, a natural choice for the degree of the liftings is Iy =1 =k — 2 for triangular elements
and |y =1, =k for quadrilateral elements. However, any nonnegative values for l; and I are suitable. We anticipate that in
the numerical experiments presented in Section 5, we use |1 =l =k with k= 2.

We refer to [9] for properties of H[y,] but we point out two now to justify its use. Assume that the data (¢, ®) are
sufficiently smooth (when I'p @) and let {yp}y-0 C V,i‘((p, @) satisfy

_1 _3
¥ l3i20) = IDRYA N2 gy + 1D (VYA F2 gy + 102 a2 gy < A (52)

for a constant A independent of h. If y, converges in [L2(£2)]? to a function y € [H?(£2)13, then Hy[yy] converges weakly to
D2y in [L2(2)]>*%*2; see [9, Lemma 2.4 and Appendix C] for details. Moreover, for any stabilization parameters yg, y; > 0
there exists a constant C(yp, 1) > 0 such that for any y; € V,f((a, @) there holds

_1 =
C(VO,VI)Whli,ﬁ(m < I Hl¥nll 2 g, + VIR 2 V¥l 2o, + Yol 2 (¥l 2 o,

This relation follows from [9, Lemma 2.6 and Appendix C] and is crucial to prove the coercivity of E, for any o, y1 > 0. In
addition to [9], we also refer to [35,12] for similar results for the Hessian and to [33] for the gradient operator.

Discrete energies. We are now ready to introduce the discrete energy on Vfl‘(go, D)

E[]'—uf’*%H[]*%z-k ph [|tr(*%H[]*%)|2
hi¥nl:= 12 g hi¥nl8 12Qu+ %) g nlynl g
VQ 14 y (53)
1 _1 2 0 _3 2
+?”h Z[vhyh]”LZ(r*g)_"?”h E[Yh]“LZ(Fz)_‘[f'th
Q

where yy, 1 > 0 are stabilization parameters; recall the notation (7) and (8). One of the most attractive feature of the LDG
method is that yp, y; are not required to be sufficiently large as is typical for interior penalty methods [12]. We refer to
Section 5 for numerical investigations of this property and to [9] for theory.

Note that the Euler-Lagrange equation §Ep[yh; vy] =0 in the direction vy reads

an(yh, Vi) = F(v) Yy € VX0,0), (54)
where

12
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an(Yn, Vh) I=% / (g_%Hh[y}:]g_%) : (g_%Hh[Vh]g_%)

Q

A _1 Ay -2 ® (55)
+—6(2H+A)thr(g PHylynlg™?) - tr (g2 Halvilg™?)

+ 1 (07" [VaYn], [VaVa]) 2y + Yo (W W, [VA) 2y

and

F(vp) :=ff-vh; (56)
Q

compare with (37) and (38).

We reiterate that finding the strong form of (38) is problematic because of the presence of the trace term. Yet, it is a
key ingredient in the design of discontinuous Galerkin methods such as the interior penalty method and raises the question
how to construct such methods for (38). The use of reconstructed Hessian in (55) leads to a numerical scheme without
resorting to the strong form of the equation.

Constraints. We now discuss how to impose the Dirichlet boundary conditions (23) and the metric constraint (20) discretely.
The former is enforced via the Nitsche approach and thus is not included as a constraint in the discrete admissible set as
n (24); this turns out to be advantageous for the analysis of the method [12]. The latter is too strong to be imposed on a
polynomial space. Inspired by [12], we define the metric defect as

Dalyi) = Y- | [ (79w ) (57)

TeTh T

and, for a positive number &, we define the discrete admissible set to be

Afei= {Yh €Vi(,®): Dalyal < 8}.
Therefore, the discrete minimization problem, discrete counterpart of (26), reads

min Ep[y]. (58)
yheAk |

Problem (58) is nonconvex due to the structure of A'fl ¢- Its solution is non-trivial and is discussed in Subsection 3.2 below.
Moreover, in Section 4 of [9] we prove that if £ ~h and y;, € A’h‘ . 1S a global minimizer of Ep, then (up to a subsequence)
yn converges to a global minimizer of E within A.

3.1.1. Comparison of LDG and SIPG

We now compare the LDG approach introduced in Subsection 3.1 with the standard symmetric interior penalty dG (SIPG)
method. This discussion holds for general problems and is not restricted to the discretization of the energy considered in
this work.

The main advantages of the LDG approach are:

e Simplicity: Up to stabilization terms, the discrete energy Ep[yn] in (53) is obtained from E[y] in (36) by simply replacing
the Hessian D2y by the discrete Hessian Hp[yy]. In particular, the method is weakly consistent and there is no need
to go back to the strong form using integration by parts, which can be tedious, as it would be done to derive an SIPG
formulation. Note that other differential operators (such as gradient or divergence) can be defined similarly to (51), see
for instance [33].

e Stabilization: There is no constraint on the stabilization terms y and y; other than being positive to ensure stability.
More precisely, for any y, € ijf(‘l” ®) and any ¥y, Y1 > 0 we have [9, Theorem 3.1 and Appendix C]

Vi3 ) S EnlYnl + 191151 gy + 1911 g + M2 g (59)

where the last three terms are discarded when I'p = @ (free boundary case). The hidden constant in (59), which depends
on 1 and g, tends to infinity when either yp or y4 tends to zero. This is in striking contrast with the SIPG method, for
which y4, 1 > 0 need to be sufficiently large for (59) to hold; see for instance [12, Lemma 2.3] for the case g=1I,. It
is common practice to take y9 =1 =1 for the LDG approach, while a tuning process might be needed to find suitable
values for the SIPG method.

13
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The drawbacks of the LDG method are:

e Sparsity pattern: It is slightly larger than for the SIPG method due to products of liftings Ry and By in (55). To see
this, we notice that the lifting operators r, b, associated to edges e of an element T depend on degrees of freedom of
elements adjacent to T, and they interact within T.

e Lifting operators: Computing the discrete Hessian of each basis function of V,’j entails solving local problems on w.
for the lifting operators r., b, for each edge e € &, including boundary edges. This computation is, however, a one
time investment in the sense that the assembly of the matrix and the right-hand side can be done once for all at the
beginning of the gradient flow used to solve (58) and introduced in Subsection 3.2.

