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Abstract. Model explainability is essential for the creation of trustwor-
thy Machine Learning models in healthcare. An ideal explanation resem-
bles the decision-making process of a domain expert and is expressed
using concepts or terminology that is meaningful to the clinicians. To
provide such explanation, we first associate the hidden units of the clas-
sifier to clinically relevant concepts. We take advantage of radiology
reports accompanying the chest X-ray images to define concepts. We
discover sparse associations between concepts and hidden units using a
linear sparse logistic regression. To ensure that the identified units truly
influence the classifier’s outcome, we adopt tools from Causal Inference
literature and, more specifically, mediation analysis through counterfac-
tual interventions. Finally, we construct a low-depth decision tree to
translate all the discovered concepts into a straightforward decision rule,
expressed to the radiologist. We evaluated our approach on a large chest
x-ray dataset, where our model produces a global explanation consistent
with clinical knowledge.

1 Introduction

Machine Learning, specifically, Deep Learning (DL) methods are increasingly
adopted in healthcare applications. Model explainability is essential to build
trust in the AI system [5] and to receive clinicians’ feedback. Standard expla-
nation methods for image classification delineates regions in the input image
that significantly contribute to the model’s outcome [13,17,19]. However, it is
challenging to explain how and why variations in identified regions are relevant
to the model’s decision. Ideally, an explanation should resemble the decision-
making process of a domain expert. This paper aims to map a DL model’s
neuron activation patterns to the radiographic features and constructs a simple
rule-based model that partially explains the Black-box.

Methods based on feature attribution have been commonly used for explain-
ing DL models for medical imaging [1]. However, an alignment between feature
attribution and radiology concepts is difficult to achieve, especially when a single
region may correspond to several radiographic concepts. Recently, researchers
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have focused on providing explanations in the form of human-defined con-
cepts [2,12,23]. In medical imaging, such methods have been adopted to derive
an explanation for breast mammograms [22], breast histopathology [6] and car-
diac MRIs [4]. A major drawback of the current approach is their dependence
on explicit concept-annotations, either in the form of a representative set of
images [12] or semantic segmentation [2], to learn explanations. Such annota-
tions are expensive to acquire, especially in the medical domain. We use weak
annotations from radiology reports to derive concept annotations. Furthermore,
these methods measure correlations between concept perturbations and classifi-
cation predictions to quantify the concept’s relevance. However, the neural net-
work may not use the discovered concepts to arrive at its decision. We borrow
tools from causal analysis literature to address that drawback [21].

In this work, we used radiographic features mentioned in radiology reports
to define concepts. Using a National Language Processing (NLP) pipeline, we
extract weak annotations from text and classify them based on their posi-
tive or negative mention [9]. Next, we use sparse logistic regression to identify
sets of hidden-units correlated with the presence of a concept. To quantify the
causal influence of the discovered concept-units on the model’s outcome, we view
concept-units as a mediator in the treatment-mediator-outcome framework [8].
Using measures from mediation analysis, we provide an effective ranking of the
concepts based on their causal relevance to the model’s outcome. Finally, we con-
struct a low-depth decision tree to express discovered concepts in simple decision
rules, providing the global explanation for the model. The rule-based nature of
the decision tree resembles many decision-making procedures by clinicians.

2 Method

We consider a pre-trained black-box classifier f : x — y that takes an image x as
input and process it using a sequence of hidden layers to produce a final output
y € RP. Without loss of generality, we decompose function f as ®,0®1 (x), where
&, (x) € RL is the output of the initial few layers of the network and @5 denotes
the rest of the network. We assume access to a dataset X = {(Xn,¥n,cn)}?,
where x,, is input image, y, is a d-dimensional one-hot encoding of the class
labels and c,, € R¥ is a k-dimensional concept-label vector. We define concepts
as the radiographic observations mentioned in radiology reports to describe and
provide reasoning for a diagnosis. We used a NLP pipeline [9] to extract concept
annotations. The NLP pipeline follows a rule-based approach to extract and clas-
sify observations from the free-text radiology report. The extracted k** concept-
label ¢, [k] is either 0 (negative-mention), 1(positive-mention) or -1 (uncertain
or missing-mention). An overview of our method is shown in Fig. 1. Our method
consists of three sequential steps:

