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Abstract

Conditional generative models enjoy remarkable progress over the past few years.
One of the popular conditional models is Auxiliary Classifier GAN (AC-GAN),
which generates highly discriminative images by extending the loss function of
GAN with an auxiliary classifier. However, the diversity of the generated samples
by AC-GAN tends to decrease as the number of classes increases, hence limiting its
power on large-scale data. In this paper, we identify the source of the low diversity
issue theoretically and propose a practical solution to solve the problem. We
show that the auxiliary classifier in AC-GAN imposes perfect separability, which
is disadvantageous when the supports of the class distributions have significant
overlap. To address the issue, we propose Twin Auxiliary Classifiers Generative
Adversarial Net (TAC-GAN) that further benefits from a new player that interacts
with other players (the generator and the discriminator) in GAN. Theoretically, we
demonstrate that TAC-GAN can effectively minimize the divergence between the
generated and real-data distributions. Extensive experimental results show that our
TAC-GAN can successfully replicate the true data distributions on simulated data,
and significantly improves the diversity of class-conditional image generation on
real datasets. [

1 Introduction

Generative Adversarial Networks (GANS) [1]] are a framework to learn the data generating distribution
implicitly. GANs mimic sampling from a target distribution by training a generator that maps samples
drawn from a canonical distribution to the data space. A distinctive feature of GANs is that the
discriminator that evaluates the separability of the real and generated data distributions [1-4]. If the
discriminator can hardly distinguish between real and generated data, the generator is likely to provide
a good approximation to the true data distribution. To generate high-fidelity images, much recent
research has focused on designing more advanced network architectures [3} 6], developing more
stable objective functions [7H9} 3], enforcing appropriate constraints on the discriminator [10-12], or
improving training techniques [7} [13]].

Conditional GANs (cGANSs) [[14] are a variant of GANSs that take advantage of extra information
(condition) and have been widely used for generation of class-conditioned images [[15H18]] and text [[19}
20]. A major difference between cGANs and GANSs is that the cGANSs feed the condition to both the
generator and the discriminator to lean the joint distributions of images and the condition random
variables. Most methods feed the conditional information by concatenating it (or its embedding)
with the input or the feature vector at specific layers [14} 21} |15 22} 23| 20]. Recently, Projection-
cGAN [24] improves the quality of the generated images using a specific discriminator that takes the
inner product between the embedding of the conditioning variable and the feature vector of the input
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image, obtaining state-of-the-art class-conditional image generation on large-scale datasets such as
ImageNet1000 [25]].

Among cGANSs, the Auxiliary Classifier GAN (AC-GAN) has received much attention due to its
simplicity and extensibility to various applications [[17]. AC-GAN incorporates the conditional
information (label) by training the GAN discriminator with an additional classification loss. AC-GAN
is able to generate high-quality images and has been extended to various learning problems, such as
text-to-image generation [26]]. However, it is reported in the literature 17, 24] that as the number
of labels increases, AC-GAN tends to generate near-identical images for most classes. Miyato et
al. [24] observed this phenomenon on ImageNet1000 and conjectured that the auxiliary classifier
might encourage the generator to produce less diverse images so that they can be easily discernable.

Despite these insightful findings, the exact source of the low-diversity problem is unclear, let alone
its remedy. In this paper, we aim to provide an understanding of this phenomenon and accordingly
develop a new method that is able to generate diverse and realistic images. First, we show that due to
a missing term in the objective of AC-GAN, it does not faithfully minimize the divergence between
real and generated conditional distribution. We show that missing that term can result in a degenerate
solution, which explains the lack of diversity in the generated data. Based on our understanding, we
introduce a new player in the min-max game of AC-GAN that enables us to estimate the missing
term in the objective. The resulting method properly estimates the divergence between real and
generated conditional distributions and significantly increases sample diversity within each class.
We call our method Twin Auxiliary Classifiers GAN (TAC-GAN) since the new player is also a
classifier. Compared to AC-GAN, our TAC-GAN successfully replicates the real data distributions
on simulated data and significantly improves the quality and diversity of the class-conditional image
generation on CIFAR100 [27], VGGFace?2 [28]], and ImageNet1000 [25]] datasets. In particular, to
our best knowledge, our TAC-GAN is the first cGAN method that can generate good quality images
on the VGGFace dataset, demonstrating the advantage of TAC-GAN on fine-grained datasets.

