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FINITE ELEMENT ALGORITHMS FOR
NONLOCAL MINIMAL GRAPHS

JUAN PABLO BORTHAGARAY*, WENBO LI f, AND RICARDO H. NOCHETTO *

Abstract. We discuss computational and qualitative aspects of the fractional Plateau and the
prescribed fractional mean curvature problems on bounded domains subject to exterior data being
a subgraph. We recast these problems in terms of energy minimization, and we discretize the latter
with piecewise linear finite elements. For the computation of the discrete solutions, we propose and
study a gradient flow and a Newton scheme, and we quantify the effect of Dirichlet data truncation.
We also present a wide variety of numerical experiments that illustrate qualitative and quantitative
features of fractional minimal graphs and the associated discrete problems.

Key words. nonlocal minimal surfaces, finite elements, fractional diffusion
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1. Introduction. This paper is the continuation of [7], where the authors pro-
posed and analyzed a finite element scheme for the computation of fractional minimal
graphs of order s € (0,1/2) over bounded domains. That problem can be interpreted
as a nonhomogeneous Dirichlet problem involving a nonlocal, nonlinear, degenerate
operator of order s + 1/2. In this paper, we discuss computational aspects of such a
formulation and perform several numerical experiments illustrating interesting phe-
nomena arising in fractional Plateau problems and prescribed nonlocal mean curvature
problems.

The notion of fractional perimeter was introduced in the seminal papers by Imbert
[22] and by Caffarelli, Roquejoffre and Savin [12]. These works were motivated by the
study of interphases that arise in classical phase field models when very long space
correlations are present. On the one hand, [22] was motivated by stochastic Ising
models with Ka¢ potentials with slow decay at infinity, that give rise (after a suitable
rescaling) to problems closely related to fractional reaction-diffusion equations such
as

f(ue)

Orus + (=A)'u. + 557 =0,

where (—A)® denotes the fractional Laplacian of order s € (0,1/2) and f is a bistable
nonlinearity. On the other hand, reference [12] showed that certain threshold dynam-
ics-type algorithms, in the spirit of [26] but corresponding to the fractional Laplacian
of order s € (0,1/2) converge (again, after rescaling) to motion by fractional mean
curvature. Fractional minimal sets also arise in the I'-limit of nonlocal Ginzburg-
Landau energies [28].

We now make the definition of fractional perimeter precise. Let s € (0,1/2) and
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two sets A, B C R%, d > 1. Then, the fractional perimeter of order s of 4 in B is

//QB Ixa(z y|d+2£ y)| dydz,

where Qp = (R? x R%) \ (B° x B°) and B = R%\ B. Given some set A9 C R?\ B, a
natural problem is how to extend Ag into B while minimizing the s-perimeter of the
resulting set. This is the fractional Plateau problem, and it is known that, if B is a
bounded set, it admits a unique solution. Interestingly, in such a case it may happen
that either the minimizing set A is either empty in B or that it completely fills B.
This is known as a stickiness phenomenon [15].

In this work, we analyze finite element methods to compute fractional minimal
graphs on bounded domains. Thus, we consider s-minimal sets on a cylinder B =
Q xR, where 2 is a bounded and sufficiently smooth domain, with exterior data being
a subgraph,

Ao = {(2/,2a41): Tap1 < g(a'), 2’ € RE\ Q},

for some continuous function g : R?\ Q — R. We briefly remark some key features of

this problem:

e A technical difficulty arises immediately: all sets A that coincide with Ag in R¥*1\ B
have infinite s-perimeter in B. To remedy this issue, one needs to introduce the
notion of locally minimal sets [24].

e There exists a unique locally s-minimal set, and it is given by the subgraph of a
certain function u, cf. [14, 25]. Thus, one can restrict the minimization problem to
the class of subgraphs of functions that coincide with g on Q°.

e If the exterior datum g is a bounded function, then one can replace the infinite
cylinder B = Q x R by a truncated cylinder By, = Q x (=M, M) for some M > 0
sufficiently large [25, Proposition 2.5].

e Let A be the subgraph of a certain function v that coincides with g on Q2¢. One
can rewrite Ps(A, Byy) as

Ps(A, Bu) = Ls[v] + C(M, d, 5,9, 9),

where I, is the nonlocal energy functional defined in (1.1) below [25, Proposition
4.2.8], [7, Proposition 2.3].
Therefore, an equivalent formulation to the Plateau problem for nonlocal minimal
graphs consists in finding a function u : R* — R, with the constraint © = ¢ in Q°,
such that it minimizes the strictly convex energy

- di= [ 5 (R g e

where F is defined as

p p—r
(1.2) Fy(p) 5:/0 (1+T2)(d+1+25)/2dr

A remarkable difference between nonlocal minimal surface problems and their
local counterparts is the emergence of stickiness phenomena [15]. In the setting of
this paper, this means that the minimizer may be discontinuous across 92. As shown
by Dipierro, Savin and Valdinoci [17], stickiness is indeed the typical behavior of
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FEMS FOR NONLOCAL MINIMAL GRAPHS 3

nonlocal minimal graphs in case Q@ C R. When 2 C R?, reference [16] proves that, at
any boundary points at which stickiness does not happen, the tangent planes of the
traces from the interior necessarily coincide with those of the exterior datum. Such
a hard geometric constraint is in sharp contrast with the case of classical minimal
graphs. In spite of their boundary behavior, fractional minimal graphs are smooth in
the interior of the domain. Indeed, with the notation and assumptions from above it
holds that u € C*°(Q); see [11, Theorem 1.1], and [5, 19].

Our previous work [7] introduced and studied a finite element scheme for the
computation of fractional minimal graphs. We proved convergence of the discrete
minimizers as the mesh size tends to zero, both in suitable Sobolev norms and with
respect to a novel geometric notion of error [7]. Stickiness phenomena was apparent
in the experiments displayed in [7], even though the finite element spaces consisted
of continuous, piecewise linear functions. We also refer the reader to [8] for further
numerical examples and discussion on computational aspects of fractional minimal
graph problems.

This paper is organized as follows. Section 2 gives the formulation of the mini-
mization problem we aim to solve, and compares it with the classical minimal graph
problem. Afterwards, in Section 3 we introduce our finite element method and review
theoretical results from [7] regarding its convergence. Section 4 discusses computa-
tional aspects of the discrete problem, including the evaluation of the nonlocal form
that it gives rise to, and the solution of the resulting discrete nonlinear equation via
a semi-implicit gradient flow and a damped Newton method. Because the Dirichlet
data may have unbounded support, we discuss the effect of data truncation and derive
explicit bounds on the error decay with respect to the diameter of the computational
domain in Section 5. Section 6 is concerned with the prescribed nonlocal mean cur-
vature problem. Finally, Section 7 presents a number of computational experiments
that explore qualitative and quantitative features of nonlocal minimal graphs and
functions of prescribed fractional mean curvature, the conditioning of the discrete
problems and the effect of exterior data truncation.

2. Formulation of the problem. We now specify the problem we aim to solve
in this paper and pose its variational formulation. Let s € (0,1/2) and g € L*°(Q°)
be given. We consider the space

V9= {v: RY SR : ’U‘Q e W2(Q), v=ygin 0°},

equipped with the norm
[vllvs == [lvllz1 @) + [v]vs,

: [v(2) —v(y)]
il = [, e

where Qg = (R?x R?)\ (2 x Q). The space V9 can be understood as that of functions
in W2%(Q) with ‘boundary value’ g. The seminorm in V¢ does not take into account
interactions over §2¢ x )¢, because these are fixed for the class of functions we consider;
therefore, we do not need to assume g to be a function in W2%(Q¢). In particular, g
may not decay at infinity. In case g is the zero function, the space V9 coincides with
the standard zero-extension Sobolev space Wi*(Q); for consistency of notation, we
denote such a space by V°.

