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ABSTRACT: Learning accurate drug representations is essential for tasks such as computational drug repositioning and prediction
of drug side effects. A drug hierarchy is a valuable source that encodes knowledge of relations among drugs in a tree-like structure
where drugs that act on the same organs, treat the same disease, or bind to the same biological target are grouped together. However,
its utility in learning drug representations has not yet been explored, and currently described drug representations cannot place novel
molecules in a drug hierarchy. Here, we develop a semi-supervised drug embedding that incorporates two sources of information:
(1) underlying chemical grammar that is inferred from chemical structures of drugs and drug-like molecules (unsupervised) and (2)
hierarchical relations that are encoded in an expert-crafted hierarchy of approved drugs (supervised). We use the Variational Auto-
Encoder (VAE) framework to encode the chemical structures of molecules and use the drug−drug similarity information obtained
from the hierarchy to induce the clustering of drugs in hyperbolic space. The hyperbolic space is amenable for encoding hierarchical
relations. Both quantitative and qualitative results support that the learned drug embedding can accurately reproduce the chemical
structure and recapitulate the hierarchical relations among drugs. Furthermore, our approach can infer the pharmacological
properties of novel molecules by retrieving similar drugs from the embedding space. We demonstrate that our drug embedding can
predict new uses and discover new side effects of existing drugs. We show that it significantly outperforms comparison methods in
both tasks.

■ INTRODUCTION
The study of drug representation provides the foundation for a
variety of applications in computational pharmacology, such as
computational drug repositioning and prediction of drug side
effects. Drug repositioning, the process of finding new uses for
existing drugs, is one strategy to shorten the time and reduce the
cost of drug development.1 Computational methods for drug
repositioning typically aim to identify mechanisms of action that
are shared among drugs that imply that the drugs may also share
therapeutic purposes.2 However, suchmethods are limited when
prior knowledge of drugs is scarce or not available, for example,
drugs that are in the experimental phase or have failed clinical
trials. Therefore, it is appealing to map the chemical structure of
a molecule to its pharmacological behavior. Side effects of drugs
are undesirable effects that may cause harm to individuals and
may even cause death. Computational methods for predicting
drug side effects often integrate several drug features from
heterogeneous data sources (e.g., chemical, biological, and

therapeutic properties).3 However, the utility of drug hierarchy
in learning drug representation has not yet been explored. A
drug hierarchy encodes a broad spectrum of known drug
relations. For example, a widely used drug hierarchy, the
Anatomical Therapeutic Chemical (ATC) classification system,
groups drugs that have similar mechanisms of action and
therapeutic, pharmacological, and chemical characteristics.
Representing the chemical structure of drug-like molecules

has received substantial attention recently.4 This approach
focuses on learning representations that can be used to identify
promising molecules that satisfy specified properties.5−7
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Typically, a large set of drug-like molecules is encoded in a latent
space, which is then coupled with a predictive model. However,
this approach does not directly incorporate prior knowledge
about existing drugs. In another approach, knowledge about
existing drugs is leveraged to predict hitherto unknown
properties of drugs. Such knowledge-based methods view
every drug as a node in graph and predict linkages where the
linkage may indicate a new use,8 a side effect,9 or an adverse
drug−drug interaction.10 However, such an approach is limited
to the drugs available in the knowledge database and learns task-
specific representations that may not transfer well to additional
tasks. Our method merges the two approaches described above
by combining chemical structure representation learning with
known knowledge of drugs to learn useful and generalizable drug
representation.
Here, we develop a drug embedding that integrates the

chemical structures of drugs and drug-like molecules with a drug
hierarchy such that the similarity between pairs of drugs is
informed both by the structure and groupings in the hierarchy
(Figure 1). To learn the underlying grammar of chemical
structures, we leverage a data set of drugs (about 1.3K) that are
approved by the Food and Drug Administration (FDA) and a
larger data set of drug-like molecules (about 250K) and use the
simplified molecular-input line-entry system (SMILES)11

structure representation. We obtain drug similarity relationships
from the ATC drug hierarchy that hierarchically groups drugs by
the system of action, therapeutic intent, and pharmacological
and chemical characteristics. We use the hyperbolic space for the
embedding since it is amenable for learning continuous concept
hierarchies.12−15

We formulate the learning of the drug embedding as a
Variational Auto-Encoder (VAE) where the codes (z) reside in
hyperbolic space. More specifically, we adopt a variant that
replaces the prior normal distribution in the VAE with the so-
called wrapped normal distribution in the Lorentz model of
hyperbolic space. To integrate the hierarchical relationships
from the drug hierarchy, we use a loss function that enforces the
pairwise hyperbolic distance between drugs to be consistent
with pairwise shortest path lengths in the ATC hierarchy.

We evaluate the effects of ATC knowledge and the hyperbolic
space independently on the quality of drug embeddings in their
ability to accurately capture the chemical structure and preserve
the ATC hierarchy in the latent space. Our experiments show
that the relationships entailed by the ATC hierarchy are an
effective inductive bias for learning the chemical features, and
the hyperbolic space is superior to the Euclidean space in
representing the top levels of the ATC hierarchy, i.e., the
anatomical groups and therapeutic groups. We also evaluate the
efficacy of our embedding for drug repositioning and for
predicting side effects on two publicly available data sets. The
results show that our embedding performs better than
comparison methods for these two computational pharmacol-
ogy tasks.

