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Abstract. We discuss computational and qualitative aspects of the fractional Plateau and the4
prescribed fractional mean curvature problems on bounded domains subject to exterior data being5
a subgraph. We recast these problems in terms of energy minimization, and we discretize the latter6
with piecewise linear finite elements. For the computation of the discrete solutions, we propose and7
study a gradient flow and a Newton scheme, and we quantify the effect of Dirichlet data truncation.8
We also present a wide variety of numerical experiments that illustrate qualitative and quantitative9
features of fractional minimal graphs and the associated discrete problems.10
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1. Introduction. This paper is the continuation of [7], where the authors pro-13

posed and analyzed a finite element scheme for the computation of fractional minimal14

graphs of order s ∈ (0, 1/2) over bounded domains. That problem can be interpreted15

as a nonhomogeneous Dirichlet problem involving a nonlocal, nonlinear, degenerate16

operator of order s+ 1/2. In this paper, we discuss computational aspects of such a17

formulation and perform several numerical experiments illustrating interesting phe-18

nomena arising in fractional Plateau problems and prescribed nonlocal mean curvature19

problems.20

The notion of fractional perimeter was introduced in the seminal papers by Imbert21

[22] and by Caffarelli, Roquejoffre and Savin [12]. These works were motivated by the22

study of interphases that arise in classical phase field models when very long space23

correlations are present. On the one hand, [22] was motivated by stochastic Ising24

models with Kač potentials with slow decay at infinity, that give rise (after a suitable25

rescaling) to problems closely related to fractional reaction-diffusion equations such26

as27

∂tuε + (−∆)suε +
f(uε)

ε1+2s
= 0,28

where (−∆)s denotes the fractional Laplacian of order s ∈ (0, 1/2) and f is a bistable29

nonlinearity. On the other hand, reference [12] showed that certain threshold dynam-30

ics-type algorithms, in the spirit of [26] but corresponding to the fractional Laplacian31

of order s ∈ (0, 1/2) converge (again, after rescaling) to motion by fractional mean32

curvature. Fractional minimal sets also arise in the Γ-limit of nonlocal Ginzburg-33

Landau energies [28].34

We now make the definition of fractional perimeter precise. Let s ∈ (0, 1/2) and35
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2 J.P. BORTHAGARAY, W. LI, AND R.H. NOCHETTO

two sets A,B ⊂ R
d, d ≥ 1. Then, the fractional perimeter of order s of A in B is36

Ps(A;B) :=
1

2

∫∫

QB

|χA(x)− χA(y)|

|x− y|d+2s
dydx,37

where QB = (Rd ×R
d) \ (Bc ×Bc) and Bc = R

d \B. Given some set A0 ⊂ R
d \B, a38

natural problem is how to extend A0 into B while minimizing the s-perimeter of the39

resulting set. This is the fractional Plateau problem, and it is known that, if B is a40

bounded set, it admits a unique solution. Interestingly, in such a case it may happen41

that either the minimizing set A is either empty in B or that it completely fills B.42

This is known as a stickiness phenomenon [15].43

In this work, we analyze finite element methods to compute fractional minimal44

graphs on bounded domains. Thus, we consider s-minimal sets on a cylinder B =45

Ω×R, where Ω is a bounded and sufficiently smooth domain, with exterior data being46

a subgraph,47

A0 =
{
(x′, xd+1) : xd+1 < g(x′), x′ ∈ R

d \ Ω
}
,48

for some continuous function g : Rd \Ω → R. We briefly remark some key features of49

this problem:50

• A technical difficulty arises immediately: all sets A that coincide with A0 in R
d+1\B51

have infinite s-perimeter in B. To remedy this issue, one needs to introduce the52

notion of locally minimal sets [24].53

• There exists a unique locally s-minimal set, and it is given by the subgraph of a54

certain function u, cf. [14, 25]. Thus, one can restrict the minimization problem to55

the class of subgraphs of functions that coincide with g on Ωc.56

• If the exterior datum g is a bounded function, then one can replace the infinite57

cylinder B = Ω× R by a truncated cylinder BM = Ω× (−M,M) for some M > 058

sufficiently large [25, Proposition 2.5].59

• Let A be the subgraph of a certain function v that coincides with g on Ωc. One60

can rewrite Ps(A,BM ) as61

Ps(A,BM ) = Is[v] + C(M,d, s,Ω, g),62

where Is is the nonlocal energy functional defined in (1.1) below [25, Proposition63

4.2.8], [7, Proposition 2.3].64

Therefore, an equivalent formulation to the Plateau problem for nonlocal minimal65

graphs consists in finding a function u : Rd → R, with the constraint u = g in Ωc,66

such that it minimizes the strictly convex energy67

(1.1) Is[u] :=

∫∫

QΩ

Fs

(
u(x)− u(y)

|x− y|

)
1

|x− y|d+2s−1
dxdy,68

where Fs is defined as69

(1.2) Fs(ρ) :=

∫ ρ

0

ρ− r

(1 + r2)
(d+1+2s)/2

dr.70

A remarkable difference between nonlocal minimal surface problems and their71

local counterparts is the emergence of stickiness phenomena [15]. In the setting of72

this paper, this means that the minimizer may be discontinuous across ∂Ω. As shown73

by Dipierro, Savin and Valdinoci [17], stickiness is indeed the typical behavior of74
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FEMS FOR NONLOCAL MINIMAL GRAPHS 3

nonlocal minimal graphs in case Ω ⊂ R. When Ω ⊂ R
2, reference [16] proves that, at75

any boundary points at which stickiness does not happen, the tangent planes of the76

traces from the interior necessarily coincide with those of the exterior datum. Such77

a hard geometric constraint is in sharp contrast with the case of classical minimal78

graphs. In spite of their boundary behavior, fractional minimal graphs are smooth in79

the interior of the domain. Indeed, with the notation and assumptions from above it80

holds that u ∈ C∞(Ω); see [11, Theorem 1.1], and [5, 19].81

Our previous work [7] introduced and studied a finite element scheme for the82

computation of fractional minimal graphs. We proved convergence of the discrete83

minimizers as the mesh size tends to zero, both in suitable Sobolev norms and with84

respect to a novel geometric notion of error [7]. Stickiness phenomena was apparent85

in the experiments displayed in [7], even though the finite element spaces consisted86

of continuous, piecewise linear functions. We also refer the reader to [8] for further87

numerical examples and discussion on computational aspects of fractional minimal88

graph problems.89

This paper is organized as follows. Section 2 gives the formulation of the mini-90

mization problem we aim to solve, and compares it with the classical minimal graph91

problem. Afterwards, in Section 3 we introduce our finite element method and review92

theoretical results from [7] regarding its convergence. Section 4 discusses computa-93

tional aspects of the discrete problem, including the evaluation of the nonlocal form94

that it gives rise to, and the solution of the resulting discrete nonlinear equation via95

a semi-implicit gradient flow and a damped Newton method. Because the Dirichlet96

data may have unbounded support, we discuss the effect of data truncation and derive97

explicit bounds on the error decay with respect to the diameter of the computational98

domain in Section 5. Section 6 is concerned with the prescribed nonlocal mean cur-99

vature problem. Finally, Section 7 presents a number of computational experiments100

that explore qualitative and quantitative features of nonlocal minimal graphs and101

functions of prescribed fractional mean curvature, the conditioning of the discrete102

problems and the effect of exterior data truncation.103

2. Formulation of the problem. We now specify the problem we aim to solve104

in this paper and pose its variational formulation. Let s ∈ (0, 1/2) and g ∈ L∞(Ωc)105

be given. We consider the space106

V
g := {v : Rd → R : v

∣∣
Ω
∈ W 2s

1 (Ω), v = g in Ωc},107

equipped with the norm108

‖v‖Vg := ‖v‖L1(Ω) + |v|Vg ,109

where110

|v|Vg :=

∫∫

QΩ

|v(x)− v(y)|

|x− y|d+2s
dxdy,111

where QΩ = (Rd×R
d)\(Ω×Ω). The space Vg can be understood as that of functions112