For convenience, we introduce the following notation: given a function u € V9,

where
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4 J.P. BORTHAGARAY, W. LI, AND R.H. NOCHETTO

the form a,: V9 x VO — R is

o atno= [f g, (Mol =200 (o) ~w)ole) = o)y,

|$_y‘ ‘Jf—y|d+1+23

where

1
(2.2) Gs(p) ::/ (1+ p2r2)~(@+1429)/2.
0

It is worth noticing that G4(p) — 0 as |p| — co. Thus, the weight in (2.1) degenerates

w blows up.

whenever the difference quotient |u(T
The weak formulation of the fractional minimal graph problem can be obtained
by the taking first variation of I [u] in (1.1) in the direction v. As described in [7],

that problem reads: find u € V9 such that
(2.3) au(u,v) =0 Yo € VO

In light of the previous considerations, equation (2.3) can be regarded as a frac-
tional diffusion problem of order s+ 1/2 in R? with weights depending on the solution
u and fixed nonhomogeneous boundary data g.

REMARK 2.1 (comparison with local problems). Roughly, in the classical minimal
graph problem, given some boundary data g, one seeks for a function u € g + H} ()
such that

1
——Vu-Vodr=0, YvecH} ).
/52\/1+|Vu|2 o()
The integral above can be interpreted as a weighted H'-form, where the weight depends
on u and degenerates as |Vu| — oo.
In a similar way, problem (2.3) involves a weighted HtY2 form, in which the

weight depends on u and degenerates as % — o00. In this sense, it is not

surprising that the fractional-order problems converge to the local ones as s — 1/2.
We refer to [7, Section 5] for a discussion on this matter.

3. Finite element discretization. In this section we first introduce the finite
element spaces and the discrete formulation of problem (2.3). Afterwards, we briefly
outline the key ingredients in the convergence analysis for this scheme. For the mo-
ment, we shall assume that g has bounded support:

supp(g) C A, for some bounded set A.

The discussion of approximations in case of unboundedly supported data is postponed
to Section 5.

3.1. Discrete setting. We consider a family {73 }r>0 of conforming and sim-
plicial triangulations of A, and we assume that all triangulations in {7 },~¢ mesh €2
exactly. Moreover, we assume {7, }r>0 to be shape-regular, namely:

hr
0 = sup max — < 00,
r>0T€Th pT

where hr = diam(7T') and pr is the diameter of the largest ball contained in the
element T € Tj,. The vertices of Ty, will be denoted by {x;}, and the star or patch of
{x;} is defined as

S; = supp(p;),
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FEMS FOR NONLOCAL MINIMAL GRAPHS )

where ¢; is the nodal basis function corresponding to the node x;.
To impose the condition u = g in 2¢ at the discrete level, we introduce the exterior
interpolation operator

(3.1) o= Y (ig)(x) ¢i,

X; EN,:

where II}' g is the L2-projection of g 5.nqe Onto P1(S; NQ°). Thus, IIf g(x;) coincides
with the standard Clément interpolation of g on x; for all nodes x; such that S; C
R?\ Q. On the other hand, for nodes x; € 99, I15 only averages over the elements in
S; that lie in Q°.

We consider discrete spaces consisting of piecewise linear functions over Ty,

Vi = {U S C(A) U|T e P VT € 7;L}

To account for the exterior data, we define the discrete counterpart of V9,
VZ = {'U S Vh: U‘A\Q = Hig}

With the same convention as before, we denote by V(,)l the corresponding space in case
g = 0. Therefore, the discrete weak formulation reads: find uj, € V{ such that

(3.2) Ay, (up,vp) =0 for all vy, € VY.

REMARK 3.1 (well-posedness of discrete problem). Fzistence and uniqueness of
solutions to the discrete problem (3.2) is an immediate corollary of our assumption
g € L>(Q°). Indeed, from this condition it follows that uy, is a solution of (3.2) if
and only if u, minimizes the strictly convex energy Is[up] over the discrete space V7.

3.2. Convergence. In [7], we have proved that solutions to (3.2) converge to the
fractional minimal graph as the maximum element diameter tends to 0. An important
tool in that proof is a quasi-interpolation operator Z: V9 — V§ that combines the
exterior Clément interpolation (3.1) with an interior interpolation operator. More
precisely, we set

(3.3) Zpo =11, (U’Q) + I3 g,

where 117 involves averaging over element stars contained in 2. Because the minimizer
u is smooth in the interior of €2, but we have no control on its boundary behavior
other than the global bound u € W2%(£), we can only assert convergence of the
interpolation operator in a W2*-type seminorm without rates.

PROPOSITION 3.2 (interpolation error). Let s € (0,1/2), Q be a bounded domain,
g € C(Q°, and u be the solution to (2.3). Then, the interpolation operator (3.3)

satisfies
// |(Znu — u|)($) — (Znu —u)(y)|

_ y|d+25

dxdy -0 ash— 0.

Once we have proved the convergence of Zpu to wu, energy consistency follows
immediately. Since the energy dominates the W3(€2)-norm [7, Lemma 2.5], we can
prove convergence in W2 (Q) for all r € [0, s) by arguing by compactness.

THEOREM 3.3 (convergence). Assume s € (0,1/2), Q C R is a CY! domain,
and g € C’C(Rd). Let u be the minimizer of I; on VI and uy, be the minimizer of I,
on Vi . Then, it holds that

Aig}) |u—unllwzry =0, Vrelo,s).
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We finally point out that [7, Section 5] introduces a geometric notion of error that
mimics a weighted L? discrepancy between the normal vectors to the graph of u and
up. We refer to that paper for further details.

3.3. Graded meshes. As mentioned in the introduction, fractional minimal
surfaces are smooth in the interior of 2. The main challenge in their approximation
arises from their boundary behavior and concretely, from the genericity of stickiness
phenomena, i.e. discontinuity of the solution w across 02. Thus, it is convenient to a
priori adapt meshes to better capture the jump of u near 9.

In our discretizations, we use the following construction [21], that gives rise to
shape-regular meshes. Let h > 0 be a mesh-size parameter and p > 1. Then, we
consider meshes Ty, such that every element T' € T}, satisfies

(3.4) o { Clo)nr, TNOQ#0
' T\ C(o)hdist(T,0Q)=D/m T 1o = 0.

These meshes, typically with g = 2, give rise to optimal convergence rates for
homogeneous problems involving the fractional Laplacian in 2d [2, 6, 9, 10]. We point
out that in our problem the computational domain strictly contains €2, because we
need to impose the exterior condition u = g on Q°. As shown in [4, 9], the construction
(3.4) leads to

h(l_d)ua 2 > dip

dimV{ ~{ h=?logh|, p= %,
—d

h=, < g3

In our applications, because Theorem 3.3 gives no theoretical convergence rates,
we are not restricted to the choice p = 2 in two dimensions: a higher p allows a
better resolution of stickiness. However, our numerical experiments indicate that the
condition number of the resulting matrix at the last step of the Newton iteration
deteriorates as p increases, cf. Subsection 7.2.