■ BACKGROUND
Substantial research has been done in the past few years in
applying machine learning to drug discovery and related
tasks.16−18 Successful applications in drug discovery include
target identification and validation,19−22 compound design with
desirable properties,7,23 prediction of drug toxicity,24 and
prediction of biomarkers of clinical end points.25−27 Machine
learning has also been applied to computational pharmacology
tasks, such as drug repositioning,8 prediction of side effects,28

and prediction of adverse drug−drug interactions.10 However,
many of these methods developed for computational
pharmacology tasks represent a drug as a node in a graph and
ignore the rich information in the chemical structure of the drug.
Moreover, such approaches cannot be readily applied to a new
drug that is not in the data set. Our method can be viewed as
knowledge representation learning that integrates information
from (1) a large corpus of drug-like molecules that is used in
drug discovery and (2) an expert-curated drug hierarchy that
contains rich information about known drugs. To the best of our
knowledge, our method is unique in that it enables localizing
novel molecules in the context of the clinically approved drugs.
Molecular featurization methods can be divided into the

following groups: (1) methods that extract expert-crafted
descriptors from molecular structures, (2) methods that map
molecular structures to bit strings, such as extended-connectivity

Figure 1. Schematic diagram of the proposed drug embedding method. Our semi-supervised learning approach integrates the chemical structures of a
small number of FDA-approved drug molecules (XFDA) and a larger number of drug-like molecules (XZINC) drawn from the ZINC database. We use
VAE to encodemolecules in hyperbolic space n+ and enforce the ATC drug hierarchy by preserving local similarity rankings of drugs. The symbols x, z,
and x ̂ denote a molecule represented by its SMILES string, its embedding, and its reconstruction; qϕ(z|x) and pθ(x|z) denote the encoder network and
the decoder network, respectively; x( ; , )ELBO ϕ θ3 and x( , ; )SLR ϕ3 ; denote the objective functions for the VAE and the local similarity rankings.
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fingerprints (ECFP),29 and (3) recent deep learning based
methods. The deep learning-based methods can be further
categorized into two groups. The first group consists of methods
that encode the molecular formula as a string of characters and
use a variant of recurrent neural network (RNN)7,30,31 to extract
features, and the second group contains methods that represent
as undirected graphs where nodes denote atoms and edges
denote bonds.32,33 Each group has advantages and disadvan-
tages.34 Our method belongs to the first group of deep learning-
based methods. However, our framework is quite general in that
the encoder−decoder can be replaced with a graph-neural
encoder−decoder if needed.
There are several methods to quantify the similarity (or

distance) of molecular representations. For fingerprint-based
similarity calculations, Tanimoto index, Dice index, Cosine
coefficient, and Soergel distance have been identified as excellent
metrics.35,36 For deep generative methods7,37 involving
encoding the molecules as continuous vectors, Euclidean
distance is the most popular metric to assess molecular similarity
in the latent space. Our method uses the hyperbolic distance in
the latent space as the similarity metric.
Embedding hierarchical relations in a latent space has been an

active area of research.15,38 Hyperbolic space is an appealing
choice for embedding a hierarchy because it can represent tree-
like structures with arbitrarily low distortion.14 There are several
equivalent geometric models39 of hyperbolic space. Many
applications of hyperbolic space to machine learning12,13,15

have adopted the Poincare ́ ball model. However, as proposed in
ref 40, the Lorentz model allows for a more efficient closed-form
computation of geodesics and avoids numerical instabilities that
arise from the Poincare ́ distance. A more recent study41

introduced the wrapped normal distribution in the Lorentz
model. To the best of our knowledge, our method is the first
hyperbolic VAE that can induce hierarchical structure from
pairwise similarity measurements in a latent space.

■ METHODS
Learning Chemical Grammar Using VAE.We use a VAE

to encode the chemical structure of drug-like molecules. More
specifically, we model a molecule as a random variable generated
by encoding a SMILES string into a code (z), which is then
decoded back to a reconstruction of the input by passing
through a decoder pθ(x|z). Finding the optimal θ using
maximum likelihood requires computing the so-called evidence
function, log pθ(x), which is difficult to compute since it entails
integrating over z.
Instead of directly maximizing likelihood, variational Bayes

maximizes the variational evidence lower bound (ELBO).42 The
ELBO is given by

x x z z x zp p D q plog ( ) log ( ) ( ( ) ( ))z z xq( ) KL(≥ [ | ] − |θ θ∼ |
(1)

where the first term after the inequality is the reconstruction
term, the second term is the regularization term, and ( and DKL
denote the expectation and Kullback−Leibler (KL) divergence,
respectively. The global optimal q(z|x) is achieved when q(z|x)
= p(z|x); the variational distribution approximates the posterior
distribution. In order to control the relative effect of KL
divergence43 we adopt β-VAE,44 a more general form of VAE
that applies a scaling hyperparameter β to the DKL term in the
ELBO.We employ the RNN45 architecture for both the encoder
and the decoder networks, in order to perform sequence-to-
sequence learning on SMILES strings.

In the classic VAE,46 the prior p(z) is modeled with the
standard normal distribution, the encoder qϕ(z|x) is modeled by
a Gaussian distribution z( , )μ| Σϕ ϕ5 , and the first term in the
ELBO is estimated using a Monte Carlo estimator

x z x xp
L

p glog ( ) 1 log ( ( , ))z z xq i
l

L

i
l

i( )
1

( )
i

( ∑ ϵ[ | ] ≈ |θ θ ϕ∼ |
=

ϕ

(2)

where gϕ(ϵ(l), xi) = μϕ
(i) + σϕ

(i) ⊙ ϵ(l), I(0, )l( )ϵ ∼ 5 is the
reparameterization trick, and L is the number of samples per
data point. To extend VAE from a flat Euclidean space to a
curved manifold, the Gaussian distribution needs to be extended
to the hyperbolic space.

