Distributed-Memory Parallel Algorithms for Sparse Times
Tall-Skinny-Dense Matrix Multiplication

Oguz Selvitopi
Lawrence Berkeley Nat. Laboratory
Berkeley, CA, USA
roselvitopi@lbl.gov

Alok Tripathy
University of California, Berkeley
Berkeley, CA, USA
alokt@berkeley.edu

ABSTRACT

Sparse times dense matrix multiplication (SpMM) finds its applica-
tions in well-established fields such as computational linear algebra
as well as emerging fields such as graph neural networks. In this
study, we evaluate the performance of various techniques for per-
forming SpMM as a distributed computation across many nodes
by focusing on GPU accelerators. We examine how the actual local
computational performance of state-of-the-art SpMM implementa-
tions affect computational efficiency as dimensions change when
we scale to large numbers of nodes, which proves to be an unex-
pectedly important bottleneck. We consider various distribution
strategies, including A-Stationary, B-Stationary, and C-Stationary
algorithms, 1.5D and 2D algorithms, and RDMA-based and bulk
synchronous methods of data transfer. Our results show that the
best choice of algorithm and implementation technique depends not
only on the cost of communication for particular matrix sizes and
dimensions, but also on the performance of local SpMM operations.
Our evaluations reveal that with the involvement of GPU accelera-
tors, the best design choices for SpMM differ from the conventional
algorithms that are known to perform well for dense matrix-matrix
or sparse matrix-sparse matrix multiplies.

CCS CONCEPTS

« Computing methodologies — Parallel algorithms.

KEYWORDS

Sparse linear algebra, Sparse matrices, Graphics accelerators, Paral-
lel algorithms, RDMA

ACM Reference Format:

Oguz Selvitopi, Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick,
and Aydin Bulug. 2021. Distributed-Memory Parallel Algorithms for Sparse
Times Tall-Skinny-Dense Matrix Multiplication . In 2021 International Con-
ference on Supercomputing (ICS °21), June 14-17, 2021, Virtual Event, USA.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3447818.3461472

This work is licensed under a Creative Commons Attribution International 4.0 License.

ICS 21, June 14-17, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8335-6/21/06.
https://doi.org/10.1145/3447818.3461472

Benjamin Brock
University of California, Berkeley
Berkeley, CA, USA
brock@berkeley.edu

Katherine Yelick
University of California, Berkeley
Berkeley, CA, USA
yelick@berkeley.edu

431

Israt Nisa
Lawrence Berkeley Nat. Laboratory
Berkeley, CA, USA
isratnisa@Ibl.gov

Aydin Bulug
Lawrence Berkeley Nat. Laboratory
Berkeley, CA, USA
abuluc@Ibl.gov

1 INTRODUCTION

Multiplying a sparse matrix with a tall-skinny dense matrix (SpMM)
has traditionally found uses in scientific computing. The SpMM
operation, also known as sparse matrix times multiple dense vec-
tor multiplication, has long been the workhorse of block iterative
solvers such as LOBPCG [21]. These block iterative methods have
increasingly gained popularity following the trends in computer
architectures.

Within the last decade, low-rank matrix factorization methods
such as alternating least-squares (ALS) made SpMM even more
popular. However, the primary revolution that made research into
SpMM explode in the last few years is the success of Graph Neural
Networks (GNN) in a variety of supervised and semi-supervised
learning scenarios. As shown in recent publications, SpMM is the
workhorse of training GNNs [18, 19, 30]. In addition, several groups
are also uncovering the potential of exploiting sparsity in convolu-
tional and recurrent deep neural networks (DNNs) [14].

Thanks to the need to accelerate GNNs and sparse DNNs, an
impressive number of new GPU [15, 32, 33] and CPU [4, 23] im-
plementations of SpMM have recently surfaced. However, GNNs
and sparse DNNs are often trained on distributed-memory clusters
and the primary bottleneck in SpMM performance at large scale is
the communication costs. There has been little or no work that is
directly targeting the SpMM operation on distributed memory.

Many known algorithms from dense matrix multiplication [27,
28] as well as sparse-sparse matrix multiplication [5, 9] and sparse-
dense matrix multiplication [22] are applicable to SpMM. However,
the tradeoffs and constraints are vastly different for SpMM com-
pared to these other problems. We discuss these differences in detail
in Section 3. Algorithmic papers targeting higher level problems
such as non-negative matrix factorization [20] and graph neural
network training [30] implemented and studied their own subset
of parallel Sp)MM algorithms.

In this paper, we consider a much larger family of distributed-
memory parallel algorithms for Sp)MM on GPU and CPU equipped
clusters. At a high-level, we consider both A-Stationary and C-
Stationary algorithms [27]. We also dive deeper on the performance
scaling of the local SpMM computation that often do not strong
scale. Doing so, we uncover previously unknown tradeoffs between
1.5D and 2D algorithms. In particular, 1.5D achieves much better
scaling in local SpMM computations because (1) our 1.5D algorithm

https://doi.org/10.1145/3447818.3461472
https://doi.org/10.1145/3447818.3461472
https://creativecommons.org/licenses/by/4.0/

ICS °21, June 14-17, 2021, Virtual Event, USA

formulation not cut the column dimension of the tall-skinny dense
matrices, and (2) each process only performs one local SpMM as
opposed to 4/p, creating a batching effect. Finally, we also study
the impact of synchronization costs by studying two different com-
munication backends with different synchronization semantics:
bulk-synchronous with MPI and asynchronous NVSHMEM with
BCL (Berkeley Container Library) [7].

Overall, distributed-memory SpMM algorithms provide a large
three-dimensional design space even at the coarse level: based on
data decomposition, based on which matrix or matrices to keep
stationary, and based on the communication semantics. Here we
present algorithms, analyses, and implementations for 5 of them in
depth, which collectively cover all dimensions of the design space.

Our results show that, unlike for dense matrix-dense matrix
(GEMM) and sparse matrix-sparse matrix multiplication (SpGEMM),
2D algorithms are not strongly scalable to large process counts for
the SpMM problem. While the one-sided asynchronous 2D algo-
rithm is faster than the bulk-synchronous 2D algorithm, neither
scale particularly well. By contrast, the bulk-synchronous 1.5D
algorithm strong scales well on all but one input. However, the
overheads of bulk-synchronous implementation cause both 1.5D
and 2D algorithms to run slower than the asynchronous 2D imple-
mentation that is much closer to bare metal.

The rest of the paper is organized as follows. Section 2 presents
the necessary background and Section 3 surveys the related work.
Section 4 presents the parallel SpMM algorithms. Section 5 describes
two different methods to implement the presented algorithms and
analyzes these implementations’ various costs. Section 6 evaluates
five different SpMM algorithms. Section 7 summarizes the findings
of our work under the light of the discussions in Section 6. Section 8
concludes.

2 BACKGROUND

The SpMM of form C = AB involves one sparse matrix A of size
m X n and two dense matrices B and C of sizes n X k and m X k,
respectively. We assume the dense matrices are tall and skinny, i.e.,
m,n > k. For our analyses, we assume a uniform distribution of
nonzeros in A where there are d, and d. nonzeros per row and
column, respectively. We use the function nnz(-) to denote the
number of nonzeros in a sparse (sub)matrix.

We assume p processes participate in computing SpMM in par-
allel. These processes may be organized into a 1D or 2D structure
depending on the algorithm. For the former, we use P(i) to denote
the process at location i and for the latter, we assume that processes
are organized into an rxc = p structure and we use P(i, j) to indicate
a process at the corresponding location. The set of processes at row
i and column j are respectively indicated with P(i, :) and P(:, j). This
notation extends to the matrices in the SpMM, where the submatrix
M(i) or M(i, j) is associated with process P(i) or P(i, j).

The collective communications play an important role in our
analysis. For communication analysis, we assume the cost of send-
ing a message of size w from a process to another is given by
a + Pw, where « is the message startup time and f is the per-
word transfer time. There are four particular collective commu-
nication operations that are of interest to our work: MPI_Bcast,
MPI_Reduce, MPI_Allgather, and MPI_Reduce_scatter. For the

432

Oguz Selvitopi, Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick, and Aydin Bulug

costs mentioned below, we do not consider computational costs that
are required for collectives involving a reduction. The MPI_Bcast
collective broadcasts w words to all processes in a communica-
tor. For this operation, we assume a tree algorithm, which has
O(alogp + pwlogp) cost. The MPI_Reduce collective reduces w
words from all processes at a single process. We also assume a tree al-
gorithm for this operation, which has O(a log p+ fw log p) cost. The
MPI_Allgather collective gathers at each process w words from
all processes. For this collective, we assume a recursive doubling
algorithm, which has O(a log p + fwp) cost. MPI_Reduce_scatter
collective w words from each process and scatters w/p words to
each process. We assume a recursive halving algorithm for this
collective, which has O(a log p + fw) cost. For details of these algo-
rithms, refer to the survey by Chan et al. [12].