4. Numerical schemes. Having at hand a finite element formulation of the
nonlocal minimal graph problem and proven its convergence as the mesh size tends
to zero, we now address the issue of how to compute discrete minimizers in 1d and
in 2d. In first place, we discuss the computation of matrices associated to either
the bilinear form a,, (-,), or related computations. We propose two schemes for the
solution of the nonlinear discrete problems (3.2): a semi-implicit gradient flow and a
damped Newton method. In this section we also discuss the convergence of these two
algorithms.

4.1. Quadrature. We now consider the evaluation of the forms a,, (-, -) appear-
ing in (3.2). We point out that, following the implementation techniques from [1, 2],
if we are given u, € Vi and v, € V%, then we can compute a,, (up,vp). Indeed,
since ay, (up,vp) is linear in v, and the latter function can be written in the form
vp(x) = ine/\/’,‘; v;p;(x), we only need to evaluate

— auh Up, 907,)

// Q ( — uh(y)) (up(z) _|Zh£y;|)§figz — %(y))dxdy.

|z -y

We split Qo = (2 x Q) U (2 x Q) U (¢ x ) and, because G, is an even function (cf.
(2.2)), we can take advantage that the integrand is symmetric with respect to x and
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y to obtain
z) —un(y)\ (un(z) — un(y))(@i(z) — ¢i(y))
//ng ° ( |z — y ) | — y|dt1+2s dxdy
* 2 //QxQL ~S ( .’ﬂ) - zr(y)> (Uh(x)— g|ZJ(ry12r)25 ( )d.’I}dy = al 1 + 20/1 2-

We assume that the elements are sorted in such a way that the first N elements
mesh Q, while the remaining Ny — N mesh A\ Q, that is,

U =2 |J T-1\o
1<i<Ngq Na+1<i<Np

By doing a loop over the elements of the triangulation, the integrals a; ; and a; 2 can
be written as:

= (un(@) —un(y) ) (un(z) = un(y)(@i() — @ily))
Z //,xT s< ) |z — y|d+1+2s dzdy,

|z —y|
l,m=1
Neo

= (un(o) — (o) (un(a) — gn(9)i()
;m %+1/TZXT,,L S( |z — y > lz—y ‘d+1+23 dxdy

//T, X Ae ( B £52| ) |;h_(z)|;pl$i)29 dxdy.

For the double integrals on 7} x T,,, appearing in the definitions of a;; and a; 2, we
apply the same type of transformations described in [1, 13, 27] to convert the integral
into an integral over [0, 1]2, in which variables can be separated and the singular part
can be computed analytically. The integrals over T} x A¢ are of the form

/T i@t

where the weight function w is defined as

o) = | 6 (25

P ~
Gilp) = /0 (14 02) (22 = p Gi(p).

(4.1)

Since the only restriction on the set A is that supp(g) C A, without loss of generality
we assume that A = By is a d-dimensional ball with radius R. In such a case, the
integral over A¢ can be transformed using polar coordinates into:

w(x) = dS(e)/ G, (Uh(l‘)) IO—1—2sdp7
0B, po(e,x) P

where pg(e, x) is the distance from x to dBp in the direction of e, which is given by
the formula

e,x) =+/R2—|z2+ (e-x)2 —e-x.

The integral over (po(e, az:)7 oo) can be transformed to an integral over (0,1) by means
of the change of variable p = pg (e,x)ﬁ_l/ (25) " and then approximated by Gaussian
quadrature. Combining this approach with suitable quadrature over 9B; and T;, we
numerically compute the integral over T; x A€ for a given uy,.
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8 J.P. BORTHAGARAY, W. LI, AND R.H. NOCHETTO

4.2. Gradient Flow. Although we can compute ay,, (un,vp) for any given up, €
Vi, vn € V?Z, the nonlinearity of a,, (un,vp) with respect to wup, still brings difficul-
ties in finding the discrete solution to (3.2). Since ay, (up,vn) = %‘;h](vh) and up,
minimizes the convex functional I [up] in the space Vi, a gradient flow is a feasible
approach to solve for the unique minimizer wy,.

Given a € [0,1), and with the convention that H® = L2 we first consider a

time-continuous H“-gradient flow for up(t), namely

(4.2) <8tUh,Uh>Ha(Q) = —ﬁ(@h) = —ay, (Up,vp), Yoy, € V%,
where uj,(0) = uf) € V¥ (and thus I [u)] < oo). Writing uy(t) = ije/\/;; u;(t) @i,
local existence and uniqueness of solutions in time for (4.2) follow from the fact that
@y, (U, ;) is Lipschitz with respect to u; for any ;. Noticing that the gradient flow
(4.2) satisfies the energy decay property

%Is[uh] = M(;Eih] (Orun) = au, (un, Oun) = —(Orun, Opun) ge(qy < 0,
global existence and uniqueness of solutions in time can also be proved.

Similarly to the classical mean curvature flow of surfaces [18], there are three
standard ways to discretize (4.2) in time: fully implicit, semi-implicit and fully ex-
plicit. Like in the classical case, the fully implicit scheme requires solving a nonlinear
equation at every time step, which is not efficient in practice, while the fully explicit
scheme is conditionally stable, and hence requires the choice of very small time steps.
We thus focus on a semi-implicit scheme: given the step size 7 > 0 and iteration
counter k > 0, find uy ™ € V¢ that solves

1
(4.3) ;<UZ+1 —ufy, vn)me) = —aur (uptt vn), Vo, € VY,

The linearity of a,x (up™™, vy,) with respect to uy™ makes (4.3) amenable for its
computational solution. The following proposition proves the stability of the semi-
implicit scheme. Its proof mimics the one of classical mean curvature flow [18].

PROPOSITION 4.1 (stability of H“-gradient flow). Assume u’fLH, ub € Vi satisfy

(4.3). Then,
1
L[+ — ™ = uk o) < Tslup]

Proof. Choose vy, = uf ™' —uf € V9 in (4.3) to obtain

Lok k k
(4.4) ;Huh+1 - “ﬁ”%}a(m = T Oyk (“hH ) Uh+1 - UZ)

Next, we claim that for every pair of real numbers 7, r1, it holds that
(4.5) (r2 — r1r0) Gs(ro) > Fi(r1) — Fs(ro).

We recall that F, is defined according to (1.2), that G, satisfies G, (r) = 1G,(r), and
that G5 = F!. Since F; is a convex and even function, we deduce

Fy(r1) = Fs(ro) = Fs(|r1]) = Fs(|rol)
< Fo(|r]) = [Fs(lra]) + (rol = [ra]) Gs(lra])]
= (Ir1] = Irol) Ir1| Gs(Ira)-
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208 We add and subtract (|r1]—|ro|) [r1| Gs(Jro|) above and use that G, is even, decreasing
299 on [0,00) and non-negative, to obtain

Fy(m) = Fy(ro) < (Il = Irol) Ina] Gallrol) + Il (Il = Irol) (G(lral) = Gu(lroD))
. < (4] = [rol) Ira] G.(lrol)
= (r1 = Irol [m1]) Gs(|rol)
< (r1 —ror1) Gs(ro).

r

=N =N

r

301 This proves (4.5). Finally, define di(z,y) := % and set 7o = dy, and r =
302 dg41 in (4.5) to deduce that

aup (uE* k) = // G, (di(z,9)) i1 (2, y) (dis1 (2, y) — dk(x’y))dxdy

‘fE _ y|d71+25

303 Fs(dit1(2,y)) — Fs(di(2, ) dad
> | /Q Q y

|.’,U _ y|d—1+25

= IS[UZJrl] - IS[UZ]’

304  Combining this with (4.4) finishes the proof. |
305 Upon writing wf := uf ™ — uy, the semi-implicit scheme (4.3) becomes (4.6),

which is the crucial step of Algorithm 4.1 to solve (3.2). Equation (4.6) boils down to

Algorithm 4.1 Semi-implicit gradient flow

1: Select an arbitrary initial u) € V4, let k = 0, and set ||w})||go (o) = Inf. Choose
a time step 7 > 0 and a small number € > 0.