3.2. Discrete gradient flow

To find a local minimizer yj, of Ex[y,] within A¥ o+ We design a discrete gradient flow associated with the discrete
2 . k ; tai
H<-norm | - || W2 = (-, ')Hﬁ(sz) on Vh (0, 0) induced by the inner product

(Vi Wh) 2 () =0 (Vh, Wh)2() + (Djvh, DEWR) 12 (g

1 -5 (60)
+ (W™ [Vavnl, [VaWrDy2grey + (W7 [Va], [Wa D)2y,

where 0 =0 if I'p # @ and o > 0 if I'p = . The latter corresponds to free boundary conditions and guarantees that
G, ')Hﬁ(sz) is a scalar product [11,9].

Given an initial guess yﬁ € A’;{ . and a pseudo time-step T > 0, we compute iteratively :SyE“ € Vt’f (0, 0) that minimizes
the functional

Wy > —wyl%,, . + Enly} +wh] Vwy € V0,0), (61)

1
=—| 2
2t Hy &)

under the following linearized metric constraint

Lrlyl syt = f(vsy;“)rw"h + (VYT Vayltl =0 VT €Ty, (62)
T

and set yj ! :=y] + 8yt € V¥ (¢, ®). Algorithm 1 summarizes this strategy

Algorithm 1: (Discrete-H? gradient flow) finding local minima of Ej.

Given a target metric defect &€ > 0, a pseudo time-step T > 0 and a target tolerance tol;

Choose initial guess yg € Aﬁ_ »

while =1 |Ey [y} '] — En[y!]| >tol do
Solve (61)-(62) for 8y} € V£(0,0);
Update y+! =y +sy7+";

end

We refer to Section 4 for a discussion on the implementation of Algorithm 1. In Section 5 (free boundary conditions) and
Appendix C (Dirichlet boundary conditions) of [9], we show that the discrete gradient flow satisfies the following properties:

o Energy decay: If 3y} ™' € V}(0,0) solves (61)-(62) then

1
17, Lo ont12
Enlyp 1+ Z10¥h e ) < Enl¥i)-
In particular, if 8y} *" 0 then

Enly} ™1 < Enlyf. (63)

o Control of metric defect: If Dh[yg] < g and Ey [yg] < oo, then all the iterates yy € Vfl‘ (¢, ®) produced by Algorithm 1
satisfy yj € A¥ . ie.,

Dylypl <& :=g0+ r(C1 Enlypl + c2(I@13 ) + 19131 g + ||f|!iz(m)), (64)

14
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where cq, c; depend on Q if I'p # ¥ and also on o if I'p = @ but are independent of n, h and . Moreover, c; =0 when
I'p =4, as we assume f=0 in the free boundary case. The proof of (64) relies on the relation

(Vay T Wy — g = (Vay) T Vhy — g + (Vadyr )T Vidypth

which follows from the linearized metric constraint (62). We refer to [9] for details.

As already mentioned, we proved in [9] that the numerical method is converging provided & ~ h. Given an initialization
yﬁ € V,'f(qa, ®) for a fixed mesh 7, and fixed data ¢, ® and f, (64) shows that the pseudo-time step T controls &
beyond the value g; dictated by Dh[yg]. In Section 3.3, we discuss how gy can be reduced.

These two properties imply that the energy Ej; decreases at each step of Algorithm 1 until local extrema of Ej restricted
to AX , is attained.

3.3. Initialization

The choice of an initial deformation yg is a very delicate matter. On the one hand, we need & in (64) as small as
possible because the discrete gradient flow cannot improve upon the initial metric defect Dy [yg] < gg. On the other hand,
the only way to compensate for a large initial energy Ej [yg] is to take very small pseudo time-steps T that may entail many
iterations of the gradient flow to reduce the energy. The value of Eh[yﬁ] is especially affected by the mismatch between the
Dirichlet boundary data (¢, ®) and the trace of yﬁ and Vhyg that enter via the penalty terms in (55) of LDG. Therefore, the
role of the initialization process is to construct y]? with &g relatively small and Ej [yg] of moderate size upon matching the
boundary data (¢, ®) as well as possible whenever I'p # @.

Notice that in some special cases, it is relatively easy to find such a yﬂ. For instance, when g = I, and I'p # @, this has
been achieved in [12] with a planar surface and a continuation technique. For g # I immersible, i.e., for which there exists
a deformation y € [H2(2)]? such that I[y] = g, finding a good approximation yﬂ of y remains problematic and is the subject
of this section.

Metric preprocessing. We recall that the stretching energy Es[y] of (18) must vanish for the asymptotic bending limit to
make sense. We can monitor the deviation of Es[y] from zero to create a suitable yg Upon setting o2 =1, we first observe
that, since g is uniformly positive definite, the first term in (18) satisfies

1 _1 2 2 2
[Ig 21lylg 2 — I %[ Tly] — g| =j vy vy —gl5
Q Q Q
the same happens with the second term. We thus consider the discrete energy

~ 1 " ~ 2
Enlynl:= 5[ ViV Vi — g (65)
Q

and propose a discrete H2-gradient flow to reduce it similar to that in Section 3.2. We proceed recursively: given yg we
compute §*1 :=§ + 5§71 by seeking the increment 5§!*! € V(0,0) that satisfies for all v, € V¥(0,0)

T, )y + Sn s W vn) = —sh G B v, (66)

where T is a pseudo time-step parameter, not necessarily the same as t in Algorithm 1, and sh(ﬁﬂ; -,-) is the variational
derivative of Eh linearized at S'"h

51 0 o, ) 1= [ (V] Siwn -+ Viw] Vi) : (V4T Vifs — ). (67)
Q

This flow admits a unique solution at each step because the left-hand side of (66) is coercive, namely
IVhlIEz ) S T Vo V)2 ) + 50 G Vi Vi) YV € V(0,0). (68)
Moreover, this flow stops whenever either of the following two conditions is met:

e the prestrain defect D, reaches a prescribed value &, i.e., Dh[ﬁ“] < Zo;
e the energy Ej, becomes stationary, i.e,, T~! |En ¥ — E, A tol.
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Monotone decay of Eh in (65) is not guaranteed by the flow because of the linearization of th at i"h However, we can
show that Ep, [’jf'"h“] < Eh[ﬁ”h] if the pseudo time-step 7 is small enough, see [9, Proposition 6.1]. This energy decay property
is observed in all the numerical experiments proposed in Section 5. Upon choosing suitable parameters £y and T, this
procedure produces initial configurations yg with small metric defect D,:,[y,?], but it has one important drawback: planar
configurations are local minimizers of (65) irrespective of g. To see this, suppose that the current iterate ﬁ}: of (66) is planar,
ie., ﬁg = (¥1,¥2,0), and let 6?;“ =(dq1,dz,d3) € V};m, 0), where the functions y; and d; depend on (x1, x2) € Q2. Take now
vy =(0,0,¢) € VA‘(O, 0) and note that