in W 2s
1 (Ω) with ‘boundary value’ g. The seminorm in V

g does not take into account113

interactions over Ωc×Ωc, because these are fixed for the class of functions we consider;114

therefore, we do not need to assume g to be a function in W 2s
1 (Ωc). In particular, g115

may not decay at infinity. In case g is the zero function, the space V
g coincides with116

the standard zero-extension Sobolev space W̃ 2s
1 (Ω); for consistency of notation, we117

denote such a space by V
0.118

For convenience, we introduce the following notation: given a function u ∈ V
g,119
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4 J.P. BORTHAGARAY, W. LI, AND R.H. NOCHETTO

the form au : V
g × V

0 → R is120

(2.1) au(w, v) :=

∫∫

QΩ

G̃s

(
u(x)− u(y)

|x− y|

)
(w(x)− w(y))(v(x)− v(y))

|x− y|d+1+2s
dxdy,121

where122

(2.2) G̃s(ρ) :=

∫ 1

0

(1 + ρ2r2)−(d+1+2s)/2dr.123

It is worth noticing that G̃s(ρ) → 0 as |ρ| → ∞. Thus, the weight in (2.1) degenerates124

whenever the difference quotient |u(x)−u(y)|
|x−y| blows up.125

The weak formulation of the fractional minimal graph problem can be obtained126

by the taking first variation of Is[u] in (1.1) in the direction v. As described in [7],127

that problem reads: find u ∈ V
g such that128

(2.3) au(u, v) = 0 ∀v ∈ V
0.129

In light of the previous considerations, equation (2.3) can be regarded as a frac-130

tional diffusion problem of order s+1/2 in R
d with weights depending on the solution131

u and fixed nonhomogeneous boundary data g.132

Remark 2.1 (comparison with local problems). Roughly, in the classical minimal133

graph problem, given some boundary data g, one seeks for a function u ∈ g +H1
0 (Ω)134

such that135 ∫

Ω

1√
1 + |∇u|2

∇u · ∇v dx = 0, ∀v ∈ H1
0 (Ω).136

The integral above can be interpreted as a weighted H1-form, where the weight depends137

on u and degenerates as |∇u| → ∞.138

In a similar way, problem (2.3) involves a weighted Hs+1/2-form, in which the139

weight depends on u and degenerates as |u(x)−u(y)|
|x−y| → ∞. In this sense, it is not140

surprising that the fractional-order problems converge to the local ones as s → 1/2.141

We refer to [7, Section 5] for a discussion on this matter.142

3. Finite element discretization. In this section we first introduce the finite143

element spaces and the discrete formulation of problem (2.3). Afterwards, we briefly144

outline the key ingredients in the convergence analysis for this scheme. For the mo-145

ment, we shall assume that g has bounded support:146

supp(g) ⊂ Λ, for some bounded set Λ.147

The discussion of approximations in case of unboundedly supported data is postponed148

to Section 5.149

3.1. Discrete setting. We consider a family {Th}h>0 of conforming and sim-150

plicial triangulations of Λ, and we assume that all triangulations in {Th}h>0 mesh Ω151

exactly. Moreover, we assume {Th}h>0 to be shape-regular, namely:152

σ = sup
h>0

max
T∈Th

hT

ρT
< ∞,153

where hT = diam(T ) and ρT is the diameter of the largest ball contained in the154

element T ∈ Th. The vertices of Th will be denoted by {xi}, and the star or patch of155

{xi} is defined as156

Si := supp(ϕi),157
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where ϕi is the nodal basis function corresponding to the node xi.158

To impose the condition u = g in Ωc at the discrete level, we introduce the exterior159

interpolation operator160

(3.1) Πc
hg :=

∑

xi∈N c
h

(Πxi

h g)(xi) ϕi,161

where Πxi

h g is the L2-projection of g
∣∣
Si∩Ωc onto P1(Si ∩Ωc). Thus, Πc

hg(xi) coincides162

with the standard Clément interpolation of g on xi for all nodes xi such that Si ⊂163

R
d \Ω. On the other hand, for nodes xi ∈ ∂Ω, Πc

h only averages over the elements in164

Si that lie in Ωc.165

We consider discrete spaces consisting of piecewise linear functions over Th,166

Vh := {v ∈ C(Λ) : v|T ∈ P1 ∀T ∈ Th}.167

To account for the exterior data, we define the discrete counterpart of Vg,168

V
g
h := {v ∈ Vh : v|Λ\Ω = Πc

hg}.169

With the same convention as before, we denote by V
0
h the corresponding space in case170

g ≡ 0. Therefore, the discrete weak formulation reads: find uh ∈ V
g
h such that171

(3.2) auh
(uh, vh) = 0 for all vh ∈ V

0
h.172

Remark 3.1 (well-posedness of discrete problem). Existence and uniqueness of173

solutions to the discrete problem (3.2) is an immediate corollary of our assumption174

g ∈ L∞(Ωc). Indeed, from this condition it follows that uh is a solution of (3.2) if175

and only if uh minimizes the strictly convex energy Is[uh] over the discrete space V
g
h.176

3.2. Convergence. In [7], we have proved that solutions to (3.2) converge to the177

fractional minimal graph as the maximum element diameter tends to 0. An important178

tool in that proof is a quasi-interpolation operator Ih : V
g → V

g
h that combines the179

exterior Clément interpolation (3.1) with an interior interpolation operator. More180

precisely, we set181

(3.3) Ihv := Π◦
h

(
v
∣∣
Ω

)
+Πc

hg,182

where Π◦
h involves averaging over element stars contained in Ω. Because the minimizer183

u is smooth in the interior of Ω, but we have no control on its boundary behavior184

other than the global bound u ∈ W 2s
1 (Ω), we can only assert convergence of the185

interpolation operator in a W 2s
1 -type seminorm without rates.186

Proposition 3.2 (interpolation error). Let s ∈ (0, 1/2), Ω be a bounded domain,187

g ∈ C(Ωc), and u be the solution to (2.3). Then, the interpolation operator (3.3)188

satisfies189 ∫∫

QΩ

|(Ihu− u)(x)− (Ihu− u)(y)|

|x− y|d+2s
dxdy → 0 as h → 0.190

Once we have proved the convergence of Ihu to u, energy consistency follows191

immediately. Since the energy dominates the W 2s
1 (Ω)-norm [7, Lemma 2.5], we can192

prove convergence in W 2r
1 (Ω) for all r ∈ [0, s) by arguing by compactness.193

Theorem 3.3 (convergence). Assume s ∈ (0, 1/2), Ω ⊂ R
d is a C1,1 domain,194

and g ∈ Cc(R
d). Let u be the minimizer of Is on V

g and uh be the minimizer of Is195

on V
g
h. Then, it holds that196

lim
h→0

‖u− uh‖W 2r
1 (Ω) = 0, ∀r ∈ [0, s).197
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6 J.P. BORTHAGARAY, W. LI, AND R.H. NOCHETTO

We finally point out that [7, Section 5] introduces a geometric notion of error that198

mimics a weighted L2 discrepancy between the normal vectors to the graph of u and199

uh. We refer to that paper for further details.200

3.3. Graded meshes. As mentioned in the introduction, fractional minimal201

surfaces are smooth in the interior of Ω. The main challenge in their approximation202

arises from their boundary behavior and concretely, from the genericity of stickiness203

phenomena, i.e. discontinuity of the solution u across ∂Ω. Thus, it is convenient to a204

priori adapt meshes to better capture the jump of u near ∂Ω.205

In our discretizations, we use the following construction [21], that gives rise to206

shape-regular meshes. Let h > 0 be a mesh-size parameter and µ ≥ 1. Then, we207

consider meshes Th such that every element T ∈ Th satisfies208

(3.4) hT ≈

{
C(σ)hµ, T ∩ ∂Ω 6= ∅
C(σ)hdist(T, ∂Ω)(µ−1)/µ, T ∩ ∂Ω = ∅.