2: while [wf| g >¢ do

3 Find wy™ € V) such that

(4.6) (witt, V) He Q) T Tayx (Wit vy) = — Gy (uf,vp) , Vo, € VY.
4: Set uﬁ“ :u§+rwﬁ+1 and k =k + 1.

5: end while

306

307 solving the linear system (M + TKk) Wk = F*. In case a = 0, the matrix M = (M;;)
308 is just a mass matrix, while if @ > 0, M is the stiffness matrix for the linear fractional
309 diffusion problem of order «, given by

- My = // (pi(@) — ¢i(y))(p;(z) — %(y))dxdy (> 0).
Qo

|z — yldt2e

311 The matrix K* = (K ij) is the stiffness matrix for a weighted linear fractional diffusion
312 of order s + %, whose elements Kfj = Ay (i, ;) are given by

. KE = //Q a. (U’ﬁ(:ﬂ) —U’;i(y)) (pile) = 2iW)) (@) —2sW) 0

[z =yl |z — yldrites

314 and can be computed as described in Subsection 4.1. The right hand side vector is
315 FF = —K*U*, where U* = (UF) is the vector UF = uf(x;), ie., fF = —Qyk (uf, 0:).
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10 J.P. BORTHAGARAY, W. LI, AND R.H. NOCHETTO

Because of Proposition 4.1 (stability of H®-gradient flow), the loop in Algo-
rithm 4.1 terminates in finite steps. Moreover, using the continuity of auﬁ(~, )) in

[Hz%2(Q)]2, which is uniform in u, together with an inverse estimate and 0 < a <
5 + s gives

<h 1—2s+2«

|aug (wy ™ on)| S fwg ol o 14e 00 S Pt i oo [on| e (@)
h H?2 (Q)

2+S ()
where the hidden constant depends on the mesh shape-regularity and hp;, is the
minimum element size. Therefore, the last iterate uﬁ of Algorithm 4.1 satisfies the
residual estimate
|a % u’fb,vh)‘
max —or——— ( nin

14 rh-l- 25+2a)
vREVY ||Uh||Ha(Q

4.3. Damped Newton algorithm. Since the semi-implicit gradient flow is a
first order method to find the minimizer of the discrete energy, it may converge slowly
in practice. Therefore, it is worth having an alternative algorithm to solve (3.2) faster.
With that goal in mind, we present in the following a damped Newton scheme, which
is a second order method and thus improves the speed of computation.

Algorithm 4.2 Damped Newton Algorithm

1: Select an arbitrary initial ug € VJ and let k = 0. Choose a small number & > 0.
while |[{a(uf,;)}" |2 >¢ do
3: Find wf € V9 such that

N

Say, (uF. v
(4.7 M(wﬁ) = —ax (uf, ), Yoy, € V9.
ouy, h
4: Determine the minimum n € N such that uﬁ" = ui + 2_"w’,§ satisfies

k,n m —n— m
{aws (™ 0 Vi llie < (1 =277 {ayg (uh, 00) } i 2

5: Let quH—uh and k =k + 1.
6: end while

To compute the first variation of a,(u,v) in (2.1) with respect to u, which is also
the second variation of I[u], we make use of rG4(s) = G4(r) and obtain

6au (u,v) //Q ( u(y)> (w@) —wy) ) = o) ;0

|z -yl |z — yldHies

The identity G’ (a) = (1 + a?)~(@+1+29)/2 can be easily determined from (4.1). Even
though this first variation is not well-defined for an arbitrary u € V9 and v,w € VY,
its discrete counterpart %u:’vh)(wh) is well-defined for all u;, € V,gl, Vp, Wy, € V?L
because they are Lipschitz. Our damped Newton algorithm for (3.2) is presented in

Algorithm 4.2.

LEMMA 4.2 (convergence of Algorithm 4.2).  The iterates uf of Algorithm 4.2
converge quadratically to the unique solution of (3.2) from any initial condition.
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FEMS FOR NONLOCAL MINIMAL GRAPHS 11

Proof. Since I [uy] is strictly convex, the convergence of uf to the solution of
discrete problem (3.2) is guaranteed by the theory of numerical optimization in finite
dimensional spaces (see [23], for example). O

The critical step in Algorithm 4.2 is to solve the equation (4.7). Due to the
a,k (uf ,vn)

h

Su k
system KFWk = Fk where the right hand side F* = (fF) is the same as the one in
solving (4.6), namely, fF = Qs (uf, ¢;). The matrix K* = (K’“) given by

//QG/ (uh |x_uh( )) (pi(2) — i(y)) (p;(@) *%(y))dxd%

| o — y|dt+1+2s

is the stiffness matrix for a weighted linear fractional diffusion of order s + % Since
the only difference with the semi-implicit gradient flow algorithm is the weight, the
elements in K* can be computed by using the same techniques as for K*.

linearity of (wf) with respect to v, and wk, we just need to solve a linear

5. Unboundedly supported data. Thus far, we have taken for granted that
¢ has bounded support, and that the computational domain covers supp(g). We
point out that most of the theoretical estimates only require g to be locally bounded.
Naturally, in case g does not have compact support, one could simply multiply g by
a cutoff function and consider discretizations using this truncated exterior condition.
Here we quantify the consistency error arising in this approach. More precisely, given
H > 0, we consider Qg to be a bounded open domain containing €2 and such that
d(x,Q) ~ H for all z € dQy, and choose a cutoff function ny € C°°(Q°) satisfying

0<nm <1, supp(nm) C Qw11 \Q, nu(z)=1 in Qy\Q

We replace g by gg := gnm, and consider problem (2.3) using gy as Dirichlet
condition. Let uf € V94 be the solution of such a problem, and uhH be the solu-
tion of its discrete counterpart over a certain mesh with element size h. Because of
Theorem 3.3 we know that, for all r € [0, s),

ul? = uf in WE(Q) as h — 0.

Therefore we only need to show that, in turn, the minimizers of the truncated problems
satisfy u — w as H — oo in the same norm. As a first step, we compare the
differences in the energy between truncated and extended functions. For that purpose,
we define the following truncation and extension operators:

Ty: VI — V91, Tyv = vnm,
Ey:V91 - V9, Egw=w+ (1 —ng)g.
PROPOSITION 5.1 (truncation and extension). The following estimates hold for
every v € VI N L>®(RY), and w € VI N L= (R?):
T[] = I[Tpol| S H2,
|Ls[w] — L[Egw]| < H 1%,

Proof. We prove only the first estimate, as the second one follows in the same
fashion. Because v = Tyv in Qp, we have

| L5 [v] = Is[Trv]|
(=) - ()

S

1
|z — y|dt2s—1

dydzx.
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From definition (1.2), it follows immediately that Fs(0) = F.(0) = 0, and thus
Fy(p) < Cp? if p S 1. Combining this with the fact that [v(z) — v(y)| < 2[|v]| Lo (ra)
and |[v(x) — Tro(y)| < 2[|v| e ey for ae. x € Q,y € Q°, and integrating in polar
coordinates, we conclude

1
[s[v] = Ls[Tav]| S ||UH200 c / / ———— dady < g1-2s
L@ | o, |z — y|dt+2s+1

This concludes the proof. 0

The previous result leads immediately to an energy consistency estimate for the
truncated problem.

