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Abstract

To achieve a holistic view of the underlying mechanisms of human diseases, the biomedical
research community is moving toward harvesting retrospective data available in Electronic
Healthcare Records (EHRs). The first step for causal understanding is to perform association
tests between types of potentially high-dimensional biomedical data, such as genetic, blood
biomarkers, and imaging data. To obtain a reasonable power, current methods require a
substantial sample size of individuals with both data modalities. This prevents researchers from
using much larger EHR samples that include individuals with at least one data type, limits
the power of the association test, and may result in higher false discovery rate. We present a
new method called the Semi-paired Association Test (SAT) that makes use of both paired and
unpaired data. In contrast to classical approaches, incorporating unpaired data allows SAT to
produce better control of false discovery and, under some conditions, improve the association
test power. We study the properties of SAT theoretically and empirically, through simulations
and application to real studies in the context of Chronic Obstructive Pulmonary Disease. Our
method identifies an association between the high-dimensional characterization of Computed
Tomography (CT) chest images and blood biomarkers as well as the expression of dozens of
genes involved in the immune system.

ncreasingly, data from Electronic Health Records (EHRs) in hospitals are becoming available
to clinical researchers. Such massive collections contain various types of data from sources
such as high-resolution imaging, genome sequencing, and physiological metrics. By studying such
a large and diverse data, researchers can provide a holistic view of the underlying mechanisms of
human diseases. For example, while a large proportion of human diseases are influenced by genetic
variants [143], their mechanisms are not well understood [4H6]. To understand the mechanism,
measuring other variables such as gene expression is required. Unfortunately, it is unlikely that
all patients in the EHR have all measurement modalities. For example, due to the high cost of
image acquisition and specimen maintenance, hospitals order those only when they are needed.
Consequently, only the record of a few patients contains all data modalities, which reduces the
power of association tests and increases the chance of false discovery.
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Figure 1: X and Y represent two modalities. Current approaches only use paired data {x;,y;}" ;.
Assuming that the total number of samples of X (M) and Y (V) is more than the paired data,
we aim to find out how the control of the false discovery and the power of association tests can be
improved by the unpaired data {x;}}, ; and {y;}}*, ;.

Furthermore, a multidimensional phenotype can offer better sensitivity to the clinical and ge-
netic underpinning of human diseases than a one-dimensional scalar phenotype [7H9|. For instance,
high-dimensional features can be computed to summarize the folding pattern of the brain struc-
ture in Magnetic Resonance (MR) imaging [10], or the texture and distribution of the lung tissue
destruction can be measured and summarized by Computed Tomography (CT) imaging [11}/12].
Those metrics are highly predictive of the diseases (e.g., Alzheimer’s disease [9}/13] and bipolar
disorder [14}/15] for MR, and COPD [12] for CT). Relating that high-dimensional phenotype to
genetic and genomic measurements provides more evidence for understanding the etiology of the
disease.

In this paper, we present a new method to formally test the association between two types of
potentially high-dimensional data that allows incorporating unpaired samples, i.e., samples with one
data modality (see Fig. for a schematic illustration). Our approach provides better control of false-
positive and, under some mild assumptions, increases the statistical power of the test. Unpaired data
enables us to better estimate the null distribution, which results in more accurate control of the false
positive rate. Furthermore, it allows us to leverage the underlying structure of the high-dimensional
measurements, which consequently increases the power of the test. The proposed method, the Semi-
paired Association Test (SAT), falls in the kernel machine framework [16-25]. More specifically,
two variants of our method generalize the Variance Component Score Test (VCST) [16/20] and
the Kernel Independent Test (KIT) [21H25] such that they can exploit unpaired data. The VCST
is commonly used to test for heritability of a phenotype [16H20] and is implemented in popular
software such as GCTA [26]. The KIT is widely used for statistical independence test in various
scenarios [22}[25/27,/28]. We provide a connection between those methods. Our proposed test
makes unpaired data, previously wasted, available for discovering novel associations in massive
uncontrolled datasets such as EHRs. Unearthing unnoticed associations assists in understanding
the underlying mechanism of human diseases.

This paper makes two contributions. First, it provides a statistically grounded method for the
inclusion of unpaired data. The extensive simulation, as well as theoretical study, supports the
hypothesis that the unpaired data is beneficial to control the false discovery and if the conditions
are satisfied, can improve the power. Second, we apply our method to two different real studies.
In the first experiment, we show that unpaired data can discover a new association between the



high-dimensional radiographic measurements of Chronic Obstructive Pulmonary Disease (COPD)
and peripheral blood biomarkers that play a role in the immune system. In this dataset, only
a subset of the cohort has blood samples. In the second experiment, we apply our approach to
genotype-phenotype data from the General Population Cohort from Uganda [29]. In this dataset,
all subjects have genotype data but only one-fourth of them have phenotypes. Our method is able
to find more heritable phenotypes.

Results

Theoretical Framework

We propose a method to test the association between two potentially high dimensional datasets.
In addition to paired data, our method is able to exploit unpaired data, meaning the data from
subjects that have only one modality. One can view the distance between the joint distribution and
the product of the marginals as the strength of the association. To test association formally, the
null distribution for the distance should be estimated. Our first theorem (Theorem |1)) shows that
the null distribution can be estimated more accurately using unpaired data. Hence, our method
results in better control of the type I error. In addition to type I error, we show, in Theorem 2] that
power can be improved if the data (of at least one modality) live on a lower dimensional space. Such
an assumption is mostly the case for real data. For example, previous studies have shown that the
space of Magnetic Resonance images of the brain can be modeled by a relatively low-dimensional
manifold [30H32]. A similar assumption has been explored to model the low-dimensional space
of gene expression for single-cell expression analysis [33}/34]. Unpaired data help us to estimate
the low-dimensional space more accurately. Our new test statistic, which is a random variable
calculated from sample data, exploits the low-dimensional assumption by taking advantage of the
unpaired data.

Our method, the Semi-paired Association Test (SAT), generalizes two popular methods for
association testing, the Variance Component Score Test (VCST) and the Kernel Independent Test
(KIT), which are commonly used in statistical genetics to test the heritability of traits |17,/20] or
gene-level associations [19}/28,35]. More specifically, a variant of our method, SAT-fx, generalizes
the VCST, which assumes that one of the modalities is not a random variable (i.e., fixed). For
example in heritability analysis, the effect size is random but the genotype is given. The second
variant, SAT-rx, generalizes KIT, which assumes that both modalities are random variables.

Simulation Results

To evaluate our method’s improvement of type I and type II errors, we mimic the data missingness
mechanism by conducting two levels of simulations:

i We synthesize both X and Y. In this simulation, we evaluate both variants of our method,
including SAT-fx and SAT-rx.

ii Following the literature of population genetics in which testing for the heritability of traits is
a topic of interest, we use genotype data as X and synthesize Y. We only evaluate SAT-fx
because the genotype data is fixed.

In simulation (i), to generate X, we first generate N low-dimensional (dim=10) data points from
a Gaussian distribution and then map them to high-dimensional X using a linear transformation
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Figure 2: Evaluation of SAT-rx type I error rate control on the simulated data generated by
procedure (i) in the random X setting. The blue line (KIT) is the result of using only paired data;
hence it does not change with addition of unpaired data. KIT only uses the n = 100 paired data
points. Our methods (green and orange) start with n pairs and gradually adds unpaired data to
improve type I error control. False-positive rates for both variants of our method SAT-rx are well
controlled around the nominal value (DR:Dimension Reduction).

plus independent Gaussian noise. To generate Y, we first generate low-dimensional data according
to the variance components model (see Eq. in the Method section) and then map them to
high-dimensional Y using another linear transformation plus independent Gaussian noise.

In simulation (ii), we use the real genotype data from the COPDGene cohort as X. COPDGene
is a multi-centered study of the genetic epidemiology of Chronic Obstructive Pulmonary Disease
(COPD) that enrolled individuals aged 45-80 years with at least a 10 pack-year history of smoking
[36]. We generate Y using the same procedure used in simulation (i).

