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Abstract. Vessel segmentation is an essential task in many clinical
applications. Although supervised methods have achieved state-of-art
performance, acquiring expert annotation is laborious and mostly lim-
ited for two-dimensional datasets with a small sample size. On the con-
trary, unsupervised methods rely on handcrafted features to detect tube-
like structures such as vessels. However, those methods require com-
plex pipelines involving several hyper-parameters and design choices
rendering the procedure sensitive, dataset-specific, and not generaliz-
able. We propose a self-supervised method with a limited number of
hyper-parameters that is generalizable across modalities. Our method
uses tube-like structure properties, such as connectivity, profile consis-
tency, and bifurcation, to introduce inductive bias into a learning algo-
rithm. To model those properties, we generate a vector field that we refer
to as a flow. Our experiments on various public datasets in 2D and 3D
show that our method performs better than unsupervised methods while
learning useful transferable features from unlabeled data. Unlike generic
self-supervised methods, the learned features learn vessel-relevant fea-
tures that are transferable for supervised approaches, which is essential
when the number of annotated data is limited.

1 Introduction

Tube-like structures, such as vessels and airways, are ubiquitous in studying
human anatomy. Segmenting such structures is essential for characterizing the
progression of many diseases [5,12]. Supervised deep learning methods have made
significant progress for accurate segmentation [9,21,23], but annotated datasets
are largely limited to 2D data and often have a small sample size. We develop a
self-supervised task that incorporates the structure’s key properties and learns
optimal representation for the structure. Our method is applicable for both 2D
and 3D, and it can be employed to bootstrap supervised methods when the
number of annotated data is limited.
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Automatic vessel segmentation is a challenging problem, given that the vas-
cular networks are complex multi-level tree structures with high variability in
local geometry, curvature, and radius, which further varies across modalities and
subjects. Recently, various deep learning (DL) based techniques have been pro-
posed for various segmentation tasks of tube-like structures [9,21,23]. Training
supervised DL algorithms requires many annotated images, which is particularly
laborious for complex tube-like structures. Due to the lack of a large-scale anno-
tated dataset to train a supervised method, unsupervised vessel segmentation
methods are still popular, and there is a growing interest in deploying DL-based
unsupervised and self-supervised methods [22,27].

An unsupervised pipeline specially designed for vessel segmentation varies
across modalities and image dimensionality (e.g., 2D retinography [8] and 3D
thoracic CT [18]). Most state-of-the-art pipelines rely on hand-crafted features
based on different variants of classical Hessian-based scale-space filters [7,14,20].
Achieving state-of-the-art results requires post-processing using different tech-
niques such as particle sampling [5] and region growing [25] with several design
choices for each step with their corresponding hyper-parameters. Such design
renders the procedure problem-specific and not transferable across domains. In
contrast, we propose an end-to-end unsupervised vessel segmentation model that
generalizes across modalities and dimensions.

Our work is inspired by the matched filter response (MFR) method [3] and
scale-space approaches [6]. These methods model the vessel as piece-wise linear
segments and use multiple Gaussian kernels to identify vessel-like structures.
Our approach is a modern adaptation of MFR and scale-space using a fully
convolutional network (FCN). This paper’s central idea is to model the vessel
with a flow which defines a continuous path; the profile of the tube-like structure
matches with expected template as we walk along with the flow. We use the
notion of walking along with the flow as an inductive bias for a self-supervised
method that learns the set of optimal features. The FCN architecture, which is
used to infer the flow, naturally processes the image in a multi-scale fashion.

The paper makes the following contributions. (1) It proposes a self-
supervision inspired by the problem, in this case, segmenting tube-like struc-
tures. (2) The method is generic and can be deployed for 2D and 3D images
for enhancing vessel in various modalities. (3) Unlike other unsupervised meth-
ods using fixed hand-crafted features, our method adapts the features as the
dataset changes. When annotated data is limited, the trained features can also
be transferred to boost a supervised method’s performance. To the best of our
knowledge, our work is the first unsupervised deep learning method that takes
a raw image as input and outputs per-pixel vessel statistics as output, along
with an associated per-pixel vesselness score. We evaluate the performance of
our method on real 2D and 3D datasets. We also show the efficacy of incor-
porating context into self-supervised learning by comparing our method with
state-of-the-art self-supervised pretraining tasks.
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2 Method

We use some of the key properties of tube-like structures (e.g., vessels) to define a
self-supervised algorithm. We use vessel structure as a running example, however,
the proposed method is general and can be applied to other tube-like structures
such as airways. We consider the following three properties:

(1) Path Continuity: The path continuity assumes that the vessel trees’
structure and arrangement can be viewed as a continuous path in space (repre-
sented by a vector field). Each vector in the vector field indicates the radius and
direction of the vessel. We refer to this vector field as vessel flow field. (2) Pro-
file Comnsistency: A Tube-like structure has similar profiles at different points
when the planes are perpendicular to the structure’s medial axis (i.e., the vec-
tor field). In other words, the orthogonal profile of the tube-like structure can
be approximated by a predefined template, T'. For a vessel, T is simply a unit
disk. (3) Bifurcation: The possible bifurcation refers to the fact that the vessel
may split into two sub-vessels. We use two vector fields to model the bifurca-
tion. Wherever there is a bifurcation, the two vector fields point toward each
bifurcation branch; otherwise, they are aligned with the vessel flow.

General Framework: Let [ : {2 — R represent input image defined over the
d-dimensional domain 2 C RY. We consider d € {2,3}. We assume a network
fo generates three outputs: w, 7, and (by, by). Let u : 2 — S?! denote the
vessel flow, defined as a vector field where for any point p € (2, where S4~1 is
a d-dimensional unit hypersphere. We define b; : 2 — S?~! and by : 2 — S%1

Network outputs

1
‘I’(lbl, r) ‘I’(lbz, r)
Lal+) (£50))  [£nl)) [£nt0)

Fig.1. The overall framework of the proposed method. The network fy generates
a scalar field r specifying the local width of the vessel, vector field u denoting the
direction of the vessel, and a tuple of two vector fields b;, ba pointing towards branches
in cases of bifurcation. @, ) is a transformation parameterized by a flow field u and
a radius field r that is composed with the image I. There are two losses, L (-, -), and
L(-) encouraging the properties of the tube-like structures.
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to represent the two directions of the bifurcation. Furthermore, r : 2 — R7T is
defined as a scalar field to represent the radius of the vessel. The idea has been
shown in Fig. 1. We define the losses to enforce those properties. We first explain
the profile symmetry followed by path continuity and bifurcation.

2.1 Profile Consistency

The vessel flow, u, specifies the directionality of the vessel. At each point p, the
orthogonal plane to the vessel flow specifies the vessel’s profile. Given a template
T, one expects the resized vessel profile to match the template. We use I o
@ (4, (P) to denote the profile of image I at point p along the direction u(p). The
output r(p) specifies the radial field of view of the profile. The image is resized
by resampling according to r(p). The @, ,) denotes this transformation and o
denotes the composition of the transformation with image I. Similar to image
registration, we maximize a similarity metric (S(-,-)) between the template (T)
and the transformed profile (I o @, ,(p)) over the entire domain ({2):

Vi(p)

['m(uv r; Ia T) = - S(I o Qs(u,'r) (p)7 T) dp (1)
2

Various choices are possible for S(-,-). We use Normalized Cross-Correlation
(NCC) because of its robustness to changes in the illumination and contrast.
The L, (u,r;I,T) indicates that the value of the loss is a function of vessel
flow, v and vessel radius, r given the image and template. For other tube-like
structures such as airways, one can change the template. We define V' (p) in the
domain as a vesselness value for the pixel p.

2.2 Path Continuity

We impose vessel flow continuity for two reasons. First, we assume the entire
vessel structure is a connected component. Second, for a point p, the vessel flow
u(p) and —u(p) result in the same vessel profile. Such sign ambiguity may result
in discontinuities in vector field w. To prevent this, we propose an alignment loss
that encourages u to have a consistent direction along the vessel. We do that
by walking along the direction of the vessel flow. We formulate the walk by a
stationary path integral. For a point p, let’s assume gy, () is the new coordinate
after walking for ¢ from p. The flow vector at the final point is u(gp(t)). If the
vector field is consistent and continuous, the inner product between wu(p) and
u(gp (t)) should be large; i.e., they should be almost aligned. We define a loss to
maximize that loss over the entire domain:

‘jp = U(P) ‘h)(t = 0) =D,
Ly(u,r)=— [, [P (u(p), ulg(t))) dtdp, (2)

where q is the position of the walk, ¢ is the time derivative and the given
point, p is the initial point in the path, and (-,-) represents inner product.
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We set 2r(p) as an upper limit in the integral so that the length of the traversal
path is proportional to the size of the vessel.

Table 1. Evaluation of unsupervised vessel segmentation on 2D datasets. Acc is the
global accuracy over the entire image, LAcc is the local accuracy around the dilated
vessel regions defined in [15]. There are the significant improvements in Dice score,
which is a crucial metric in sparse segmentation.