COROLLARY 5.2 (energy consistency). The minimizers of the original and trun-
cated problem satisfy
‘Is[u] — IS[uHH < H172s,

Proof. Since u!! is the minimizer over V94 and Tyu € V94, we deduce
Luf] — I[u] < L[Tgu] — I[u] < H 172,
Conversely, using that u is the minimzer over V9 and Eu'l € V9, we obtain
Lfu] — L[u"] < L[Bu"] — L[] S H 172,

and thus conclude the proof. ]

The energy I is closely related to the W2%(Q)-norm, in the sense that one is
finite if and only if the other one is finite [7, Lemma 2.5]. Thus, in the same way as
in Theorem 3.3 (convergence), energy consistency yields convergence in W2"(2) for
all m € [0, s).

PROPOSITION 5.3 (convergence). Let u and ug be minimizers of I over V9 and
V94 | respectively. Then for all r € [0, s), it holds that

. H .
Jn flu = uTlwzr ) = 0.

Proof. The proof proceeds using the same arguments as in [7, Theorem 4.3]. In
fact, from Corollary 5.2 we deduce that {I;[uf]} is uniformly bounded and therefore
{uf'} is bounded in W2*(Q). It follows that, up to a subsequence, ufl converges in
L' () to a limit u. Also, because u’ = g in Qp, we can extend @ by g on ¢, and
have v — u a.e in R?. We then can invoke Fatou’s lemma and Corollary 5.2 to
deduce that

L[] < liminf I, [u®] < liminf I,[u] + H'172% = I,[u).
H—o00 H—o0

Because u € V9, we deduce that & = u whence uy — w in L'(Q) as H — 0. By
interpolation, we conclude that convergence in W£"(Q2) holds for all 7 € [0, s). O

6. Prescribed nonlocal mean curvature. In this section, we briefly introduce
the problem of computing graphs with prescribed nonlocal mean curvature. More
specifically, we address the computation of a function u such that for a.e. x € ), a
certain nonlocal mean curvature at (z,u(x)) is equal to a given function f(z). For a
set £ C R™! and 7 € OF, such nonlocal mean curvature operator is defined as [12]

H,[E|(F) :=P.V. / xee(y) — xe(y)

Roes [z — g

This manuscript is for review purposes only.
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FEMS FOR NONLOCAL MINIMAL GRAPHS 13

In turn, for = (x,u(x)) on the graph of u, this can be written as [25, Chapter 4]

_ u(e) —u(y)\ _ dy
mliw) =ry. [ 6. (MR

To recover the classical mean curvature in the limit s — %_, it is necessary to

normalize the operator H, accordingly. Let oy denote the volume of the d-dimensional
unit ball, and consider the prescribed nonlocal mean curvature problem

2 H[u)(x) = f(z), @€

o { ' u(z) = g(z), xR\ Q.
[7, Lemma 5.8]

(6.2) lim 1-— 25]{g () = HIE|(x).

s—1i- dog

where H[E] denotes the classical mean curvature operator. Therefore, in the limit

5 — %_, formula (6.1) formally becomes the following Dirichlet problem for graphs
of prescribed classical mean curvature:

ba(( o) = fla), seq

1+ Vu(a)]?
u(z) =g(x), x €N

(6.3)

An alternative formulation of the prescribed nonlocal mean curvature problem
for graphs is to find u € V9 minimizing the functional

(6.4) Kofus f] = do /f

1-2s

Because Is[u] is convex and the second term in the right hand side above is linear, it
follows that this functional is also convex. Then, by taking the first variation of (6.4),
we see that u € V9 is the minimizer of Ky[-; f] if and only if it satisfies

0 = ay(u,v) — dad /f

//Q ( wﬁw>§@7$¥dd 5

for every v € V. Formally, (6.1) coincides with (6.5) because one can multiply (6.1)
by a test function v, integrate by parts and take advantage of the fact that G is an
odd function to arrive at (6.5) up to a constant factor.

One intriguing question regarding the energy K[u; f] in (6.4) is what conditions
on f are needed to guarantee that it is bounded below. In fact, for the variational
formulation of the classical mean curvature problem (6.3), Giaquinta [20] proves the
following necessary and sufficient condition for well posedness: there exists some
€o > 0 such that for every measurable set A C (,

(6.5)

(6.6) ‘ / fla dx‘ <0 =20) a1y,
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where H4~1 denotes the (d — 1)—dimensional Hausdorff measure. In some sense, this
condition ensures that the function f be suitably small.

Although we are not aware of such a characterization for prescribed nonlocal
mean curvature problems, a related sufficient condition for Ks[u; f] to have a lower
bound can be easily derived. In fact, exploiting [7, Lemma 2.5 and Proposition 2.7]
and the Sobolev embedding W2*(Q) ¢ L¥(4=2%)(Q) we deduce that

Is[u] + C1(d, 2,5, |9l L~ 00) = lulwze @) R lullpar@—20q)-

On the other hand, Holder’s inequality gives

| @ute)ds < Jullysasom Al o,
whence Ks[u; f] is bounded from below provided || f[| La/20) () is suitably small,

Kslus f] > ”uHLd/(d*%)(Q) (C - ||fHLd/<2s>(Q)) - C1(d, Q, s, HQHLOO(QC))-

This is to some extent consistent with (6.6), because it holds that

)/Af(:c)dx‘ < (/A 1dx>ddl (/A|f(m)ddx>é SHTHOA) fl e,

due to Holder’s inequality and the isoperimetric inequality, and formally the case
2s =1 corresponds to the classical prescribed mean curvature problem (cf. (6.2)).

7. Numerical experiments. This section presents a variety of numerical exper-
iments that illustrate some of the main features of fractional minimal graphs discussed
in this paper. From a quantitative perspective, we explore stickiness and the effect
of truncating the computational domain. Moreover, we report on the conditioning
of the matrices arising in the iterative resolution of the nonlinear discrete equations.
Our experiments also illustrate that nonlocal minimal graphs may change their con-
cavity inside the domain €2, and we show that graphs with prescribed fractional mean
curvature may be discontinuous in Q.

In all the experiments displayed in this section we use the damped Newton algo-
rithm from §4.3. We refer to [7] for experiments involving the semi-implicit gradient
flow algorithm and illustrating its energy-decrease property.