In all the simulations, we create 1000 simulation replicates to evaluate the type I error rate and
test power. Type I error rates and powers are calculated using the percentage of p-values smaller
than a given significance level (o« = 0.05) under null models and alternative models, respectively.
We set the heritability h? = 0 for the evaluation of type I error rates and h? = 0.1 for the evaluation
of power. To show the benefits of incorporating unpaired data, we compare the type I errors of
the VCST/KIT as a baseline with two variants of both SAT-fx and SAT-rx: with and without
Dimensionality Reduction (DR). VCST and KIT only use n paired data points, while SAT-fx and
SAT-rx use n paired data points together with an additional N — n unpaired data points. For
evaluation, we have access to the oracle where we can apply VCST and KIT using all N data
points as paired, which is the best we can achieve. We set n = 100 for simulation (i) and n = 3000
for simulation (ii).

Fig. |2/ and Fig. [3| report the type I error rates and power in simulation (i), respectively. Here
we only show results for random X. The results for fixed X have similar trends and are available
in Section S1 of the Supplementary Information. The results in Fig. |2[ demonstrate that the type
I error rates of our proposed method approach the predefined significance level (0.05) as we add
more unpaired data. In addition, Fig. |3|shows that our method’s test power increases when adding
unpaired data. Though our method has lower power than the oracle method which has access to all
the paired data, it consistently outperforms the baseline KIT method that uses only paired data.

Fig. and Fig. report the type I error rates and powers of all the methods evaluated
in simulation (ii). Again, we can see from Fig. that the type I error rates of our proposed
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Figure 3: Evaluation of SAT-rx test power on the simulated data generated by procedure (i) in
the random X setting (DR:Dimension Reduction). The results for heritability values h? = 0.1 and
dimensionality dim(X) = dim(Y") = 50,100, 200 are shown. KIT only uses the n = 100 paired data
points. Our methods start with n pairs and gradually add unpaired data to improve test power.
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Figure 4: Evaluation of SAT-fx type I error rate control on the data generated in simulation (ii).
VCST only uses the n = 3000 paired data points. Our method SAT-fx starts with n pairs and
gradually adds unpaired data to improve type I error control.

methods approach the significance level (0.05) as we add more unpaired data. However, because
the dimensionality of the genotype is very high, the test is still very conservative even after adding
unpaired data. Nevertheless, our method’s power exceeds that of VCST and increases as we add
unpaired data.

COPD: Imaging Data and Peripheral Blood Biomarkers

In this experiment, we investigate whether the high-dimensional radiographical measurement from
Computed Tomography (CT) imaging is associated with peripheral blood biomarker signature of
emphysema. COPD is a highly heterogeneous disease and involves many subprocesses, including
emphysema . CT imaging is increasingly used for emphysema diagnosis because it directly
characterizes anatomical variation introduced by the disease . Currently, Low Attenuation Area
(LAA) is used to quantify the emphysema [39,40]. However, LAA is based on a single intensity
threshold value and cannot characterize variation in the texture of the lung parenchyma due to
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Figure 5: Evaluation of SAT-fx test power on the data generated in simulation (ii). VCST only
uses the n = 3000 paired data points. Our method SAT-fx starts with n pairs and gradually adds
unpaired data to improve test power.

different disease subtypes [41]. Over the past year, researchers have proposed various generic
and specific local image descriptors that extract higher order statistical features from CT images
[11/42,|43]. However, it is not clear whether such high-dimensional measurements are considered
phenotypes, and whether the relationship to the causal biological processes is maintained.

We test the association between one of these multidimensional phenotypes and peripheral blood
biomarkers. We use the method proposed by Schabdach et al. [11] that computes the similarity
between 4629 patients and associates a 100-dimensional vector to each patient (see Supplementary
Section S5 for details). Only 377 patients have both the blood biomarker and imaging data. We
correct for the effects of covariates including age, sex, BMI (body mass index), and pack-year
smoking history. Fig. [6] (a) reports the —log,,(p-value) of different methods with respect to size
of the unpaired imaging data. The results show that our method takes advantage of unpaired data
and detects an association between high-dimensional imaging phenotypes and blood biomarkers
that was not detected by the baseline method using only paired data.

COPD: Imaging Data and Peripheral Blood Genes

Although smoking is a major risk factor for COPD, not all smokers develop debilitating disease,
which suggests that COPD is a systemic disease and other factors might be involved in its develop-
ment. Bahr et al. identified a set of genes whose expression is associated with two measurements
used to diagnose COPD: percent predicted Forced Expiratory Volume in one second (FEV1) and the
ratio of FEV1 to forced vital capacity (FEV1/FVC) [44]. These genes in Peripheral Blood Mononu-
clear Cells (PBMC) play a role in the immune system, inflammatory responses, and sphingolipid
metabolism. Similar to the previous experiment, we investigate whether the multidimensional imag-
ing phenotype is associated with systemic measurements. In this dataset, 90 subjects have both
phenotype and gene expression measurements while more than 4539 subjects only have imaging
phenotypes. We use the same covariates as the previous experiment. Fig. |§| (b) shows that our
method exploits the unpaired data and results in lower p-values, suggesting an association between
the imaging phenotypes and PBMC gene expression (p-value < 0.05) while the p-values of the
baseline method using only paired data fails to pass the significance level.
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Figure 6: Experiments on three real imaging and genetics datasets. (a) Test an association between
multidimensional imaging features and plasma biomarkers. (b) Test an association between imag-
ing features and peripheral blood mononuclear cell gene expression data. (c) Test an association
between imaging features and gene expression of genes in immune system pathway of the disease.
In all the experiments, we start with n paired data points and show the behavior of our methods
when adding unpaired data, with and without dimensionality reduction (DR).

COPD: Imaging Data and Immune System Gene Expression

In this experiment, we apply our method again in the context of COPD but on a different dataset.
We investigate the hypothesis that anatomical changes manifested on images are related to auto
immune pathways. More specifically, we chose the “immune disease” and “immune system” gene
pathways in the KEGG database [45]. We apply our method to imaging phenotypes and gene
expression data containing 319 subjects from several sources (gene expression data from the GEO
repository, imaging and clinical information from the Lung Genomics Research Consortium) [46].
Because only 60 patients have imaging phenotypes, we have a number of unpaired gene expression
data. We compare our method with the baseline method that does not use the unpaired gene
data and the results are shown in Fig. |§| (¢). We can see that our method finds more significant
associations as we add more unpaired data.

Heritable Phenotype Discovery

In this section, we use the General Population Cohort (CPC), Uganda [29], to establish genotype-
phenotype associations in Genome-Wide Association Studies (GWAS), and show that our method
can benefit from unpaired data.

GWAS have discovered many genetic risk variants of common diseases [2,/3]. Before performing
GWAS, one should test the hypothesis that a given phenotype is “heritable” or not. Given the
observation of a phenotype in a population of subjects, so-called narrow sense heritability is defined
as an additive genetic portion of the phenotypic variance [47,/48]. A linear mixed model (LMM),
which is a form of multivariate regression, is used to estimate the heritability (h?). Testing for the
null hypothesis of Hg : h? = 0 can be done using VCST and the power of the test is affected by the
sample size.

We apply our method to study the heritability of a set of phenotypes from the General Population
Cohort (GPC), Uganda. More specifically, it contains 37 phenotypes, including anthropometric



Table 1: P-values on Uganda General Population Cohort. The newly found associations by our
method at the significance level 0.05 are marked as bold. Since we mimic the missingness for
phenotypes in the top part of the table, we are able to compare our performance with the oracle.
In the bottom part of the table, a subset of the subjects has a missing phenotype; hence, the oracle
columns are empty.