_— 00 9o hyr oy .
Vv, Vi = 0y2 tay2 | =0= (V¥ Vv,
0 0 a7

whence the right-hand side of (66) vanishes. Since (83{’,‘1“,%);{%(9) = (dg,(b)Hi(Q), taking ¢ = d3 and utilizing (68) we
1

deduce d3 = 0 because, as already pointed out, || - || H2(@) defines a norm on V,’f(ﬂ, 0). This shows that the next

=, '):irﬁm)
iterate ﬁ‘”h“ of (61) is also planar and we need another mechanism to deform a planar surface out of plane provided g does
not admit a planar immersion. We discuss this next.

A second drawback of (61) is that the stretching energy Eh is just first order and cannot accommodate the Dirichlet
boundary condition Vy = ® on I'p. We again need an additional preprocessing of the boundary conditions which we
present next.

Boundary conditions preprocessing. We pretend that g = I; momentarily, and rely on (39) and (40) to consider the bi-
Laplacian problem provided I'p # @

A% =f inQ, §=¢ onlp, V§=@ onTp, (69)

where typically f=0. This vector-valued problem is well-posed and gives, in general, a non-planar surface §(£2). We use
the LDG method with boundary conditions imposed é la Nitsche to approximate the solution ¥ € V (¢, ®) of (69):

Vh e Vi@ @) @) =E V)2 VYV e Vf(0,0). (70)

Here, cy(Yr, Vi) is defined similarly to (55) using the discrete Hessian (51), i.e.,

Ch (Wi, V) = / Hi[Wh1: Hy[vn] + 71 (0™ [VaWs], [VaVaD 2 gy + Po(h > [Whl, [VaD) ey (71)
Q

where 7 and #; are positive penalty parameters that may not necessarily be the same as their counterparts yp and y; used
in the definition of Ej. Then ¥, satisfies (approximately) the given boundary conditions on I'p and ¥ () is, in general, non-
planar.

Instead, if 'y = ¥ (free boundary condition), then an obvious choice is ¥ = (id, 0)T, where id(x) = x for x € €, but the
surface y(2) =2 x 0 isAplanar. To get a surface out of plane, we consider a somewhat ad-hoc procedure: we solve (69)
with a fictitious forcing £ 0 supplemented with the Dirichlet boundary condition @(x) = (x,0)T for x € 8Q but obviating
& and jumps of V¥ on Fﬁ in (71). This corresponds to enforcing discretely a variational (Neumann) boundary condition
(D*J)n=0,k=1,2,3, on %2

We summarize the previous discussion of preprocessing in Algorithm 2, which consists of two separate steps: the bound-
ary conditions ar}\d metric preprocessing steps. When I'p # @ (Dirichlet boundary condition), the former constructs a solution
¥ to (70) with f=0, whence ¥ ~ ¢ and Vi, ~ @ on I'p. Instead, when I'p = @ (free boundary condition), ¥ solves (70)
again but now with f=£ 0 and a suitable boundary condition for y; on 8Q that guarantee y,($2) is non-planar. The output
of this step is then used as an initial guess for the metric preprocessing step (66).

It is conceivable that more efficient or physically motivated algorithms could be designed to construct initial guesses.
We leave these considerations for future research. As we shall see in Section 5, different initial deformations can lead to
different equilibrium configurations corresponding to distinct local minima of the energy E; in (53). These minima are
generally physically meaningful.

4. Implementation

We make a few comments on the implementation of the gradient flow (61)-(62), built in Algorithm 1, and the resulting
linear algebra solver used at each step.

16



A. Bonito, D. Guignard, R.H. Nochetto et al. Journal of Computational Physics 448 (2022) 110719

Algorithm 2: Initialization step for Algorithm 1.

Given fol and &p;
if ['p # @ (Dirichlet boundary condition) then
| Solve (70) for §, € VY (¢, ) with f=0;
else
‘ Solve (70) for ¥ with?#ﬂ, @ = (id, 0) and without @;
end
Set ¥ =§p;
while 7~ |E,[§7+1] — E4[§7]| > tol and Dy[§7*'] > & do
Solve (66) for 5§, € V¥(0,0);
Update Sf"h*l =¥+ 8]7"h+1 :
end
Set yg = V‘;‘H .

4.1. Linear constraints

We start by discussing how the linearized metric constraint (62) is enforced using piecewise constant Lagrange multipli-
ers in the space

Ap = [Ah Q> R2: AT =2, A e [V,?]Z"Z}.
We define the bilinear form b;: for any (vy, uy) € Vf’f (0,0) x Ap to be
bR 1) = 3 [ (VWU (VT VW) < (72)
TE']-h T

We observe that b, depends on yp and that bﬁ(éyﬂ“, #y) =0 for all p, € Ay implies (62), ie, Lr[yy; Jyg“] =0 for all
T € Ty. Therefore, recalling the forms a, and Fj in (55) and (56), the augmented system for the Euler-Lagrange equation
(54) incorporating the gradient flow step and the linearized metric constraint reads: seek (ay"h“,xgﬂ) € V',’]‘(O, 0) x Ap
such that

T OV V) ey Han (YR Vi) b (Vh, AR T = Fr(Vh) —an 8, Vi)
eyt ) =0

for all (vy, py) € VF(0,0) x Ap. Since y! € Vi(@, @), whence yi ™' =y + syi™! € Vi(g, ), the effect of the Dirichlet
boundary data (¢, ®) is implicitly contained in ax(y}, vs) when I'p is not empty.

(73)

4.2. Solvers

In this subsection, we discuss solving problem (73) in practice.