7.1. Quantitative boundary behavior. We first consider the example studied
in [15, Theorem 1.2]. We solve (3.2) for 2 = (—1,1) C R and g(z) = Msign(z), where
M > 0. Reference [15] proves that, for every s € (0,1/2), stickiness (i.e. the solution
being discontinuous at 9Q) occurs if M is big enough and, denoting the corresponding
solution by u™, that there exists an optimal constant co such that

(7.1) sup uM (z) < coM =2 inf uM(z) > —coM s
2€Q e

In our experiments, we consider s = 0.1,0.25,0.4 and use graded meshes (cf. Subsec-

tion 3.3) with parameter u = 2, h = 1072 to better resolve the boundary discontinu-

ity. The mesh size h here is taken in such a way that the resulting mesh partitions
1/

Q= (-1,1) into L‘th MJ subintervals and the smallest ones have size h*. Moreover,

since this is an example in one dimension and the unboundedly supported data g is

piecewise constant, we can use quadrature to approximate the integrals over 2¢ rather
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than directly truncating g. The left panel in Figure 1 shows the computed solutions
with M = 16.

In all cases we observe that the discrete solutions uy are monotonically increasing
in ©Q, so we let 21 be the free node closest to 1 and use u)(x1) as an approximation
of sup,cq uM (). The right panel in Figure 1 shows how u (z1) varies with respect

to M for different values of s.

—s=01
wp|l—s=0.25
—s=04

(2)

M

-2 -1.5 A -0.5 0 0.5 1 15 2 1 2 3 5 6 7 8

P
x log2(M)

Fic. 1. Stickiness in 1d. In the setting of Subsection 7.1, the left panel displays the finite
element solutions uhM for M = 16 computed over graded meshes with parameters p = 2,h = 1073

and s € {0,1,0.25,0.4}. The right panel shows the value of uﬁf(azl) as a function of M for s €
{0,1,0.25,0.4}, which is expected to behave according to (7.1).

For s = 0.1 and s = 0.25 the slopes of the curves are slightly larger than the
theoretical rate M52 whenever M is small. However, as M increases, we see a good
agreement with theory. Comparing results for M = 275 and M = 28, we observe
approximate rates 0.553 for s = 0.1 and 0.602 for s = 0.25, where the expected rates
are 6/11 ~ 0.545 and 3/5 = 0.600, respectively. However, the situation is different for
s = 0.4: the plotted curve does not correspond to a flat line, and the last two nodes
plotted, with M = 27 and M = 28, show a relative slope of about 0.57, which is off
the expected 9/14 =~ 0.643.

We believe this issue is due to the mesh size h not being small enough to resolve
the boundary behavior. We run the same experiment on a finer mesh, namely with
h =10"*, 4 = 2, and report our findings for s = 0.4 and compare them with the ones
for the coarser mesh on Table 1. The results are closer to the predicted rate.

7.2. Conditioning. For the solutions of the linear systems arising in our discrete
formulations, we use a conjugate gradient method. Therefore, the number of iterations
needed for a fixed tolerance scales like 1/k(K ), where k(K) is the condition number
of the stiffness matrix K. For linear problems of order s involving the fractional
Laplacian (—A)®, the condition number of K satisfies [3]

h d—2s
K(K) =0 <N2s/d (};ﬂffﬂf) ) :

Reference [3] also shows that diagonal preconditioning yields x(K) = O (N 2s/ d),
where N is the dimension of the finite element space.

Using the Matlab function condest, we estimate the condition number of the
Jacobian matrix in the last Newton iteration in the example from Subsection 7.1 with
M = 1, with and without diagonal preconditioning. Figure 2 summarizes our findings.
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Example with » = 10~3 | Example with h = 104

logy (M) | ul (1) Slope ul (21) Slope

6.0 26.1545 N/A 26.7488 N/A

6.5 32.4687 0.624 33.4057 0.641

7.0 40.0845 0.608 41.5497 0.629

7.5 49.1873 0.590 51.4627 0.617

8.0 59.9410 0.571 63.4528 0.604

TABLE 1

Comparison between computational results for the problem described in Subsection 7.1 over two
different meshes for s = 0.4. Let M; be the value of M in the i-th row. In this table, by the slope

log(un't (1)) —log(up *~ (21))
log(M;)—log(M;_1)

at M; we refer to that, according to (7.1), is expected to be equal to

9/14 ~ 0.643.

--e-- 41 = 2, precond
--e-- 1 = 3, precond
p gl|—e—pn=1
——p =2

--e--/, = 2, precond
--e--1 = 3, precond
S5hl—e—p =1
——p =2
—e—pu =3

log10(C)

e

2
3 35 15 2 3 35

25 25
qulo(#DOF) lOglo(#DOF)

Fic. 2. Condition numbers of the Jacobian matrixz K at the last step of Algorithm 4.2 for the
problem described in Subsection 7.1 with s = 0.1 (left), s = 0.4 (right) and meshes with grading
parameters p € {1,2,3}. The condition number on quasi-uniform meshes (u = 1) scales as N2st1,
in agreement with the s-fractional mean curvature operator being an operator of order s + 1/2
(c¢f. (2.3)). While the conditioning for graded meshes is significantly poorer, when p = 2 diagonal
preconditioning recovers condition numbers comparable to the ones on quasi-uniform meshes.

Let N = dimV{ be the number of degrees of freedom. For a fixed s and using
uniform meshes, we observe that the condition number behaves like N25t1 ~ p=25—1.
this is consistent with the s-fractional mean curvature operator being an operator of
order s+1/2. For graded meshes (with p = 2, u = 3), the behavior is less clear. When
using diagonal preconditioning for p = 2, we observe that the condition number also
behaves like N25+1,

7.3. Truncation of unboundedly supported data. In Section 5, we studied
the effect of truncating unboundedly supported data and proved the convergence of
the discrete solutions of the truncated problems uhH towards v as h — 0, H — oo.

Here, we study numerically the effect of data truncation by running experiments
on a simple two-dimensional problem. Consider Q = B; C R? and g = 1; then, the
nonlocal minimal graph u is a constant function. For H > 0, we set Qg = Bgy1.
and compute nonlocal minimal graphs on € with Dirichlet data g’ = yq,,, which is a
truncation of g = 1. Clearly, if there was no truncation, then u;, should be constantly
1; the effect of the truncation of g is that the minimum value of u! inside € is strictly
less than 1. For s = 0.25, we plot the L'(Q2) and L*°(Q2) norms of u; — uil as a
function of H in Figure 3. The slope of the curve is close to —1.5 for large H, which
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FEMS FOR NONLOCAL MINIMAL GRAPHS 17

is in agreement with the O(H ~1~2¢) consistency error for the energy I, we proved in
Corollary 5.2.

—e—logio(|Jun — uhHHLl(Q)) 1
—e—logio([[un — ufl | =) |
O(H—Zs—l)

05 1 15 2 25 3

lOglo(H)

FIG. 3. Effects of truncation in 2d for s = 0.25: for g = Xy, we compute the L' and L™
discrepancies between up =1 and u,}f as a function of H. For both norms we observe a discrepancy
of order H—1725  in agreement with Corollary 5.2.