KIT SAT-rx (w/o DR) SAT-rx Oracle
p-value p-value p-value p-value
p-value (Bonf) p-value (Bonf) p-value (Bonf) p-value (Bonf)
SBP 0.293 1.000 0.224 1.000 0.128 0.897 0.010 0.195
DBP 0.091 0.928 0.031 0.537 7.25e-03 0.138 < 1.00e-05 < 1.90e-04
BMI 0.101 0.907 0.035 0.528 0.011 0.214 < 1.00e-05 < 1.90e-04
WHR 0.249 1.000 0.171 0.901 0.119 0.810 0.033 0.630
Weight 0.057 0.819 0.012 0.235 1.63e-03 0.031 < 1.00e-05 < 1.90e-04
Height 0.031 0.532 3.81e-03 0.072 1.74e-04 3.31e-03 < 1.00e-05 < 1.90e-04
HC 0.095 0.930 0.031 0.503 0.010 0.196 < 1.00e-05 < 1.90e-04
wC 0.127 0.928 0.057 0.662 0.022 0.345 1.20e-05 2.28e-04
ALT 0.204 0.920 0.172 0.646 0.106 0.617 1.76e-03 0.033
Albumin 0.117 0.983 0.046 0.593 0.024 0.395 < 1.00e-05 < 1.90e-04
ALP 0.442 1.000 0.419 1.000 0.318 1.000 0.261 1.000
AST 0.293 1.000 0.322 1.000 0.276 0.875 0.187 1.000
Bilirubin 0.046 0.629 0.027 0.390 8.43e-03 0.160 < 1.00e-05 < 1.90e-04
Cholesterol 0.024 0.448 2.25e-03 0.043 1.96e-04 3.72e-03 < 1.00e-05 < 1.90e-04
GGT 0.307 1.000 0.290 0.801 0.265 0.800 0.039 0.734
HDL 0.063 0.717 0.017 0.326 4.76e-03 0.090 < 1.00e-05 < 1.90e-04
LDL 0.012 0.222 6.10e-04 0.012 2.20e-05 4.18e-04 < 1.00e-05 < 1.90e-04
Triglycerides 0.242 1.000 0.164 1.000 0.126 0.880 6.76e-04 0.013
HbAlc2 6.23e-03 0.118 3.66e-04 6.95e-03 1.80e-05 3.42e-04 < 1.00e-05 < 1.90e-04
WBC 6.95e-03 0.139 < 1.00e-05 < 2.00e-04 | < 1.00e-05 < 2.00e-04
RBC 0.011 0.219 4.40e-05 8.80e-04 < 1.00e-05 < 2.00e-04
Hemoglobin 0.041 0.815 1.18e-03 2.36e-02 1.40e-05 2.80e-04
HCT 0.025 0.508 3.36e-04 6.72e-03 < 1.00e-05 < 2.00e-04
MCV 1.47e-03 0.029 < 1.00e-05 < 2.00e-04 | < 1.00e-05 < 2.00e-04
MCH 2.50e-03 0.050 < 1.00e-05 < 2.00e-04 | < 1.00e-05 < 2.00e-04
MCHC <1.00e-05 <2.00e-04 | < 1.00e-05 < 2.00e-04 | < 1.00e-05 < 2.00e-04
RDW 6.70e-03 0.134 < 1.00e-05 < 2.00e-04 | < 1.00e-05 < 2.00e-04
PLT 3.00e-03 0.060 < 1.00e-05 < 2.00e-04 | < 1.00e-05 < 2.00e-04
MPV 1.00e-05 2.00e-04 | < 1.00e-05 < 2.00e-04 | < 1.00e-05 < 2.00e-04
NEUPr 0.015 0.304 7.80e-05 1.56e-03 < 1.00e-05 < 2.00e-04
LYMPHPr 3.30e-03 0.066 < 1.00e-05 < 2.00e-04 | < 1.00e-05 < 2.00e-04
MONOPr 7.48e-03 0.150 < 1.00e-05 < 2.00e-04 | < 1.00e-05 < 2.00e-04
EOSPr 1.13e-01 1.000 0.017 0.331 7.08e-04 0.014
BASOPr 9.60e-04 0.019 < 1.00e-05 < 2.00e-04 | < 1.00e-05 < 2.00e-04
LYMPH 4.10e-04 0.008 < 1.00e-05 < 2.00e-04 | < 1.00e-05 < 2.00e-04
NEU 0.062 1.000 3.31e-03 0.066 6.00e-05 1.20e-03
MONO 0.012 0.236 2.40e-05 4.80e-04 < 1.00e-05 < 2.00e-04
EOS 0.212 1.000 0.080 1.000 6.78e-03 0.136
BASO 1.20e-05 2.40e-04 | < 1.00e-05 < 2.00e-04 | < 1.00e-05 < 2.00e-04




indices, blood factors, glycemic control, blood pressure, lipid tests, and liver function tests (see the
complete list of phenotypes in Supplementary section S6). Initially, 5000 individuals were genotyped
using the [llumina HumanOmni 2.5M BeadChip array, out of which 4778 samples pass the quality
control. We follow Heckerman et al. [49] exactly for quality control including the Hardy-Weinberg
equilibrium (HWE) test, exclusion of Single Nucleotide Polymorphisms (SNPs) with low Minor
Allele Frequency (MAF), and computation of the related matrix.

Among all the phenotypes, 18 phenotypes were measured for all the subjects, while the remaining
19 phenotypes were recorded for only 1423 subjects. Thus we conduct two sets of experiments for
these two sets of phenotypes. For the 18 phenotypes measured for all individuals, we conduct
experiments to mimic the random missingness of phenotypes. We subsample 3000 individuals as
unpaired data and allocate the rest as paired data. We compare the p-values of the KIT as a baseline
with two variants of SAT-rx, with and without dimensionality reduction. In this experiment, we
are mimicking the missingness, hence we have access to the oracle, i.e., applying KIT using all data
as paired, which is the best we can achieve and which we also compare with our method. The upper
half of Table[I]reports the p-values generated by different methods for all evaluated phenotypes. We
can see that the oracle produces much smaller p-values in general, while the baseline KIT method
can hardly find significant associations. Our SAT-rx method clearly outperforms the KIT method
and approaches the performance of the oracle on some phenotypes. Among the 18 phenotypes, our
method finds 5 more heritable phenotypes than the baseline method at significance level 0.05.

For the other 19 phenotypes, 1415 individuals have both genotype and phenotype values, and
the remaining individuals are considered unpaired (only genotype). We compare the p-values of the
KIT as a baseline with two variants of SAT-rx, with and without dimensionality reduction. The
lower half of Table [I| reports the p-values for all methods evaluated on these phenotypes. Among
the 19 phenotypes, our method identifies 12 more heritable phenotypes than the baseline method
at significance level 0.05.

Discussion

Establishing the associations between various types of biomedical variables is essential for an under-
standing of disease mechanisms. When the biomedical variables are high dimensional, for example
SNPs and imaging phenotypes, a huge sample size is required to guarantee enough statistical power.
Also, a small sample size increases the chance of false discovery. However, due to the high cost of
data collection, the available sample size is typically not sufficiently large, and the missingness in the
data can cause a further reduction of sample size. To alleviate that problem, the biomedical research
community is increasingly turning toward other sources (e.g., EHRs) where a massive amount of
data is available. However, there is no guarantee that all subjects have all data modalities.

Here we address one type of missingness that frequently happens in the current association
testing. When studying the relationships between two variables, one problem researchers usually
encounter is that many data points have observations of only one variable (unpaired data), because
the data for these variables may be collected initially for other purposes. We aim at being less
“wasteful” by exploiting data points that have this type of missingness. Our method is based
on a technical assumption that the data missing mechanism is independent of the association
relationship, i.e., missing completely at random (MCAR). If this assumption is violated (e.g., we
are only given biased paired data), our method cannot recover the original association. A future
direction could be to extend our method to deal with more general missing mechanisms. Another
primary assumption is that the distributions of the paired and unpaired data points are the same.



For example, our method cannot be directly applied if gene expression data in the paired samples
is collected by one platform while unpaired data is collected using a different platform. In this
case, pre-processing is required to ensure that the platform bias is removed and the marginals of
the paired and unpaired data are the same.

Although we showed the applicability of our method for univariate phenotypes (Table , the
main focus of this paper is on multivariate phenotypes [10,50]. Multivariate phenotypes provide
more information than univariate ones, especially to study complicated phenomena such as the
effect of cortical brain folding on the onset and progression of neurological diseases [9}/14,51] and
morphological traits in evolutionary biology [52]. Unpaired data enables us to discover the linear
or non-linear relationship between variables in the multivariate phenotype.