3 RELATED WORK

Algorithms for matrix-matrix multiplication is probably one of the
most well-studied problems in parallel computing. The majority
of this work is for the dense-dense case (GEMM). Commonly used
algorithms, which are both 2D, are Cannon’s algorithm [11] and the
Scalable Universal Matrix Multiplication Algorithm (SUMMA) [31].
Communication-avoiding algorithms trade memory for reduced
communication, and are often called 3D [2] or 2.5D [28] algorithms
depending on the relative length of the third processor dimension to
the first two processor dimensions. Recent work focused on making
the distributed GEMM algorithms perform optimally when process
grids or input matrices are rectangular [13, 24].

Work on the sparse-sparse (SpGEMM) case include 2D [9] and
3D [5] algorithms, both of which are C-stationary. The classification
of algorithms based on which matrix or matrices communication is
due to Schatz et al. [27].

Parallel GEMM benefits from the so-called surface-to-volume
ratio, which means that the flops scale with n® for multiplying two
n X n matrices whereas the data size, which primarily determines
the communication costs, scales with n?. Parallel Sp)GEMM and
SpMM do not benefit from this favorable computation-to-data scal-
ing. Somewhat counter-intuitively, it is easier to scale SpPGEMM
than it is to scale SpMM to large concurrencies. To understand
why, consider an n X n sparse matrix A that has k nonzeros on
average per row, and an n X k dense matrix B. Computing both AA
and AB take the same sized input data (in terms of bytes), hence
incur similar communication costs assuming the use of the same
output stationary algorithm (more formally defined in Section 4.2).
However, SpMM attains a significantly higher fraction of peak on
local compute nodes, hence completes its local computation steps
faster. For example, the reported performance rate for SpMM on
the NVIDIA P100 GPU range in 100—500 GFlops [17], yet SpGEMM
can only achieve 1-10 GFlops on the same GPU [25]. Consequently,
SpGEMM more effectively hides its communication costs with local
computation, compared to SpMM.

In terms sparse-dense multiplication, Koanantakool [22] ana-
lyzed the communication costs of various distributed-memory al-
gorithms including three 1.5D variants that have a higher memory
footprint than 2D variants but reduce the latency by bulking up
computation. The focus of Koanantakool work was multiplying two

Distributed-Memory Parallel Algorithms for Sparse Times Tall-Skinny-Dense Matrix Multiplication

matrices where both the theory and common sense suggest keep-
ing the significantly larger (in terms of number of elements) dense
matrices stationary and only moving the sparse matrix around.
Our 1.5D algorithm presented in this paper is of the same spirit as
Koanantakool’s in the sense that it has an asymptotically higher
maximum memory footprint and reduces the numbers of stages
and latency costs proportionally. However, our algorithm uses dif-
ferent data distribution. Most importantly, in our 1.5D algorithm
the sparse matrix A is stationary and hence it moves two dense
matrices: the input dense matrix as well as the output dense matrix.
By contrast, the 1.5D algorithms presented by Koanantakool only
move the input sparse matrix. In that sense, our 1.5D algorithm
is closer in spirit to 2D algorithms where as Koanantakool’s 1.5D
algorithm is an extension of 1D algorithms.

Albeit indirectly, sparse-dense matrix multiplication has also
been the subject of a work for general-purpose distributed plat-
forms (i.e., Apache Spark). In this work, Park and Lee [26] consider
SpGEMM, but they convert one of the sparse matrices into dense for
performance reasons. Therefore, the resulting operation becomes
sparse-dense matrix multiplication. They consider different spar-
sity levels for the tall-skinny matrices and these matrices can be
treated as sparse or dense according to the algorithm being used.
The work of Park and Lee focuses on predicting the performance
of SpGEMM (or sparse-dense matrix multiplies in certain cases)
on general purpose distributed computing platforms. They do not
investigate parallelism and scalability aspects, which are central to
our work. Our work also largely differs from that of Park and Lee
with its HPC setting, where we use one of the faster supercomputers
on earth, with GPU accelerators on each node.

Various distributed-memory parallel sparse matrix times tall-
skinny dense matrix (SpMM) algorithms are buried in application
papers. In particular, MPI_FAUN [20] implements the 1.5D algo-
rithm we use in our paper and CAGNET [30] implements the bulk-
synchronous 2D algorithm presented here. Neither work study the
impacts of partitioning strategy in local computation costs as we
do here. Furthermore, neither MPI_FAUN nor CAGNET implement
communication using one-sided operations, something we show to
outperform bulk-synchronous approaches in this paper.

In another work [1], the authors investigated tailored 1D sparse
matrix partitioning models to improve the parallel performance of
SpMM by focusing on its communication aspects. By arguing that
SpMM’s parallel communication performance is bandwidth-bound
rather than being latency-bound, they propose a generic frame-
work in which several important metrics related to communication
volume can be encapsulated and optimized. Their approach relies
on recursive bipartitioning to incrementally capture the communi-
cation volume information during the partitioning process and uses
multiple vertex weights to formulate and optimize different volume
objectives. Our work does not consider intelligent partitioning and
uses a simple 2D partitioning of the sparse matrix.

4 PARALLEL ALGORITHMS

In this section we describe our parallel algorithms for SpMM. We
assume a 2D partition of the sparse matrix (A) and we consider 1D
and 2D partitions of the dense matrices (B, C). We only consider a
2D partition of the sparse matrix as it usually leads to better load

433

ICS ’21, June 14-17, 2021, Virtual Event, USA

Table 1: The combinations of the parallel algorithms for
SpMM that follow from 2D partition of the sparse matrix
and 1D or 2D partition of the dense matrices. The shaded
cells indicate the algorithms that are described, analyzed,
and evaluated in this work. The acronyms in each shaded
cell show the communication methods used in the imple-
mentations of those variants (BS: bulk-synchronous, AS:
asynchronous)

1.5D 2D
A-Stationary | BS | BS, AS
B-Stationary
C-Stationary BS, AS

balance than a 1D partition, which is not true for dense matrices.
When dense matrices are tall and skinny, it is worth investigating
the choice between 1D and 2D partitions of these matrices as this
choice has important parallel performance implications related to
both communication and computation. For 1D partition of dense
matrices, we utilize replication with a fixed factor, which leads us
to 1.5D algorithms. In the rest of this section, we assume a square
process grid (i.e., r = ¢ = 4/p) for 2D partitions.

Table 1 shows the combinations of the SpMM algorithms under
the above-described setting. Among these six combinations, we
focus on three of them: 1.5D A-Stationary, 2D A-Stationary, and 2D
C-Stationary. The B-Stationary algorithms have the same compu-
tational and communication characteristics with the C-Stationary
algorithms when the sparse matrix is square, which is the case for
the matrices evaluated in this work. Moreover, when the sparse
matrix is rectangular, the choice of selecting B-Stationary or C-
Stationary is trivial, which should be the algorithm that results in
the communication of the smaller of the two dense matrices. We
also do not analyze or evaluate 1.5D C-Stationary SpMM. This is
because this algorithm necessitates each process to have the entire
B or the entire A when C is rowwise or columnwise partitioned,
respectively. This makes 1.5D C-Stationary SpMM prohibitively
expensive, especially when one considers the communication over-
heads to more likely be a bottleneck in the presence of accelerators.
This is not the case for the three evaluated algorithms in this work.

All algorithms have the same overall local computation com-
plexity although they differ in the aspects of whether these com-
putations are split across 4/p stages or the matrices involved in the
multiplication are the same in different stages, given that the SpMM
algorithm runs in stages. The local multiplication is O(nnz(A)/p - k),
or O((nde)/p - k).

All 1D partitions of dense matrices are rowwise, reasons of which
will be clear later. We also briefly describe the memory requirements
of the parallel algorithms as they can prove vital when relatively
limited memory of the GPU accelerators is taken into account.