Wrapped Normal. Intuitively, hyperbolic space can be
viewed as a continuous version of tree because its volume and
surface area grow exponentially with the radius. Compared to
Euclidean space, the hyperbolic space better captures the
hierarchical characteristic of trees. In this paper, we employ a
specific model of the hyperbolic space, namely, the Lorentz
(Minkowski/Hyperboloid) model. The Lorentz model n+ of n-
dimensional hyperbolic space is defined as

z z z z: , 1, 0 ,n n 1
0+ 5= { ∈ ⟨ ⟩ = − > }+

3 (3)

and z z z z z z, i
n

i i0 0 1⟨ ′⟩ = − ′ + ∑ ′=3 is the so-called Lorentzian
inner product, which is also the metric tensor of the hyperbolic
space. We adopt the so-called wrapped normal distribution
proposed by Nagano et al., 2019,41 which we denote by

z( , )W
+ μ| Σ5 , where z n+∈ , and μ is the hyperbolic mean. The

sampling strategy can be summarized in three steps as illustrated
in Figure 2. First, we define a Gaussian random variable,

u 0( , )∼ Σ5 , on the tangent space (see Supporting Information
eq S3) at the origin of the hyperbolic space, u T

0
+∈ μ , and then,

we parallel transport (see Supporting Information eq S8), upt =
PTμ0→μ(u), the random vector to another tangent space at a
desired location μ, u Tpt +∈ μ . The parallel transport translates a
vector from T

0
+μ to T +μ along the geodesic (see Supporting

Information eq S2) between μ0 and μ without changing its
metric tensor. Finally, we map the transported vector into
hyperbolic space via the exponential map (see Supporting
Information eq S4), z = expμ(upt). Importantly, this sampling
scheme is sequentially norm-preserving, i.e., ||u ||2 =

Figure 2. Steps of sampling from the wrapped normal distribution.
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u u zd ( , )pt μ|| || = || || =3 3 S , where zd ( , )μS denotes the hyper-
bolic distance between z and μ on the Lorentz manifold.
The reparameterization trick used in the VAE needs to be

modified since the algebraic addition of coordinates of two
points on amanifold does not necessarily reside on themanifold.
The composition of these two operations, expμ(PTμ0 → μ(u)),
can be viewed as the reparametrization trick in the hyperbolic
VAE. The inside operation shifts the tangent space from μ0 to μ
analogous to the addition operation of the classic reparamete-
rization trick. The expμ projects the shifted vector to the
manifold. Therefore, we sample zi(l) ∼ qϕ(z|xi) using

z u ug ( , ) exp (PT ( ))i
l l

i
l( ) ( ) ( )

i i0
μ= = μ μ μϕ → (4)

where u 0( , )l( ) ∼ Σ5 , and l denotes the index of sample. Note
that, in the Lorentz model, both the parallel transport and the
exponential map have analytical forms and can be differentiated
with respect to the hyperbolic mean μ of the wrapped normal
distribution z( , )W

+ μ| Σ5 .
KL Divergence. To compute the KL divergence, we need to

evaluate the probability density of the wrapped normal. The
wrapped normal distribution can be viewed as change of variable
from a normal distribution via the eq 4. Applying the change of
variable, we obtain

z x z
u

u
q g

g
0log ( ) log ( ( , ); , ) log det

( , )
.i

l
i i

l
i

l
i

l
( ) 1 ( )

( )

( )

i
k
jjjjjjjj y

{
zzzzzzzzμ

μ
| = Σ −

∂
∂ϕ ϕ

ϕ−5

(5)

The inverse operation gϕ−1(zi(l), μi) simplymaps zi(l) back to u(l) by
applying the logarithmic map (see Supporting Information eq
S5) and the inverse parallel transport (see Supporting
Information eq S9). We compute the second log-determinant
term following the derivation in Nagano et al., 2019.41

Integrating Hierarchical Knowledge. The hyperbolic
VAE learns an embedding for codes that are amenable to
hierarchical representation. However, it only models x (the
SMILES string of the drug), and it does not enforce our prior
knowledge about the drug hierarchy which defines similarity or
dissimilarity between drugs at various levels. In this section, we
incorporate the ATC hierarchy into our model. Note that the
terminal nodes of the ATC hierarchy are drugs that have
SMILES string representations, while the internal nodes of the
ATC hierarchy are drug classes, e.g., beta blocking agents.
Inspired by concept embedding in hyperbolic space,40 we
incorporate the ATC hierarchy in our model by using pairwise
similarity between drugs. Let ti,j denote the path length between
two drugs, xi and xj in the ATC hierarchy ; , and let

i j k t t j( , ) : i j i k, ,= { < } ∪ { }+ denote the set of drugs with
path lengths equal to or greater than ti,j. We define the soft local
ranking with respect to the anchor drug xi as

x xp
d

d
( , ; )

exp( ( , ))

exp( ( , ))i j
i j

k i j i k( , )

μ μ
μ μϕ =

−
∑ −∈

S

+ S (6)

where μi is the hyperbolic mean of z x zq ( ) ( , )i i i
W
+ μ| = | Σϕ 5 , and

d ( , )i jμ μS is the hyperbolic distance between μi and μj. The
likelihood function of the soft local rankings per xi ∈ XFDA is
given by

x x xp( , ; ) log ( , ; )i
j

i jSLR ∑ϕ ϕ=3 ;
(7)

where xj ∈ {XFDA − xi}.
Note that the global hierarchy of ; is decomposed into local

rankings denoted by i j k t t j( , ) : i j i k, ,= { < } ∪ { }+ . To train
our model, we need to effectively sample i j( , ) ∼+ ; , and the
best sampling strategy supported by the results of our
experiments (see Supporting Information Figure S2 for more
information) is as follows. For each anchor drug xi, we uniformly
sample a positive example xj, such that the lowest common
ancestor of xi, xj has an equal chance of being an internal node at
any level, i.e., level 1, 2, 3, or 4, in the ATC tree. We then
randomly sample k negative examples xk from other leaf nodes
that have greater path lengths than ti,j.

Optimization. Formulation. We employ a semi-supervised
learning approach that combines a small number of drugs XFDA
with a larger number of drug-like molecules XZINC. The
supervised learning task is to maximize the likelihood of the
soft local rankings with respect to the ATC hierarchy ; . The
unsupervised learning task is to maximize the ELBO of the
marginal likelihood of the chemical structures of drugs and drug-
like molecules X = {XZINC, XFDA}. We then formulate the drug
embedding problem as

x xcargmax( ( ; , ) ( , ; ))
,

ELBO SLRϕ θ ϕ+ ·
ϕ θ

β‐3 3 ;
(8)

where c = 1when x∈XFDA, c = 0when x∈XZINC, and |XZINC|≫ |
XFDA|. The first term in the objective function captures the
underlying chemical grammar of molecules, and the second term
enforces the relative positions of the drugs in the latent space to
correspond to their relative positions in the ATC hierarchy.