Our method can take advantage of the unpaired data in two ways. First, our method improves
the null distribution estimation by using unpaired data, which offers better control of the false
discovery rate. As shown in Theorem 1, the estimation error of the null distribution depends on the
total sample size, suggesting that incorporating unpaired data can readily improve the estimation
of the null distribution. Second, we construct a new test statistic that explores the low-dimensional
structure from unpaired data. We showed that under mild conditions, the new test has higher
test power. It is worth noting that higher power can only be obtained if at least one type of data
has a low-dimensional structure. Otherwise, our method can possibly have lower power than the
baseline methods due to the removal of useful information. The low-dimensional assumption is a
reasonable assumption for a multivariate phenotype. Measurements from highly structured data
such as imaging are usually modeled as data points on a low dimensional manifold. For example,
Gerber et al. |31] constructed a low dimensional brain manifold to study clinical variables such as
age. Schabdach et al. [11] used manifold learning techniques to model information extracted from
CT images of the lungs and showed that the low dimensional representation is highly correlated
with the severity of the disease. Shi et al. 53] assumed gene expression data lay on a manifold and
used a nonlinear dimensionality reduction method to capture biologically relevant structures in the
data.

Our approach is closely related to the linear mixed effect model. The model is widely applied in
statistical genetics to estimate the additive genetic effects of a univariate phenotype. Discovering
a non-linear effect requires a much larger sample size, which might not be practical in terms of
collecting enough data, at least when working with genotype data. However, there is no limitation
in our approach’s ability to account for non-linear effects for other types of data. The linear effect
assumption is equivalent to using linear kernels; different choices of the kernels (e.g., Radial Basis
Function) can model non-linear effects. While the definition of heritability is well-defined for a
univariate phenotype, it is less clear for a multivariate phenotype. We adopted the notion proposed
by Ge et al. [10] (see Eq. . Their definition has several advantages. First, it is nicely connected
to the mixed effect model and generalizes univariate heritability. Second, it allows us to incorporate
unpaired data and derive the null distribution, which is required to compute the p-value efficiently,
due to a mathematically appealing link with KIT and VCST. Deriving the null distribution for
other definitions of multivariate heritability while incorporating the unpaired data (e.g., Zhou et
al. [54]) is not as straightforward.

We conducted intensive simulation studies, evaluating various aspects of our proposed method.
We generated synthetic data using the linear mixed effect model. To distinguish between SAT-fx
and SAT-rx, we fix X in all the iterations for evaluating SAT-fx and randomly generate X in each
replication for evaluating SAT-rx. Also, we provided a more practical simulation that uses real
genotype data as X and only synthesizes Y. We set the heritability level (h?) to 10%, which is a
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modest heritability value. The higher values of h? are less challenging than h%2 = 0.1 since the X and
Y are more strongly related. The results in all the simulations demonstrate that our method better
controls the type I error and has higher power than the baseline methods that ignore unpaired data.
Fig. 4| suggests that when the dimensionality of X is large (e.g., X is genotype data) and the effect
size is modest, our method controls the type I error conservatively and requires a larger sample size
to reach the nominal level of type I error (i.e., 5%). Nevertheless, Fig. [5| shows that the gain in
power using unpaired data is significant.

We also applied our method to the multivariate phenotype extracted from lung CT scans of
patients with COPD. Two significant components of COPD are airway remodeling and alveolar
destruction (emphysema) [55,/56]. Many pathogenic processes, such as chronic inflammation, con-
tribute to the disease or cause anatomical variation [57,[58]. There is some evidence that the
inflammatory process [58] and autoimmune response [59] are involved in emphysema. Researchers
showed an association between various molecular signatures for COPD and emphysema in the pe-
ripheral blood mononuclear cells (PBMCs) [44,/60]. For example, Bowler et al. [60] investigated
whether Interleukin-16, which is associated with autoimmune disease, is associated with COPD.
Carolan et al. [61,/62] investigated the association of various blood biomarkers (e.g., adiponectin)
with clinical and radiologic COPD phenotypes. However, those studies used FEV1 or LAA as
surrogates for the disease severity, both of which are aggregate measures and cannot characterize
a subprocess involved in the disease. For example, LAA is insufficient to distinguish emphysema
visual subtypes because it merely counts the number of pixels in the lung region of CT images with
intensity values lower than a single threshold. Since more sophisticated imaging descriptors (e.g.,
texture) are shown to be effective for emphysema sub-typing [63H65], we hypothesize that such de-
scriptors are also associated with the systemic characterization of the disease such as PBMCs and
gene expression. In this paper, we used a previously developed method |11] that uses image texture
and intensity value and constructs a multivariate vector for each patient. The patient vector is
shown to be more potent than LAA to characterize the disease severity [11]. We also construct a
multivariate phenotype from rather traditional imaging measurements shown to be informative in
previous studies [46]. We study the relationship between the imaging phenotype with the various
blood measurements that are correlated with the activities of the immune system. Figure [6] reports
that the classical approach in both experiments cannot detect the dependence while our method
can. It is important to note that we test the dependency between a group of genes involved in
the immune pathway, and our method does not identify specific causal genes contributing to the
destruction of the tissue, which needs further investigation.

When computing the test statistic, our method adds additional computational load compared to
the baselines VCST and KIT, due to the eigendecomposition of the kernel matrix on the paired and
unpaired data. We generated samples from the null distribution to calculate p-values for both the
baseline methods and our method, which is computationally expensive if a high precision p-value is
required. Methods such as gamma approximation can be used to speed up the computation, which
will of course introduce approximation errors.

Method

In this section, we first give a brief review of the variance component score test (VCST) and the
kernel independence test (KIT). We then discuss the connections between them and show that the
differences between them lead to different ways to utilize unpaired data. Finally, we detail our SAT
method by demonstrating how unpaired data can be incorporated to improve both VCST and KIT.
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Variance Component Score Test (VCST)

We start with the variance component model (a.k.a. the random effect model), which is widely used
in statistical genetics for genetic association studies [10,/16.26}/66]. We use the same nomenclature
where Y € RP is a p-dimensional phenotype and X € R? is genotype. However, our method is
general and can be applied elsewhere. Given a paired sample containing n observations {y;,x;}™ ;,
we consider the following multidimensional variance component model [10]:

Yik = Wik + gr(Xi) + €igs (1)

where y;; is the k-th element of y;, gi is a nonparametric function in a reproducing kernel Hilbert
space (RKHS) associated with kernel k(x,x’) = (¢(x), (x')), wix is the offset term, and €, is the
error term. can be rewritten in matrix form:

Y=p+G+e, (2)

where Y € R™*P is the phenotypic matrix of the n observations (subjects) with i-th row y7,
pw=(p1,...,pp) ®1, is a matrix of offsets (1,, is an n x 1 vector of ones), G € R™*P is the matrix
of the aggregate genetic effects, and € € R™*P is a matrix of residual effects. We have the following
distributional assumptions:

vee(G) ~N(0,X, ® K), vec(e) ~N (0,2 ®1,), (3)

where vec(+) is the matrix vectorization operator that converts a matrix into a vector by stacking
its columns, ® is the Kronecker product of matrices, I,, denotes an n x n identity matrix, 3, is
the genetic covariance matrix, ¥, is the residual covariance matrix, and K is the kernel matrix
with ij-th element [K];; = k(x;,x;). For example, in the context of statistical genetics, K denotes
identity-by-state (IBS) kernel [17,/67,68|, where [K];; represents the relatedness between individual
7 and j.