4.1 A-Stationary algorithms

We describe two A-Stationary algorithms for parallel SpMM. In
A-Stationary algorithms, the sparse matrix remains in-place while
the dense matrices are replicated or communicated. In the first
variant of A-Stationary algorithms, we consider a 1D partition of
dense matrices and replicate B among /p processes. This results

ICS °21, June 14-17, 2021, Virtual Event, USA

(a) sA-1.5D

(b) sA-2D

Oguz Selvitopi, Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick, and Aydin Bulug

(c) sC-2D

Figure 1: The submatrices P(2, 1) interacts in various parallel SpMM algorithms. The blue submatrices are originally stored by
P(2,1) and the gray submatrices are the submatrices which P(2, 1) participates in communicating/replicating.

in a 1.5D A-Stationary algorithm, which we refer to as sA-1.5D. In
the second variant, we consider a 2D partition of dense matrices
do not make use of replication. We refer to this variant as sA-2D.

4.1.1 1.5D A-Stationary SpMM (sA-1.5D). In sA-1.5D SpMM, B is
originally partitioned in 1D and initially P(i, j) has the submatrices
A(i, j), B(jy/p + i), and C(iy/p + j). B is then replicated among /p
processes in each column of the process grid and after this operation
P(i, j) has /p blocks of B, which are given by B(j/p +) for 0 <
¢ < +/p. The processes then perform their local SpMM of form
Cj(i\/ﬁ +0) = A(i, j)B(jyp + {), for 0 < £ < 4/p, and compute their
partial results for the output matrix. Here, C/ denotes the partial
dense matrix computed by the process at the corresponding jth
column of the process grid. These partial dense matrices are then
summed to get the final result matrix at each process with C(iyp +
D=2 Cf(i\/ﬁ + j). The left of Fig. 1 illustrates the submatrices
P(2,1) stores and replicates/communicates in sA-1.5D algorithm
for p = 9 processes.

In terms of memory requirements, P(i, j) needs to store its por-
tion of the sparse matrix, replicated dense matrix B and the partial
dense matrix. These dense matrices have /p times the number of
elements in the dense matrices P(i, j) had at the beginning of the
algorithm. The memory requirement of sA-1.5D SpMM at each
process is therefore nnz(A)/p + k(m + n)/~/p.

The local computations, which overall take O((nnz(A)/p) - k)
time, are performed in one big stage.

4.1.2 2D A-Stationary SpMM (sA-2D). In sA-2D, all matrices are
partitioned in 2D and P(i, j) has the submatrices A(i, j), B(j, i), and
C(i, j). The sA-2D proceeds in stages and at each stage the compu-
tations regarding A B(:,) are performed by all processes in parallel.

The sA-2D algorithm consists of /p stages and each stage in-
volves a local multiply sandwiched between two communication
operations that involve input and output dense matrices. At stage
s, P(i, s) broadcasts its dense submatrix B(j, s) to 4/p processes that
are in the same column of the process grid. Then the processes
perform their local SpMM of form C/(i, s) = A(i, j) B(j, s), where
C/ denotes partial dense submatrix computed by the process at the
corresponding jth column of the process grid. These partial dense
submatrices are then summed to get the final dense submatrices by
C(i,s) = ¢ Ccl(i,s) at processes that are in the sth column of the
process grid. The middle of Fig. 1 illustrates the submatrices P(2, 1)
stores and communicates in sA-2D algorithm for p = 9 processes.

434

In terms of memory requirements, in addition to the submatrices
initially stored by P(i, j), it also needs store store the input dense
submatrix it receives and the partial output dense submatrix it com-
putes. The memory requirement of sA-2D SpMM at each process
is therefore (nnz(A) + 2k(m + n))/p.

The local computations, which overall take O((nnz(A)/p) - k)
time, are split across 4/p stages and each stage takes O((nnz(A)/p) -
(k/+/p)) time. Among the two multiplied matrices at each stage, the
sparse one does not change while the dense submatrix changes at
each stage.

4.2 C-Stationary algorithms

We next describe a C-Stationary algorithm for parallel Sp)MM. In
C-Stationary algorithms, the output dense matrix remains in place
while the sparse matrix and the input dense matrix are replicated or
communicated. We only consider a 2D algorithm, which we refer
to as sC-2D. We do not describe the 1.5D variant as this requires
the communication of the entire sparse matrix or the entire input
dense matrix. For sC-2D SpMM, we do make use of replication.

4.2.1 2D C-Stationary SpMM (sC-2D). In sC-2D, all matrices are
partitioned in 2D and P(i, j) has the submatrices A(i, j), B(i, j), and
C(i,j). There are several different algorithms [3, 31] to perform
parallel SpMM with a 2D partition of all matrices. Here, we focus on
the 2D variant of SUMMA algorithm [31]. The SUMMA algorithm
for sC-2D distributes the computations regarding the outer product
of A(:, j) and B(j, :) among all processes.

The sC-2D algorithm consists of 4/p stages and each stage in-
volves of successive broadcast operations and local multiplies. At
stage s, P(i,s) broadcasts its sparse submatrix A(i,s) to 4/p pro-
cessses that are in the same row of the process grid and P(s, j) broad-
casts its dense submatrix B(s, j) to 4/p processses that are in the same
column of the process grid. Each process then computes the partial
local multiplies C*(i, j) = A(i, s)B(s, j) and updates its own output
dense matrix with this partial matrix by C(i, j) = C(i,j) + C*(i, j).
The right of Fig. 1 illustrates the submatrices P(2,1) stores and
communicates in sC-2D algorithm for p = 9 processes.

In terms of memory requirements, in addition to the matrices
initially stored by P(i, j), it also needs to store the sparse and dense
submatrices it receives via communication. This effectively doubles
the storage required by A and B at P(i, j). The memory requirement
of sC-2D SpMM at each process is therefore (2nnz(A) +k(m+2n))/p.

Distributed-Memory Parallel Algorithms for Sparse Times Tall-Skinny-Dense Matrix Multiplication

The local computations, which overall take O((nnz(A)/p) - k)
time, are split across /p stages and each stage takes O((nnz(A)/p) -
k/+/p) time. Among the two multiplied matrices at each stage, both
the sparse and the dense submatrix change at each stage.

5 IMPLEMENTATION
5.1 Collective-Based Implementations

In this section we describe the implementation details of the al-
gorithms in Section 4 realized via a bulk-synchronous approach
through MPI collectives. We also analyze their communication costs
and discuss various trade-offs.

We rely on CombBLAS library [10] for paralle] SpMM. Comb-
BLAS is a distributed memory parallel graph library that is based
on sparse matrix and vector operations on arbitrary semirings. It is
originally designed for distributed memory execution on CPUs. We
enhance this library in two main directions to realize the parallel
SpMM algorithms described in this work.

In the first direction, we introduce support for storing distributed
dense matrices, and 1D and 2D partition options for them. Further-
more, we realize the sA-1.5D, sA-2D, and sC-2D SpMM algorithms.
The CombBLAS library utilizes a 2D decomposition for sparse ma-
trices, which are in agreement with the decomposition used for
the sparse matrix A. It provides compressed sparse column and
doubly-compressed sparse column storage formats for sparse ma-
trices. We utilize the former as it is more common and allows a
seamless integration with the GPU libraries.

In the second direction, we introduce GPU support limited to
the operations related to parallel SpMM. The local multiplies are
performed with NVIDIA’s cuSPARSE library! provided within the
CUDA Toolkit. We utilize row-major storage for dense matrices,
which is the recommended option by NVIDIA and which is also
found to be the more efficient storage in our own evaluations. For
the coordination of MPI collectives, we investigate using both the
CPUs and the CUDA-aware MPL

5.1.1 Communication analyses. sA-1.5D. sA-1.5D SpMM necessi-
tates communication on two dense matrices, one for replicating B
before local multiplication and one for reducing partial dense ma-
trices after the local multiplication. The replication is realized with
an MPI_Allgather among /p processes in each column of the pro-
cess grid. The replication begins at each process with nk/p words
and thus the respective MPI_Allgather has a cost of O(x log /p +
Bnk/~/p). The reduction of partial dense matrices is a reduction with
summation operator and is realized with an MPI_Reduce_scatter
among +/p processes in each row of the process grid. The reduction
begins at each process with mk/+/p words and thus the respective
MPI_Reduce_scatter has a cost of O(alog+/p + fmk/~/p). The
total communication cost of sA-1.5D SpMM is therefore
k(m + n)

O(2alo +f—).