Training. In practice, the learning procedure for the
parameters ϕ, θ is summarized as

x z z x z

x

X
p D q p

X

argmax 1 (log ( ) ( ( ) ( )))

1 ( , ; )

x

x

X
i i i i i

X
i

,
KL

FDA
SLR

i

i FDA

∑

∑

β

γ ϕ

| | | − · ̃ |

+ · | |
̃

ϕ θ
θ ϕ

∈

∈
3 ;

(9)

where zi is a single sample in hyperbolic space, p(z) is a wrapped
normal distribution, and β and γ are scaling hyperparameters
governing the relative weights of KL divergence and soft local
ranking loss during training. Parameters are estimated using
mini-batch gradient descent, and gradients are straightforward
to compute using the hyperbolic reparametrization trick eq 4.
See Algorithm 1 in the Supporting Information for the
algorithmic description of the method. For details of model
architectures, training settings, and implementation details,
please refer to the Supporting Information. All code for the
hyperbolic drug embedding is available in our GitHub
repository: https://github.com/batmanlab/drugEmbedding.

■ RESULTS
In this section, we first describe the data sets used in our
experiments, and then, we perform two sets of experiments to
evaluate different components of our model: effect of the ATC
information in preserving hierarchical relations among drugs
and importance of hyperbolic space as the coding space. Finally,
we study the efficacy of hyperbolic embeddings for drug
repositioning and discovering side effects of drugs.
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Data Sets. Chemical Structures. We obtained SMILES
strings of 1,365 FDA-approved drugs that were curated by ref 7.
We obtained SMILES strings of 250,000 drug-like molecules
that were extracted at random by ref 7 from the ZINC47 database
that contains a curated collection of >200 M commercially
available chemicals. We combine the 1,365 drug and the 250,000
drug-like molecules to create a single data set of chemical
structures that we use in our experiments.
ATC.The ATC classification systemwas created by theWorld

Health Organization (WHO)48 that leverages the location of
action, therapeutic, pharmacological, and chemical properties of
drugs to group them hierarchically. Traversing from the top to
the bottom of the hierarchy, the ATC system groups drugs
according to the anatomical organ on which they act (level 1),
therapeutic intent (level 2), pharmacological properties (level
3), and chemical characteristics (level 4). A drug that has several
uses appears in several places in the ATChierarchy.We obtained
the ATC hierarchy from the Unified Medical Language System
(UMLS) Metathesaurus (version 2019AB) and mapped the
FDA-approved drugs to the terminal nodes in the ATC tree that
represent active chemical substance (level 5). Of the 1,365
drugs, 1,055 were mapped to 1,355 terminal nodes at level 5 in
the ATC tree.
SIDER. The Side Effect Resource (SIDER) database49

contains 5,868 distinct side effects and 1,427 drugs for which
one or more side effects have been documented. We obtained
the SIDER data set in DeepChem,50 which has grouped side
effects into 27 classes based on the anatomical organ that is
affected by the side effect.
RepoDB. RepoDB51 is a benchmark data set that contains

information on drug repositioning. It contains a curated set of
drug repositioning successes and failures where each success or

failure is a drug-indication pair where indication refers to a
specific condition that the drug is used to treat. After mapping to
the FDA-approved drugs, we obtained 4,738 successful and
2,576 failed drug-indication pairs.

Evaluation of Drug Embeddings.We assess the quality of
hyperbolic embeddings in their ability to capture the chemical
structure accurately as well as preserve relationships faithfully as
entailed by the ATC hierarchy. To learn embeddings, we
randomly split the chemical structures data set into training,
validation, and test sets in the proportions 90%:5%:5%. The
validation set is used to determine the best-fit model.

Metrics. We evaluate the embeddings in their ability to
recapitulate the ATC hierarchy by applying agglomerative
hierarchical clustering to the embeddings. We compare the
embedding-induced hierarchy to the ATC hierarchy using
dendrogram purity.52 The dendrogram purity (DP) of a
hierarchy ;̃ that is obtained from a set of drug embeddings
{μi} is computed as

DP( ) 1 pur(lvs(LCA( , )), ( ))i j i
,i j

∑ μ μ μ̃ =
| | μ μ

★
∈

★
★

;
>

*
>

(10)

where ( )iμ★* is the (ground-truth) cluster that the drug xi
belongs to in the ATC ; , ★> is the set of unordered pairs of
drugs that belong to the same cluster, LCA(μi, μj) is a function
that gives the lowest common ancestor of μi and μj in ;̃ , lvs(n) is
the set of descendant leaves for any internal node n in ;̃ , and
pur(S1, S2) = |S1 ∩ S2|/|S1|. Intuitively, DP measures the average
purity of the lowest common ancestors of pairs of drugs that
belong to the same ATC cluster. Note that DP( );̃ is a holistic

Figure 3. Effect of knowledge sources on the accuracy of recapitulating the ATC hierarchy and the reconstruction of the chemical structure. Results
obtained using the embedding from chemical structures alone are shown in blue, results obtained using the embedding from the ATC hierarchy alone
are shown in orange, and results obtained using the embedding from both sources of knowledge are shown in green. The baseline result taken from the
CVAE7 is shown in purple. The left panel shows the dendrogram purity (DP) at ATC levels 1, 2, 3, and 4. The right panel shows the reconstruction
accuracy of the chemical structures. CVAE uses the Euclidean latent space, and all the other results are from the Lorentz model with dimension size of
64. The results were obtained by averaging three independent runs, and the error bars denote standard deviations.
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measure of the complete ATC hierarchy that includes drugs in
the training, validation, and test sets.
We also evaluate how well the embeddings are decoded to the

original SMILES strings. Following ref 7, we evaluate the
reconstruction accuracy as the proportion of successful
decoding of latent representation after 200 attempts for 1,000
molecules randomly chosen from the test set.
Effect of Knowledge Source. We evaluate DP and

reconstruction accuracy of embeddings obtained from a single
source of knowledge that includes (1) chemical structures only
by maximizing x( ; , )ELBO ϕ θβ‐3 using the entire X and (2)