To test whether Y and X are associated (whether Y is heritable if X is the genotype), we can
test the variance components as Ho : tr(3,) = 0 versus H; : tr(X,) > 0 using the following score
test statistic derived from model :

Sn(K,L) = %tr(KHnLHn) - %tr(HnL)tr(HnK), (4)

where tr(-) computes the trace of a matrix, L = Yﬁ;QYT and H,, = I, — 11,17, and Sy is
the empirical covariance matrix of Y. The derivation details are provided in the Supplementary
Information. The exact fraction of phenotype variability attributed to genetic variation is defined as
heritability. There are various ways to define heritability for a multivariate phenotype (e.g., [LO454]).
We adopt the definition by Ge et al. [10| that closely related to the VCST and subsumes the

definition of the heritability for the univariate phenotype, which can be calculated as follows [10]:

tr(Xy)

R = tr(2,) + tr(e)

(5)

Kernel Independence Test (KIT)

Kernel independence tests are a class of nonparametric methods which are also widely used for
genetic association studies [22|28]. Here we briefly review the Hilbert-Schmidt Independence Crite-
rion (HSIC)-based independence test [22], which provides a general framework for many association
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tests [25]. Let F, be a RKHS associated with the kernel function I(y,y’) = (¥(y),¥(y’)). HSIC
tests Ho : Py x = PxPy versus H; : Py x # PxPy by testing Ho : I = 0 versus H;y : I > 0, where
I is defined as follows:

I =ExyExny [k(X, X)(Y,Y")] + ExEx-EyEy [k(X, X)I(Y,Y")]
— 2Exy [Ex [k(X, X)|Ey [[(Y,Y")]]. (6)

Given paired data of n subjects, an unbiased estimator of I is the following [69]:

. 1 _ . 1TK1,17L1, 217KL1,
LKL = gl R+ O e ) ~ T2 ™

where K = K—diag(K) and similarly for L and L;; = l(yi,y;)- To test for statistical independence,
_— 2
one can use characteristic kernels, e.g., the radial basis function K;; = exp (”"(j%”), such that I

can be zero only when X and Y are independent [70].

Connections between VCST and KIT

Now we discuss the similarities and differences between VCST and KIT. Supplementary Table 2
displays the test statistics and null distributions of VCST and KIT.
Test statistic It can be seen from Supplementary Table 2 that the biased statistics of VCST and

KIT are identical to each other, if setting ¢ (y) = ﬁ;ly. The unbiased test statistics of VCST and
KIT differ. This is because VCST tests for random effects but assumes that the covariate inducing
the random effect (X) and the corresponding kernel matrix (K) are fixed while KIT assumes X is
random, leading to different ways to correct for the bias.

Null distribution Let n; (7);) be the eigenvalues (empirical) of the covariance of ¢(X) and let
i (;\]) be the eigenvalues (empirical) of the covariance of ¥(Y). As shown in Table ??, the null
distributions for VCST and KIT have exactly the same forms, except that VCST uses 1); while KIT
uses 7;. This is also because of their respective fixed or random X assumptions. In practice, because
A; and n; are both unknown, we need to replace them with \; and 7;. Therefore, the empirical null
distributions of VCST and KIT are identical if only given n paired examples. However, they are
inherently different because the null distribution of KIT is derived from asymptotic theory, while
the null distribution of VCST is derived from the Gaussian error terms in the variance component
model . This subtle difference is significant when using unpaired data, which is described as
follows.

Unpaired data The main difference between VCST and KIT is that X (K) is considered fixed
or random respectively. When given unpaired data, VCST cannot make use of the unpaired data
of X due to the fixed X assumption, while KIT can benefit from unpaired data of both X and Y.
More specifically, unpaired data can only be used to improve the estimation of A\; in VCST but
they can be used to improve the estimation of both 7; and A; in KIT.

Semi-paired Association Test

In this section, we present our SAT method that incorporates unpaired data to improve test power.
In addition to the n paired data, suppose we also have access to an unpaired sample {x;}¥ 41 and
an unpaired sample {y;}}£ +1- Without loss of generality, we assume N = M and replace M with
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N for notational simplicity. We will show two ways that unpaired data can improve the association
test: 1) better control of type I error by improving the estimation of null distributions and 2)
improved test power by devising a new test statistic under the intrinsic low-dimension assumption
of high-dimensional data. We show how unpaired data are used for both VCST and KIT, resulting
in two variants of our method, SAT-fx and SAT-rx.

Enhancing Type I Error Control. To calculate p-values, we need to estimate the parameters
A; and 7; in the null distributions from empirical data. Because A; and 7n; are the eigenvalues of
the covariance of ¥(Y) and ¢(X), respectively, the estimation does not require paired ¥ and X
examples. Therefore, we can readily make use of unpaired data to obtain more accurate estimation
of \; or 7; involved in the null distribution.

For SAT-fx, we add unpaired Y data to estimate the covariance of ¥(Y") and its eigenvalues \;
from both paired and unpaired data {y;}¥,, while n; should be estimated from only {x;}? ; in the
paired sample. For SAT-rx, we can further incorporate unpaired X data and use all the X data
{x:}X, to estimate 7;.

The following theorem shows that 1) the empirical null distribution convergences to the true
(asymptotic) distribution and 2) the variance of the empirical null distribution converges to the
variance of the true (asymptotic) null distribution with rate 1/y/m, where m is the sample size of
available data for estimating A; and n;.

Theorem 1 (Informal). Let I = DIy Z;il )\mjgz,?j —1) and I,,, = Y Z;nzl Xzﬁj(zfj -1).

1) As m — oo, I, converges in distribution to I. §
2) For all Pxy, E(I,,) = E(I) and V(I,,) converges in probability to V(I) with rate 1//m.

The theorem is developed for SAT-rx and a similar theorem for SAT-fx can be considered as a
special case of the above theorem. From the theorem, we can see that if only using paired data,
m = n; if further using unpaired data, m = N. Because N > n, incorporating unpaired data to
estimate \; and 7; leads to lower estimation error and provides more accurate estimation of the
null distribution. The proof details of Theorem [l| are given in Section 6 of the Supplementary
Information.

Improving Test Power Unpaired data contribute to a better estimation of the null distri-
bution, resulting in better control of type I error. It can also improve test power. Specifically, if
X or Y data (approximately) lie in a low-dimensional space, we show that unpaired data can be
used to construct a new test statistic with improved test power. To devise the new test statistics,
we first learn the low-dimensional space of X or Y by applying the kernel Principal Component
Analysis (PCA) algorithm on both paired and unpaired data. Second, we project the paired data
to the learned low-dimensional space and obtain the test statistics of our SAT-fx and SAT-rx by
estimating the test statistics of VCST and KIT on the projected data. Due to the use of the kernel
trick, calculating the test statistic of SAT-fx and SAT-rx requires only the kernel matrices Ky and
Ly which are calculated on all the data, paired and unpaired.

In SAT-fx, because we do not consider X as random as does VCST, we can only incorporate
unpaired Y data to learn the low-dimensional structure of Y. In SAT-rx, we further use unpaired
data X to learn the low-dimensional space of X. The proposed new test statistics of SAT-fx and
SAT-rx have the same form as that of VCST (4)) and KIT , respectively. We only need to change
the kernel matrices in the test statistics. Specifically, the new test statistic for SAT-fx is defined as
S, (K, L), where

L' =LTUA,'UTL. (8)
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In L/, L is the matrix comprised of the first n columns of Ly, U = (uy,---,u,,) and Ay =

diag(jq, -+« , Ary ) are the top ry eigenvectors and eigenvalues of L. A
Similarly, the new test statistic of SAT-rx that considers X as random is I,,(K’, L"), where

K =K'VA,'VTK. (9)
In K’, K is the matrix composed of the first n columns of Ky, V = (vi,---,v,,) and A, =
diag(71,- -+ ,7ry ) are the top rx eigenvectors and eigenvalues of K. The asymptotic null distri-

butions of the proposed S;L and f;L have the same forms as the null distributions of S, and fn,
but using only the top eigenvalues {A;};¥; and {n;}7X,, respectively. The derivation details are
provided in Section 7 of the Supplementary Information.

The following theorem shows that the power of the new test statistic of SAT-rx is greater than
the classical one that only uses paired data.

Theorem 2 (Informal). Assuming that data from X and Y lie in a low-dimensional manifold,
the test power of the proposed SAT-rz is higher than that of the KIT method, which only uses paired
data.