(1) Concept associations: We seek to discover sparse associations between con-
cepts and the hidden-units of f(-). We express k*" concept as a sparse vector
Br € RE that represents a linear direction in the intermediate space @1 (-).
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Fig. 1. Method overview: We provide explanation for the black-box function f(x) in-
terms of concepts, that are radiographic observations mentioned in radiology reports.
1) The intermediate representation @1 (x) is used to learn a sparse logistic regression
hg, (+) to classify k" concept. 2) The non-zero coefficients of B represents a set of
concept units Vi that serves as a mediator in the causal path connecting input x and
outcome y. 3) A decision tree function is learned to map concepts to class labels.

(2) Causal concept ranking: Using tools from causal inference, we find an effec-
tive ranking of the concepts based on their relevance to the classification
decision. Specifically, we consider each concept as a mediator in the causal
path between the input and the outcome. We measure concept relevance
as the effect of a counterfactual intervention on the outcome that passes
indirectly through the concept-mediator.

(3) Surrogate explanation function: We learn an easy-to-interpret function g(-)
that mimics function f(-) in its decision. Using g(-), we seek to learn a global
explanation for f(-) in terms of the concepts.

2.1 Concept Associations

We discover concept associations with intermediate representation @;(-) by
learning a binary classifier that maps @1 (x) to the concept-labels [12]. We treat
each concept as a separate binary classification problem and extract a represen-
tative set of images X¥, in which concept ¢, [k] is present and a random negative
set. We define concept vector (8 ) as the solution to the logistic regression model
cnlk] = o(BFvec(®1(xy))) + €, where o(+) is the sigmoid function. For a convo-
lutional neural network, @ (x) € R¥*"*! is the output activation of a convolu-
tional layer with width w, height A and number of channels [. We experimented
with two vectorization for @;. In first, we flatten @;(x) to be a whi-dimensional
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vector. In second, we applied a spatial aggregation by max-pooling along the
width and height to obtain l-dimensional vector. Unlike TCAV [12] that uses
linear regression, we used lasso regression to enable sparse feature selection and
minimize the following loss function,

min 3" €l (), calk]) + A 5l M)

Xn €EXg

where £(-,) is the cross entropy loss, hg, (x) = o (B} vec(®1(x,))) and X is the
regularization parameter. We performed 10-fold nested-cross validation to find
A with least error. The non-zero elements in the concept vector 35 forms the set
of hidden units (V) that are most relevant to the k" concept.

2.2 Causal Concept Ranking

Concept associations identified hidden units that are strongly correlated with
a concept. However, the neural network may or may not use the discovered
concepts to arrive at its decision. We use tools from causal inference, to quantify
what fraction of the outcome is mediated through the discovered concepts.

To enable causal inference, we first define counterfactual x’ as a perturbation
of the input image x such that the decision of the classifier is flipped. Follow-
ing the approach proposed in [20], we used a conditional generative adversarial
network (cGAN) to learn the counterfactual perturbation. We conditioned on
the output of the classifier, to ensure that cGAN learns a classifier-specific per-
turbation for the given image x. Next, we used theory from causal mediation
analysis to causally relate a concept with the classification outcome. Specifically,
we consider concept as a mediator in the causal pathway from the input x to
the outcome y. We specify following effects to quantify the causal effect of the
counterfactual perturbation and the role of a mediator in transferring such effect,

1. Average treatment effect (ATE): ATE is the total change in the classification
outcome y as a result of the counterfactual perturbation.

2. Direct effect (DE): DE is the effect of the counterfactual perturbation that
comprises of any causal mechanism that do not pass through a given mediator.
It captures how the perturbation of input image changes classification decision
directly, without considering a given concept.