ATC hierarchy only by maximizing x( , ; )SLR ϕ3 ; using XFDA.
We compare them to the embedding that is obtained from both
chemical structures and ATC hierarchy.
The left panel in Figure 3 shows the DP at different ATC

levels. The embedding obtained from both sources of knowl-
edge has substantially better DP than embeddings derived from
only one source of knowledge. The improvement in DP is large
at ATC levels 3 and 4 that cluster drugs by chemical structure.
This result provides support that information learned from the

task of SMILES reconstruction can help inform the task of drug
clustering.
The right panel in Figure 3 shows the reconstruction accuracy

of embeddings. The embedding obtained from both sources of
knowledge has better performance on molecule reconstruction
than the embedding using only chemical structures. This result
suggests that the ATC hierarchy is an appropriate inductive bias
for the task of decoding SMILES. Since drugs are grouped by
their chemical characteristics at the lower ATC levels (3 and 4),
minimizing the local ranking loss helps cluster drugs with similar
chemical structures in the latent space and may create a
smoother latent space that is suitable for decoding. Compared
with the baseline model CVAE,7 which uses the Euclidean space,
the Lorentz embedding obtained from both sources of
knowledge has superior reconstruction accuracy.

Effect of Hyperbolic Space. We compare embeddings from
the Lorentz model with embeddings from the Euclidean model.
The results in Table 1 show that overall the Lorentz embeddings
have higher DP values and outperform the Euclidean
embeddings. In low dimensional spaces (dimension size of
two to four), the Lorentz model produces higher-quality

Table 1. Effect of Hyperbolic Space on the Accuracy of Recapitulating the ATC Hierarchy and the Reconstruction of the
Chemical Structurea

latent space dimension

metric ATC level geometry 2 4 8 32 64

DP L1 (anatomical) Euclidean 0.690±0.013 0.721±0.030 0.748±0.029 0.774±0.005 0.775±0.008
Lorentz 0.757±.006 0.761±.014 0.771±.006 0.790±.003 0.795±.001

DP L2 (therapeutic) Euclidean 0.488±0.023 0.626±0.008 0.655±0.017 0.681±0.003 0.688±0.003
Lorentz 0.617±.007 0.643±.015 0.666±.020 0.684±.007 0.690±.006

DP L3 (pharmacological) Euclidean 0.384±0.027 0.601±0.018 0.668±0.026 0.715±.006 0.725±.006
Lorentz 0.577±.023 0.641±.018 0.668±0.018 0.696±0.009 0.714±0.001

DP L4 (chemical) Euclidean 0.238±0.022 0.402±0.017 0.454±0.017 0.597±.008 0.625±.006
Lorentz 0.334±.007 0.441±.010 0.457±.013 0.517±0.006 0.528±0.006

RA L5 (molecule) Euclidean 0.004±0.004 0.020±.001 0.353±.031 0.904±0.036 0.951±0.016
Lorentz 0.005±.005 0.012±0.008 0.309±0.042 0.906±.036 0.951±0.020

aDendrogram purity (DP) values of drug hierarchies and reconstruction accuracy (RA) values of SMILES obtained using embeddings in hyperbolic
space (Lorentz model) and in Euclidean space. Values are shown at different ATC levels for both manifold geometries. The values are the average
of three independent runs with standard deviations. A boldface value indicates that the corresponding manifold geometry has a higher value.

Figure 4. Visualization of hyperbolic drug embedding in a two-dimensional Poincare ́ disk that shows drugs with colored symbols. In panel (a) drugs
that belong to the same group at ATC level 1 are denoted by circles of the same color. Panel (b) shows drugs of one group from ATC level 1 namely,
“Antineoplastic and Immunodulating Agents”, and drugs that belong to the same group at ATC level 2 are denoted by circles with the same shade of
green. Panel (c) shows drugs of one group from ATC level 2, namely, “Antineoplastic Agents”, and drugs that belong to the same group at ATC level 3
are denoted by symbols of the same color.
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embeddings across all ATC levels, suggesting that hyperbolic
space has superior capacity at the same dimension. In addition,
the Lorentz model shows consistently higher DP values at ATC
level 1, suggesting that it is superior to its Euclidean counterpart
in recapitulating the global aspects of the hierarchy. For local
aspects of the ATC hierarchy (levels 3 and 4), the improvement
from hyperbolic representation decreases as the latent
dimensionality increases. Euclidean latent space with dimension
sizes of 32 and 64 performed better at ATC levels 3 and 4,
suggesting that the Lorentz model with high dimensions might
be overfitted at the lower levels of the ATC hierarchy. Besides,
the DP results may be less reliable at ATC levels 3 and 4 due to
the smaller sample sizes of the clusters. For the reconstruction of
SMILES strings, the Lorentz and the Euclidean models show
comparable accuracy. We chose representations in the Lorentz
space with the latent dimension of 64 in the following
experiments because it provides the highest reconstruction
accuracy and highest DP values at ATC levels 1 and 2.
We visually explore the embedding in two-dimensional

hyperbolic space by mapping the embedding in the Lorentz
model to the Poincare ́disk via a diffeomorphism described in ref
40. In Figure 4(a), we observe that most of the drugs are placed
near the boundary of the Poincare ́ disk and form tight clusters
that correspond to drug groups at ATC level 1. The hyperbolic
embedding exhibits a clear hierarchical structure where the
clusters at the boundary can be interpreted as distinct subtrees
with the root of the tree positioned at the origin. A small number
of drugs (gray circles) are scattered around the origin and
denote drugs that act on the sensory organs. This group of drugs
mainly consist of anti-infectives, anti-inflammatory agents, and
corticosteroids, most of which act on more than one system and
have multiple therapeutic uses. We hypothesize that these
sensory organ drugs are placed close to the center because
minimizing the local ranking loss constrains them to be
concurrently close to different drug groups in the latent space.
Figure 4(b) and (c) demonstrate that embedding in hyperbolic
space can effectively induce a multilevel tree. More specifically,
in Figure 4(b), we zoom into a level 1 group called
“Antineoplastic and Immunodulating Agents” and show that
the members in this group form clusters that correspond to level
2 groups. We further zoom into a level 2 group called
“Antineoplastic Agents” (see Figure 4(c)) and demonstrate
that members in this group form clusters that correspond to level
3 groups. This example demonstrates that the embedding retains
the hierarchical structure to the deepest levels.
Summary. The preceding results show that best performing