Method | DRIVE STARE

AUC| Acc |LAcc |Dice | AUC|Acc |LAcc |Dice
Hessian | 0.55 |52.90 [60.31 |0.25 |0.53 |46.84 |59.24 |0.21
Frangi 0.93 |94.27 1 72.02 |0.67 [0.93 |91.16 |67.12 |0.59

Sato 0.94 |93.67 |71.90 |0.66 |0.94 |91.03 |66.52 |0.58

Meijering | 0.94 |93.83 | 72.70 |0.67 0.94 [90.29 |68.11 |0.58

Ours 0.96 | 95.69 75.83 | 0.740.96 | 95.29 | 69.44 | 0.68
HRF RITE

Hessian |0.37 |33.70 /55.35 |0.17 |0.51 [49.77 |60.21 |0.23
Frangi 0.93 [93.90 |70.59 |0.63 [0.94 |94.26 | 73.10 |0.68

Sato 0.94 |93.73 |70.25 0.62 |0.95 |94.01 |72.86 |0.67
Meijering | 0.92 | 91.11 |72.73 |0.58 0.95 |94.77 |77.32|0.71
Ours 0.95 | 94.96 | 72.78 | 0.68 | 0.97 |96.07|77.05 | 0.75

2.3 Bifurcation

A bifurcation point (BP) is where the main vessel splits into two branches.
Similar to vessel flow u, we predict bifurcation flow fields b; and by as vector
fields representing the two directions of the bifurcation. Although the BP does
not match the canonical template T', the incoming vessel and the two branches
should match T. We define the birfurcation loss as an extension of L,,,

Eb(bl,bQ,T;I7T) = Em(blar;IvT) + ﬁm(b27r;IvT)‘ (3)

Note that, in the absence of bifurcation, by (p) = ba(p) = —u(p) minimizes the
same loss as L, in the opposite direction of the vessel flow. Hence in practice,
we can add the loss function in Eq. 3 to Eq. 1.

2.4 Implementation Details
The overall cost function is as follows:
m@in Lo(u,r; I,T) + M Ls(w,7) + XoLy(by, b, 751, T)
st (ryu,by,ba) = fo(I), (4)
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Fig. 2. Training curves for supervised vessel-segmentation on STARE dataset with (a)
limited data (4 images), (b) more data (16 images), after self-supervised pretraining
on DRIVE and (c) Bifurcation segmentation performance on DRIVE dataset.

where \;’s are weighting hyper-parameters and fy(-) is the network. To be consis-
tent with the literature, we adopt the U-Net architecture for fy [4]. The models
are trained with the Adam optimizer, with a learning rate of 0.001 for 2D and
0.0003 for 3D. For 2D images, we use the entire image as input, with a batch
size of 4, and for 3D, we use a 64 x 64 x 64 patch with a batch size of 1. During
training, we augment the images by flipping and rotating in increments of 90
degrees. All our models are trained on NVIDIA Tesla V100-SXM2 GPUs.

3 Experiments

We perform three experiments to evaluate our method. (1) We compare the per-
formance of our approach with commonly used unsupervised methods for vessel
segmentation: Frangi 7], Sato [20], Hybrid Hessian [14] and Meijering [13] filters
on four 2D datasets and two 3D datasets, all of which are publicly available. (2)
We study the efficiency of learned representation for the downstream vessel seg-
mentation task. To do that, we compare our method with existing self-supervised
methods. (3) We examine the efficacy of the bifurcation loss in segmenting the
regions around bifurcation points in 2D compared to methods which do not
consider bifurcations.

Datasets: For the 2D experiments, we use four publicly available retinal image
datasets: DRIVE [16], STARE [10], HRF [1] and RITE [11]. The DRIVE and
RITE datasets consist of 40 images, divided into a training and testing set of 20
images. The STARE database consists of 20 images, each image with two sets of
segmented images. The HRF dataset consists of 45 retinopathy images which we
divide into a training set of 21 images and testing set of 24 images. For 3D vessel
segmentation, we use the VESSEL12 dataset [19] consisting of 20 CT lung images
from a variety of sources. The dataset also contains 3 images with sparsely anno-
tated vessel and non-vessel locations along 3 axial slices, which we use as a test
set. We also use the TubeTK dataset [2] which consists of 3D MRA images of 100
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Table 2. Results on the VESSEL12 and TubeTK test images. Our method has sig-
nificant improvement in Dice score for TubeTK, which is a critical metric in sparse
segmentation. Our method also compares well with Frangi on a sparsely annotated
ground truth.