Linear system. Let {qo}]}N 1 be a basis for Vf'f((), 0) and let WL}FL be a basis for Ap. The discrete problem (73) is a saddle-

i=
point problem of the form

T n+1
A B! aynhﬂ _[®&] (74)
By O || A 0
Here, (5Y2“ : AEH) are the nodal values of (Sy"h“ , Ag“) in these bases, A = (zﬁl,j)f\”j=1 € RN¥*N js the matrix corresponding
to the first two terms of (73)
Ayr=1"g}, Q’L)H%(g) +A; with A= an(@l.@p), i,i=1,...,N,
while the matrix B, ¢ RM*N corresponds to the bilinear form b} and is given by
(Bn)ij :=bl (@i, ¥k) i=1,....M, j=1,...,N.

The vector F, € RN accounts for the right-hand-side of (73). It reads F, =F+L — AY", where Y contains the nodal values
of y} in the basis {¢}}Y ; while F= (Fj))_, and L= (L))}, are defined by

Fi:=Fp(p}) and Li:=—ay0,¢}), i=1,...,N.
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Here, 0 denotes the zero function in the space V, (¢, ®) and L contains the liftings of the boundary data. Since B, and F,
depend explicitly on the current deformation yj, they have to be re-computed at each iteration of Algorithm 1 (gradient

flow). In contrast, the matrices A and A, as well as the vector L, are independent of the iteration number n and can thus
be computed once for all.

Reconstructed Hessians and lifting operators. The assembly of the matrix A requires the computation of the reconstructed
Hessians, in particular the two local lifting operators r. and b,, for all the basis functions of V,’f(o, 0). More precisely, to
compute the element-wise contribution on a cell T, the discrete Hessian (51) of each basis function associated with T
along with those associated with the neighboring cells are computed. Recall that for any interior edge e € S}i, the support
of the liftings r. and b, in (48) and (49) is the union of the two cells sharing e as an edge, while it reduces to a single
element for any boundary edge S}f. The liftings of each basis function are thus obtained by solving two linear systems of
small dimension. We proceed similarly for the computation of the liftings of the boundary data ¢ and @ that are needed
to compute the vector L. To the best of our knowledge, the computation of the lifting operators is not directly embedded
in any software package, but it is straightforward to implement, see for instance the tutorial step 82 in the deal.ii library
[2]. Once the discrete Hessians are computed, the rest of the assembly process is standard. Incidentally, we note that the
proposed LDG approach couples the degree of freedom (DoFs) of all neighboring cells (not only the cell with its neighbors).
As a consequence, the sparsity pattern of LDG is slightly larger than that of a standard SIPG method. However, we recall
that the stability properties of LDG are superior to those of SIPG [9].

The computation of the liftings is the most costly part in the assembly of the system, but it is only needed for the
matrix A and the vector L. We emphasize again that they are both independent of the iteration number n, and can thus
be computed only once before the beginning of the gradient flow. In practice, we observe that the time needed to assem-
ble the system is negligible compared to the one needed to run the main gradient flow Algorithm 1 (plus Algorithm 2
(preprocessing) if needed).

Schur complement method. We solve system (74) as follows. Denoting Sy := B,A~! B,f the Schur complement matrix, the
first step determines Aﬂ“ satisfying

SpATH! = B, A7VE,, (75)
followed by the computation of SYﬁH solving

ASYIT =Fy — BIATT, (76)

Because the matrix A is independent of the iterations, we pre-compute its LU decomposition once for all and use it when-
ever the action of A~! is needed in (75) and (76). Furthermore, a conjugate gradient algorithm is utilized to compute Aﬁ“
in (75) to avoid assembling S,. The efficiency of the latter depends on the condition number of the matrix S,, which in
turn depends on the inf-sup constant of the saddle-point problem (74). Leaving aside the preprocessing step, we observe
in practice that solving the Schur complement problem (75) is the most time consuming part of the simulation. Finally, we
point out that the stabilization parameters yp and 34 influence the number of Schur complement iterations: more iterations
of the conjugate gradient algorithm are required for larger stabilization parameter values. We refer to Tables 1 and 2 below
for more details.

5. Numerical experiments

In this section, we present a collection of numerical experiments to illustrate the performance of the proposed method-
ology. We consider several prestrain tensors g, as well as both I'p # @ (Dirichlet boundary condition) and T'p = @ (free
boundary condition). Algorithms 1 and 2 are implemented using the deal.i library [2] and the visualization is performed
with paraview [1]. The color code is the following: (multicolor figures) dark blue indicates the lowest value of the defor-
mation’s third component while dark red indicate the largest value of the deformation’s third component; (unicolor figures)
magnitude of the deformation’s third component (for interpretation of the colors in the figure(s), the reader is referred to
the web version of this article).

For all the simulations, we fix the polynomial degree k of the deformation y, and I, I; for the two liftings of the discrete
Hessian Hy[y,] to be

k=li=lL=2.

Moreover, unless otherwise specified, we set the Lamé coefficients to A =8 and p =6, the forcing to f=0, and the stabi-
lization parameters for (55) and (71) to

vn=n=1, jh=hH=1
In striking contrast to [12,11], these parameters do not need to be large for stability purposes. When I'p =, we set 0 =1
in (60). Finally, we choose tol = 10~% for the stopping criteria in Algorithm 1 (gradient flow).
To record the energy E; and metric defect Dy after the three key procedures described in Section 3, we resort to the
following notation: BC PP (boundary conditions preprocessing); Metric PP (metric preprocessing); Final (gradient flow).
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Table 1

Effect of the numerical parameters h and T =h on the energy and prestrain defect for the vertical load example
using yo = y1 = 1. As expected [3,5,12], we observe that Dy[yy] is O(h). The number of iterations needed by the
gradient flow and for each Schur complement solver increases with the resolution.

Nb. cells DoFs T=h En Dy GF Iter Schur Iter

64 1920 V2/2 -1.002E-2 1.062E-2 11 [58,64]

256 7680 V2/4 -9.709E-3 5.967E-3 17 [72,93]

1024 30720 V2/8 -8.762E-3 2.962E-3 28 [95,128]
Table 2

Comparison of the LDG approach and the SIPG method using the stabilization parameters yp = y1 = 10 and
%o = 1 = 20. The SIPG method with y, = y; = 10 is not stable.