2 Method

In this section, we review the Generative Adversarial Network (GAN) [[1] and its conditional variant
(cGAN) [14]]. We review one of the most popular variants of cGAN, which is called Auxiliary
Classifier GAN (AC-GAN) [[17]. We first provide an understanding of the observation of low-
diversity samples generated by AC-GAN from a distribution matching perspective. Second, based
on our new understanding of the problem, we propose a new method that enables learning of real
distributions and increasing sample diversity.

2.1 Background

Given a training set {x;}? ; C X drawn from an unknown distribution Px, GAN estimates Px by
specifying a distribution @) x implicitly. Instead of an explicit parametrization, it trains a generator
function G(Z) that maps samples from a canonical distribution, i.e., Z ~ Pz, to the training data.
The generator is obtained by finding an equilibrium of the following mini-max game that effectively
minimizes the Jensen-Shannon Divergence (JSD) between () x and Px:

mCi;n mgXXEEPX [log D(X)] + ZEEPZ [log(1 — D(G(2)))], QY

where D is a discriminator. Notice that the () x is not directly modeled.

Given a pair of observation (x) and a condition (y), {x;,y}"; € X x Y drawn from the joint
distribution (x;,y) ~ Pxy, the goal of cGAN is to estimate a conditional distribution Px |y . Let
Q) x|y denote the conditional distribution specified by a generator G(Y, Z) and Qxy = Qx|y Py.
A generic cGAN trains G to implicitly minimize the JSD divergence between the joint distributions
Qxvy and Pxy:

min mgx(xﬁyﬁENPXY [log D(X,Y)] + Z~PZIEEY~PY [log(1 — D(G(Z,Y),Y))]. (2)

In general, Y can be a continuous or discrete variable. In this paper, we focus on case that Y is the
(discrete) class label, i.e., Y ={1,...,K}.



2.2 Insight on Auxiliary Classifier GAN (AC-GAN)

AC-GAN introduces a new player C' which is a classifier that interacts with the D and G players. We
use Qg‘/l  to denote the conditional distribution induced by C'. The AC-GAN optimization combines

the original GAN loss with cross-entropy classification loss:

rél’ig max Lac(G,D,C) = XFPX [log D(X)] + ZNPZI%E - [log(1 — D(G(Z,Y)))]

Y ~Py
@
N, L E . los(CG(ZY). V), &)

~Pz,Y~Py

® ©

where ). is a hyperparameter balancing GAN and auxiliary classification losses.

“A E  [logC(X,Y
A (X’Y)pry[ogC( )l

Here we decompose the objective of AC-GAN into three terms. Clearly, the first term () cor-
responds to the Jensen-Shannon divergence (JSD) between (Qx and Px. The second term (b)
is the cross-entropy loss on real data. It is straightforward to show that the second term min-
imizes Kullback-Leibler (KL) divergence between the real data distribution Py x and the dis-
tribution Q§,|  specified by €. To show that, we can add the negative conditional entropy,

—Hp(Y|X) = E(x,y)~Pyy [log P(Y]X)], to ®, we have
—-Hp(Y|X = E log P(Y|X)| — E logC'(X,Y
PO+ ®= B flogP(YX)] - B [logC(X.Y)

- (X,YEny[logP(Y|X)] Bl (X,Y%Efzvpxy[log QC(Y|X)]
_ P(Y|X)] )
N (X,Y;E;PXY l:log Q((Y|)()j| _KL(PY\X”QY‘X). 4)

Since the negative conditional entropy —Hp(Y|X) is a constant term, minimizing ® w.r.t. the
network parameters in C' effectively minimizes the KL divergence between Py | x and Q§,| X

The third term (¢) is the cross-entropy loss on the generated data. Similarly, if one adds the negative
entropy —Hg(Y'|X) = E(x y)~qy [log Q(Y]X)] to (© and obtain the following result:
—HoY|X)+© = E lo Y|X)| - E log Q°(Y|X)] =KL Yix)-
QVIX)+@= E [osQY|X)] - E - (los@(Y]X)] = KL(@Qyixl|Q5x)