3. Indirect effect (IE): IE is the effect of the counterfactual perturbation which
is mediated by a set of mediators. It captures how the perturbation of input
image changes classification decision indirectly through a given concept.

Following the potential outcome framework from [18,21], we define the ATE
as the proportional difference between the factual and the counterfactual classi-
fication outcome,

f(x)

ATE:IE[W— ]. (2)
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To enable causal inference through a mediator, we borrow Pearl’s definitions
of natural direct and indirect effects [16] (ref Fig. 2). We consider set of concept-
units V; as a mediator, representing the k** concept. We decompose the latent
representation ¢;(x) as concatenation of response of concept-units Vi (x) and
rest of the hidden units Vi(x) i.e., ®1(x) = [Vi(x), Vi(x)]. We can re-write
classification outcome as f(x) = @2(P1(x)) = P2([Vk(x), Vi (x)]). To disentangle
the direct effect from the indirect effect, we use the concept of do-operation on
the unit level of the learnt network. Specifically, we use do(Vy(x)) to denote
that we set the value of the concept-units to the value obtained by using the
original image as input. By intervening on the network and setting the value of
the concept units, we can compute the direct effect as the proportional difference
between the factual and the counterfactual classification outcome, while holding
mediator i.e., Vj fixed to its value before the perturbation,

Do ([do(Vy (X))i Vi(x)])
Do ([Vk(x), Vi (x)])

DE = E[

-1]. (3)

ndirect Effect °

Dy (x) Dy (x)

__________________

Input Image Counterfactual Image Input Image Input Image

Fig. 2. Illustration of direct and indirect effects in causal mediation analysis.

We compute indirect effect as the expected change in the outcome, if we
change the mediator from its original value to its value using counterfactual,
while holding everything else fixed to its original value,

Do ([do(Vi(x')), Vi (x)])
Po([Vie(x), Vi (x)])
If the perturbation has no effect on the mediator, then the causal indirect

effect will be zero. Finally, we use the indirect effect associated with a concept,
as a measure of its relevance to the classification decision.

IE = E| -1]. (4)

2.3 Surrogate Explanation Function

We aim to learn a surrogate function g(-), such that it reproduces the outcome
of the function f(-) using an interpretable and straightforward function. We
formulated g(-) as a decision tree as many clinical decision-making procedures
follow a rule-based pattern. We summarize the internal state of the function f(-)
using output of k concept regression functions hg, (-) as follows,

Wy, = [logit(hs, (xn)), logit(hg, (xn)), - - |- ()
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Fig. 3. AUC-ROC and recall metric for different concept classifiers.

Next, we fit a decision tree function, g(-), to mimic the outcome of the function
f() as,
g* = argmginzﬁ(g(wn)af(xn))’ (6)

where L is the splitting criterion based on minimizing entropy for highest infor-
mation gain from every split.

3 Experiments

We first evaluated the concept classification performance and visualized concept-
units to demonstrate their effectiveness in localizing a concept. Next, we sum-
marized the indirect effects associated with different concepts across different
layers of the classifier. We evaluated a proposing ranking of the concepts based
on their causal contribution to the classification decision. Finally, we used the
top-ranked concepts to learn a surrogate explanation function in the form of a
decision tree.

Data preprocessing: We perform experiments on the MIMIC-CXR [10] dataset,
which is a multi-modal dataset consisting of 473K chest X-ray images and 206K
reports. The dataset is labeled for 14 radiographic observations, including 12
pathologies. We used state-of-the-art DenseNet-121 [7] architecture for our classi-
fication function [9]. DenseNet-121 architecture is composed of four dense blocks.
We experimented with three versions of @ (+) to represent the network until the
second, third, and fourth dense block. For concept annotations, we considered
radiographic features that are frequently mentioned in radiology reports in the
context of labeled pathologies. Next, we used Stanford CheXpert [9] to extract
and classify these observations from free-text radiology reports.