Yo=%1 T=h Ep Dy GF Iter Schur Iter
LDG

10 V272 -9.944E-3 9.972E-3 10 [63,66]
10 V2/4 -9.642E-3 5.588E-3 15 [80,96]
10 V2/8 -8.647E-3 2.735E-3 24 [101,130]
20 V2/2 -9.915E-3 9.797E-3 10 [65,74]
20 V2/4 -9.591E-3 5.461E-3 14 [88,107]
20 V2/8 -8.550E-3 2.643E-3 22 [111,143]
SIPG

20 V22 -1.027E-3 1.030E-2 10 [43,59]
20 V2/4 -1.010E-3 5.880E-3 17 [58,85]
20 V2/8 -9.686E-3 3.074E-3 27 [69,121]

5.1. Vertical load and isometry constraint

This first example has been already investigated in [3,12] and is used to compare LDG with SIPG. We consider the square
domain € = (0, 4)?, the metric g = I, (isometry) and a vertical load f = (0,0, 0.025)T. Moreover, the plate is clamped on
I'p = {0} x [0,4] U [0, 4] x {0}, i.e., we prescribe the Dirichlet boundary conditions (23) with

O(x1,%) = (x1,%2,0)T, ®=[15,0"  (x1,%)eTlp.

Finally, we set the Lamé constant A = 0 thereby removing the trace term in (53).

No preprocessing step is required because the planar plate, which corresponds to the identity deformation yg(Q) =Q,
satisfies the metric constraint and the boundary conditions. For the discretization of Q, we use £=0, 1, 2, ... to denote the
refinement level and consider uniform partitions 7; consisting of squares T of side-length 4/2¢ and diameters hy =h =
ﬁ/zH. The pseudo time-step used for the discretization of the gradient flow is chosen so that T = h. The discrete energy
Enlyx] and metric defect Dp[yy] for £ =3, 4,5 are reported in Table 1 along with the number of gradient flow iterations (GF
Iter) required to reach the targeted stationary tolerance and the range of number of iterations (Schur Iter) needed to solve
the Schur complement problem (75). Note that in this case we have Dh[yﬂ] =0, namely yg € A’,‘l - with g9 =0.

We now compare the results obtained with the LDG approach and the SIPG method analyzed in [12]. We report in Table 2
the performance of the two methods with the choices yo =31 = 10 and yp = y1 = 20 for the stabilization parameters. Note
that for both methods, we use the definition of the mesh function (42).

We see from Tables 1 and 2 that increasing the stabilization parameters ), 1 from 1 to 20 has little effect on the
output of LDG. In fact, for a fixed mesh, we observe a slight decrease of the prestrain defect and a minor increase of the
energy. Since the number of Schur iterations increase while increasing yp, ¥4, it is best to keep yy, 1 of order 1 to reduce
the computational cost according to Section 4.2.

In contrast to LDG, SIPG requires sufficiently large stabilization parameters to guarantee that the resulting energy is coer-
cive. In this example, we observe that SIPG is unstable for yp = 1 = 10 and the problem (73) becomes singular after a few
iterations of the gradient flow; of course the same happens for smaller parameter values such as yg = 1 = 1. Nonetheless,
the performance of SIPG for parameters yp = 1 = 20 of moderate size is comparable with that of LDG for 9 =91 =1 in
Table 1. We emphasize that the case g = I, (isometry constraint) is very special because the corresponding energy takes the
simplest form (39) for which the specific structure of SIPG is known. If g # I, instead, the derivation of SIPG is non-obvious
due to the presence of the trace term in (36); this is the case of all the experiments below. Since the minimal values of
Y0, Y1 needed for the stability of SIPG depend on the specific form of the energy, namely on the input data f, ¢, ® and
g, finding them becomes tedious and problem dependent. This compounds with the sensitivity of the number of Schur
iterations to the parameters size and makes large values of yp, 31 undesirable computationally.
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Fig. 2. Deformed plate for the cylinder metric with one mode. Left: BC PP; middle: Metric PP; right: Final.

Table 3

Energy and prestrain defect for the cylinder metric with one mode. All the algorithms behave as intended: the
boundary conditions preprocessing (BC PP) reduces the energy by constructing a deformation with compatible
boundary conditions, the metric preprocessing (Metric PP) reduces the metric defect and the gradient flow (Final)
reduced the energy to its minimal value while keeping control on the metric defect.

Initial BC PP Metric PP Final
Ep 120.3590 1.1951 2.5464 1.7707
Dy, 9.8696 3.2899 9.8609E-2 9.5183E-2

5.2. Rectangle with cylindrical metric

The domain is the rectangle Q = (—2,2) x (—1,1) and the Dirichlet boundary is I'p = {2} x (—1,1) U {2} x (-1, 1).
The mesh 7 is uniform and made of 1024 rectangular cells of diameter hy = h = +/5/16 (30720 DoFs) and the pseudo
time-step is fixed to 7 =0.1.

5.2.1. One mode
We first consider the immersible metric

2 T 2
glx1, %) = [1 + g cos (02("‘ +2) ﬂ (77)
for which
T
yix, 1) = (11, %0, 2sin (G +2)) ) (78)

is a compatible deformation (isometric immersion), i.e., I[y] = g. We impose the boundary conditions ¢ =y|r, and ® =
Vylr,. so that y € V(¢, ®) is an admissible deformation and also a global minimizer of the energy.

To challenge our algorithm, we start from a planar initial plate and obtain an admissible initial deformation yﬂ using the
two preprocessing steps (BC PP and Metric PP) in Algorithm 2 with parameters

¥=0.05, $=0.1 and fol=10"5.
The deformation obtained after applying Algorithms 2 and 1 are displayed in Fig. 2. Moreover, the corresponding energy
and prestrain defect are reported in Table 3. Notice that the target metric defect &, is reached in 49 iterations while 380
iterations of the gradient flow are needed to reach the stationary deformation.
Interestingly, when no Dirichlet boundary conditions are imposed, i.e., the free boundary case, then the planar deforma-
tion (pure stretching)

T
x1
w2 T 2
Y(x1,%2) = /‘/1 + X cos (Z(H_Z)) ds,x5,0
2

is also compatible with the metric (77) and has a smaller energy. We observe that y1(2,x2) — y1(—2, x2) ~ 5.85478 for
X3 € (—2,2) corresponds to a stretching ratio of approximately 1.5. The outcome of Metric PP in Algorithm 2 starting from
the planar plate produces an initial deformation with E;, = 0.81755 and Dy = 0.09574 using 37 iterations. The stationary
solution of the main gradient flow is reached in 68 iterations and produces a planar plate with energy E, = 0.376257 and
metric defect D, = 0.0957329.