SAT-fx follows similar properties as SAT-rx and can be considered as a special case of SAT-rx.
The proof details of Theorem |2 are given in Section 8 of the Supplementary Information.
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Supplementary Information for “Unpaired Data Empowers
Association Tests”

S1. Simulation Results of SAT-fx

Fig. [1] and Fig. [2] report the type I error rates and power of SAT-fx, i.e., the method in the fixed
X setting, in simulation (i), respectively.
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Figure 1: Evaluation of type I error rate control on the simulated data generated by simulation
procedure (i) in the fixed X setting. The blue line (VCST) is the result of using only paired data;
hence it does not change with addition of unpaired data. VCST only uses the n = 100 paired data
points. Our methods (green and orange) start with n pairs and gradually adds unpaired data to
improve type I error control. False-positive rates for both variants of our method SAT-fx are well
controlled around the nominal value. (DR-Dimension Reduction)

S2. Details about the Imaging Feature

We adopt the feature extraction strategy proposed by Schabdach et al. [1]. They proposed an effi-
cient method that summarizes the CT images of patients to a low dimensional representation. They
applied their method on a large cohort with COPD disease and showed that the low-dimensional
representation is highly predictive of the disease severity. The general idea is to use a non-parametric
method to first compute the similarity between pairs of patients, then construct the low dimensional
representation which can be used to predict disease severity. In the following, we first explain the
image pre-processing pipeline followed by the method used to compute the patient-patient similarity
and the patient-level low-dimensional representation.
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Figure 2: Evaluation of test power on the simulated data generated by procedure (i) in the fixed
X setting. The results for heritability values h? = 0.1 and dimensionality dim(X) = dim(Y) =
50, 100, 200 are shown. VCST only uses the n = 100 paired data points. Our methods start with n
pairs and gradually add unpaired data to improve test power.

Pre-processing Pipeline: We apply the method to lung Computer Tomography (CT) images
of 7,292 subjects from the COPDGene study [2]. The general pipeline is shown in Figure|3| First,
we use SLIC [3] to over-segment the lung volume into the spatially homogeneous region, which is
called super-voxelization. We extract texture and intensity features from each super-voxel. For the
texture features, we use a method proposed by Liu et al. [4] called Spherical Histogram of the
Gradients. It uses spherical harmonics to compute the histogram of gradients of pixels belonging
to a super-voxel on a unit sphere. For the histogram features, we extract a 32-bin histogram of the
intensity values of the pixels in a super-voxel. The intensity value of the CT images is shown to
be highly informative for characterizing emphysema [5]. In summary, we model each patient as a
bag-of-words [6] where the words are d-dimensional (d = 60) features extracted from super-voxels
of lung CT image of a patient.

Computing Pairwise Similarities and Patient-Level Low Dimensional Representation:
Let us denote S; = {zi1,--- ,&in} (S; = {xj1,--- ,z;n}) be a set of all features from patient ¢ (j)
where N (M) represents total number of super-voxels of subjects ¢ (j). We view x;, as random
variable drawn from an unknown patient-specific probability density p; (i.e., ;5 ~ p;). Schabdach
et al. [1] proposed to use Kullback-Leibler divergence (KL) between p; and p; as a measure of
pairwise dissimilarity between image data of patient ¢ and j. The KL divergence is defined as

KL(pillp;) = /Rd log Z((z;pi(x)dz. (1)

Instead of assuming an explicit parametrization, we follow Poczos et al. [7] that use a non-
parametric estimator for KL divergence that is consistent and unbiased. Instead of global parametriza-
tion for p; and p;, they parametrize the probability densities locally. Let py s, () =
denote the 1 — NN distance from z in a set S;. Poczos et al. [7] proposed the following estimator
for the KL,

Pks v) 551
KL i E lo 1 5
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Figure 3: The schematic of feature extraction pipeline on lung imaging data. Each volumetric
CT image is over-segmented (Extract Super-voxels). We extract a d-dimensional feature from each
super-voxels. In this schematic, the blue circles (red rectangles) represent features extracted from
super-voxels of the subject j (i).

where |S;| and |S;| are the sizes of the sets S; and S; and d is the dimensionality of the input
features.

The similarity kernel matrix is a Positive Semi-Definite (PSD) matrix. However, the KL diver-
gence is neither symmetric nor a proper metric. First, we compute a matrix where the entry in row
¢ and column j is

[L]ij = exp (—é (Km)j) + Kmpi)>> - (2)

The o is set to median of KL divergences (so-called median trick @ﬂ) Then, we project this
matrix on the PSD cone to construct the kernel, L = ProjPSD(E), where Projpgp computes the
Singular Value Decomposition of the input matrix and set the negative singular values to zero.
Finally, we use the pairwise similarity kernel and apply Locally Linear Embedding (LLE) to
reduce the dimensionality and compute the patient-level feature representation.

S3. Details about the Phenotypes in the Uganda Cohort

Table [If explains the detailed information about each phenotye in the Uganda Cohort.



Table 1: A description of the phenotypes measured in the Uganda cohort.

Phenotype
SBP
DBP
BMI

WHR
Weight
Height

HC
WC
ALT
Albumin
ALP
AST
Bilirubin

GGT

Cholesterol
HDL
LDL

Triglycerides
HbA1c2
WBC
RBC
Hemoglobin
HCT
MCV
MCH
MCHC
RDW
PLT
MPV
NEUPr
LYMPHPr
MONOPr
EOSPr
BASOPr
EOS
LYMPH
NEU
MONO
BASO

Category
Blood pressure
Blood pressure

Anthropometric index
Anthropometric index
Anthropometric index
Anthropometric index
Anthropometric index
Anthropometric index
Liver function
Liver function
Liver function
Liver function
Liver function
Liver function

Lipid test

Lipid test

Lipid test

Lipid test

Glycemic control
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor
Blood factor

Description
Systolic blood pressure
Diastolic blood pressure
Body mass index
Waist-hip ratio
Weight
Height
Hip circumference
Waist circumference
Alanine aminotransferase test
Serum albumin test
Alkaline phosphatase test
Aspartate aminotransferase test
Bilirubin
Gamma-glutamyl transpeptidase test
Total cholesterol
High-density lipoprotein
Low-density lipoprotein
Triglycerides
HbA1lc2
White blood cell count
Red blood cell count
Hemoglobin
Hematocrit test
Mean corpuscular volume
Mean corpuscular hemoglobin
Mean corpuscular hemoglobin concentration
Red blood cell distribution width
Platelet count
Mean platelet volume
Neutrophil percentage
Lymphocyte percentage
Monocyte percentage
Eosinophil percentage
Basophil percentage
Eosinophil count
Lymphocyte count
Neutrophil count
Monocyte count
Basophil count

S4. Comparison of VCST and KIT

Table [2[ compares the test statistics and null distributions of VCST and KIT.



Table 2: Comparison of VCST and KIT. TS: Test Statistic. ND: Null distribution.

Unbiased TS Unbiased ND Biased TS Biased ND  Unpaired X Unpaired Y

VCST Sn(K,L) /\iﬁj(zfj -1 #tr(KHnLHn) /\iﬁjzizj X v

KIT I,(K,L) /\mj(zizj -1 n—gtr(KHnLHn) /\mjzfj v v

S5. Derivation of VCST Test Statistic S’n and the Null Dis-
tribution
Let us define 5; = (Ylla ey Yn17 N ,Y1p7 ey an)T = (Ml, . ,ﬂp)T®1n, €= (611, <oy €nly ..., €Elp,

s H
... Enp)T, and G= (Gi1,...,Gn1,. .., Gip, ..., Gpp)T, we can write the multivariate variance com-
ponent model (Eq. 4 in the main text) as

y=h+CG+g (3)
where G ~ N(0,2, ® K), € ~ N(0,%,), and £, = B, ® L,. Therefore, we have ¥ ~ N (i, V),
where V =¥, ® K + 3. The corresponding restricted maximum likelihood (REML) is
1 1 Tu—1 P e
Lremr = —ilog\V| - 510g|(1p ® 1)V (I, ® 1,)] - 5( — @)V (Y - fA). (4)
According to previous studies [11L[{12], the score statistic evaluated at Hy can be defined as

Gy = tr (PLmzrML)
n= 029 2920711‘7::/11:725:2‘/

= G- 1,0 K8 ¢~ A) - Pl @ KDY, L mosy ()

where Po = 3, — £ (I, ® 1,)((L, ® 1,)7E, (I, ®1,)) (I, ® 1,)7S, |5, s . Equivalently,

Sn can be reformulated as follows

$,(K,L) = Tjﬂtr(KHLH) - Tjﬁtr(ﬁ);l)tr(HK). (6)

where L = Y2;2YT. To derive the null distribution of S,,, we reformulate the score statistic as
Su(K.L) = JLtr(3TKY) — Lotr(S,)er(HK), where 5 = 5. % (§ — ji) ~ N(0,I,,) and K =
f]:%(Ip ® K)i):% Let 71, . .., 7np be the eigenvalues of K/n. The eigenvalues can be calculated
from the eigenvalues of K and 3. by N((j—1)xp+i) = Aif)j, where A; are the eigenvalues of ﬁ);l We
then have nS,, (K, L) = Y7 37 Xif; (23 — 1).

i=1

S6. Proof of Theorem 1

We first give a more formal statement of Theorem 1 in our main paper.