(2alog Vp + f G)
sA-2D. sA-2D SpMM necessitates communication on input dense
matrix before the local SpMM and on output dense matrix after
local SpMM. These two communication operations are respectively

1

!https://docs.nvidia.com/cuda/cusparse/index.html

435

ICS ’21, June 14-17, 2021, Virtual Event, USA

realized with MPI_Bcast and MPI_Reduce collectives. The broad-
cast of the input dense matrix involves sending out nk/p words
to 4/p processes at each stage and thus the respective MPI_Bcasts
have a total cost of O(a/plog +/p + fnk log \/p/+/p). The reduction
of the output dense matrix involves summing mk/p words form /p
processes at each stage and thus the respective MPI_Reduces have

a total cost of O(a+/plog \/p + fmklog +/p/+/p). The total commu-
nication cost of sA-2D SpMM is therefore

k(m + n)log \/ﬁ)

sC-2D. sC-2D SpMM necessitates communication on one sparse
and one dense matrix, each prior to local multiplies. These com-
munication operations are both realized with MPI_Bcast collec-
tives, each of which contains /p processes. The broadcast of the
sparse submatrix involves sending out nnz(A)/p words to 4/p pro-
cesses at each stage and thus the respective MPI_Bcast has a cost
of O(a+/plog+/p + pnnz(A)log/p/+/p). The broadcast of dense
submatrix of B follows a similar pattern except that it involves com-
municating nk/p words and hence has a cost of O(a+/plog+p +
fnklog /p/~/p). The total communication cost of sC-2D SpMM is
therefore

O(2avplog\p + f (2)

(nnz(A) + nk)log \/j_))
N .

5.1.2 Remarks. Here we discuss various aspects of the collective-
based implementations by comparing them against each other. We
also mention computational issues related to utilizing accelerators.

Computation and memory. In terms of local SpMM computa-
tions, the 1.5D algorithms differ from the 2D algorithms in the sense
that they do not “split” the computations across several stages. They
perform the local multiplies at once where the 2D algorithms spread
it across /p stages in which the local multiplies are separated by
various communication operations. On the one hand performing
local multiplies at once may result in running out of memory when
we take the limited memory of GPU accelerators into account. The
1.5D algorithms usually have a higher memory footprint those of
2D. For example, sA-1.5D necessitates more memory compared to
sA-2D as long as p > 4. On the other hand, spreading computations
across several stages may result in reduced memory bandwidth
utilization and lower occupancy on the GPUs. Depending on where
the submatrices are initially stored (device or host memory), split-
ting local multiplies may also lead to worse utilization of the link
between the host and the device.

Communication costs. The 2D algorithms trade off increased

OQarplog+p + B ®3)

communication costs for reduced memory footprint compared to
the 1.5D algorithms. They have an extra +/p factor in the latency
costs and an extra log v/p factor in the bandwidth costs. Another
important aspect is the sizes of sparse and dense submatrices be-
ing communicated. This is an aspect of the A-stationary vs. C-
stationary algorithms, where the former passes around two dense
matrices while the latter passes around one sparse and one dense
matrix. When we compare communication costs of sA-2D and
sC-2D, the only differing quantities are mk and nnz(A), which re-
spectively relate to the sizes of the output dense matrix and the
sparse matrix. When we consider that our work targets tall and
skinny dense matrices, these two quantities become comparable

https://docs.nvidia.com/cuda/cusparse/index.html

ICS °21, June 14-17, 2021, Virtual Event, USA

for i in 0..M-1:
for j in 0..N-1:
if C.owner(i, j)
for k in 0..K-1:

rank () :

local_a = A.get_tile(i, k)
local_b = B.get_tile(k, j)
local_c = C.tile_ref (i, j)

local_c += local_axlocal_b
barrier ()

Figure 2: RDMA-based 2D C-Stationary SpMM. M, N, and K
represent tile dimensions.

and this makes them one of the key indicators of communication
performance. Similar arguments apply to memory requirements as
well.

Communication orchestration. We consider two options for
orchestrating communication: conventional CPU-based commu-
nication and CUDA-aware MPIL In the former, the submatrices
originally stay on host memory and they are copied back and forth
between host and device memory. All communicated data pass
through the host memory before leaving for the network. In the
latter, the submatrices stay on device memory and they are directly
communicated between devices on different nodes by bypassing
the host memory. The latter option is arguably faster but we include
both options in our analyses as not all MPI vendors or architectures
may have support for GPUDirect RDMA.

B-Stationary algorithms. One of the design issues regarding
the parallel Sp)MM algorithms is the B-Stationary algorithms. When
m = n, B-Stationary algorithms have similar properties to those
of C-Stationary algorithms. If this is not the case and the sparse
matrix is rectangular, B-Stationary algorithms should be preferable
to their C-Stationary counterparts for when m < n. We do not
investigate B-Stationary algorithms in our study and leave it as a
future research direction. All matrices used in our evaluations are
square.

Finally, there are certain shortcomings to the communication
analyses given in Section 5.1.1. First, our analyses did not take
the hierarchical nature of the supercomputer systems we conduct
our experiments on. On these systems, there often exist multiple
GPUs per node and the analyses consider the maximum amount
of data received per GPU whereas what matters is the maximum
amount of data received per node. However, the analyses should
hold when there is one GPU on a node. Second, they are not valid
anymore when we consider asynchronous execution. The time
spent in communication can be spread over time and overlapped
by computations - which enables better load balancing and better
utilization of the network over the algorithm runtime. We next turn
our focus to such algorithms.

5.2 RDMA-Based Implementations

An alternate method to using MPI collectives to communicate ma-
trix tiles in bulk synchronous steps is to use RDMA operations to
transfer individual matrix tiles between nodes on demand. RDMA
(Remote Direct Memory Access) allows for processes to issue get
and put requests that can arbitrarily read or write data from any

436

Oguz Selvitopi, Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick, and Aydin Bulug

for i in 0..M-1:
for k in 0..K-1:
if A.owner(i, k)
for j in 0..N-1:

rank () :

local_a = A.tile_ref (i, k)
local_b = B.get_tile(k, j)
local_c = local_ax*local_b
queue[C.owner (i, j)J].push(local_c)

while local_c = queuelrank()].pop():
C.my_tile() += local_c

barrier ()

Figure 3: RDMA-based 2D A-Stationary SpMM. M, N, and K
represent tile dimensions.

location within the shared segment of another process. These oper-
ations are entirely one-sided, since they can be executed directly
by the NIC (Network Interface Card) on the remote node. On GPUs,
GPUDirect RDMA allows for direct transfer of data between two
remote GPUs over an Infiniband network. Today there are two user-
level libraries for taking advantage of RDMA when using GPUs, (1)
NVIDIA’s NVSHMEM library, which provides an extension of the
OpenSHMEM communication library, and (2) CUDA-aware MPI,
for which there are some implementations, such as OpenMP], that
take advantage of GPUDirect RDMA.

For sparse matrix multiplication, RDMA-based implementations
are particularly interesting because they allow for decoupling of
the inner loop, which in a bulk synchronous implementation is nor-
mally executed in lockstep by all processes. This lockstep execution
can lead to load imbalance problems when processes have differ-
ing amounts of local computation to perform, which is common
in sparse matrix multiplication due to nonuniform distributions
of nonzeros in the sparse matrix. In an RDMA-based implementa-
tion, processes can retrieve tiles of the matrix on demand, without
any required involvement from remote processes. Thus, no syn-
chronization with other processes is required until the very end of
the computation, when processes synchronize to ensure the entire
computation has finished.

Pseudocode for our RDMA-based C-Stationary algorithm is shown
in Figure 2. Each process will iterate through the C matrix, to find
the tiles of C that it owns. Then, it iterates through the correspond-
ing row block of A and column block of B, issues get operations
to retrieve the tiles, and then performs a local SpMM operation,
accumulating into its local tile of C. Note that no synchronization
is required until the very end, where a barrier is issued to ensure
that all processes have finished the computation before continuing.