5.2.2. Two modes
This example is similar to that of Section 5.2.1 but with one additional mode of higher frequency, namely we consider
the immersible metric

T n T T 2
g(xl,x2)=[w(fcos(zm+2>)0+5Tcos(%<xz+z>>) g]_
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Fig. 3. Deformed plate for the cylinder metric with two modes. Left: BC PP; middle: Metric PP; right: Final. Compare with Fig. 2 corresponding to the metric
(77) (one mode).

Table 4
Energy and metric defect for the cylinder metric with two modes. Compare with Table 3 cor-
responding to one mode.

Initial BC PP Metric PP Final
Ey 413.7400 5.5344 289184 13.0706
Dy 25.2909 26.1854 9.9997E-2 1.0178E-1

In this case, the deformation

T
y(x1,%2) = (xl,xz, 2sin (%(xl + 2)) + %sin (STW(M + 2)))
is compatible (isometric immersion) with the metric and we impose the corresponding Dirichlet boundary conditions on
I'p as in Section 5.2.1.

Using the same setup as in Section 5.2.1, Algorithm 2 produced a suitable initial guess in 1271 iterations, while Algo-
rithm 1 terminated after 1833 steps. The deformations obtained after each of the three main procedures are given in Fig. 3.
The corresponding energy and prestrain defect are reported in Table 4. We see that the main gradient flow decreases the
energy upon bending the shape but keeping the metric defect roughly constant.

5.3. Rectangle with a catenoidal-helicoidal metric

Let © be a rectangle to be specified later and let the metric be

g1, %) = [COShé)Q)Z cosh(EXz)z] ’ (79)
Notice that the family of deformations y* : Q@ — R3 0<a < Z, defined by
Yy :=cos(a)y + sin(a)y (80)
with
sinh(xy) sin(x1) cosh(xz) cos(x1)
¥(x1,x2) = | —sinh(xz)cos(x1) |, ¥(x1,x2) = | cosh(xz)sin(x1) |,
X1 X2

are all compatible with the metric (79). The parameter @ = 0 corresponds to an helicoid while o« = 7 /2 represents a catenoid.
Furthermore, recalling that f =0, we have that the energy E[y*] defined in (36) (or equivalently E[y*] given in (22)) has
the same value for all «. This follows by direct computation once we realize that the second fundamental form and Hessian
of y* are given by

my*] = [‘Sﬁ‘jfé‘;‘) ﬁ;‘;‘&;] . Dyf = cos(@)D? + sin(@) D,

where y = (y%)x is the kth component of y* for k=1, 2, 3.
In the following sections, we show how the two extreme deformations can be obtained either by imposing the adequate
boundary conditions or by starting with an initial configuration sufficiently close to the energy minima.
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Fig. 4. Final configurations for the catenoidal-helicoidal metric with free boundary conditions using tolerances tol = 0.1 (left), 0.025 (middle) and 0.01 (right)
for the metric preprocessing of Algorithm 2. The second row offers a different view of the final deformations.

Table 5

Energies E; and metric defects Dy produced by Algorithms 2 and 1 for the catenoidal-helicoidal metric with
free boundary conditions. We see that the tolerance tol of Algorithm 2 controls Dy and that Algorithm 1 does
not increase D, much but reduces Ej substantially. The smaller tol the closer the computed surface gets to the
catenoid, which is closed (see Fig. 4).

fol=0.1 tol = 0.025 fol = 0.01

Algo 2 Algo 1 Algo 2 Algo 1 Algo 2 Algo 1
Ep 37.8907 4.08379 104.762 732582 146.215 8.78622
Dy, 2.59876 2.72832 1.35693 1.95062 0.853431 1.83427

5.3.1. Catenoid case

We consider the domain Q = (0, 6.25) x (=1, 1). The mesh 7, consists of 896 (almost square) rectangular cells of di-
ameter ht = h =~ 0.17 (26880 DoFs). We do not impose any boundary conditions on the deformations, which corresponds
to I'p =@ (free boundary condition). We apply Algorithm 2 (initialization) with ¥ = 0.1 and start the metric preprocess-
ing with ﬁﬁ =7V}, the solution to the bi-Laplacian problem (69) with fictitious force = (0,0,4)T and boundary condition

@X) = (X,0) on 9 (but without ®). Moreover, we set & = 0.1 and use three tolerances tol = 0.1, 0.025, 0.01 for the
metric preprocessing, which then produces deformations yg with different metric defects, to investigate the effect on Al-
gorithm 1 (gradient flow). Fig. 4 depicts final configurations produced by Algorithm 1 with t = 0.025 and the outputs of
Algorithm 2. Corresponding energies and metric defects are given in Table 5. We see that the metric defect diminishes, as
tol decreases, and the surface tends to a full (closed) catenoid as expected from the relation (80) with o = /2.

5.3.2. Helicoid shape

All the deformations y* in (80) are global minima of the energy but the final deformation is not always catenoid-like
as in the previous section. In fact, starting with an initial deformation close to y* with o = 0 leads to an helicoid-like
shape. We postpone such an approach to Section 5.4.3. An alternative to achieve an helicoid-like shape is to enforce the
appropriate boundary conditions as described now.

We consider the domain 2 = (0,4.5) x (—1, 1) and enforce Dirichlet boundary conditions on I'p = {0} x (—1, 1) com-
patible with y* given by (80) with @ = 0. The mesh 7, consists of 640 (almost square) rectangular cells of diameter
ht =h=0.17 (19200 DoFs) and the pseudo time-step is T = 0.01. N

We apply Algorithm 2 (initialization) with T =0.01, &, = 0.1 and tol = 10~ to obtain the initial deformation yg The

preprocessing stopped after 2555 iterations, meeting the criteria ?“1|§h[§"h+1] — Eh[jr"h“ < E\’ol, while 2989 iterations of
Algorithm 1 (gradient flow) were needed to reach the stationary deformation. Fig. 5 displays the output of the boundary
conditions preprocessing and the metric preprocessing, the two stages of Algorithm 2, as well as two views of the output
of Algorithm 1. The corresponding energies and metric defects are reported in Table 6.
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Fig. 5. Deformed plate for the catenoidal-helicoidal with Dirichlet boundary conditions on the bottom side corresponding to {0} x (—1, 1). From left to right:
BC PP, Metric PP, and two views (the last from the top) of the output of Algorithm 1.