embedding is obtained with the Lorentz model with dimension
of size 64, when both the chemical structures and the ATC
hierarchy are leveraged. We refer to this embedding as the
Lorentz Drug Embedding (LDE) and its Euclidean counterpart
as the Euclidean Drug Embedding (EDE) in the following
experiments.
Evaluation of Drug Repositioning. Drug repositioning is

the discovery of new uses, called indications, for approved drugs.
Compared to de novo drug discovery that takes an enormous
amount of time, money, and effort, drug repositioning is more
efficient since it takes advantage of drugs that are already
approved. We evaluate LDE for drug repositioning by deriving
kNNmodels to discriminate between approved and unapproved
drug-indication pairs in the repoDB data set. We tag each drug-
indication pair with the date when the drug was first approved by
the FDA. We choose 2000 as the cutoff year to split the repoDB
data set into training (earlier than year 2000) and test (year 2000

and later) sets. For each drug xi in the test set, we first encode it
into the latent space using its SMILES string as the input and
then retrieve its k nearest neighbors {XkNN} from the training set
in the latent space. We apply majority voting to the retrieved
drug-indication pairs in {XkNN} to predict the status of each
indication associated with xi. For indications of xi that do not
exist in {XkNN}, we assume that it has equal probability of being
either being successfully approved or not.
Table 2 shows an example of the drug esomeprazole as the

query drug for which we want to predict new indications.

Esomeprazole was first approved by the FDA in 2001 and thus is
not in the training set. The three most similar drugs to
esomeprazole in the latent space are omeprazole, rabeprazole,
and famotidine, which were approved by the FDA in 1989, 1999,
and 1986, respectively. Table 2 shows that, based on the status of
indications associated with the retrieved drugs, we successfully
predicted all uses of esomeprazole that have been approved by
the FDA. Moreover, we observe that esomeprazole is not likely
to be approved for nausea, laryngeal diseases, and cystic fibrosis
based on the failed approval of omeprazole for these indications.
Figure 5 shows the two-dimensional molecular structures of
esomeprzole and its three nearest neighbors.
Because we are not aware of any other approach developed on

the repoDB data set with the same chronological split, we
compare the performance of LDE for drug repositioning using
kNN, for each k in [3, 5, 7, 9, 11], to the following baselines: (1)
kNN on RDKit-calculated descriptors, (2) kNN on Morgan
(ECFP) fingerprints (bit vector of size 2048), (3) kNN on
count-basedMorgan fingerprints, and (4) kNN on Lorentz drug
embedding without ATC information. We use the Tanimoto
coefficient as the similarity metric for fingerprints-based
representations, Euclidean distance as the similarity metric for
RDKit-calculated descriptors, and hyperbolic distance as the
similarity metric for LDE. Performance is evaluated using area
under the receiver operating characteristic curve (AUROC) and
area under the precision-recall curve (AUPRC). Figure 6 shows
that the LDE with ATC information, i.e., pairwise similarity
between drugs, outperforms other drug representations by a
large margin. Averaging across different k values, the LDE with
ATC information surpasses Morgan (ECFP) fingerprints, the
second best representation, by 12% (AUROC) and 15.8%
(AUPRC). Compared to LDE without ATC information,

Table 2. Example of Drug Repositioning Prediction for
Esomeprazole Using kNN (k = 3)a

query drug retrieved drugs

FDA status esomeprazole omeprazole rabeprazole famotidine

approved erosive esophagitis √ √
zollinger-ellison
syndrome

√ √ √

peptic esophagitis √ √
gastresophageal
reflux disease

√ √ √

peptic ulcer √ √
unapproved nausea ×

laryngeal diseases ×
cystic fibrosis ×

aThe first two columns show the ground-truth status of indications
associated with esomeprazole. In the third column, a check mark
represents one approved vote from a retrieved drug, a cross mark
represents one unapproved vote from a retrieved drug, and no mark
represents that the status of corresponding indication is unknown.
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incorporating drug hierarchy in the embedding achieves a large
gain of 33.6% (AUROC) and 48.8% (AUPRC). LDE’s
competitive performance on discovering repositioning oppor-
tunities is likely driven by the drug−drug similarity that is
encoded in the ATC hierarchy.
We also compare the performance of drug repositioning using

kNN (k = 11) between LDE and EDE. Figure 7 shows that the
LDE substantially outperforms the EDE in low dimensional
spaces (2 and 4) and has comparable AUC scores in a high
dimensional space (64). This result shows that the hyperbolic
space has superior capacity than the Euclidean space when the
input hierarchy is relatively large for the latent space in which it is
embedded. It is an appealing property as the drug hierarchy is
expected to grow as new drugs are approved in the future.