Our A-Stationary algorithm, shown in Figure 3, is somewhat
similar, but re-orders the iterations of the loops. The two outer loops
iterate through tiles of A, with each process identifying the tiles
of A which it owns. For each of its tiles of A, a process will iterate
through the corresponding row of B, retrieving each tile with a
remote get operation. For each tile, it will perform a local SpMM
operation between the local tile of A and the newly fetched tile of
B, producing a partial product C that needs to be accumulated into

Distributed-Memory Parallel Algorithms for Sparse Times Tall-Skinny-Dense Matrix Multiplication

for i in 0..M-1:
for j in 0..N-1:

if C.owner(i, j)
k_offset = i + j
buf_a = A.async_get_tile(i, k_offset % K)
buf_b = B.async_get_tile(k_offset % K, j)
for k_ in 0..K-1:

k = (k_ + k_offset) % K

rank () :

local_a =
local_b
local_c

buf_a.get()
buf_b.get ()
C.tile_ref (i, j)

if (ko + 1 < K):
buf_a = A.async_get_tile(i, (k+1) % K)
buf_b = B.async_get_tile((k+1) % K, j)

local_c += local_axlocal_b
barrier ()

Figure 4: Optimized RDMA-based 2D C-Stationary SpMM. M,
N, and K represent tile dimensions.

into a corresponding tile of C, likely remote. To do this, a process
will append a pointer to the C partial product onto a queue in the
remote memory of the destination process. Once it has completed
its matrix multiplications, each process will pop the matrices it
needs to accumulate off of its queue, accumulating them into its
local block of C.

There are two important optimizations that we applied to our
RDMA-based algorithms in order to achieve good performance,
which is shown in Figure 4. The first optimization is applying an
iteration offset to the inner loop of the matrix multiply, shown in
the pseudocode as k_offset. In the case where k_offset is equal
to 0, every process in a row will issue a get operation to the first
tile in that row in the first iteration, and in the next iteration to
the second block, and so on. This is suboptimal, since the NIC
associated with each process will become overloaded with many
requests. Instead, we apply an iteration offset equal to the sum of
the current C tile’s coordinates to the inner loop. This ensures that
each process will access a unique block within its row and column
in each iteration, as well as ensuring that for a regular block 2D
distribution the first get operations will be to local tiles of A and
B. The second optimization is asynchronously prefetching the tiles
needed for the next iteration of the computation, which allows for
overlap of communication and computation. These optimizations
are applied to both the C-Stationary and A-Stationary algorithms,
but for brevity we only show their application to the C-Stationary
algorithm in Figure 4.

6 EVALUATION
6.1 Setup

We consider a wide variety of sparse matrix inputs that represent
problems from graph neural networks (reddit and amazon [30]),
eigensolvers in nuclear structure calculations (nm7 and nma3 [4]),
low-rank or non-negative matrix factorization (com-Orkut [20]),
and bioinformatics (isolates [6]). Various properties of these matri-
ces are presented in Table 2. Load imbalance is defined as the ratio

437

ICS ’21, June 14-17, 2021, Virtual Event, USA

Table 2: Properties of matrices used in our evaluations. The
values under “load imb.” column present the load imbalance
in terms of the sparse matrix elements for 100 processes (i.e.,
10 X 10 2D partition of A),

Sparse matrix (A) kind m=n avgdegree nnz(A) loadimb.
amazon GNN 14.3M 16.2 230M 1.01
com-Orkut NMF 3.1M 76.3 234M 8.15
isolates biology 17.5M 299.6 5.2B 1.00
nm7 eigen 5.0M 129.9 648M 6.38
nms eigen 7.6M 78.1 592M 6.48
reddit GNN 233K 492 115M 1.08

of the maximum number of nonzeros assigned to a processor to the
average number of nonzeros in each processor, or formally:
p - max(; jep nnz(A(i, j))
nnz(A)

We use three different column dimension sizes for the dense matri-
ces: 128, 256, and 512.

In our evaluations, we test three variants of SpMM algorithms:
1.5D A-Stationary (sA-1.5D), 2D A-Stationary (sA-2D), and 2D
C-Stationary (sC-2D). For sA-1.5D, we only consider the bulk-
synchronous version (Section 5.1) in which we use collectives.
We use the suffix “BS” to indicate the bulk-synchronous variant,
i.e., sA-1.5D-BS. For the rest of the two algorithms, we consider
both the bulk-synchronous (Section 5.1) and asynchronous versions
(Section 5.2). We use the suffix “AS” to indicate the asynchronous
variant, i.e., sA-2D-AS or sC-2D-AS. Hence, we have five SpMM
algorithms in our evaluations under two category:

o three bulk-synchronous algorithms sA-1.5D-BS, sA-2D-BS, and
sC-2D-BS, and
e two asynchronous algorithms sA-2D-AS and sC-2D-AS.

The bulk-synchronous versions make use of MPI collectives and
they rely on CPUs to orchestrate communication, i.e., they do not
make use of CUDA-Aware MPI and explicitly copy back and forth
the data needed for local multiplies between host and device (the
reasons of which will be clear in Section 6.3). The asynchronous
version, on the other hand, relies on RDMA operations.

We conduct our experiments on IBM Summit system at Oak
Ridge National Laboratory. Each node in this system has two sockets
and is equipped with two PowerPC 9 CPUs and six NVIDIA Volta
V100 GPUs. Each of the CPUs has 22 cores and 256 GB of memory
and each of the GPUs has 80 SMs and 16 GB of memory. The CPUs
are not utilized for computation and they are only responsible for
communication in bulk-synchronous algorithms.

The bulk-synchronous algorithms are implemented within Comb-
BLAS [10] and the asynchronous algorithms are implemented within
BCL [7]. BCL utilizes NVSHMEM v2.0.2. All codes are compiled with
the host compiler gce v8.1.1 and the device compiler nvee v11.0.3.
For MPL, IBM’s Spectrum MPI is utilized. For local multiplies, we
rely on NVIDIA’s cuSPARSE library and utilize row-major storage
for dense matrices. Specifically, we use the generic API function
cusparseSpMM with the choice of option CUSPARSE_SPMM_CSR_ALG2,
which is the recommended option by the manual when dense ma-
trices are stored in row-major order. We benchmarked alternative

ICS °21, June 14-17, 2021, Virtual Event, USA

SpMM implementations within cuSPARSE but found this recom-
mended option to be the fastest overall. For all matrices, we utilize
single precision for matrix elements. For the storage of indices in
sparse matrices, we use 32-bit integers for all matrices except the
isolates matrix.

In our evaluations, for the bulk-synchronous implementations,
we use six different numbers of MPI processes {9, 25, 49, 100, 196, 400},
corresponding to {2,5,9,17,33,67} Summit nodes. For the asyn-
chronous implementations, we also utilize six different numbers
of NVSHMEM processes {12, 24,48, 96,192,384}, corresponding
to {2,4, 8,16, 32,64} Summit nodes. We will call both “processes”
going forward without quantifying whether they are MPI or NVSH-
MEM processes, to avoid clutter. In parallel evaluations, we always
use six processes per node and assign one process to control a GPU.
We use the default task assignment for scheduling processes, which
assigns the tasks to compute resources linearly. The discrepancy
between these two different sets stems from the requirement that
CombBLAS requires the number of processes to be a perfect square.
For the asynchronous algorithm, we choose a number that is a
multiple of six (the number of GPUs on a node) and close to the
number of processes utilized by the bulk-synchronous algorithms
as much as possible. This small difference should not affect the
direction of the arguments.

We first focus on the evaluations regarding local SpMM bench-
marking (Section 6.2) and communication orchestration (Section 6.3).
Then we present results for overall runtime of the evaluated par-
allel algorithms (Section 6.4) and detailed performance analysis
(Section 6.5).

6.2 Local SpMM benchmarks

Many computational kernels that operate on sparse matrices al-
ready achieve a low fraction of peak performance. Evidence of this
behavior is widely reported in the literature and several mitigat-
ing techniques have been developed. A lesser known but no less
dramatic problem emerges when we try to strong scale sparse ker-
nels on distributed memory machines. As the number of partitions
(which are often but not always equal to the number of processes)
grow, the local sparse computations start achieving even a smaller
percentage of the peak. This causes unscalability even if the com-
munication costs are made to be negligible, either via algorithmic
innovations or communication-computation overlap.

Admittedly, the performance degradation when strong scaling is
present in all computations but dense computations are dramatically
more forgiving. For example, dense matrix-matrix multiplication
can be made to achieve close to (> 80%) peak achievable perfor-
mance for dimensions as small as 16 for a single core Xeon [16]
and as small as 384 for a Fermi GPU [29].

The reasons for performance degradation of sparse kernels are
often fundamental. For example, when using 2D partitioning, the
number of nonzeros per row or column in each local sparse matrix
goes down as the number of partitions increases [8]. This increased
sparsity puts a lower bound on the maximum achievable perfor-
mance.