Theorem 1 (Formal). Let [ =0 31 \inj(z; = 1) and L, = Y20 31, 5\177](212] —1).
(1) Assume Y F_ q /\1/277;/2 < 0o. Then, as m — 0o, I, 25 1.
(2) E(I,,) = ]E(I) For m > 1 and all § > 0, with probability 1 — 6, for all Pxy,

. y 864 max (k3. k% ) log 12
V(L) - V(D) <\/ nr)loe )

where n; be the eigenvalues of Cx (covariance of ¢(X)), 7; be the eigenvalues of Cx (empirical

covariance of (X)), Ai be the eigenvalues of the Cy (covariance of (Y)), and \i be the eigenvalues
of Cy (empirical covariance of ¥(Y)), respectively, in descending order. Ky ,kx are constants.

Proof. (1) The proof of (1) in our Theorem 1 can be obtained by extending the proof of Theorem
1in [13]. To prove I, b, I, it suffices to prove

P q
ZZ (Nimyj — m]z —0 (8)
i=1 j=1

and

tr(Cy)tr(Cx) — tr(Cy )tr(Cx) (9)

in probability as m — oo. The convergence of the covariance trace operator has been proved in [13],
ie., tr(Cy) — tr(Cy) and tr(Cx) — tr(Cx). According to the continuous mapping theorem [14],
we can immediately obtain (9). To prove (8)), we can first get an upper bound

P q P
‘ZZ 1773 277J z2 SZ
i=1 j=1 i=1
q

1/2 1/2,531/2.1/2 1/2 1/2
+IZZA/ O D VA P

1212 1212 1/2 1/2
/ / /77]/ )‘/773/)1‘23‘|

"ﬁb
it

i=1j=1
b g 1/2 q 1/2
N 1/2 1/2 1/2 1/2\2
<9222 A= ZZ n")
=1 j=1 i=1 j=1
P v 2L 1/2 1/2 1/2 1/2 v
PIPIRTETS IR O IPI(Ot e - (0
=1 j=1 i=1j=1

According to Chebyshev’s inequadity7 Zf L2y Ailj zi; is of Op(1). Since Ai, M, and z;; are
incependent, B [S1, 321, A= = S0, 0y BB, B(E4) = Blor(Cy ) B(r(Cx)E().

Because E(tr(Cy)) and ]E(tr(CX)) are bounded we also have that >0, Z] 1 177] Zj is of O,(1)
according to Chebyshev’s inequality. The proof is complete if we show

q

ZZ A1/25 1/2 1/277]1/2) = 0,(1). (11)

i=1 j=1



From (A}/%71/ — AV20l/2)2 < |N2al2 — AP0l 21202 4 AP0 ®) = [Nl — A, we have
g 31/25, 1/2 1/2 1/2 o ait
2.2 <D D iy = da|
i=1j=1 i=1 j=1
poa poa_
<2 Pty = Ayl + 3> ey = |
i=1 j=1 i=1 j=1
P q P
M +Z%Z|A
<tr(C )||CX = Cx|i +tr(Cx)|Cy = Oy |ln, (12)
where || - ||1 is the trace norm. The last inequality makes use of generalized Hoffmann-Wielandt

inequality. According to |15, Proposition 12], [|Cy —Cy||; = 0 and ||Cx —Cx||1 — 0 in probability,
then the proof completes.

(2) To prove (2) in our Theorem 1, we first introduce the following Theorem on deviation bounds
for U-statistics [16], which was obtained by applying a bound from [17] p. 25].

Theorem S1. (Deviation bound for U-statistics). A one-sample U-statistics is defined as the
random variable:

Zg Tily ey Tir),s (13)

lvn

where g is the kernel of the U-statistic. If a < g <b, then for all t > 0 the following bound holds:

2Im/r
P(u — Eyfu] > t) <exp (—M) . (14)

Now we are ready to prove the following Lemma.

Lemma S1. Given a random variable X with covariance in RHKS Cx = Ex[¢p(X) ® ¢(X)] and
its empirical estimation Cx = LS o) @ () from a sample Sy = {x1,..., 2 }. For all
e > 0, we have R

P(|ICxlirs — ICx Irs| > €) < 3exp(—me?/54). (15)

Proof. We first write |Cx||%¢ in terms of kernels:
1Cx 135 =Exxk(X, X")? + [Exxk(X,X)])? — 2Ex[Ex k(X, X")]?. (16)

Similarly, we can also write ||Cx||%¢ in terms of kernels:

~ 1 m m
ICx s = m—1)2 ZZk T, 15)? m[zzk(%%)?
i=1j=1 i=1 j=1

® ®
- s _12m22kxz,xj . (17)

=1 j=1

©




We first expand Eg, @) into

ﬁEsz YKL+ > KL =0m ™)+ (1+0m ) Exxk(X,X)?,  (18)

(i,5)€ix’
expand Eg, ® into
1
Om™) + o—raaBs. | 3 KoK | =0(m™) + (14 0(m ™ )[Ex b(X, X, (19
(isj7Q7r)€i4

and expand Eg_ (O into

1 1
——— K K Y (KK + Ki K LS ) 3
m(m _ 1)2 S zﬁ: 2 + ( J + J ]]) + m(m _ 1)2 Sz

(i.g) iz (4,,r) €
— O(m™) + (1+ O(m™")Ex [Ex-k(X, X)), (20)
where i’ is the set of all r-tuples drawn without replacement from {1,...,m} and Eg_ denotes the

expectation w.r.t. m independent copies x; drawn from Px. By omitting the terms that decay as
O(m™1) or faster, we have

P{ICxIhs — 1Cx|I7rs > €}

<P{Exxk(X,X)

Z]—3

1
+P{ Ex[Ex k(X,X) Z KiKj > ~e

( ) (i,4,m) €L 0
+P{ [Exxk(X, X)) - ! > KijKg > L (21)
(m)a (4,4,4,7) €la 3
< exp(—me?/9) + exp(—me®/54) + exp(—me®/18), (using Theorem S1).
< 3exp(—me?/54). (22)

Now we are ready to prove (2) in our Theorem 1. From the definition of I and fm, we have E(I) =
E(lm) =0, V(Im) = 230, 325 Aif = 20ICy 3510 s, and V(I) = 23537, 39 A} =
2||Cy |%5lICx 1|3 5- Then we have

V(L) = V(D) = 2(|Cy |51 Cx s — IOy 71511 Cx 1)
2(1Cy s Cx s = ICy [EsICx s + ICY slICx s — 10y s CxIIzis)
2

ICy 7 (ICx s — ICx IFrs) + 21Cx [ Fs (ICy 71 — ICy IIErs)- (23)



P(V(In) = V(I) > ) = P2|Cy |35 (ICxEs — 1Cx [IT15) + 21 Cx s (ICy 715 — 1Oy [[71s) = €)

< POy I Hs(ICx I Fs — ICx I Fs) = €/2) + PICKB]ICy I3 — ICy[13] > €/2)
< P(|Cxllzrs — ICx s = €/ (4ry)) + B(Cy lIzzs — Oy lI7rs = ¢/ (4rx)),

< 3exp(—me?/(864k1)) + 3exp(—me?/(864k%))

< 6 exp(—me? /(864 max(rk¥, k% ))). (24)

where ||Cy |2 < ky and ||Cx|3 < kx. By setting 6 exp(—me?/(864max (3, £%))) = 8, we can
solve for e:

\/864 max(k?, k%) log
€= .