Evaluation of Side Effect Predictions. Side effects are
unwanted reactions to drugs, and they occur commonly. Often,
not all side effects of a drug are known at the time it is approved
for medical use. Thus, it is of critical importance to identify side
effects of approved drugs. We applied LDE to predict side effects
and compared its performance to several state of the art drug
representations for predicting side effects.50 We apply the side
effect prediction methods to predict the presence or absence of
side effects in each of the 27 classes of drugs as defined in the
SIDER database. We perform three independent runs with
different random seeds. In each run, we randomly split the
SIDER database into training, validation, and test sets in the
proportions 80%:10%:10%. We use mean AUROC as the
evaluation metric.
The comparison drug representations include (1) graph-

based representations including a Weave and Graph Convolu-
tional (GC) network that represent each molecule as an
undirected graph, (2) Fingerprint (ECFP) representation that is
a fixed length binary encoding of topological characteristics of
the molecule, and (3) our drug embeddings LDE and EDE. For
LDE and EDE, we use random forest (RF) classifiers to predict
side effects. For ECFP, we use influence relevance voting (IRV),
a refined kNN classifier, and random forest classifiers to predict
side effects. We use the Tanimoto coefficient53 as the similarity
metric for ECFP+IRV. For comparison, we use the results for
Weave, GC, ECFP+IRV, and ECFP+RF from Wu et al.50 since
their experimental settings are the same as our settings.
Figure 8 shows that LDE has a significantly better perform-

ance (P-value < 0.05) in predicting side effects compared to both
graph-based and ECFP representations. Compared to EDE,
LDE has a slightly better, but not significantly better,
performance. This result shows that incorporating the drug
hierarchy in the hyperbolic embedding improves accuracy of
predicting side effects.

Figure 5. Molecular structures of esomeprazole and its three nearest
neighbors retrieved using kNN. Among the retrieved drugs, omeprazole
is closely related to esomprazole in chemical structure, and rabeprazole
shares a substructure with esomprazole. Although famotidine is
structurally different, it belongs to the same pharmacological group as
omeprazole and rabeprazole in the ATC hierarchy.

Figure 6.Comparison of representations for drug repositioning prediction using kNN (k∈ [3, 5, 7, 9, 11]). The left panel shows AUROC scores, and
the right panel shows AUPRC scores.
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■ CONCLUSION
We introduced a method for learning a high-quality drug
embedding that integrates chemical structures of drug and drug-
like molecules with local similarity of drugs implied by a drug
hierarchy. We leveraged the properties of the Lorentz model of
hyperbolic space and developed a novel hyperbolic VAEmethod
that simultaneously encodes similarity from chemical structures
and from hierarchical relationships. We showed empirically that
our embedding recapitulates the hierarchical relationships in the
ATC hierarchy and can accurately reproduce the chemical
structure. Our results support that learning chemical structure
can help preserve the ATC hierarchy in the latent space and vice
versa. We further showed that the embedding can be used for
drug repositioning and to discover new side effects.
There are several directions for future work. We plan to

investigate the utility of integrating additional types of

biomedical knowledge, such as drug-target interaction informa-
tion, into the model. Our approach is general and can easily
incorporate additional sources of knowledge. Besides, as our
framework is built on a probabilistic generative model, we plan
to investigate its utility for drug discovery, for example, searching
new molecules that are similar to the FDA-approved drugs in a
desired pharmacological class.
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Figure 7.Comparison of LDE to EDE for drug repositioning prediction using kNN (k = 11) at different latent dimensions (2, 4, and 64). The left panel
shows AUROC scores, and the right panel shows AUPRC scores.

Figure 8. Prediction of side effects using three different representations of molecules: (1) Graph-based (Weave, GC), (2) Fingerprint (ECFP), and (3)
our drug embeddings (EDE, LDE). The AUROC values are the average of three independent runs, and the error bars denote standard deviations.
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Lobato, J. M.; Sańchez-Lengeling, B.; Sheberla, D.; Aguilera-
Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A.
Automatic chemical design using a data-driven continuous representa-
tion of molecules. ACS Cent. Sci. 2018, 4, 268−276.

(8) Yu, L.; Ma, X.; Zhang, L.; Zhang, J.; Gao, L. Prediction of new drug
indications based on clinical data and network modularity. Sci. Rep.
2016, 6, 32530.
(9) Timilsina, M.; Tandan, M.; d’Aquin, M.; Yang, H. Discovering
Links Between Side Effects and Drugs Using a Diffusion BasedMethod.
Sci. Rep. 2019, 9, 10436.
(10) Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling polypharmacy
side effects with graph convolutional networks. Bioinformatics 2018, 34,
i457−i466.
(11) Weininger, D. SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules. J. Chem.
Inf. Model. 1988, 28, 31−36.
(12) Nickel, M.; Kiela, D. Poincare ́ embeddings for learning
hierarchical representations. Advances in neural information processing
systems 2017, 6338−6347.
(13)Mathieu, E.; Le Lan, C.;Maddison, C. J.; Tomioka, R.; Teh, Y.W.
Continuous Hierarchical Representations with Poincare ́ Variational
Auto-Encoders. Advances in neural information processing systems 2019,
12544−12555.
(14) De Sa, C.; Gu, A.; Re,́ C.; Sala, F. Representation tradeoffs for
hyperbolic embeddings. J. Mach. Learn. Res. 2018, 80, 4460.
(15) Monath, N.; Zaheer, M.; Silva, D.; McCallum, A.; Ahmed, A.
Gradient-based Hierarchical Clustering using Continuous Representa-
tions of Trees in Hyperbolic Space. Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining 2019, 714−722.
(16) Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A.
Machine learning for molecular and materials science. Nature 2018,
559, 547−555.
(17) Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran,
E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; Zhao, S.
Applications of machine learning in drug discovery and development.
Nat. Rev. Drug Discovery 2019, 18, 463−477.
(18) Ekins, S.; Puhl, A. C.; Zorn, K. M.; Lane, T. R.; Russo, D. P.;
Klein, J. J.; Hickey, A. J.; Clark, A. M. Exploiting machine learning for
end-to-end drug discovery and development.Nat. Mater. 2019, 18, 435.
(19) Jeon, J.; Nim, S.; Teyra, J.; Datti, A.; Wrana, J. L.; Sidhu, S. S.;
Moffat, J.; Kim, P. M. A systematic approach to identify novel cancer
drug targets using machine learning, inhibitor design and high-
throughput screening. Genome Med. 2014, 6, 57.
(20) Ferrero, E.; Dunham, I.; Sanseau, P. In silico prediction of novel
therapeutic targets using gene−disease association data. J. Transl. Med.
2017, 15, 182.
(21) Rouillard, A. D.; Hurle, M. R.; Agarwal, P. Systematic
interrogation of diverse Omic data reveals interpretable, robust, and
generalizable transcriptomic features of clinically successful therapeutic
targets. PLoS Comput. Biol. 2018, 14, e1006142.
(22) Li, H.; Sze, K.-H.; Lu, G.; Ballester, P. J. Machine-learning scoring
functions for structure-based drug lead optimization. Wiley Interdiscip.
Rev.: Comput. Mol. Sci. 2020, 10, e1465.
(23) Winter, R.; Montanari, F.; Steffen, A.; Briem, H.; Noe,́ F.;
Clevert, D.-A. Efficient multi-objective molecular optimization in a
continuous latent space. Chem. Sci. 2019, 10, 8016−8024.
(24) Unterthiner, T.; Mayr, A.; Klambauer, G.; Hochreiter, S. Toxicity
prediction using deep learning. 2015, arXiv preprint. arXiv:1503.01445.
https://arxiv.org/abs/1503.01445 (accessed 2020-10-30).
(25) Li, B.; Shin, H.; Gulbekyan, G.; Pustovalova, O.; Nikolsky, Y.;
Hope, A.; Bessarabova, M.; Schu, M.; Kolpakova-Hart, E.; Merberg, D.;
et al. Development of a drug-response modeling framework to identify
cell line derived translational biomarkers that can predict treatment
outcome to erlotinib or sorafenib. PLoS One 2015, 10, e0130700.
(26) van Gool, A. J.; Bietrix, F.; Caldenhoven, E.; Zatloukal, K.;
Scherer, A.; Litton, J.-E.; Meijer, G.; Blomberg, N.; Smith, A.; Mons, B.;
et al. Bridging the translational innovation gap through good biomarker
practice. Nat. Rev. Drug Discovery 2017, 16, 587−588.
(27) Kraus, V. B. Biomarkers as drug development tools: discovery,
validation, qualification and use. Nat. Rev. Rheumatol. 2018, 14, 354−
362.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00681
J. Chem. Inf. Model. 2020, 60, 5647−5657