209

These meshes, typically with µ = 2, give rise to optimal convergence rates for210

homogeneous problems involving the fractional Laplacian in 2d [2, 6, 9, 10]. We point211

out that in our problem the computational domain strictly contains Ω, because we212

need to impose the exterior condition u = g on Ωc. As shown in [4, 9], the construction213

(3.4) leads to214

dimV
g
h ≈





h(1−d)µ, µ > d
d−1 ,

h−d| log h|, µ = d
d−1 ,

h−d, µ < d
d−1 .

215

In our applications, because Theorem 3.3 gives no theoretical convergence rates,216

we are not restricted to the choice µ = 2 in two dimensions: a higher µ allows a217

better resolution of stickiness. However, our numerical experiments indicate that the218

condition number of the resulting matrix at the last step of the Newton iteration219

deteriorates as µ increases, cf. Subsection 7.2.220

4. Numerical schemes. Having at hand a finite element formulation of the221

nonlocal minimal graph problem and proven its convergence as the mesh size tends222

to zero, we now address the issue of how to compute discrete minimizers in 1d and223

in 2d. In first place, we discuss the computation of matrices associated to either224

the bilinear form auh
(·, ·), or related computations. We propose two schemes for the225

solution of the nonlinear discrete problems (3.2): a semi-implicit gradient flow and a226

damped Newton method. In this section we also discuss the convergence of these two227

algorithms.228

4.1. Quadrature. We now consider the evaluation of the forms auh
(·, ·) appear-229

ing in (3.2). We point out that, following the implementation techniques from [1, 2],230

if we are given uh ∈ V
g
h and vh ∈ V

0
h, then we can compute auh

(uh, vh). Indeed,231

since auh
(uh, vh) is linear in vh and the latter function can be written in the form232

vh(x) =
∑

xi∈N◦

h
viϕi(x), we only need to evaluate233

ai := auh
(uh, ϕi)

=

∫∫

QΩ

G̃s

(
uh(x)− uh(y)

|x− y|

)
(uh(x)− uh(y))(ϕi(x)− ϕi(y))

|x− y|d+1+2s
dxdy.

234

We split QΩ = (Ω×Ω)∪ (Ω×Ωc)∪ (Ωc ×Ω) and, because G̃s is an even function (cf.235

(2.2)), we can take advantage that the integrand is symmetric with respect to x and236
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y to obtain237

ai =

∫∫

Ω×Ω

G̃s

(
uh(x)− uh(y)

|x− y|

)
(uh(x)− uh(y))(ϕi(x)− ϕi(y))

|x− y|d+1+2s
dxdy

+ 2

∫∫

Ω×Ωc

G̃s

(
uh(x)− gh(y)

|x− y|

)
(uh(x)− gh(y))ϕi(x)

|x− y|d+1+2s
dxdy =: ai,1 + 2ai,2.

238

We assume that the elements are sorted in such a way that the first NΩ elements239

mesh Ω, while the remaining NΛ −NΩ mesh Λ \ Ω, that is,240

⋃

1≤i≤NΩ

Ti = Ω
⋃

NΩ+1≤i≤NΛ

Ti = Λ \ Ω.241

By doing a loop over the elements of the triangulation, the integrals ai,1 and ai,2 can242

be written as:243

ai,1 =

NΩ∑

l,m=1

∫∫

Tl×Tm

G̃s

(
uh(x)− uh(y)

|x− y|

)
(uh(x)− uh(y))(ϕi(x)− ϕi(y))

|x− y|d+1+2s
dxdy,

ai,2 =

NΩ∑

l=1

NΛ∑

m=NΩ+1

∫∫

Tl×Tm

G̃s

(
uh(x)− gh(y)

|x− y|

)
(uh(x)− gh(y))ϕi(x)

|x− y|d+1+2s
dxdy

+

NΩ∑

l=1

∫∫

Tl×Λc

G̃s

(
uh(x)

|x− y|

)
uh(x)ϕi(x)

|x− y|d+1+2s
dxdy.

244

For the double integrals on Tl × Tm appearing in the definitions of ai,1 and ai,2, we245

apply the same type of transformations described in [1, 13, 27] to convert the integral246

into an integral over [0, 1]2d, in which variables can be separated and the singular part247

can be computed analytically. The integrals over Tl × Λc are of the form248
∫

Tl

ϕi(x)ω(x)dx,249

where the weight function ω is defined as250

ω(x) :=

∫

Λc

Gs

(
uh(x)

|x− y|

)
1

|x− y|d+2s
dy,

Gs(ρ) :=

∫ ρ

0

(1 + r2)−(d+1+2s)/2dr = ρ G̃s(ρ).

(4.1)251

Since the only restriction on the set Λ is that supp(g) ⊂ Λ, without loss of generality252

we assume that Λ = BR is a d-dimensional ball with radius R. In such a case, the253

integral over Λc can be transformed using polar coordinates into:254

w(x) =

∫

∂B1

dS(e)

∫ ∞

ρ0(e,x)

Gs

(
uh(x)

ρ

)
ρ−1−2sdρ,255

where ρ0(e, x) is the distance from x to ∂BR in the direction of e, which is given by256

the formula257

ρ0(e, x) =
√

R2 − |x|2 + (e · x)2 − e · x.258

The integral over (ρ0(e, x),∞) can be transformed to an integral over (0, 1) by means259

of the change of variable ρ = ρ0(e, x)ρ̃
−1/(2s), and then approximated by Gaussian260

quadrature. Combining this approach with suitable quadrature over ∂B1 and Tl, we261

numerically compute the integral over Tl × Λc for a given uh.262
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8 J.P. BORTHAGARAY, W. LI, AND R.H. NOCHETTO

4.2. Gradient Flow. Although we can compute auh
(uh, vh) for any given uh ∈263

V
g
h, vh ∈ V

0
h, the nonlinearity of auh

(uh, vh) with respect to uh still brings difficul-264

ties in finding the discrete solution to (3.2). Since auh
(uh, vh) = δIs[uh]

δuh
(vh) and uh265

minimizes the convex functional Is[uh] in the space V
g
h, a gradient flow is a feasible266

approach to solve for the unique minimizer uh.267

Given α ∈ [0, 1), and with the convention that H0 = L2, we first consider a268

time-continuous Hα-gradient flow for uh(t), namely269

(4.2) 〈∂tuh, vh〉Hα(Ω) = −
δIs
δuh

(vh) = −auh
(uh, vh), ∀vh ∈ V

0
h,270

where uh(0) = u0
h ∈ V

g
h (and thus Is[u

0
h] < ∞). Writing uh(t) =

∑
xj∈N◦

h
uj(t)ϕi,271

local existence and uniqueness of solutions in time for (4.2) follow from the fact that272

auh
(uh, ϕi) is Lipschitz with respect to uj for any ϕi. Noticing that the gradient flow273

(4.2) satisfies the energy decay property274

d

dt
Is[uh] =

δIs[uh]

δuh
(∂tuh) = auh

(uh, ∂tuh) = −〈∂tuh, ∂tuh〉Hα(Ω) ≤ 0,275

global existence and uniqueness of solutions in time can also be proved.276

Similarly to the classical mean curvature flow of surfaces [18], there are three277

standard ways to discretize (4.2) in time: fully implicit, semi-implicit and fully ex-278

plicit. Like in the classical case, the fully implicit scheme requires solving a nonlinear279

equation at every time step, which is not efficient in practice, while the fully explicit280

scheme is conditionally stable, and hence requires the choice of very small time steps.281

We thus focus on a semi-implicit scheme: given the step size τ > 0 and iteration282

counter k ≥ 0, find uk+1
h ∈ V

g
h that solves283

(4.3)
1

τ
〈uk+1

h − uk
h , vh〉Hα(Ω) = −auk

h
(uk+1

h , vh), ∀vh ∈ V
0
h.284

The linearity of auk
h
(uk+1

h , vh) with respect to uk+1
h makes (4.3) amenable for its285

computational solution. The following proposition proves the stability of the semi-286

implicit scheme. Its proof mimics the one of classical mean curvature flow [18].287