Method | VESSEL12 TubeTK
Acc | Spec|Sens | AUC | Acc | AUC | Dice
Sato 79.1 ]0.81 |0.74 |0.88 | 91.17 |0.74 |0.15

Meijering | 90.16 |0.89 [0.92 |0.96 |97.25 | 0.83 |0.34
Frangi 96.88 |10.97/0.96 |0.97 198.79 [0.90 |0.42
Ours 95.49 /0.92 |0.99|0.99 | 99.05 0.95 0.59

healthy patients of size 448 x 448 x 128. We use 42 images with ground truths as
the test set, and the remaining images are used for training the network.

3.1 Comparison with Unsupervised Methods

We compare our model against popular vessel enhancement methods, including
Frangi, Sato, Hessian, and Meijering filters. All the methods take raw images as
input and produce a vessel-enhanced image as output. The enhanced image is seg-
mented into a binary map using a hard threshold, which is selected to achieve a
maximum dice score over the training dataset. The performance is then reported
over the test set using the hard threshold. Table 1 presents a quantitative compar-
ison of different vessel-segmentation methods as a binary classification problem.
We reported results on five measures, namely, the area under the curve (AUC) of
ROC curves, accuracy (acc), local-accuracy (LAcc) [15], and dice score.

For the VESSEL12 dataset, we drop the Dice score since we do not have
access to a dense ground truth. Therefore, we treat the problem as a classi-
fication problem and compare sensitivity (sens) and specificity (spec) as well.
For TubeTK, we compare the Dice score of the methods with the dense ground
truth. The results are summarized in Table 2. Similar to 2D, our method performs
consistently across datasets, and has a significantly higher Dice score. Without
using any annotations for training, our method outperforms other commonly
used unsupervised vessel enhancement methods. Since vessel segmentation is
a sparse segmentation problem, the critical metrics are Dice score and Local
Accuracy, on which our method has a significant improvement over baselines.

3.2 Efficacy of the Representation

Since our method is learning based, it can learn feature representations that are
essential for vessel detection. This section compares the efficacy of the represen-
tation from different self-supervised tasks onto a downstream supervised vessel
segmentation task. We compare our model with four self-supervision baselines,
namely, context-encoder [17], image-denoising [24], image-colorization [26] and
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Models Genesis [27]. First, we train multiple networks using different pretext
tasks on the DRIVE dataset. These networks are then finetuned on a supervised
vessel segmentation task on the STARE dataset. We consider a limited-data and
a high-data scenario, where finetuning is done with only 4 and 16 images respec-
tively. Figure 2(a,b) show the training dynamics in both cases. Our method takes
fewer iterations to converge compared to the other methods and achieves the best
validation dice score (Fig. 3).

. . o
(a) (b)

Fig. 3. Results on the TubeTK dataset. (a) Result of Frangi segmentation (b) Result
of our segmentation (green denotes true positives and red denote false negatives). (c)
Axial slice of the image containing vascular structure (d) Result of Frangi segmentation
(e) Result of our segmentation. (Green denotes true positives, yellow denotes false
positives and red denotes false negatives.) Our method has fewer yellow and red regions.
(Color figure online)

3.3 Segmentation Around Bifurcation Points (BPs)

In this experiment, we demonstrate the importance of our predicted bifurcation
flow fields (by, by) in vessel-segmentation performance around BPs. To quantita-
tively measure the segmentation, we manually annotated bounding boxes (BBs)
at multiple bifurcation regions in the DRIVE dataset. We performed an ablation
study, where we didn’t consider bifurcation loss (BL) in our final formulation.
Figure 2(c) reports the accuracy of identifying vessel pixels within the extracted
BBs. Our proposed bifurcation loss significantly improves the segmentation at
regions around BPs.

4 Conclusion

Our proposed self-supervised model demonstrates the ability to perform efficient
vessel-segmentation on real 2D digital retinal images and 3D CT and MRA scans.
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It does so by using critical properties of tube-like structures such as connectiv-
ity, profile consistency, and bifurcations to introduce inductive bias into deep
learning and learn in a self-supervised setting. Our adaption of self-supervised
task demonstrates robustness and generalizability in features in a downstream
segmentation task. To summarize, our work is a step towards incorporating geo-
metrical constraints of tube-like structures into a deep learning framework and
providing a robust self-supervised model for vessel segmentation. Further work
should explore improving the segmentation performance on thin, low contrast
vessels. A prospective study may explore employing the vessel-segmentation to
understand a disease manifestation and establishing clinical usage.
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