Table 6
Energies and metric defects for the helicoid-like shape with Dirichlet boundary conditions on
the bottom side.

Initial BC PP Metric PP Final
Ep 138020 0.658342 202.144 7.7461
Dy 5.17664 5.16565 0.248419 1.15764

5.4. Disc with positive or negative Gaussian curvature

We now consider a plate consisting of a disc of radius 1
Q= {(xl,xz) eR?: x+x%< ]}.

We prescribe several immersible metrics g and impose no boundary conditions.
The mesh 7, consists of 320 quadrilateral cells of diameter 0.103553 < ht < 0.208375 (9600 DoFs) and the pseudo time-
step is T = 0.01. Moreover, we initialize the metric preprocessing of Algorithm 2 with the identity function ig x) = (x,0)7

for x € ©, and T = 0.05, & = 0.1, tol = 1075,

5.4.1. Bubble - positive Gaussian curvature
To obtain a bubble-like shape, we consider for any & > 0 the metric
n T 24 w2 T 2 x1x
1+a%cos(%(1-r) 3 a’-cos(3(1—-n) g (81)

2
2 x,

g(x1,x2) = 3 2 2
aZ-cos(Z(1-1) ax 1+aZ-cos(Z(1-1)) 3

with r:= ,/x% + x%. A compatible deformation is given by

y(xi,x2) = (Xl,xz, «/Esin(%(l - r)))r,

i.e., y is an isometric immersion I[y] = g. In the following, we choose o =0.2.

In the absence of boundary conditions and forcing term, the planar configuration i(g (2) = Q has zero energy but has a
metric defect of Dy = 1.0857. Algorithm 2 (initialization) performs 877 iterations to deliver an energy E, = 35.3261 and
a metric defect Dy = 0.0999797. Algorithm 2 only stretches the plate which remains planar; see Fig. 6 (left and middle).
Algorithm 1 (gradient flow) then deforms the plate out of plane, and reaches a stationary state after 918 iterations with
Ey, = 2.08544, while keeping the metric defect D, = 0.087839; see Fig. G-right.

We point out that the discussion after (68) also applies to Algorithm 1, i.e, a planar initial configuration (y3 = 0)
will theoretically lead to planar deformations throughout the gradient flow. However, in this example and the ones in
Section 5.5, the initial deformation produced by Algorithm 2 has a non-vanishing third component y3; (order of machine
precision). Furthermore, Algorithm 2 may also produce discontinuous configurations (as for the initial deformation in Fig. 6
left and middle) to accommodate for the constraint and will thus have a relatively large energy due to the jump stabilization
terms. These two aspects combined may be responsible for the main gradient flow Algorithm 1 to produce out of plane
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Fig. 6. Deformed plate for the disc with positive Gaussian curvature metric. Algorithm 2 stretches the plate but keeps it planar (left and middle). Algorithm 1
gives rise to an ellipsoidal shape (right).

Fig. 7. Deformed plate for the disc with negative Gaussian curvature. Algorithm 2 stretches the plate but keeps it planar (left and middle). Algorithm 1 gives
rise to a saddle shape (right). Compare with Fig. 6.

deformations even when starting with a theoretical planar initial configuration. This is the case when starting with a disc
with positive Gaussian curvature metric as in Fig. 6.

5.4.2. Hyperbolic paraboloid - negative Gaussian curvature
We consider the immersible metric g with negative Gaussian curvature

(82)

7
g(x1,X) = [1 T Kk ]

x1x2 143

A compatible deformation is given by y(x1, X2) = (x1, X2, xlxz)T, ie, Ilyl=g.

In this setting, the planar configuration has a prestrain defect of Dy = 1.56565 (still vanishing energy). Algorithm 2
(initialization) performs 856 iterations to reach the energy E, = 50.3934 and metric defect Dy = 0.0999757. Algorithm 1
(gradient flow) executes 1133 iterations to deliver an energy E, = 1.83112 and metric defect Dy, = 0.0980273. Again, the
metric defect remains basically constant throughout the main gradient flow, while the energy is significantly decreased.
Fig. 7 shows the initial (left) and final (middle) deformations of Algorithm 2 and the output of Algorithm 1 (right) which
exhibit a saddle point structure.

We point out that Algorithm 2 gives rise to little gaps between elements of the deformed subdivisions as a consequence
of not including jump stabilization terms in the bilinear form (67). These gaps are reduced by Algorithm 1.

5.4.3. Oscillating boundary
We construct an immersible metric in polar coordinates (r,8) with a six-fold oscillation near the boundary of the disc
Q. Let g(r, 8) =I[y(r, )] be the first fundamental form of the deformation

yr,6) = (r cos(0), rsin(0), 0.2r4 sin(GB)) T (83)

The expression of the prestrain metric g =I[y] in Cartesian coordinates is then given by (27) and y(x1, x2) =¥(r, ).
We set the parameters

1=0.05 tol=10"5 %=005 & =0.1, tol=10"%

and note that Algorithm 1 (gradient flow) does not necessarily stop near global minima of the energy. Local extrema are
frequently achieved and they are, in fact, of particular interest in many applications.
We choose ?ﬁ to be the local nodal interpolation of y =¥ o ¢ into [V,i‘]3, with ¥ given by (83). The output deformations
of Algorithms 2 and 1 are depicted in Fig. 8. The former becomes the initial configuration yg of Algorithm 1 and is almost
the same as '372, which is approximately a disc with six-fold oscillations; see Fig. 8 (left). This is due to the fact that I[ig] is
already close to the target metric g. Algorithm 1 (gradient flow) breaks the symmetry: two peaks are amplified while the
other four are reduced. After the preprocessing, the energy is E; = 18.0461 and metric defect is Dy = 0.00208473. The final
energy is Ep = 13.6475 while the final metric defect is Dy = 0.00528294.

We point out that in this setting, the initial deformation obtained by Algorithm 2 with the bi-Laplacian problem (69)
with fictitious force f = (0,0, )T and boundary condition ¢@(x) = (x,0) on 392 (but without ®) is not satisfactory. Indeed,
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Fig. 8. Deformed plate for the disc with boundary oscillation captured by the initial deformation. Left: output of Algorithm 2 (initialization); Middle: output
of Algorithm 1 (gradient flow); Right: another view of output of Algorithm 1.