Proposition 4.1 (stability of Hα-gradient flow). Assume uk+1
h , uk

h ∈ V
g
h satisfy288

(4.3). Then,289

Is[u
k+1
h ] +

1

τ
‖uk+1

h − uk
h‖

2
Hα(Ω) ≤ Is[u

k
h].290

Proof. Choose vh = uk+1
h − uk

h ∈ V
0
h in (4.3) to obtain291

(4.4)
1

τ
‖uk+1

h − uk
h‖

2
Hα(Ω) = −auk

h
(uk+1

h , uk+1
h − uk

h).292

Next, we claim that for every pair of real numbers r0, r1, it holds that293

(4.5) (r21 − r1r0) G̃s(r0) ≥ Fs(r1)− Fs(r0).294

We recall that Fs is defined according to (1.2), that G̃s satisfies G̃s(r) =
1
rGs(r), and295

that Gs = F ′
s. Since Fs is a convex and even function, we deduce296

Fs(r1)− Fs(r0) = Fs(|r1|)− Fs(|r0|)

≤ Fs(|r1|)− [Fs(|r1|) + (|r0| − |r1|) Gs(|r1|)]

= (|r1| − |r0|) |r1| G̃s(|r1|).

297

This manuscript is for review purposes only.



FEMS FOR NONLOCAL MINIMAL GRAPHS 9

We add and subtract (|r1|−|r0|) |r1| G̃s(|r0|) above and use that G̃s is even, decreasing298

on [0,∞) and non-negative, to obtain299

Fs(r1)− Fs(r0) ≤ (|r1| − |r0|) |r1| G̃s(|r0|) + |r1| (|r1| − |r0|)
(
G̃s(|r1|)− G̃s(|r0|)

)

≤ (|r1| − |r0|) |r1| G̃s(|r0|)

= (r21 − |r0| |r1|) G̃s(|r0|)

≤ (r21 − r0r1) G̃s(r0).

300

This proves (4.5). Finally, define dk(x, y) :=
uk
h(x)−uk

h(y)
|x−y| and set r0 = dk and r1 =301

dk+1 in (4.5) to deduce that302

auk
h
(uk+1

h , uk+1
h − uk

h) =

∫∫

QΩ

G̃s (dk(x, y))
dk+1(x, y)(dk+1(x, y)− dk(x, y))

|x− y|d−1+2s
dxdy

≥

∫∫

QΩ

Fs(dk+1(x, y))− Fs(dk(x, y))

|x− y|d−1+2s
dxdy

= Is[u
k+1
h ]− Is[u

k
h].

303

Combining this with (4.4) finishes the proof.304

Upon writing wk
h := uk+1

h − uk, the semi-implicit scheme (4.3) becomes (4.6),305

which is the crucial step of Algorithm 4.1 to solve (3.2). Equation (4.6) boils down to

Algorithm 4.1 Semi-implicit gradient flow

1: Select an arbitrary initial u0
h ∈ V

g
h, let k = 0, and set ‖w0

h‖Hα(Ω) = Inf. Choose
a time step τ > 0 and a small number ε > 0.

2: while ‖wk
h‖Hα(Ω) > ε do

3: Find wk+1
h ∈ V

0
h such that

(4.6) 〈wk+1
h , vh〉Hα(Ω) + τauk

h
(wk+1

h , vh) = −auk
h
(uk

h, vh) , ∀vh ∈ V
0
h.

4: Set uk+1
h = uk

h + τ wk+1
h and k = k + 1.

5: end while

306
solving the linear system

(
M + τKk

)
W k = F k. In case α = 0, the matrix M = (Mij)307

is just a mass matrix, while if α > 0, M is the stiffness matrix for the linear fractional308

diffusion problem of order α, given by309

Mij :=

∫∫

QΩ

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))

|x− y|d+2α
dxdy (α > 0).310

The matrixKk =
(
Kk

ij

)
is the stiffness matrix for a weighted linear fractional diffusion311

of order s+ 1
2 , whose elements Kk

ij := auk
h
(ϕi, ϕj) are given by312

Kk
ij =

∫∫

QΩ

G̃s

(
uk
h(x)− uk

h(y)

|x− y|

)
(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))

|x− y|d+1+2s
dxdy,313

and can be computed as described in Subsection 4.1. The right hand side vector is314

F k = −KkUk, where Uk =
(
Uk
i

)
is the vector Uk

i = uk
h(xi), i.e., f

k
i = −auk

h
(uk

h, ϕi).315
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Because of Proposition 4.1 (stability of Hα-gradient flow), the loop in Algo-316

rithm 4.1 terminates in finite steps. Moreover, using the continuity of auk
h
(·, ·) in317

[H
1
2+s(Ω)]2, which is uniform in uk

h, together with an inverse estimate and 0 ≤ α ≤318
1
2 + s gives319

∣∣auk
h
(wk+1

h , vh)
∣∣ . |wk+1

h |
H

1
2
+s(Ω)

|vh|
H

1
2
+s(Ω)

. h−1−2s+2α
min |wk+1

h |Hα(Ω)|vh|Hα(Ω),320

where the hidden constant depends on the mesh shape-regularity and hmin is the321

minimum element size. Therefore, the last iterate uk
h of Algorithm 4.1 satisfies the322

residual estimate323

max
vh∈V0

h

∣∣auk
h
(uk

h, vh)
∣∣

‖vh‖Hα(Ω)
. ε

(
1 + τh−1−2s+2α

min

)
.324

4.3. Damped Newton algorithm. Since the semi-implicit gradient flow is a325

first order method to find the minimizer of the discrete energy, it may converge slowly326

in practice. Therefore, it is worth having an alternative algorithm to solve (3.2) faster.327

With that goal in mind, we present in the following a damped Newton scheme, which328

is a second order method and thus improves the speed of computation.329

Algorithm 4.2 Damped Newton Algorithm

1: Select an arbitrary initial u0
h ∈ V

g
h and let k = 0. Choose a small number ε > 0.

2: while ‖{a(uk
h, ϕi)}

m
i=1‖l2 > ε do

3: Find wk
h ∈ V

0
h such that

(4.7)
δauh

(uk
h, vh)

δuk
h

(wk
h) = −auk

h
(uk

h, vh), ∀vh ∈ V
0
h.

4: Determine the minimum n ∈ N such that uk,n
h := uk

h + 2−nwk
h satisfies

‖{auk
h
(uk,n

h , ϕi)}
m
i=1‖l2 ≤ (1− 2−n−1)‖{auk

h
(uk

h, ϕi)}
m
i=1‖l2

5: Let uk+1
h = uk,n

h and k = k + 1.
6: end while

To compute the first variation of au(u, v) in (2.1) with respect to u, which is also330

the second variation of Is[u], we make use of rG̃s(s) = Gs(r) and obtain331

δau(u, v)

δu
(w) =

∫∫

QΩ

G′
s

(
u(x)− u(y)

|x− y|

)
(w(x)− w(y))(v(x)− v(y))

|x− y|d+1+2s
dxdy.332

The identity G′
s(a) = (1 + a2)−(d+1+2s)/2 can be easily determined from (4.1). Even333

though this first variation is not well-defined for an arbitrary u ∈ V
g and v, w ∈ V

0,334

its discrete counterpart
δauh

(uh,vh)

δuh
(wh) is well-defined for all uh ∈ V

g
h, vh, wh ∈ V

0
h335

because they are Lipschitz. Our damped Newton algorithm for (3.2) is presented in336

Algorithm 4.2.337

Lemma 4.2 (convergence of Algorithm 4.2). The iterates uk
h of Algorithm 4.2338

converge quadratically to the unique solution of (3.2) from any initial condition.339
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Proof. Since Is[uh] is strictly convex, the convergence of uk
h to the solution of340

discrete problem (3.2) is guaranteed by the theory of numerical optimization in finite341

dimensional spaces (see [23], for example).342

The critical step in Algorithm 4.2 is to solve the equation (4.7). Due to the343

linearity of
δa

uk
h
(uk

h,vh)