3.1 Evaluation of Concept Classifiers

The intermediate representations from third dense-block consistently outper-
formed other layers in concept classification. In Fig. 3, we show the testing-ROC-
AUC and recall metric for different concept classifiers. All the concept classifiers
achieved high recall, demonstrating a low false-negative (type-2) error.
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Fig. 4. A qualitative demonstration of the activation maps of the hidden units that
act as visual concept detectors. Each column represents one hidden unit identified as
part of concept vector Vi. Top two rows show k = cardiac-silhouette and bottom rows
have k = blunt costophrenic angle.

In Fig. 4, we visualize the activation map of hidden units associated with the
concept vector V. For each concept, we visualize hidden units that have large
logistic regression-coefficient (8;). To highlight the most activated region for a
unit, we threshold activation map by the top 1% quantile of the distribution of
the selected units’ activations [2]. Consistent with prior work [3], we observed
that several hidden units have emerged as concept detectors, even though con-
cept labels were not used while training f. For cardiac-silhouette, different hidden
units highlight different regions of the heart and its boundary with the lung. For
localized concept such as blunt costophrenic angle, multiple relevant units were
identified that all focused on the lower-lobe regions. Same hidden unit can be rel-
evant for multiple concepts. The top label in Fig. 4. shows the top two important
concepts for each hidden unit.

3.2 Evaluating Causal Concepts Using Explanation Function

We evaluate the success of the counterfactual intervention by measuring ATE.
High values for ATE confirms that counterfactual image generated by [20] suc-
cessfully flips the classification decision. We achieved an ATE of 0.97 for car-
diomegaly, 0.89 for pleural effusion and 0.96 for edema. In Fig.5 (heat-map),
we show the distribution of the indirect effect associated with concepts, across
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Fig. 5. Indirect effects of the concepts, calculated over different layers of the DenseNet-
121 architecture (heat-map). The derived ranking of the concepts based on their causal
relevance to the diagnosis (bar-graph). A comparative ranking based on concept sen-
sitivity score from TCAV [12]. The trend of recall metric for the decision tree function
g(+), while training using top x% of top-ranked concepts (trend-plot).

different layers. The middle layer demonstrates a large indirect effect across all
concepts. This shows that the hidden units in dense-block 3 played a significant
role in mediating the effect of counterfactual intervention.

In Fig.5 (bar-graph), we rank the concepts based on their indirect effect.
The top-ranked concepts recovered by our ranking are consistent with the
radiographic features that clinicians associates with the examined three diag-
noses [11,14,15]. Further, we used the concept sensitivity score from TCAV [12]
to rank concepts for each diagnosis. The top-10 concepts identified by our in-
direct effect and TCAV are the same, while their order is different. The top-3
concepts are also the same, with minor differences in ranking. Both the methods
have low importance score for random concept. This confirms that the trend in
importance score is unlikely to be caused by chance. For our approach, random
concept represents an ablation of the concept-association step. Here, rather than
performing lasso regression to identify relevant units, we randomly select units.

To quantitatively demonstrate the effectiveness of our ranking, we iteratively
consider % of top-ranked concepts and retrain the explanation function g(w).
In Fig. 5 (bottom-plot), we observe the change in recall metric for the classifier
g(+) as we consider more concepts. In the beginning, as we add relevant concepts,
the true positive rate increases resulting in a high recall. However, as less relevant
concepts are considered, the noise in input features increased, resulting in a lower
recall. Figure 6 visualize the decision tree learned for the best performing model.
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Fig. 6. The decision tree for the three diagnosis with best performance on recall metric.

4 Conclusion

We proposed a novel framework to derive global explanation for a black-box
model. Our explanation is grounded in terms of clinically relevant concepts that
are causally influencing the model’s decision. As a future direction, we plan to
extend our definition of concepts to include a broader set of clinical metrics.
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