7.4. Change of convexity. This is a peculiar behavior of fractional minimal
graphs. We consider = (=1,1), s = 0.02, g(z) = 1 for a < |z| < 2 and g(z) =0
otherwise, and denote by w, the solution of (3.2). For a = 1, it is apparent from
Figure 4 (left panel) that the solution w; is convex in  and has stickiness on the

boundary. In addition, the figure confirms that lim u/(z) = oo, which is asserted
r—1—

in [17, Corollary 1.3]. On the contrary, for 1 < a < 2, as can be seen from Figure 4
(right panel), [17, Corollary 1.3] implies that lim w}(x) = —oo since g(x) = 0 near
z—1—

the boundary of . This fact implies that u(x) cannot be convex near x = 1 for
1 < a < 2. Furthermore, as a — 17 one expects that u,(z) — u1(z) and thus that
ug be convex in the interior of Q@ = (—1,1) for a close to 1. Therefore it is natural
that for some values of a > 1 sufficiently close to 1, the solution u, changes the sign
of its second derivative inside 2. In fact, we see from the right panel in Figure 4 that
the nonlocal minimal graph » in 2 continuously changes from a convex curve into a
concave one as a varies from 1 to 1.5.

e ¢ = 1.0001

0.9
095 e 0, = 1.01
0.8 a=1.05
0.9 07 \—a =11 /
a=12
— —~ 08 a=15
o o S
~—~ ~— 05
3 o8 S o4 (__—\

Fic. 4. Change of convezity: one-dimensional experiment for s = 0.02 with a = 1 (left panel)
and a = 1.0001,1.01,1.05, 1.1,1.2,1.5 (right panel). The solutions uq exhibit a transition from being
convex in 2 for a =1 to being concave for a = 1.5.
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This change of convexity is not restricted to one-dimensional problems. Let 2 C
R? be the unit ball, s = 0.25, and g(z) = 1 for 122 < |z| < 1.5 and g(z) = 0 otherwise.
Figure 5 (right panel) shows a radial slice of the discrete minimal graph, which is a
convex function near the origin but concave near 0f). An argument analogous to
the one we discussed in the previous paragraph also explains this behavior in a two-

dimensional experiment.

1 T
o 1 T T
09t —up(2) | Il os ‘—-—Average of uh(az)‘
0.8 | q ? 08
0.7+ 1 = 0.7._.—-4—~—'_H_.*..-7
A=
—~06F ~—~ 06
E sl | &
§ ) § 05
04 1 L‘S 04
03 | g)D 03
02 b © 02
g
o1 = o4
0 . L < ‘
-2 -15 -1 -0.5 0 0.5 1 15 2 0 05 1 15
x r

Fi1G. 5. Change of convexity: one-dimensional experiment with s = 0.02 (left panel) and two-
dimensional experiment with s = 0.25 (right panel). The piecewise constant boundary data vanish
near the boundary of  and at infinity and are equal to 1 on an intermediate annulus.

7.5. Geometric rigidity. Stickiness is one of the intrinsic and distintive fea-
tures of nonlocal minimal graphs. It can be delicate especially in dimension more
than one. We now analyze a problem studied in [16] that illustrates the fact that for
Q c R?, if nonlocal minimal graphs are continuous at some point z € 9 then they
must also have continuous tangential derivatives at such a point. This geometric rigid-
ity stands in sharp contrast with the case of either fractional-order linear problems
and classical minimal graphs.

Specifically, we consider 2 = (0,1) x (—1,1) and the Dirichlet data

9(2,9) =7 (X(=1,-a)x(0,1) (@, ¥) = X(—1.—a)x (-1,0) (%, Y))

where a € [0,1] and 7 > 0 are parameters to be chosen. We construct graded meshes
with 1 = 2 and smallest mesh size h* = 277; see Section 3.3. Figure 6 (left panel)
displays the numerical solution uj, associated with s = 0.25, y =2 and a = 1/8.

If one defines the function wug(y) = lim,_,g+ u(z,y), then according to [16, Theo-
rem 1.4], one has u((0) = 0 for a > 0. We run a sequence of experiments to computa-
tionally verify this theoretical result. For meshes with p =2 and h* = 277,278,279,
the slopes of uy, in the y-direction at (z,0) for # = 276,277,278 279 are recorded in
Table 2 below for s = 0.1, 0.25,0.4. Because computing the slope of uj, at (x,0) would
be meaningless when « is smaller than h#, we write a N/A symbol in those cases. Our
experiments show that the slopes decrease as x approaches 0.

To further illustrate this behavior, in Figure 6 (right panel) we display the com-
puted solutions uy (z,y) at z = 273,276,279 for s = 0.25 over a mesh with h* =279,
The flattening of the curves as x — 0T is apparent.

7.6. Prescribed nonlocal mean curvature. This section presents experi-
ments involving graphs with nonzero prescribed mean curvature. We run experiments
that indicate the need of a compatibility condition such as (6.6), the fact that solutions
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SN

[ 1 I 0.0200

. e \ / " 00100
z 000 s
[4 -0.0100

2 00200

Fic. 6. Plot of up, in Subsection 7.5 for v = 2,a = 1/8 and s = 0.25. Left panel: top view of
the solution. Right panel: slices at x = 273,276 and 27°. The fractional minimal graph flattens
as x — 01, in agreement with the fact that for such a minimizer being continuous at some point

ot ot
3
[N

ot Ot Ot Ut Ot
N N 3

x € O implies having continuous tangential derivatives at such a point.

s =20.10
ht* xr=2"9 r=28 x=2"7 x =26
277 N/A N/A 8.546 x 1072 | 1.1945 x 10~ T
2-8 N/A 5.856 x 1072 | 8.406 x 1072 | 1.2140 x 10~*
27913940 x 1072 | 5.730 x 1072 | 8.572 x 1072 | 1.2332 x 10!
s=0.25
h* z =29 r =28 x=2"7 z =20
2-7 N/A N/A 3.466 x 10~2 | 5.473 x 10~2
28 N/A 2.135 x 1072 | 3.469 x 102 | 5.551 x 1072
279 1 1.289 x 1072 | 2.126 x 1072 | 3.543 x 1072 | 5.640 x 102
s =0.40
h* x=2"9 r=28 x=2"7 x=26
2-7 N/A N/A 8.605 x 10~3 | 1.509 x 10~2
2-8 N/A 4.763 x 1073 | 8.613 x 1073 | 1.540 x 1072
2791 2578 x 1073 | 4.739 x 1073 | 8.886 x 1073 | 1.574 x 1072
TABLE 2
Ezample of Subsection 7.5: experimental slopes Oyup(x,0) for x = 27% and k =6,...,9. As

x — 0T, these slopes become smaller; this geometric rigidity is easier to capture for larger s.

may develop discontinuities in the interior of the domain, and point to the relation
between stickiness and the nonlocal mean curvature of the domain.

7.6.1. Compatibility. As discussed in Section 6, the prescribed nonlocal mean
curvature problem (6.5) may not have solutions for some functions f. To verify this,
in Figure 7 we consider Q = B(0,1) C R?, s = 0.25, g = 0 and two choices of f. For
the picture on the right (f = —10), the residue does not converge to 0, and the energy

Ks[u; f] goes from 0 initially down to —6.6 x 10° after 16 Newton iterations.

7.6.2. Discontinuities. Another interesting phenomenon we observe is that,
for a discontinuous f, the solution v may also develop discontinuities inside 2. We
present the following two examples for d = 1 and d = 2.

In first place, let @ = (—1,1) C R, s = 0.01, g = 0 and consider f(x) = 1.5sign(x).
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Fic. 7. Compatibility of data: plots of up, for s =0.25, f = —1 in Q (left) and after 16 Newton
iterations for f = —10 in Q (right). The right hand side f = —10 turns out to be incompatible for
the prescribed nonlocal mean curvature problem in Q = B(0,1).

We use a mesh graded toward = = 0, £1 with N = 2000 degrees of freedom and plot
the numerical solution wuy, in Figure 8. The behavior of uj, indicates that the solution
u has discontinuities both at z = +1 and = = 0.