δuk
h

(wk
h) with respect to vh and wk

h, we just need to solve a linear344

system K̃kW k = F k, where the right hand side F k = (fk
i ) is the same as the one in345

solving (4.6), namely, fk
i = auk

h
(uk

h, ϕi). The matrix K̃k = (K̃k
ij), given by346

K̃k
ij =

∫∫

QΩ

G′
s

(
uk
h(x)− uk

h(y)

|x− y|

)
(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))

|x− y|d+1+2s
dxdy,347

is the stiffness matrix for a weighted linear fractional diffusion of order s + 1
2 . Since348

the only difference with the semi-implicit gradient flow algorithm is the weight, the349

elements in K̃k can be computed by using the same techniques as for Kk.350

5. Unboundedly supported data. Thus far, we have taken for granted that351

g has bounded support, and that the computational domain covers supp(g). We352

point out that most of the theoretical estimates only require g to be locally bounded.353

Naturally, in case g does not have compact support, one could simply multiply g by354

a cutoff function and consider discretizations using this truncated exterior condition.355

Here we quantify the consistency error arising in this approach. More precisely, given356

H > 0, we consider ΩH to be a bounded open domain containing Ω and such that357

d(x,Ω) ≃ H for all x ∈ ∂ΩH , and choose a cutoff function ηH ∈ C∞(Ωc) satisfying358

0 ≤ ηH ≤ 1, supp(ηH) ⊂ ΩH+1 \ Ω, ηH(x) = 1 in ΩH \ Ω.359

We replace g by gH := gηH , and consider problem (2.3) using gH as Dirichlet360

condition. Let uH ∈ V
gH be the solution of such a problem, and uH

h be the solu-361

tion of its discrete counterpart over a certain mesh with element size h. Because of362

Theorem 3.3 we know that, for all r ∈ [0, s),363

uH
h → uH in W 2r

1 (Ω) as h → 0.364

Therefore we only need to show that, in turn, the minimizers of the truncated problems365

satisfy uH → u as H → ∞ in the same norm. As a first step, we compare the366

differences in the energy between truncated and extended functions. For that purpose,367

we define the following truncation and extension operators:368

TH : Vg → V
gH , THv = vηH ,

EH : VgH → V
g, EHw = w + (1− ηH)g.

369

Proposition 5.1 (truncation and extension). The following estimates hold for370

every v ∈ V
g ∩ L∞(Rd), and w ∈ V

gH ∩ L∞(Rd):371

|Is[v]− Is[THv]| . H−1−2s,

|Is[w]− Is[EHw]| . H−1−2s.
372

Proof. We prove only the first estimate, as the second one follows in the same373

fashion. Because v = THv in ΩH , we have374

|Is[v]− Is[THv]|

≤ 2

∫

Ω

∫

Ωc
H

∣∣∣∣Fs

(
v(x)− v(y)

|x− y|

)
− Fs

(
v(x)− THv(y)

|x− y|

)∣∣∣∣
1

|x− y|d+2s−1
dydx.

375
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From definition (1.2), it follows immediately that Fs(0) = F ′
s(0) = 0, and thus376

Fs(ρ) ≤ Cρ2 if ρ . 1. Combining this with the fact that |v(x) − v(y)| ≤ 2‖v‖L∞(Rd)377

and |v(x) − THv(y)| ≤ 2‖v‖L∞(Rd) for a.e. x ∈ Ω, y ∈ Ωc, and integrating in polar378

coordinates, we conclude379

|Is[v]− Is[THv]| . ‖v‖2L∞(Ωc)

∫

Ω

∫

Ωc
H

1

|x− y|d+2s+1
dxdy . H−1−2s.380

This concludes the proof.381

The previous result leads immediately to an energy consistency estimate for the382

truncated problem.383

Corollary 5.2 (energy consistency). The minimizers of the original and trun-384

cated problem satisfy385 ∣∣Is[u]− Is[u
H ]

∣∣ . H−1−2s.386

Proof. Since uH is the minimizer over VgH and THu ∈ V
gH , we deduce387

Is[u
H ]− Is[u] ≤ Is[THu]− Is[u] . H−1−2s.388

Conversely, using that u is the minimzer over Vg and EuH ∈ V
g, we obtain389

Is[u]− Is[u
H ] ≤ Is[EuH ]− Is[u

H ] . H−1−2s,390

and thus conclude the proof.391

The energy Is is closely related to the W 2s
1 (Ω)-norm, in the sense that one is392

finite if and only if the other one is finite [7, Lemma 2.5]. Thus, in the same way as393

in Theorem 3.3 (convergence), energy consistency yields convergence in W 2r
1 (Ω) for394

all r ∈ [0, s).395

Proposition 5.3 (convergence). Let u and uH be minimizers of Is over V
g and396

V
gH , respectively. Then for all r ∈ [0, s), it holds that397

lim
H→∞

‖u− uH‖W 2r
1 (Ω) = 0.398

Proof. The proof proceeds using the same arguments as in [7, Theorem 4.3]. In399

fact, from Corollary 5.2 we deduce that {Is[u
H ]} is uniformly bounded and therefore400

{uH} is bounded in W 2s
1 (Ω). It follows that, up to a subsequence, uH converges in401

L1(Ω) to a limit ũ. Also, because uH = g in ΩH , we can extend ũ by g on Ωc, and402

have uH → u a.e in R
d. We then can invoke Fatou’s lemma and Corollary 5.2 to403

deduce that404

Is[ũ] ≤ lim inf
H→∞

Is[u
H ] . lim inf

H→∞
Is[u] +H−1−2s = Is[u].405

Because ũ ∈ V
g, we deduce that ũ = u whence uH → u in L1(Ω) as H → 0. By406

interpolation, we conclude that convergence in W 2r
1 (Ω) holds for all r ∈ [0, s).407

6. Prescribed nonlocal mean curvature. In this section, we briefly introduce408

the problem of computing graphs with prescribed nonlocal mean curvature. More409

specifically, we address the computation of a function u such that for a.e. x ∈ Ω, a410

certain nonlocal mean curvature at
(
x, u(x)

)
is equal to a given function f(x). For a411

set E ⊂ R
d+1 and x̃ ∈ ∂E, such nonlocal mean curvature operator is defined as [12]412

Hs[E](x̃) := P.V.

∫

Rd+1

χEc(ỹ)− χE(ỹ)

|x̃− ỹ|d+1+2s
dỹ.413
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In turn, for x̃ = (x, u(x)) on the graph of u, this can be written as [25, Chapter 4]414

Hs[u](x) = P.V.

∫

Rd

Gs

(
u(x)− u(y)

|x− y|

)
dy

|x− y|d+2s
.415

To recover the classical mean curvature in the limit s → 1
2

−
, it is necessary to416

normalize the operatorHs accordingly. Let αd denote the volume of the d-dimensional417

unit ball, and consider the prescribed nonlocal mean curvature problem418

(6.1)

{
1−2s
dαd

Hs[u](x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ R
d \ Ω.