When a fixed sized computation is strong scaled to increasing
number of devices, the aggregate memory available to the program
inevitably increases. This prompted a fruitful line of research where

438

Oguz Selvitopi, Benjamin Brock, Israt Nisa, Alok Tripathy,

Katherine Yelick, and Aydin Bulug

—©— 1.5D (k=128)
=== 1.5D (k=512)

——
VIR

2D (k=128)
2D (k=512)

com-Orkut reddit

amazon

18 16 32 64 128 512 1 8 16 32 64 128 512 1 8 16 32 64 128 512

number of partitions

Figure 5: Total local SpMM time across all processors (parti-
tions) when running stationary-A 1.5D and stationary-C 2D
algorithms on k={128,512}. Ideal linear scaling is a flat line.

input or output matrices are replicated to reduce communication.
A less appreciated benefit of communication-avoiding algorithms
is their ability to batch computation and improve strong scaling of
local computation.

In Figure 5, we show the total time spent in local SpMM calls
(cusparseSpMM) when the number of partitions (processes) increases.
We see that 2D algorithm spends more and more time on local
SpMM computations. This makes it not strongly scalable even if
there were no communication costs and no other other paralleliza-
tion overheads such as load imbalance or matrix creation. Our 1.5D
algorithm, on the other hand, exhibits much better local SpMM
scaling. While for com-Orkut, it shows a 2.8X increase in runtime
for k=128 case and a 9.3X increase in runtime for k=512 case, these
slowdowns are significantly better than the ones experienced by the
2D algorithm. Surprisingly for reddit, 1.5D algorithm even achieves
a superlinear scaling in local SpMM computations.

We can explain the severe performance degradation observed
for 2D algorithms (Figure 5) with a simple Arithmetic Intensity (AI)
argument. Assuming perfect load balance, the arithmetic intensity
of local SpMMs within a 2D algorithm running on a perfect square
process grid is:

Al _ (nnz(A)[p) - (k/Np) ~ nnz(A)-k
local2D — nnz(A)/p n nk/p = \/ﬁ(nnz(A) I nk)

Clearly, the arithmetic intensity of local SpMMs within a 2D algo-
rithm goes down as the number of processors increases. By contrast,
the arithmetic intensity is constant for 1.5D algorithms under the
same conditions.

We also benchmarked another SpMM code called Sputnik [15].
We found that Sputnik performs as fast as or faster than the cuS-
PARSE implementation on a single GPU or when the SpMM is
performed on a small (< 16) number of GPUs. However, its perfor-
mance degraded much faster than cuSPARSE’s as we increased the
number of GPUs. When the SpMM is performed on a larger (> 16)
number of GPUs, cuSPARSE was consistently faster for all but one
instance (reddit). This can be explained by the relative denser use
cases Sputnik targets because the local sparse matrices get sparser
as concurrency increases when 2D partitioning is employed. For
consistency, we performed all subsequent experiments in this pa-
per using cuSPARSE but it would be possible to swap a different
implementation depending on the sparsity level of the input as well

Distributed-Memory Parallel Algorithms for Sparse Times Tall-Skinny-Dense Matrix Multiplication

<eeee col

N
=}

g
o)

Iy
o

Bandwidth (GB/s)

o
o]

g
=}
o

0 10 20
Data size (MB)
1.5D

30 0 10 20

Data size (MB)
2D

30

(a) CPU MPI

-

o

°

Bandwidth (GB/s)

30)

0 10
Data size (MB)
1.5D

20 10 20

Data size (MB)
2D

30

(b) CUDA-Aware MPI

Figure 6: Per-process bandwidth microbenchmarks with a
6 X 6 process grid, 6 processes per node and 1 process per
GPU, on Summit for both our 1.5D and 2D algorithms across
varying message sizes. row refers to MPI calls done on pro-
cess rows, such as MPI_Reduce_scatter in the 1.5D algo-
rithm. col refers to MPI calls on process columns, such as
MPI_Allgather in the 1.5D algorithm. total refers to the band-
width of running the entire algorithm.

as the concurrency the computation is run on. Since identifying the
optimal transition point between algorithms is non-trivial without
first running the computation, we leave this tuning opportunity as
an interesting future work.

6.3 Communication orchestration

We isolate the performance of communication primitives by mi-
crobenchmarking simultaneously-executing collective operations
that are typical of 1.5D and 2D algorithms. We benchmark CPU
and GPU-orchestrated communication and illustrate the obtained
bandwidth results in Fig. 6. On the node level each node of Summit
system has a 25 GB/s bi-directional bandwidth.

These figures show that the 2D algorithms take better advantage
of available bandwidth. On a further note, the CUDA-Aware MPI
seems to be not using NVIDIA GPUDirect as they are significantly
worse than the bandwidth sustained by the CPU-orchestrated collec-
tives. This is probably due to collective implementations of the un-
derlying MPI implementation not taking advantage of the RDMAs
yet. For this reason, in our bulk-synchronous SpMM algorithms
we prefer CPU-orchestrated communication. The asynchronous
algorithms already do not rely on MPI and utilize RDMA operations
for data transfer.

439

ICS ’21, June 14-17, 2021, Virtual Event, USA

Table 3: Runtime (in seconds) of SpMM on one GPU for two
test instances.

k com-Orkut reddit
128 1.343 0.577
256 2.644 0.726
512 4.047 0.904

6.4 Runtime of parallel SpMM algorithms

We compare five schemes sA-1.5D-BS, sA-2D-BS, sC-2D-BS, sA-
2D-AS, and sC-2D-AS on six test matrices for three different values
k € {128, 256,512}. For all schemes, we conduct our evaluation on
the six matrices. We measure the overall SpMM time in seconds.
The obtained results are illustrated in Fig. 7. The top, middle, and
bottom rows of the figure presents the plots for k = 128, k = 256,
and k = 512, respectively and both axes in the plots are in log-scale.
The missing points in the plots are due to the device running out
of memory while multiplying the respective instances, which may
be due to both some instances being quite large and having high
load imbalance. We also present SpMM runtime on one GPU for
com-Orkut and reddit instances (the other instances run out of
memory).

The plots in Fig. 7 show the asynchronous schemes achieve better
parallel runtime than the bulk-synchronous schemes in almost
test instances. Their better performance can be attributed to two
contributing factors related to communication and computation.
First, the asynchronous variants orchestrate the communication
more efficiently by relying on RDMAs. Furthermore, they spread the
possible communication imbalance across multiple stages in which
one can hide communication overheads by overlapping them with
local multiplies. In a similar manner, they are able to hide possible
computational imbalance via asynchronous execution.

Among the compared schemes for the bulk-synchronous schemes,
sA-1.5D-BS exhibits superior scalability. The replication here seems
to be paying off as it is able to better make use of GPU resources.
However, this increased memory footprint has the drawback of
running out of memory at small node counts where the 2D SpMM
algorithms successfully complete execution (i.e., amazon and iso-
lates for k = 512). The lower runtimes of asynchronous variants
on some small number of processes compared to sA-1.5D-BS can
be attributed to its better device occupancy at small node counts
compared to higher node counts.

Among the 2D bulk-synchronous algorithms, sA-2D-BS SpMM
tends to scale better than sC-2D-BS SpMM, which is especially
true for matrices such as nm7 and nm8 that suffer from high load
imbalance. For such instances, communicating the sparse matrix
should be more costly than communicating the dense matrices as
dense matrices do not have balance issues. Thus, among the bulk-
synchronous algorithms, it is safe to recommend the A-Stationary
algorithms (1.5D or 2D) for load-imbalanced instances.

We next vary the column dimension of the dense matrices and
plot it against runtime for amazon, com-Orkut, and reddit instances
in Fig. 8. All schemes achieve lower runtime with decreasing k
as expected. The rate of decrease is greater in instances whose
dimensions are larger.

ICS °21, June 14-17, 2021, Virtual Event, USA

—©— sA-1.5D-BS —H8— sA-2D-BS

amazon com-Orkut isolates

Oguz Selvitopi, Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick, and Aydin Bulug

——

sC-2D-BS —A— sC-2D-AS —O— sA-2D-AS

nm?7 nm8 reddit

1.6

08

04

b

16 32

=
Il
o

64 128 256 512

1.6

12

me (seconds)

04

bl

0.6

32 64

k=512 128 256 512 8 1632 64 128 256 512 8 1632 64 128 256 512 8 16 32 64 128 25
5 5 8 2
12 32 - . ; 41)7)
9 24 Ij i ‘ 0.6
] - 4
6 16 03
6 2
K@% 08 |
3 1
8 16 32 64 128 256 512 8 16 32 64 128 256 512 8 16 32 64 128 256 512 8 16 32 64 128 256 512 8 16 32 64 128 256 512 8 16 32 64 128 256 512
number of processes
Figure 7: Parallel runtimes of five parallel SpMM algorithms on six evaluated instances. The row and column dimension of

the figure respectively belongs to dense matrix column dimension k and matrix instance.