When updating C, —Hg (Y| X) can be considered a constant term, thus minimizing © w.rt. C
effectively minimizes the KL divergence between Qy|x and Qij/‘ - However, when updating G,
—Hgq(Y'|X) cannot be considered as a constant term, because Qy|x is the conditional distribution
specified by the generator G. AC-GAN ignores —H (Y| X') and only minimizes (¢) when updating
G in the optimization procedure, which fails to minimize the KL divergence between Qy|x and
Qf/‘ - We hypothesize that the likely reason behind low diversity samples generated by AC-GAN is
that it fails to account for the missing term while updating G. In fact, the following theorem shows
that AC-GAN can converge to a degenerate distribution:

Theorem 1. Suppose Px = Qx. Given an auxiliary classifier C which specifies a conditional
distribution Qg,l > the optimal G* that minimizes (¢) induces the following degenerate conditional

distribution Q;‘,‘X,
« 1, if k=argmax, Q°(Y =i|X = x),
QY =kl X =2) = { 0, / g otzhermgise. | ) ®)
Proof is given in Section S1 of the Supplementary Material (SM). Theorem I|shows that, even when
the marginal distributions are perfectly matched by GAN loss (@), AC-GAN is not able to model the
probability when class distributions have support overlaps. It tends to generate data in which Y is
deterministically related to X. This means that the generated images for each class are confined by
the regions induced by the decision boundaries of the auxiliary classifier C', which fails to replicate
conditional distribution Q§’| +»implied by C, and reduces the distributional support of each class. The
theoretical result is consistent with the empirical results in [24] that AC-GAN generates discriminable
images with low intra-class diversity. It is thus essential to incorporate the missing term, —Hg (Y] X),
in the objective to penalize this behavior and minimize the KL divergence between Qy | x and Q% X



Generator G Auxiliary C

Noise Z Input Label Y

Input Label Y ——» —— Real Label v
Fake Real
nput Label Y / \_» Real/Fake

Twin Auxiliary C'™* Discriminator )

Figure 1: Illustration of the proposed TAC-GAN. The generator GG synthesizes fake samples X
conditioned input label Y. The discriminator D distinguishes between real/fake samples. The
auxiliary classifier C'is trained to classify labels on both real and fake pairs, while the proposed twin
auxiliary classifier C™ is trained on fake pairs only.

2.3 Twin Auxiliary Classifiers GAN (TAC-GAN)

Our analysis in the previous section motivates adding the missing term, —H (Y| X)), back to the
objective function. While minimizing (©) forces G to concentrate the conditional density mass on
the training data, — Hg (Y'|X') works in the opposite direction by increasing the entropy. However,
estimating —H¢ (Y| X) is a challenging task since we do not have access to Qy|x. Various methods
have been proposed to estimate the (conditional) entropy, such as [29H32]; however, these estimators
cannot be easily used as an objective function to learn GG via backpropagation. Below we propose to
estimate the conditional entropy by adding a new player in the mini-max game.

The general idea is to introduce an additional auxiliary classifier, C™?, that aims to identify the labels
of the samples drawn from @) x|y ; the low-diversity case makes this task easy for C""*. Similar to
GAN, the generator tries to compete with the C™*. The overall idea of TAC-GAN is illustrated in
Figure|l] In the following, we demonstrate its connection with minimizing —H (Y| X).

Proposition: Let us assume, without loss of generality, that all classes are equally likely |I| (i.e.,
P(Y = k) = ). Minimizing —H¢ (Y| X) is equivalent to minimizing (1) the mutual information
between Y and X and (2) the JSD between the conditional distributions {Q X[Y=15--->Qx|y= K}

Proof.
Io(Y,X) = H(Y) = Ho(Y|X) = Ho(X) — Ho(X]Y)
1 & 1 &
=—— E lo lo XY =k
KkzlxNQx\Y k gQ ;XNQX\Y K gQ( I )
K
1
e Z KL(Qxy=tll@x) =ISD(Qx|y=1,-- -, Qx|y=K)- (6)
k=1
(1) follows from the fact that entropy of Y is constant with respect to @, (2) is shown above. [