419

The scaling factor 1−2s
dαd

yields [7, Lemma 5.8]420

(6.2) lim
s→ 1

2
−

1− 2s

dαd
Hs[E](x) = H[E](x),421

where H[E] denotes the classical mean curvature operator. Therefore, in the limit422

s → 1
2

−
, formula (6.1) formally becomes the following Dirichlet problem for graphs423

of prescribed classical mean curvature:424

(6.3)





1
d div

(
∇u(x)(

1+|∇u(x)|2
)1/2

)
= f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.
425

An alternative formulation of the prescribed nonlocal mean curvature problem426

for graphs is to find u ∈ V
g minimizing the functional427

(6.4) Ks[u; f ] := Is[u]−
dαd

1− 2s

∫

Ω

f(x)u(x)dx.428

Because Is[u] is convex and the second term in the right hand side above is linear, it429

follows that this functional is also convex. Then, by taking the first variation of (6.4),430

we see that u ∈ V
g is the minimizer of Ks[·; f ] if and only if it satisfies431

(6.5)

0 = au(u, v)−
dαd

1− 2s

∫

Ω

f(x)v(x)dx

=

∫∫

QΩ

Gs

(
u(x)− u(y)

|x− y|

)
v(x)− v(y)

|x− y|d+2s
dxdy −

dαd

1− 2s

∫

Ω

f(x)v(x)dx

432

for every v ∈ V
0. Formally, (6.1) coincides with (6.5) because one can multiply (6.1)433

by a test function v, integrate by parts and take advantage of the fact that Gs is an434

odd function to arrive at (6.5) up to a constant factor.435

One intriguing question regarding the energy Ks[u; f ] in (6.4) is what conditions436

on f are needed to guarantee that it is bounded below. In fact, for the variational437

formulation of the classical mean curvature problem (6.3), Giaquinta [20] proves the438

following necessary and sufficient condition for well posedness: there exists some439

ε0 > 0 such that for every measurable set A ⊂ Ω,440

(6.6)
∣∣∣
∫

A

f(x)dx
∣∣∣ ≤ (1− ε0)

d
Hd−1(∂A),441
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where Hd−1 denotes the (d− 1)−dimensional Hausdorff measure. In some sense, this442

condition ensures that the function f be suitably small.443

Although we are not aware of such a characterization for prescribed nonlocal444

mean curvature problems, a related sufficient condition for Ks[u; f ] to have a lower445

bound can be easily derived. In fact, exploiting [7, Lemma 2.5 and Proposition 2.7]446

and the Sobolev embedding W 2s
1 (Ω) ⊂ Ld/(d−2s)(Ω) we deduce that447

Is[u] + C1(d,Ω, s, ‖g‖L∞(Ωc)) ≥ |u|W 2s
1 (Ω) & ‖u‖Ld/(d−2s)(Ω).448

On the other hand, Hölder’s inequality gives449

∫

Ω

f(x)u(x)dx ≤ ‖u‖Ld/(d−2s)(Ω)‖f‖Ld/(2s)(Ω),450

whence Ks[u; f ] is bounded from below provided ‖f‖Ld/(2s)(Ω) is suitably small,451

Ks[u; f ] ≥ ‖u‖Ld/(d−2s)(Ω)

(
C − ‖f‖Ld/(2s)(Ω)

)
− C1(d,Ω, s, ‖g‖L∞(Ωc)).452

This is to some extent consistent with (6.6), because it holds that453

∣∣∣
∫

A

f(x)dx
∣∣∣ ≤

(∫

A

1dx

) d−1
d

(∫

A

|f(x)|ddx

) 1
d

. Hd−1(∂A)‖f‖Ld(Ω),454

due to Hölder’s inequality and the isoperimetric inequality, and formally the case455

2s = 1 corresponds to the classical prescribed mean curvature problem (cf. (6.2)).456

7. Numerical experiments. This section presents a variety of numerical exper-457

iments that illustrate some of the main features of fractional minimal graphs discussed458

in this paper. From a quantitative perspective, we explore stickiness and the effect459

of truncating the computational domain. Moreover, we report on the conditioning460

of the matrices arising in the iterative resolution of the nonlinear discrete equations.461

Our experiments also illustrate that nonlocal minimal graphs may change their con-462

cavity inside the domain Ω, and we show that graphs with prescribed fractional mean463

curvature may be discontinuous in Ω.464

In all the experiments displayed in this section we use the damped Newton algo-465

rithm from §4.3. We refer to [7] for experiments involving the semi-implicit gradient466

flow algorithm and illustrating its energy-decrease property.467

7.1. Quantitative boundary behavior. We first consider the example studied468

in [15, Theorem 1.2]. We solve (3.2) for Ω = (−1, 1) ⊂ R and g(x) = Msign(x), where469

M > 0. Reference [15] proves that, for every s ∈ (0, 1/2), stickiness (i.e. the solution470

being discontinuous at ∂Ω) occurs if M is big enough and, denoting the corresponding471

solution by uM , that there exists an optimal constant c0 such that472

(7.1) sup
x∈Ω

uM (x) < c0M
1+2s
2+2s , inf

x∈Ω
uM (x) > −c0M

1+2s
2+2s .473

In our experiments, we consider s = 0.1, 0.25, 0.4 and use graded meshes (cf. Subsec-474

tion 3.3) with parameter µ = 2, h = 10−3 to better resolve the boundary discontinu-475

ity. The mesh size h here is taken in such a way that the resulting mesh partitions476

Ω = (−1, 1) into ⌊ |Ω|1/µ

h ⌋ subintervals and the smallest ones have size hµ. Moreover,477

since this is an example in one dimension and the unboundedly supported data g is478

piecewise constant, we can use quadrature to approximate the integrals over Ωc rather479
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than directly truncating g. The left panel in Figure 1 shows the computed solutions480

with M = 16.481

In all cases we observe that the discrete solutions uh are monotonically increasing482

in Ω, so we let x1 be the free node closest to 1 and use uM
h (x1) as an approximation483

of supx∈Ω uM (x). The right panel in Figure 1 shows how uM
h (x1) varies with respect484

to M for different values of s.485
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Fig. 1. Stickiness in 1d. In the setting of Subsection 7.1, the left panel displays the finite
element solutions uM

h
for M = 16 computed over graded meshes with parameters µ = 2, h = 10−3

and s ∈ {0, 1, 0.25, 0.4}. The right panel shows the value of uM
h

(x1) as a function of M for s ∈
{0, 1, 0.25, 0.4}, which is expected to behave according to (7.1).

For s = 0.1 and s = 0.25 the slopes of the curves are slightly larger than the486

theoretical rate M
1+2s
2+2s whenever M is small. However, as M increases, we see a good487

agreement with theory. Comparing results for M = 27.5 and M = 28, we observe488

approximate rates 0.553 for s = 0.1 and 0.602 for s = 0.25, where the expected rates489

are 6/11 ≈ 0.545 and 3/5 = 0.600, respectively. However, the situation is different for490

s = 0.4: the plotted curve does not correspond to a flat line, and the last two nodes491

plotted, with M = 27.5 and M = 28, show a relative slope of about 0.57, which is off492

the expected 9/14 ≈ 0.643.493

We believe this issue is due to the mesh size h not being small enough to resolve494

the boundary behavior. We run the same experiment on a finer mesh, namely with495

h = 10−4, µ = 2, and report our findings for s = 0.4 and compare them with the ones496

for the coarser mesh on Table 1. The results are closer to the predicted rate.497

7.2. Conditioning. For the solutions of the linear systems arising in our discrete498

formulations, we use a conjugate gradient method. Therefore, the number of iterations499

needed for a fixed tolerance scales like
√
κ(K), where κ(K) is the condition number500

of the stiffness matrix K. For linear problems of order s involving the fractional501

Laplacian (−∆)s, the condition number of K satisfies [3]502

κ(K) = O

(
N2s/d

(
hmax

hmin

)d−2s
)
.503

Reference [3] also shows that diagonal preconditioning yields κ(K) = O
(
N2s/d

)
,504

where N is the dimension of the finite element space.505

Using the Matlab function condest, we estimate the condition number of the506

Jacobian matrix in the last Newton iteration in the example from Subsection 7.1 with507

M = 1, with and without diagonal preconditioning. Figure 2 summarizes our findings.508
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Example with h = 10−3 Example with h = 10−4

log2(M) uM
h (x1) Slope uM

h (x1) Slope
6.0 26.1545 N/A 26.7488 N/A

6.5 32.4687 0.624 33.4057 0.641
7.0 40.0845 0.608 41.5497 0.629
7.5 49.1873 0.590 51.4627 0.617
8.0 59.9410 0.571 63.4528 0.604

Table 1

Comparison between computational results for the problem described in Subsection 7.1 over two
different meshes for s = 0.4. Let Mi be the value of M in the i-th row. In this table, by the slope

at Mi we refer to
log(u

Mi
h

(x1))−log(u
Mi−1
h

(x1))

log(Mi)−log(Mi−1)
that, according to (7.1), is expected to be equal to

9/14 ≈ 0.643.
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Fig. 2. Condition numbers of the Jacobian matrix K̃ at the last step of Algorithm 4.2 for the
problem described in Subsection 7.1 with s = 0.1 (left), s = 0.4 (right) and meshes with grading
parameters µ ∈ {1, 2, 3}. The condition number on quasi-uniform meshes (µ = 1) scales as N2s+1,
in agreement with the s-fractional mean curvature operator being an operator of order s + 1/2
(cf. (2.3)). While the conditioning for graded meshes is significantly poorer, when µ = 2 diagonal
preconditioning recovers condition numbers comparable to the ones on quasi-uniform meshes.