. k=512 k=256

B k=128

amazon com-Orkut reddit

18

12

L0

[

[

[

01

00 0.0

o o S
T %

\J > >
N o N
B

¢

SR IR
PV 4 oY 40
RO g

P gD
W AN, . .l "y
J » VT T

Figure 8: Parallel runtimes of five parallel SpMM algorithms
for varying column dimension of the dense matrices. The
runtimes belong to the instances at 100 processes.

6.5 Performance analysis of bulk-synchronous
algorithms

We next focus on the details of the parallel performance of the
bulk-synchronous algorithms sA-1.5D-BS, sA-2D-BS, and sC-2D-
BS. We investigate these schemes’ communication and computation
components and identify the cases where each component is likely
to be a bottleneck. In this regard, we focus the percentage of time
spent in each component (Fig. 9) and these components’ scalability
(Fig. 10). For the experiments in Fig. 9 we fix the number of processes
to 100 and for the experiments in Fig. 10 we fix k = 256.

Among the three bulk-synchronous algorithms, it can be said that
the communication component of sA-2D-BS usually constitutes a
smaller portion of the overall execution time compared to other
two algorithms. sC-2D-BS seems to be negatively affected by the
highly imbalanced instances. Although sA-1.5D-BS has a smaller

S
£y
o

440

communication cost than sA-2D-BS (Section 5.1.1), in practice the
communication component constitutes quite a large portion in this
algorithm. This can be attributed to the observations discussed in
the previous section, where a monolithic and faster local multiply
for sA-1.5D-BS renders communication operations to be more of a
bottleneck. Finally, the communication component becomes more
pronounced with increasing k. This is due to GPUs favoring regular
access patterns with high flop per byte ratio.

We next investigate how each of these components scale in
Fig. 10. Among 6 test instances, the ones that scale relatively bet-
ter are the amazon and isolates instances. This is because these
datasets have relatively better load balance. Among the instances
that exhibit poor scalability, the matrices com-Orkut, nm7, and
nm3 have the worst load balance and the reddit instance have the
smallest sparse matrix dimensions. sA-1.5D-BS suffers less from
load imbalance issues since it does not perform SpMM in stages and
it does communicate the sparse matrix. sC-2D-BS’s communication
scalability is worst among the three algorithms. Hence, it can be
said that sA-1.5D-BS is preferable over sA-2D-BS and sC-2D-BS
when the sparse matrix distribution is especially imbalanced.

7 HIGHLIGHTS

We highlight the main findings of our work to provide a clear
picture:

o The arithmetic intensity plays a more crucial role in the perfor-
mance of parallel SpMM running on GPUs than on CPUs. The
higher arithmetic intensity of 1.5D algorithms in local Sp)MM
enables them to scale better than the 2D algorithms (Section 6.2).

Distributed-Memory Parallel Algorithms for Sparse Times Tall-Skinny-Dense Matrix Multiplication

B local SpMM

B comm

100
801~
601~

401~

runtime %

201~

T FEF P SR SR P
R

TR AN NP IR AR
N
yvo?,v vﬁovv*%v% ¥
amazon com-Orkut isolates nm7 nms§ r(‘ddn
100
801~

601~

401~

runtime %

201~

DP R PR RFPHR PR PP PRSP
S S o o S e
y. Ea y.\‘;"o y.\e?'a ¥ e e V’\“ é" V.\av'a"’
amazon com-Orkut isolates — nm7 nms§ r(‘ddn
100
801~

601~

runtime %

401~

201~

PGP FPPFP PP RP PR PP E PRSP
R §%Q%Q% §©020% oo
v‘vv“ v%?'fo y.e?'a y.%‘o V’“ V.\av'a

amazon com-Orkut isolates — nm7 nm8 r(‘ddit

Figure 9: The percentage of time spent in local SpMM and
communication for 100 processes.

o Regarding the communication performance of the investigated
SpMM algorithms, the 2D ones are able to take better advantage
of the available bandwidth (Section 6.3).

o The higher performance of the asynchronous implementations
compared to the bulk-synchronous implementations can be at-
tributed to their lower overhead communication via RDMAs,
their ability to better utilize network bandwidth by spreading
out the communication to the entire duration of the distributed
SpMM, and their ability to avoid load imbalance that is caused
by bulk-synchronous executions. (Section 6.4).

e The 1.5D algorithms often exhibit better scalability than the 2D
algorithms as the replication pays off by making better utilization
of the GPUs. The drawback of the replication in 1.5D algorithms,
however, is that they are more likely to run out of memory for
large instances at small node counts due to limited HBM available
on GPUs (Section 6.4).

e Regarding the 2D bulk-synchronous algorithms, the A-Stationary
algorithms are preferable to the C- or B-Stationary algorithms

441

ICS ’21, June 14-17, 2021, Virtual Event, USA

—6— sA-1.5D-BS-locSpMM —H— sA-2D-BS-locSpMM
--©-- sA-1.5D-BS-comm --8--

—*%— sC-2D-BS-locSpMM
sA-2D-BS-comm --%-- 5C-2D-BS-comm

amazon

com-Orkut

isolates

T3 X

2 8 16 32 64
nms§

128 256 512 16 32 64
reddit

128 256 512

0.8
0.6

04

runtime (seconds)

02

2 16 32 64

128 256 512 16 32 64

number of processes

Figure 10: Scaling of local SpMM and communication in sA-
1.5D-BS, sA-2D-BS, and sC-2D-BS.

when the sparse matrix is highly load-imbalanced because com-
municating the dense matrices is less likely to create performance
bottleneck than communicating the sparse matrix, which is the
source of the load imbalance (Section 6.4).

o Faster and monolithic local SpMM in 1.5D algorithms makes them
less communication-bound than 2D algorithms, which run in
stages. Specifically, regarding the bulk-synchronous algorithms,
the 1.5D A-Stationary algorithm spends a smaller fraction of
its time communicating, because it does not run in stages and
does not communicate the sparse matrix. Hence, it is able to
achieve the best overall parallel performance among the bulk-
synchronous algorithms (Section 6.5).

8 CONCLUSIONS

In this work, we systematically analyzed, implemented, and evalu-
ated various design choices regarding parallel SpMM on distributed
memory nodes with GPUs. Our implementations and evaluation
cover both the use of popular bulk-synchronous approach that uti-
lizes MPI’s collective communication routines, as well as a truly
asynchronous RDMA-based approach using Berkeley Container
Library (BCL) on top of NVIDIA4AZs NVSHMEM. Our asynchro-
nous implementation does not synchronize across any subset of
processors, except once at the very end of computation. Whenever
there are multiple libraries to choose from, we identified the best
performing variant via microbenchmarks before incorporating it
into our implementation.

We found that the algorithmic trade-offs regarding distributed-
memory parallel SpMM are quite distinct from the trade-offs for
distributed-memory DGEMM and SpGEMM. In particular, the 2D C-
Stationary algorithm, which is shown to scale well for both DGEMM
and SpGEMM, exhibits poor scalability for Sp)MM. Despite its in-
creased memory footprint, the 1.5D A-Stationary algorithm has
shown better performance due to (1) its higher arithmetic intensity,
which leads to better utilization of GPUs, and (2) reduced synchro-
nization points. We also found our asynchronous implementation

128 256 512

ICS °21, June 14-17, 2021, Virtual Event, USA

to be surprisingly fast in practice, yet its scalability was limited.
Our work revealed shortcomings of certain preferred algorithms
and showed that with the involvement of GPU accelerators, some
kernels may need to take into account the design directions that
are not conventionally considered in the absence of accelerators.

As future work, reordering of the sparse matrix can be used
to minimize communication. Graph and hypergraph models [1]
would be the choice of preference for this purpose. This is espe-
cially promising for the asynchronous variants as most partitioners
only minimize the total volume and do not minimize the maximum
volume per processor directly, consequently limiting performance
gains of bulk-synchronous implementations that rely on collective
communication. Compared to the sparse matrix-dense vector mul-
tiplication, which is arguably one of the most popular applications
of partitioners, the potential savings in terms of communication
volume reduction are larger by a factor of k for SpMM.