Up,
°

-0.25
-1.5 -1 -0.5 0 0.5 1 15

T <107

Fia. 8. Nonlocal minimal graph with prescribed discontinuous nonlocal mean curvature. Left:
plot of up, in [—1.5,1.5], right: plot of u, near origin.

As a second illustration of interior discontinuities, let Q = (—1,1)? € R?, s = 0.01,
g = 0 and consider f(z,y) = 4sign(zy). We use a mesh graded toward the axis and
boundary with N = 4145 degrees of freedom and plot the numerical solution uy in
Figure 9. The behavior of uj shows that the solution v has discontinuities near the
boundary and across the edges inside €2 where f is discontinuous.

7.6.3. Effect of boundary curvature. Next, we numerically address the effect
of boundary curvature over nonlocal minimal graphs. For this purpose, we present ex-
amples of graphs with prescribed nonlocal mean curvature in several two-dimensional
domains, in which we fix g =0 and f = —1.

Consider the annulus Q@ = B(0,1) \ B(0,1/4) and s = 0.25. The top row in
Figure 10 offers a top view of the discrete solution u; and a radial slice of it. We
observe that the discrete solution is about three times stickier in the inner boundary
than in the outer one. The middle and bottom row in Figure 10 display different
views of the solution in the square Q = (—1,1)? for s = 0.01. Near the boundary of
the domain 2, we observe a steep slope in the middle of the edges; however, stickiness
is not observed at the convex corners of (2.

We finally investigate stickiness at the boundary of the L-shaped domain Q =
(=1,1)2\ (0,1) x (—1,0) with s = 0.25,g = 0, f = —1. We observe in Figure 11 that
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1.4
|

—05

o -0 =
Z & —-05

-1
-1.4

Fi1Gc. 9. A graph with prescribed discontinuous nonlocal mean curvature in the square Q =
(—1,1)2. The left panel displays a top view, while the right panel shows a side view along the slice
{y =1/2}. The solution to (6.1) is discontinuous inside .

stickiness is most pronounced at the reentrant corner but absent at the convex corners
of Q.

From these examples we conjecture that there is a relation between the amount of
stickiness on 02 and the nonlocal mean curvature of 9€2. Heuristically, let us assume
that the Euler-Lagrange equation is satisfied at some point x € 9€:

u(z) — u(y) dy
Hglul(x) =P.V. G = f(x),
=, | 6 (MR ) i = 10
where we recall that G5 is defined in (4.1). This fact is not necessarily true, because
(6.1) guarantees this identity to hold on £ only. Above, we assume that the minimizer
is continuous in €, so that we can set u(x) := limosy ., u(y). Thus, we can define
the stickiness at = € 0N as
Ms(z) == lim wu(y) — u(z).
Qesy—x
We point out that in these examples, because the minimizer u attains its maximum
on )¢ and is constant in that region, we have My > 0. Let r > 0 be small, and let us
assume that the prescribed curvature is f(z) = 0, that we can split the principal value
integral in the definition of H, and that the contribution of the integral on R?\ B, (x)
is negligible compared with that on B,(z). Then, we must have

/ G (U(x) - U(y)) dy / G <U(y) - U(x)> dy
Bo(z) |z —y| |z — y[d+2s QnBu(z) |z — y |z — y|dt2s

If the solution is sticky at x, namely M, > 0, then we can approximate

/ G (U(y)U(w)> dy z/ o ( M, ) dy
QB () |z — vy lz =yl " Jocnp ) \lz—yl/) |z —y|d+2

Due to the fact that G, (Iﬂiwfsyl) is strictly increasing with respect to M, we can

heuristically argue that stickiness M, (x) grows with the increase of the ratio

12N B,
B = 00 m B, (o)
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. . y o
o p s
I . I
- 015 - — 015
Lo § _/ Lo F
. » . s
o o
- L=, - L.
Fi1c. 10. Top and side views of functions with prescribed fractional mean curvature f = —1 in

Q that vanish in Q€. Here, Q is either an annulus (top row) or a square (middle and bottom row).
The plot in the top-right panel corresponds to a radial slice (y = 0, 0.25 < z < 1) of the annulus,
while the ones in the bottom-left and bottom-right show slices along the diagonal (0 <y =2 <1)
and perpendicular to an edge of the square (y = 0.5,0 < x < 1), respectively. We observe that
stickiness is larger near the concave portions of the boundary than near the convexr ones, and that
it is absent in the corners of the square.

in order to maintain the balance between the integral in Q N B,(x) with the one in
Q° N B.(x). Actually, if R(z) < 1, as happens at convex corners x € 9, it might
not be possible for these integrals to balance unless M (x) = 0. This supports the
conjecture that the minimizers are not sticky at convex corners.

8. Concluding remarks. This paper discusses finite element discretizations of
the fractional Plateau and the prescribed fractional mean curvature problems of order
s € (0,1/2) on bounded domains Q subject to exterior data being a subgraph. Both
of these can be interpreted as energy minimization problems in spaces closely related
to W5 (Q).

We discuss two converging approaches for computing discrete minimizers: a semi-
implicit gradient flow scheme and a damped Newton method. Both of these algorithms
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FiG. 11. Stickiness on the L-shaped domain Q = (—1,1)2\ (0,1) x (—1,0) with prescribed
fractional mean curvature f = —1 in Q and Dirichlet condition g = 0 in Q°. The plots in the
middle correspond to slices along y = x and y = —x respectively, while the ones in the bottom are
slices along x = 0 or y = 0.5 respectively. We see that the largest stickiness takes place at the
reentrant corner while there is no stickiness at the convex corners.

require the computation of a matrix related to weighted linear fractional diffusion
problems of order s + % We employ the latter for computations.

A salient feature of nonlocal minimal graphs is their stickiness, namely that they
are generically discontinuous across the domain boundary. Because our theoretical re-
sults do not require meshes to be quasi-uniform, we resort to graded meshes to better
capture this phenomenon. Although the discrete spaces consist of continuous func-
tions, our experiments in Subsection 7.1 show the method’s capability of accurately
estimating the jump of solutions across the boundary. In Subsection 7.5 we illustrate
a geometric rigidity result: wherever the nonlocal minimal graphs are continuous in
the boundary of the domain, they must also match the slope of the exterior data.
Fractional minimal graphs may change their convexity within €2, as indicated by our
experiments in Subsection 7.4.

The use of graded meshes gives rise to poor conditioning, which in turn affects the
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performance of iterative solvers. Our experimental findings reveal that using diagonal
preconditioning alleviates this issue, particularly when the grading is not too strong.
Preconditioning of the resulting linear systems is an open problem.

Because in practice it is not always feasible to exactly impose the Dirichlet condi-

tion on RY\ Q, we study the effect of data truncation, and show that the finite element

minimizers ! computed on meshes 7}, over computational domains 2z converge to

the minimal graphs as h — 0, H — 0 in W2"(Q) for r € [0,s). This is confirmed in
our numerical experiments.

Our results extend to prescribed minimal curvature problems, in which one needs
some assumptions on the given curvature f in order to guarantee the existence of
solutions. We present an example of an ill-posed problem due to data incompatibil-
ity. Furthermore, our computational results indicate that graphs with discontinuous
prescribed mean curvature may be discontinuous in the interior of the domain. We
explore the relation between the curvature of the domain and the amount of sticki-
ness, observe that discrete solutions are stickier on concave boundaries than convex
ones, and conjecture that they are continuous on convex corners.
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