Let N = dimV
g
h be the number of degrees of freedom. For a fixed s and using509

uniform meshes, we observe that the condition number behaves like N2s+1 ≃ h−2s−1:510

this is consistent with the s-fractional mean curvature operator being an operator of511

order s+1/2. For graded meshes (with µ = 2, µ = 3), the behavior is less clear. When512

using diagonal preconditioning for µ = 2, we observe that the condition number also513

behaves like N2s+1.514

7.3. Truncation of unboundedly supported data. In Section 5, we studied515

the effect of truncating unboundedly supported data and proved the convergence of516

the discrete solutions of the truncated problems uH
h towards u as h → 0, H → ∞.517

Here, we study numerically the effect of data truncation by running experiments518

on a simple two-dimensional problem. Consider Ω = B1 ⊂ R
2 and g ≡ 1; then, the519

nonlocal minimal graph u is a constant function. For H > 0, we set ΩH = BH+1.520

and compute nonlocal minimal graphs on Ω with Dirichlet data gH = χΩH
, which is a521

truncation of g ≡ 1. Clearly, if there was no truncation, then uh should be constantly522

1; the effect of the truncation of g is that the minimum value of uH
h inside Ω is strictly523

less than 1. For s = 0.25, we plot the L1(Ω) and L∞(Ω) norms of uh − uH
h as a524

function of H in Figure 3. The slope of the curve is close to −1.5 for large H, which525
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is in agreement with the O(H−1−2s) consistency error for the energy Is we proved in526

Corollary 5.2.527

0.5 1 1.5 2 2.5 3

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

Fig. 3. Effects of truncation in 2d for s = 0.25: for gH = χΩH
, we compute the L1 and L∞

discrepancies between uh ≡ 1 and uH
h

as a function of H. For both norms we observe a discrepancy
of order H−1−2s, in agreement with Corollary 5.2.

7.4. Change of convexity. This is a peculiar behavior of fractional minimal528

graphs. We consider Ω = (−1, 1), s = 0.02, g(x) = 1 for a ≤ |x| ≤ 2 and g(x) = 0529

otherwise, and denote by ua the solution of (3.2). For a = 1, it is apparent from530

Figure 4 (left panel) that the solution u1 is convex in Ω and has stickiness on the531

boundary. In addition, the figure confirms that lim
x→1−

u′
a(x) = ∞, which is asserted532

in [17, Corollary 1.3]. On the contrary, for 1 < a < 2, as can be seen from Figure 4533

(right panel), [17, Corollary 1.3] implies that lim
x→1−

u′
a(x) = −∞ since g(x) = 0 near534

the boundary of Ω. This fact implies that u(x) cannot be convex near x = 1 for535

1 < a < 2. Furthermore, as a → 1+ one expects that ua(x) → u1(x) and thus that536

ua be convex in the interior of Ω = (−1, 1) for a close to 1. Therefore it is natural537

that for some values of a > 1 sufficiently close to 1, the solution ua changes the sign538

of its second derivative inside Ω. In fact, we see from the right panel in Figure 4 that539

the nonlocal minimal graph u in Ω continuously changes from a convex curve into a540

concave one as a varies from 1 to 1.5.541
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Fig. 4. Change of convexity: one-dimensional experiment for s = 0.02 with a = 1 (left panel)
and a = 1.0001, 1.01, 1.05, 1.1, 1.2, 1.5 (right panel). The solutions ua exhibit a transition from being
convex in Ω for a = 1 to being concave for a = 1.5.
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This change of convexity is not restricted to one-dimensional problems. Let Ω ⊂542

R
2 be the unit ball, s = 0.25, and g(x) = 1 for 129

128 ≤ |x| ≤ 1.5 and g(x) = 0 otherwise.543

Figure 5 (right panel) shows a radial slice of the discrete minimal graph, which is a544

convex function near the origin but concave near ∂Ω. An argument analogous to545

the one we discussed in the previous paragraph also explains this behavior in a two-546

dimensional experiment.547
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Fig. 5. Change of convexity: one-dimensional experiment with s = 0.02 (left panel) and two-
dimensional experiment with s = 0.25 (right panel). The piecewise constant boundary data vanish
near the boundary of Ω and at infinity and are equal to 1 on an intermediate annulus.

7.5. Geometric rigidity. Stickiness is one of the intrinsic and distintive fea-548

tures of nonlocal minimal graphs. It can be delicate especially in dimension more549

than one. We now analyze a problem studied in [16] that illustrates the fact that for550

Ω ⊂ R
2, if nonlocal minimal graphs are continuous at some point x ∈ ∂Ω then they551

must also have continuous tangential derivatives at such a point. This geometric rigid-552

ity stands in sharp contrast with the case of either fractional-order linear problems553

and classical minimal graphs.554

Specifically, we consider Ω = (0, 1)× (−1, 1) and the Dirichlet data555

g(x, y) = γ
(
χ(−1,−a)×(0,1)(x, y)− χ(−1,−a)×(−1,0)(x, y)

)
556

where a ∈ [0, 1] and γ > 0 are parameters to be chosen. We construct graded meshes557

with µ = 2 and smallest mesh size hµ = 2−7; see Section 3.3. Figure 6 (left panel)558

displays the numerical solution uh associated with s = 0.25, γ = 2 and a = 1/8.559

If one defines the function u0(y) = limx→0+ u(x, y), then according to [16, Theo-560

rem 1.4], one has u′
0(0) = 0 for a > 0. We run a sequence of experiments to computa-561

tionally verify this theoretical result. For meshes with µ = 2 and hµ = 2−7, 2−8, 2−9,562

the slopes of uh in the y-direction at (x, 0) for x = 2−6, 2−7, 2−8, 2−9, are recorded in563

Table 2 below for s = 0.1, 0.25, 0.4. Because computing the slope of uh at (x, 0) would564

be meaningless when x is smaller than hµ, we write a N/A symbol in those cases. Our565

experiments show that the slopes decrease as x approaches 0.566

To further illustrate this behavior, in Figure 6 (right panel) we display the com-567

puted solutions uh(x, y) at x = 2−3, 2−6, 2−9, for s = 0.25 over a mesh with hµ = 2−9.568

The flattening of the curves as x → 0+ is apparent.569

7.6. Prescribed nonlocal mean curvature. This section presents experi-570

ments involving graphs with nonzero prescribed mean curvature. We run experiments571

that indicate the need of a compatibility condition such as (6.6), the fact that solutions572
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Fig. 6. Plot of uh in Subsection 7.5 for γ = 2, a = 1/8 and s = 0.25. Left panel: top view of
the solution. Right panel: slices at x = 2−3, 2−6 and 2−9. The fractional minimal graph flattens
as x → 0+, in agreement with the fact that for such a minimizer being continuous at some point
x ∈ ∂Ω implies having continuous tangential derivatives at such a point.