ACKNOWLEDGMENTS

This work is supported by the Advanced Scientific Computing
Research (ASCR) program within the Office of Science of the DOE
under contract number DE-AC02-05CH11231, and by the National
Science Foundation under Award No. 1823034. This research was
also supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office of
Science and the National Nuclear Security Administration.

This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-000R22725.

REFERENCES

[1] Seher Acer, Oguz Selvitopi, and Cevdet Aykanat. 2016. Improving performance of
sparse matrix dense matrix multiplication on large-scale parallel systems. Parallel
Comput. 59 (2016), 71 — 96. Theory and Practice of Irregular Applications.
Ramesh C Agarwal, Susanne M Balle, Fred G Gustavson, Mahesh Joshi, and Prasad
Palkar. 1995. A three-dimensional approach to parallel matrix multiplication.
IBM Journal of Research and Development 39, 5 (1995), 575-582.

Alok Aggarwal, Ashok K. Chandra, and Marc Snir. 1990. Communication com-
plexity of PRAMs. Theoretical Computer Science 71, 1 (1990), 3 — 28.

Hasan Metin Aktulga, Aydin Bulug, Samuel Williams, and Chao Yang. 2014. Op-
timizing sparse matrix-multiple vectors multiplication for nuclear configuration
interaction calculations. In 28th International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 1213-1222.

Ariful Azad, Grey Ballard, Aydin Bulug, James Demmel, Laura Grigori, Oded
Schwartz, Sivan Toledo, and Samuel Williams. 2016. Exploiting multiple levels
of parallelism in sparse matrix-matrix multiplication. SIAM Journal on Scientific
Computing 38, 6 (2016), C624-C651.

Ariful Azad, Georgios A Pavlopoulos, Christos A Ouzounis, Nikos C Kyrpides,
and Aydin Bulug. 2018. HipMCL: a high-performance parallel implementation of
the Markov clustering algorithm for large-scale networks. Nucleic Acids Research
46, 6 (01 2018), e33-€33.

Benjamin Brock, Aydin Bulug, and Katherine Yelick. 2019. BCL: A cross-platform
distributed data structures library. In Proceedings of the 48th International Confer-
ence on Parallel Processing. 1-10.

Aydin Bulug and John R Gilbert. 2008. On the representation and multiplication
of hypersparse matrices. In International Symposium on Parallel and Distributed
Processing. IEEE, 1-11.

Aydin Bulug and John R Gilbert. 2012. Parallel sparse matrix-matrix multiplication
and indexing: Implementation and experiments. SIAM Journal on Scientific
Computing 34, 4 (2012), C170-C191.

Aydin Bulug and John R Gilbert. 2011. The Combinatorial BLAS: Design, Imple-
mentation, and Applications. Int. J. High Perform. Comput. Appl. 25, 4 (Nov. 2011),
496-509.

Lynn Elliot Cannon. 1969. A cellular computer to implement the Kalman filter
algorithm. Ph.D. Dissertation. Montana State University-Bozeman, College of
Engineering.

(2]

(3

=

[10]

(11

442

Oguz Selvitopi, Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick, and Aydin Bulug

[12] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert van de Geijn. 2007.
Collective communication: theory, practice, and experience: Research Articles.
Concurr. Comput. : Pract. Exper. 19, 13 (2007), 1749-1783.

[13] James Demmel, David Eliahu, Armando Fox, Shoaib Kamil, Benjamin Lipshitz,

Oded Schwartz, and Omer Spillinger. 2013. Communication-optimal parallel

recursive rectangular matrix multiplication. In 27th International Symposium on

Parallel and Distributed Processing (IPDPS). IEEE, 261-272.

Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Simonyan. 2020. Fast sparse

convnets. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 14629-14638.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse GPU

Kernels for Deep Learning. In International Conference for High Performance

Computing, Networking, Storage and Analysis (SC).

Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. 2016.

LIBXSMM: accelerating small matrix multiplications by runtime code genera-

tion. In SC’16: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE, 981-991.

Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P

Sadayappan. 2019. Adaptive sparse tiling for sparse matrix multiplication. In Pro-

ceedings of the 24th Symposium on Principles and Practice of Parallel Programming.

300-314.

Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang, Zhiru

Zhang, and Yida Wang. 2020. FeatGraph: A Flexible and Efficient Backend for

Graph Neural Network Systems. In International Conference for High Performance

Computing, Networking, Storage and Analysis (SC).

Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. GE-SpMM:

General-purpose Sparse Matrix-Matrix Multiplication on GPUs for Graph Neural

Networks. In International Conference for High Performance Computing, Network-

ing, Storage and Analysis (SC).

Ramakrishnan Kannan, Grey Ballard, and Haesun Park. 2017. MPI-FAUN: an

MPI-based framework for alternating-updating nonnegative matrix factorization.

IEEE Transactions on Knowledge and Data Engineering 30, 3 (2017), 544-558.

Andrew V Knyazev. 2001. Toward the optimal preconditioned eigensolver: Locally

optimal block preconditioned conjugate gradient method. SIAM journal on

scientific computing 23, 2 (2001), 517-541.

Penporn Koanantakool, Ariful Azad, Aydin Bulug, Dmitriy Morozov, Sang-Yun

Oh, Leonid Oliker, and Katherine Yelick. 2016. Communication-avoiding parallel

sparse-dense matrix-matrix multiplication. In 30th International Parallel and

Distributed Processing Symposium (IPDPS). IEEE, 842-853.

Sureyya Emre Kurt, Aravind Sukumaran-Rajam, Fabrice Rastello, and Pon-

nuswamy Sadayappan. 2020. Efficient Tiled Sparse Matrix Multiplication through

Matrix Signatures. In International Conference for High Performance Computing,

Networking, Storage and Analysis (SC).

Grzegorz Kwasniewski, Marko Kabi¢, Maciej Besta, Joost VandeVondele, Raffaele

Solca, and Torsten Hoefler. 2019. Red-blue pebbling revisited: near optimal parallel

matrix-matrix multiplication. In International Conference for High Performance

Computing, Networking, Storage and Analysis. 1-22.

Junhong Liu, Xin He, Weifeng Liu, and Guangming Tan. 2019. Register-aware

optimizations for parallel sparse matrix—matrix multiplication. International

Journal of Parallel Programming 47, 3 (2019), 403-417.

J. Park and K. Lee. 2020. Performance Prediction of Sparse Matrix Multiplication

on a Distributed BigData Processing Environment. In 2020 IEEE International

Conference on Autonomic Computing and Self-Organizing Systems Companion

(ACSOS-C). 30-35.

Martin D Schatz, Robert A Van de Geijn, and Jack Poulson. 2016. Parallel matrix

multiplication: A systematic journey. SIAM Journal on Scientific Computing 38, 6

(2016), C748-C781.

Edgar Solomonik and James Demmel. 2011. Communication-optimal parallel 2.5D

matrix multiplication and LU factorization algorithms. In European Conference

on Parallel Processing. Springer, 90-109.

Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, Yungang Bao, and

Ninghui Sun. 2011. Fast implementation of DGEMM on Fermi GPU. In Proceedings

of 2011 International Conference for High Performance Computing, Networking,

Storage and Analysis. 1-11.

Alok Tripathy, Katherine Yelick, and Aydin Bulug. 2020. Reducing Communi-

cation in Graph Neural Network Training. In International Conference for High

Performance Computing, Networking, Storage and Analysis (SC).

R. A. Van De Geijn and J. Watts. 1997. SUMMA: scalable universal matrix

multiplication algorithm. Concurrency: Practice and Experience 9, 4 (1997), 255—

274.

Ziheng Wang. 2020. SparseRT: Accelerating Unstructured Sparsity on GPUs for

Deep Learning Inference. In 29th International Conference on Parallel Architectures

and Compilation Techniques (PACT).

Carl Yang, Aydin Bulug, and John D Owens. 2018. Design principles for sparse

matrix multiplication on the GPU. In European Conference on Parallel Processing.

Springer, 672-687.

[14]

[16

(17]

[18

[20

[21

[22

[24

[25]

[26]

~
=

[28

[29]

[33

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Parallel Algorithms
	4.1 A-Stationary algorithms
	4.2 C-Stationary algorithms

	5 Implementation
	5.1 Collective-Based Implementations
	5.2 RDMA-Based Implementations

	6 Evaluation
	6.1 Setup
	6.2 Local SpMM benchmarks
	6.3 Communication orchestration
	6.4 Runtime of parallel SpMM algorithms
	6.5 Performance analysis of bulk-synchronous algorithms

	7 Highlights
	8 Conclusions
	References