5656

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00681/suppl_file/ci0c00681_si_001.pdf
http://orcid.org/0000-0001-9882-5729
mailto:yu.ke@pitt.edu
mailto:shv3@pitt.edu
mailto:kayhan@pitt.edu
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00681?ref=pdf
https://dx.doi.org/10.1038/534314a
https://dx.doi.org/10.1038/nrd.2018.168
https://dx.doi.org/10.1038/nrd.2018.168
https://dx.doi.org/10.1136/amiajnl-2011-000699
https://dx.doi.org/10.1136/amiajnl-2011-000699
https://dx.doi.org/10.1038/s41587-020-0418-2
https://dx.doi.org/10.1038/s41587-020-0418-2
https://dx.doi.org/10.1021/acs.jcim.9b00237
https://dx.doi.org/10.1021/acs.jcim.9b00237
https://dx.doi.org/10.1021/acscentsci.7b00512
https://dx.doi.org/10.1021/acscentsci.7b00512
https://dx.doi.org/10.1021/acscentsci.7b00512
https://dx.doi.org/10.1021/acscentsci.7b00572
https://dx.doi.org/10.1021/acscentsci.7b00572
https://dx.doi.org/10.1038/srep32530
https://dx.doi.org/10.1038/srep32530
https://dx.doi.org/10.1038/s41598-019-46939-6
https://dx.doi.org/10.1038/s41598-019-46939-6
https://dx.doi.org/10.1093/bioinformatics/bty294
https://dx.doi.org/10.1093/bioinformatics/bty294
https://dx.doi.org/10.1021/ci00057a005
https://dx.doi.org/10.1021/ci00057a005
https://dx.doi.org/10.1145/3292500.3330997
https://dx.doi.org/10.1145/3292500.3330997
https://dx.doi.org/10.1038/s41586-018-0337-2
https://dx.doi.org/10.1038/s41573-019-0024-5
https://dx.doi.org/10.1038/s41563-019-0338-z
https://dx.doi.org/10.1038/s41563-019-0338-z
https://dx.doi.org/10.1186/s13073-014-0057-7
https://dx.doi.org/10.1186/s13073-014-0057-7
https://dx.doi.org/10.1186/s13073-014-0057-7
https://dx.doi.org/10.1186/s12967-017-1285-6
https://dx.doi.org/10.1186/s12967-017-1285-6
https://dx.doi.org/10.1371/journal.pcbi.1006142
https://dx.doi.org/10.1371/journal.pcbi.1006142
https://dx.doi.org/10.1371/journal.pcbi.1006142
https://dx.doi.org/10.1371/journal.pcbi.1006142
https://dx.doi.org/10.1002/wcms.1465
https://dx.doi.org/10.1002/wcms.1465
https://dx.doi.org/10.1039/C9SC01928F
https://dx.doi.org/10.1039/C9SC01928F
https://arxiv.org/abs/1503.01445
https://dx.doi.org/10.1371/journal.pone.0130700
https://dx.doi.org/10.1371/journal.pone.0130700
https://dx.doi.org/10.1371/journal.pone.0130700
https://dx.doi.org/10.1038/nrd.2017.72
https://dx.doi.org/10.1038/nrd.2017.72
https://dx.doi.org/10.1038/s41584-018-0005-9
https://dx.doi.org/10.1038/s41584-018-0005-9
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00681?ref=pdf


(28) Kwak, H.; Lee, M.; Yoon, S.; Chang, J.; Park, S.; Jung, K. Drug-
Disease Graph: Predicting Adverse Drug Reaction Signals via Graph
Neural Network with Clinical Data. Pacific-Asia Conference on
Knowledge Discovery and Data Mining 2020, 12085, 633−644.
(29) Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J.
Chem. Inf. Model. 2010, 50, 742−754.
(30) Kusner, M. J.; Paige, B.; Hernańdez-Lobato, J. M. Grammar
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