25
> (25)
Therefore, we have that with probability at least 1 — 4§,
. . 864 max(k2 , k2 )log 12
V(L) ~ V(D) < \/ manley, xR T (26)
m
then the proof completes. O

S7. Derivation of the Null Distributions of Our SAT Test Statistics

Recall that our method SAT has two variants SAT-fx and SAT-rx, which are the extensions of
VCST and KIT, respectively. Our SAT method basically project the original data into a subspace
learned from unpaired data, and then plug in the projected data into the original VCST or KIT
test statistics. The null distributions of our SAT-fx or SAT-rx test statistics follow the same forms
as VCOST or KIT, and differ in the number of x? terms in the summation. In the following, we will
derive the null distributions of SAT-fx and SAT-rx test statistics separately.

SAT-fx Let U be a the projection matrix containing first ry columns of the eigenvector matrix
of Xy, in which the eigenvectors are sorted according to their corresponding eigenvalues in a
descent order. Let Y' = YU € R™". Here we define y' = (Y{;,...,Y,,,.... Y/ ,.... Y, )T,

T nry
A=, )T @1, € = (€, ... €y, ";’6/17’8/’ <oy €y )T, The covariance of Y is defined
as XY and the covariance of ¢ is defined as ¥/, = ¥, ® I,,. According to the derivation of the

null distribution of S,(K,L) in Section S1, we reformulate the score statistic of our SAT-fx as
~ /

N A =1 - -3 -
Sn(K, L) = 5h5tr(§TK'y') — shstr(X, )ir(HK), where ' =%, * (¥ — i) ~ N(0, Ty, ) and
1

2n3
-1 __1 ~
K =%_"1, aK)¥_~ | =s, . Let 7, ... 777;@/ be the eigenvalues of K’/n. The eigenvalues
can be calculated from the eigenvalues of K and X', by N((G—1)xry+i) = Aiflj, where Aq,..., A are

A1 R
the smallest 7y eigenvalues of 3y . We then have nS, (K, L) = 3272, Y77 Ainj (23, — 1).



SAT-rx According to Mercer’s theorem [18], the kernel functions k(X, X’) and [(Y,Y”) can be
represented using eigenfunctions and eigenvalues defined in connection with them:

= Z migi(X)gs(X'), 1(V,Y') = Z Aithi (V)i (Y). (27)

To derive the asymptotic null distribution of fn(K’ ,L'), it suffices to derive the null distribution of
Un = mta= 1) D iz R (xl,xj)l (¥i,yj), where

K (xi, %) an¢k X))o (%), U(yi,y5) Z)\k¢k Yi) Uk (y;)- (28)

k=1 k=1

Using (28)), we can rewrite U, as

z'ﬂ]( Z¢j Xk 1;[}1 Yk> *722 illj — Z¢j Xk 7/)1 Yk )2( )
11]1 f 1=1 j=1

Let §7 = Exy¢;(X)vi(Y) and )7 = =370 1 6;(Xi)i(Ye), T = Exy (¢;(X)yi(Y))?, and
T = £ 3 e (05 (Xe)i(Ye))?, where { (X, Yi)};_, are i.i.d. variables with the same distribution
as (X,Y). Under the null hypothesis, S = 0, the expectation of S¥ is

E(SY) = f ZEkak &5 (Xk)¥i(Ya)] = VnExy [¢;(X)9i(Y)] = vnSY = 0, (30)
and the variance of S is
V(Sy) = ZEM 6 (Xi) i (Vi) — vnSYJ2 = [1 = V/n(S7)?] = 1. (31)
Similarly, the expectation of T is
E(T;7) ZEXM [(65 (X0) 1 (V)] = Excy[(65(X)a(Y))?] = 1, (32)
and the variance of T is

VITP) = — S {Exnlo (Xu))* - 1} = 0(). (33)
k=1

Thus, we have T} — 1 and S}} — z;;, where z;; are standard normal variables. Therefore,

Ty X
D
nU, — Z Z )\mj(z?j -1), (34)

i=1j=1

so does I,,(K',L").
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S8. Proof of Theorem 2
Here we give a formal version of Theorem 2 in our main paper.

Theorem 2 (Formal). We assume the following data generating process for X and Y :

d(X)=AZ, +n,

YY) =BZ, +ny, (35)
where $(X) € RL,Y(Y) € RP, Z, ~ N(0,L.,),Z, ~ N(0,I,,),A € R™*"™x B € RP*'V n, ~
N(0,0%1,), ny ~N(0,021,), rx < g, ry <p, and n, is independent of n,,. Under the alternative

hypothesis, we have A A
P/(nIrIL > qllfa) <P(nln > qi-a), (36)

where q1_o and ¢)_,, are the 1 — « quantiles for the null distributions of nl, and nf,’l, respectively.

Proof. We first give the results on the asymptotic distribution of I, in the following lemma, which
can be obtained by applying [19, Theorem 5.5.1 (A)].

Lemma S2. Let k(X,X') and l~(~Y7 Y') be the centered kernel functions of k(X,X") and I(Y,Y"),

X
respectively. Assume that (o = V[k(X, X)(Y,Y")] < oo and & = V{Ex:y [k(X, X)I(Y,Y")]} > 0.
Under the alternative hypothesis (I >0), we have /n(I, — I) EEN N(0,4¢1).

Now we derive the asymptotic distribution of IA,’I under the alternative hypothesis. Our method
can be considered as the original KIT method with new kernel functions &'(X, X’) and I'(Y,Y”)

defined on the dimension-reduced inputs. Therefore, we have \/H(IA& - 1) N (0,4¢7), where
I' = E[I]]. According to Mercer’s theorem [18], the kernel functions k(X, X’) and I(Y,Y”) can be
represented using eigenfunctions and eigenvalues defined in connection with them:

q P
ROXGX) =) midi(X)ou(XT), 1Y, Y) =D Aahi (V)i (V). (37)
i=1 i=1
Similarly, the new kernels in the test statistic I/, of our SAT-rx method can be represented as
_ X _ TY
K (XX = migi(X)ga(X'), TV, Y) =) Nhi(YV)i (V). (38)
i=1 i=1
By using the representations of the kernels, we can express I as

q P
I =ExyExy Z mi¢i (X) i (X') Z Ay (V)i (Y)
i=1

=1

I
M=

Z A ExyExryr¢j(X)d; (X )i (V)i (Y')

&
Il
—

<
Il
—

Ains[Exy ¢;(X) s (V)] (39)

I
.ME
M=

ﬁ
Il
—

.
Il
-
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Similarly, I' = >37%, 377X, Ainj [Exy¢j(X)y;(Y)]?. According to the connection between principal
component analysis and the factor analysis model [20421], the first rx principal component solutions
correspond to the subspace spanned by A and the eigenfunctions of C'x associated with the ¢ — rx
smallest eigenvalues map the input X to the noise term n,. Similarly, the eigenfunctions of Cy
associated with the p — ry smallest eigenvalues map the input ¥ to the noise term n,. Because
n, and n, are independent, we have >°7_ . 379 Ain;[Exy é;(X)(Y)]? = 0, which implies
I=1Tr.

By using the same representation, we can derive the relation between ¢; and ¢}. Using , (1
can be expanded as

V{Ex'w[ (X, XY, Y]}

= V{Z Z Ain @5 (X) i (V)Exry [ (X )9 (Y7)]}- (40)

i=1 j=1
Similarly, using , we have
= V{Exy [K' (X, X)I'(Y,Y")]}
Ty TX

= V{ZZMWJ (V)Exry [ (X )i (Y1)} (41)

=1 j=1

~u

Because rx < ¢, ry < p, we have {; < ¢;. The power of the baseline KIT and our SAT meth-

ods at the significance level/ o can be calculated as P(nl, > qi_o) = ®(nl — Az /nCy) and
P'(nl!, > ¢,_,) = ®(nl — Dize\ /n(]), respectively, where ®(-) is the CDF of a standard normal
distribution, g1 is the 1 —a quantile of 3°7_, 377, Nin; (27, — 1), and ¢;_,, is the 1 - quantile of
PRAED Py XL Aini(z7; —1). Because rx < ¢ and ry < p, we have q1_o > ¢j_,, and further because
of (1 < (1, ]P”(n[ll >q,_.) > P(nl, > qi_a). The proof completes.

O
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