® - -

(a) (b) (c) (d)

Fig. 9. Deformation of a disc using the initial deformation produced by Algorithm 2 (compare with Fig. 8). (a)-(b): output of Algorithm 2 (initialization)
with maximal third component y3 of the deformation about 7.8 x 10~2; (c)-(d): output of Algorithm 1 (gradient flow) with maximal y; =~ 4.4 x 10~2. (a)
and (c) are views from the top while (b) and (d) are views from the side where the third component of the deformation is scaled by a factor 10.

the initial deformation produced by Algorithm 2, which stops because T~ |Ej, [ﬂ“] - Eh[?"h]l < Evol, is an ellipsoid without
oscillations at the boundary and has metric defect D;, = 0.801159, see Fig. 9. Algorithm 1 (gradient flow) is unable to (and
not designed to) improve on the metric defect and reach ellipsoidal equilibrium surfaces strikingly different from the results
displayed in Fig. 8. This illustrates a deficiency of Algorithm 2.

5.5. Gel discs

Discs made of a NIPA gel with various monomer concentrations can be manufactured in laboratories [36,26]. NIPA gels
undergo a differential shrinking in warm environments depending on the concentration. Monomer concentrations injected
at the center of the disc generate prestrain metrics depending solely on the distance to the center. We thus propose, inspired
by [36, Section 4.2], prestrained metrics g(r, 8) in polar coordinates of the form (28) with

1w
i) = { = sin(v/Kr) K >0, (84)

\/+_K sinh(v—Kr) K <0.

In view of Section 2.3, these metrics are immersible, namely there exist compatible deformations y such that Ily] =g
(isometric immersions). Note that n(r) encodes the differential shrinking ratio of the gel disc, and should be determined
by the concentration of gel injection in the practical experiments. We now construct computationally isometric embeddings
y for both K > 0 (elliptic) and K < 0 (hyperbolic). It turns out that they possess a constant Gaussian curvature x = K
according to (31).

We let the domain 2 be the unit disc centered at the origin and do not enforce any boundary conditions (free boundary
case). The partition of €2 is as in Section 5.4 and

=005 & =01, tol=10"% tol=107".

Case K = 2 (elliptic): We use the fictitious force = (0,0, 17 in Algorithm 2 (initialization) and the pseudo time-step
t =0.05 in Algorithm 1 (gradient flow). We obtain a spherical-like final deformation; see Fig. 10 and Table 7 for the results.

Case K = —2 (hyperbolic): We experiment with two different initial deformations for the metric preprocessing of Algo-
rithm 2: (i) we take the identity map or (ii) we solve the bi-Laplacian problem (69) with a fictitious force = 0,0, )T and
boundary condition ¢(x) = (x,0) on 3 (but without &). Algorithm 2 produces saddle-like surfaces in both cases but with
a different number of waves; see Fig. 11. Algorithm 1 uses the pseudo time-steps T = 0.00625 and t =0.0125 for (i) and
(ii), respectively, while the other parameters remain unchanged. Table 8 documents the results.

It is worth mentioning that for the 3d slender model described in [36], it is shown that when K < 0, the thickness s
of the disc influences the number of waves of the minimizing deformation for K < 0. Our reduced model is asymptotic as
s — 0 whence it cannot match this feature. However, it reproduces a variety of deformations upon starting Algorithm 2
with suitable initial configurations.
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Fig. 10. Deformed plate for the disc with constant Gaussian curvature K = 2 (elliptic). Outputs of Algorithm 2 (left) and Algorithm 1 (right).

Table 7
Energy and prestrain defect for disc with constant cur-
vature K =2 (elliptic).

Algorithm 2 Algorithm 1
Ep 156.404 9.35368
Dy 0.0999494 0.188454

Fig. 11. Deformed plate for the disc with constant Gaussian curvature K = —2 (hyperbolic). Outputs of Algorithm 1 with initialization (i) (left) and initial-
ization (ii) (middle) and another view with initialization (ii) (right).

Table 8
Energy and metric defect for disc with constant Gaussian curvature K = —2 (hyperbolic) for two different initial
deformations of Algorithm 2: (i) identity map and (ii) solution to bi-Laplacian with fictitious force.

Initialization (i) Initialization (ii)

Algorithm 2 Algorithm 1 Algorithm 2 Algorithm 1
Ep 699.396 6.92318 699.399 12.0978
Dy 0.0998791 0.245552 0.0999183 0.232627

6. Conclusions

In this article, we design and implement a numerical scheme for the simulation of large deformations of prestrained
plates. Our contributions are:

1. Model and asymptotics. We present a formal asymptotic limit of a 3d hyperelastic energy in the bending regime. The
reduced model, rigorously derived in [8], consists of minimizing a nonlinear energy involving the second fundamental form
of the deformed plate and the target metric under a nonconvex metric constraint. We show that this energy is equivalent
to a simpler quadratic energy that replaces the second fundamental form by the Hessian of the deformation. This form is
more amenable to computation and is further discretized.

2. LDG: discrete Hessian. We introduce a local discontinuous Galerkin (LDG) approach for the discretization of the reduced
energy, thereby replacing the Hessian by a reconstructed Hessian. The latter consists of three parts: the broken Hessian
of the deformation, a lifting of the jumps of the broken gradient of the deformation, and a lifting of the jumps of the
deformation. In contrast to interior penalty dG, the stabilization parameters of LDG must be positive for stability, but not
necessarily large, and the LDG energy is conceptually simpler to formulate and more straightforward to implement.

3. Discrete gradient flow. We propose and implement a discrete H2-gradient flow to decrease the discrete energy while
keeping the metric defect under control. We emphasize the performance of Algorithm 1 (gradient flow). The construction
of suitable initial deformations by Algorithm 2 (initialization) is somewhat ad-hoc leaving room for improvements in future
studies.

4, Simulations. We present several numerical experiments to investigate the performance of the proposed LDG approach and
the model capabilities. A rich variety of configurations with and without boundary conditions, some of practical value, are
accessible by this computational modeling. We also show a somewhat superior performance of LDG relative to the interior
penalty dG method of [12] for g = I5.
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