s = 0.10
hµ x = 2−9 x = 2−8 x = 2−7 x = 2−6

2−7 N/A N/A 8.546× 10−2 1.1945× 10−1

2−8 N/A 5.856× 10−2 8.406× 10−2 1.2140× 10−1

2−9 3.940× 10−2 5.730× 10−2 8.572× 10−2 1.2332× 10−1

s = 0.25
hµ x = 2−9 x = 2−8 x = 2−7 x = 2−6

2−7 N/A N/A 3.466× 10−2 5.473× 10−2

2−8 N/A 2.135× 10−2 3.469× 10−2 5.551× 10−2

2−9 1.289× 10−2 2.126× 10−2 3.543× 10−2 5.640× 10−2

s = 0.40
hµ x = 2−9 x = 2−8 x = 2−7 x = 2−6

2−7 N/A N/A 8.605× 10−3 1.509× 10−2

2−8 N/A 4.763× 10−3 8.613× 10−3 1.540× 10−2

2−9 2.578× 10−3 4.739× 10−3 8.886× 10−3 1.574× 10−2

Table 2

Example of Subsection 7.5: experimental slopes ∂yuh(x, 0) for x = 2−k and k = 6, . . . , 9. As
x → 0+, these slopes become smaller; this geometric rigidity is easier to capture for larger s.

may develop discontinuities in the interior of the domain, and point to the relation573

between stickiness and the nonlocal mean curvature of the domain.574

7.6.1. Compatibility. As discussed in Section 6, the prescribed nonlocal mean575

curvature problem (6.5) may not have solutions for some functions f . To verify this,576

in Figure 7 we consider Ω = B(0, 1) ⊂ R
2, s = 0.25, g = 0 and two choices of f . For577

the picture on the right (f = −10), the residue does not converge to 0, and the energy578

Ks[u; f ] goes from 0 initially down to −6.6× 106 after 16 Newton iterations.579

7.6.2. Discontinuities. Another interesting phenomenon we observe is that,580

for a discontinuous f , the solution u may also develop discontinuities inside Ω. We581

present the following two examples for d = 1 and d = 2.582

In first place, let Ω = (−1, 1) ⊂ R, s = 0.01, g = 0 and consider f(x) = 1.5 sign(x).583
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Fig. 9. A graph with prescribed discontinuous nonlocal mean curvature in the square Ω =
(−1, 1)2. The left panel displays a top view, while the right panel shows a side view along the slice
{y = 1/2}. The solution to (6.1) is discontinuous inside Ω.

stickiness is most pronounced at the reentrant corner but absent at the convex corners605

of Ω.606

From these examples we conjecture that there is a relation between the amount of607

stickiness on ∂Ω and the nonlocal mean curvature of ∂Ω. Heuristically, let us assume608

that the Euler-Lagrange equation is satisfied at some point x ∈ ∂Ω:609

Hs[u](x) = P.V.

∫

Rd

Gs

(
u(x)− u(y)

|x− y|

)
dy

|x− y|d+2s
= f(x),610

where we recall that Gs is defined in (4.1). This fact is not necessarily true, because611

(6.1) guarantees this identity to hold on Ω only. Above, we assume that the minimizer612

is continuous in Ω, so that we can set u(x) := limΩ∋y→x u(y). Thus, we can define613

the stickiness at x ∈ ∂Ω as614

Ms(x) := lim
Ωc∋y→x

u(y)− u(x).615

We point out that in these examples, because the minimizer u attains its maximum616

on Ωc and is constant in that region, we have Ms ≥ 0. Let r > 0 be small, and let us617

assume that the prescribed curvature is f(x) = 0, that we can split the principal value618

integral in the definition of Hs and that the contribution of the integral on R
d \Br(x)619

is negligible compared with that on Br(x). Then, we must have620

∫

Ω∩Br(x)

Gs

(
u(x)− u(y)

|x− y|

)
dy

|x− y|d+2s
≈

∫

Ωc∩Br(x)

Gs

(
u(y)− u(x)

|x− y|

)
dy

|x− y|d+2s
.621

If the solution is sticky at x, namely Ms > 0, then we can approximate622

∫

Ωc∩Br(x)

Gs

(
u(y)− u(x)

|x− y|

)
dy

|x− y|d+2s
≈

∫

Ωc∩Br(x)

Gs

(
Ms

|x− y|

)
dy

|x− y|d+2s
.623

Due to the fact that Gs

(
Ms

|x−y|

)
is strictly increasing with respect to Ms, we can624

heuristically argue that stickiness Ms(x) grows with the increase of the ratio625

R(x) :=
|Ω ∩Br(x)|

|Ωc ∩Br(x)|
626
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Fig. 10. Top and side views of functions with prescribed fractional mean curvature f = −1 in
Ω that vanish in Ωc. Here, Ω is either an annulus (top row) or a square (middle and bottom row).
The plot in the top-right panel corresponds to a radial slice (y = 0, 0.25 ≤ x ≤ 1) of the annulus,
while the ones in the bottom-left and bottom-right show slices along the diagonal (0 ≤ y = x ≤ 1)
and perpendicular to an edge of the square (y = 0.5, 0 ≤ x ≤ 1), respectively. We observe that
stickiness is larger near the concave portions of the boundary than near the convex ones, and that
it is absent in the corners of the square.

in order to maintain the balance between the integral in Ω ∩ Br(x) with the one in627

Ωc ∩ Br(x). Actually, if R(x) < 1, as happens at convex corners x ∈ ∂Ω, it might628

not be possible for these integrals to balance unless Ms(x) = 0. This supports the629

conjecture that the minimizers are not sticky at convex corners.630

8. Concluding remarks. This paper discusses finite element discretizations of631

the fractional Plateau and the prescribed fractional mean curvature problems of order632

s ∈ (0, 1/2) on bounded domains Ω subject to exterior data being a subgraph. Both633

of these can be interpreted as energy minimization problems in spaces closely related634

to W 2s
1 (Ω).635

We discuss two converging approaches for computing discrete minimizers: a semi-636

implicit gradient flow scheme and a damped Newton method. Both of these algorithms637
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Fig. 11. Stickiness on the L-shaped domain Ω = (−1, 1)2 \ (0, 1) × (−1, 0) with prescribed
fractional mean curvature f = −1 in Ω and Dirichlet condition g = 0 in Ωc. The plots in the
middle correspond to slices along y = x and y = −x respectively, while the ones in the bottom are
slices along x = 0 or y = 0.5 respectively. We see that the largest stickiness takes place at the
reentrant corner while there is no stickiness at the convex corners.

require the computation of a matrix related to weighted linear fractional diffusion638

problems of order s+ 1
2 . We employ the latter for computations.639

A salient feature of nonlocal minimal graphs is their stickiness, namely that they640

are generically discontinuous across the domain boundary. Because our theoretical re-641

sults do not require meshes to be quasi-uniform, we resort to graded meshes to better642

capture this phenomenon. Although the discrete spaces consist of continuous func-643

tions, our experiments in Subsection 7.1 show the method’s capability of accurately644

estimating the jump of solutions across the boundary. In Subsection 7.5 we illustrate645

a geometric rigidity result: wherever the nonlocal minimal graphs are continuous in646

the boundary of the domain, they must also match the slope of the exterior data.647

Fractional minimal graphs may change their convexity within Ω, as indicated by our648

experiments in Subsection 7.4.649

The use of graded meshes gives rise to poor conditioning, which in turn affects the650
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performance of iterative solvers. Our experimental findings reveal that using diagonal651

preconditioning alleviates this issue, particularly when the grading is not too strong.652

Preconditioning of the resulting linear systems is an open problem.653

Because in practice it is not always feasible to exactly impose the Dirichlet condi-654

tion on R
d\Ω, we study the effect of data truncation, and show that the finite element655

minimizers uH
h computed on meshes Th over computational domains ΩH converge to656

the minimal graphs as h → 0, H → 0 in W 2r
1 (Ω) for r ∈ [0, s). This is confirmed in657

our numerical experiments.658

Our results extend to prescribed minimal curvature problems, in which one needs659

some assumptions on the given curvature f in order to guarantee the existence of660

solutions. We present an example of an ill-posed problem due to data incompatibil-661

ity. Furthermore, our computational results indicate that graphs with discontinuous662

prescribed mean curvature may be discontinuous in the interior of the domain. We663

explore the relation between the curvature of the domain and the amount of sticki-664

ness, observe that discrete solutions are stickier on concave boundaries than convex665

ones, and conjecture that they are continuous on convex corners.666
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