Based on the connection between —H ¢ (Y| X') and JSD, we extend the two-player minimax approach
in GAN [1] to minimize the JSD between multiple distributions. More specifically, we use another
auxiliary classifier ™ whose last layer is a softmax function that predicts the probability of X
belong to a class Y = k. We define the following minimax game:

minmax V(G,C™) = B [log(C™ (G(Z,Y),Y))] ™)

The following theorem shows that the minimax game can effectively minimize the JSD between
{QX|Y:17 ey QX|Y:K}'
Theorem 2. Let U(G) = max V(G,C™"). The global mininum of the minimax game is achieved if

and only if Qx|y—1 = Qx|y=2 = - - - = Qx|y=k- At the optimal point, U(G) achieves the value
—Klog K.

'If the dataset is imbalanced, we can apply biased batch sampling to enforce this condition.



A complete proof of Theorem 2 is given in Section S2 of the SM. It is worth noting that the global
optimum of U (G) cannot be achieved in our model because of other terms in our TAC-GAN objective
function, which is obtained by combing (7) and the original AC-GAN objective (3):

Iél}él 51710&7)57 ETAc(G,D,C,C ) = ﬁAc(G,D,C) + )\CV(G7C ) (8)

The following theorem provides approximation guarantees for the joint distribution Pxy-, justifying
the validity of our proposed approach.

Theorem 3. Let Py x and Qy x denote the data distribution and the distribution specified by the
generator G, respectively. Let Qi/‘  denote the conditional distribution of Y given X specified by
the auxiliary classifier C. We have

ISD(Pxy, Qxy) < 21/2ISD(Px, Qx) + ¢21/2KL(Py x[|Q5 ) + e21/2KL(Qy x11Q5 ).

where ¢1 and c; are upper bounds of £ [ |Py|x (y|z)|u(z,y) and £ [ |Qx (2)|p(z) (v is a o-finite
measure), respectively. A proof of Theorem |3|is provided in Section S3 of the SM.

3 Related Works

TAC-GAN learns an unbiased distribution. Shu ez al. [33] first show that AC-GAN tends to
down-sample the data points near the decision boundary, causing a biased estimation of the true
distribution. From a Lagrangian perspective, they consider AC-GAN as minimizing JSD(Px, Qx)
with constraints enforced by classification losses. If . is very large such that JSD( Py, Q) x ) become
less effective, the generator will push the generated images away from the boundary. However, on real
datasets, we can also observe low diversity when A, is small, which cannot be explained by the analy-
sis in [33]. We take a different perspective by constraining JSD(Px, @ x ) to be small and investigate
the properties of the conditional Qy|x. Our analysis suggests that even when JSD(Px,Qx) =0,
the AC-GAN cross-entropy loss can still result in biased estimate of Qy|x, reducing the support of
each class in the generated distribution, compared to the true distribution. Furthermore, we propose a
solution that can remedy the low diversity problem based on our understandings.

Connecting TAC-GAN with Projection cGAN. AC-GAN was once the state-of-the-art method
before the advent of Projection cGAN [24]]. Projection cGAN, AC-GAN, and our TAC-GAN share
the similar spirits in that image generation performance can be improved when the joint distribution
matching problem is decomposed into two easier sub-problems: marginal matching and conditional
matching [32]]. Projection cGAN decomposes the density ratio, while AC-GAN and TAC-GAN
directly decompose the distribution. Both Projection cGAN and TAC-GAN are theoretically sound
when using the cross-entropy loss. However, in practice, hinge loss is often preferred for real data. In
this case, Projection cGAN loses the theoretical guarantee, while TAC-GAN is less affected, because
only the GAN loss is replaced by the hinge loss.

4 Experiments

We first compare the distribution matching ability of AC-GAN, Projection cGAN, and our TAC-GAN
on Mixture of Gaussian (MoG) and MNIST [34]] synthetic data. We evaluate the image generation
performance of TAC-GAN on three image datatest including CIFAR100 [27]], ImageNet1000 [25] and
VGGFace?2 [28]]. In our implementation, the twin auxiliary classifiers share the same convolutional
layers, which means TAC-GAN only adds a negligible computation cost to AC-GAN. The detailed
experiment setups are shown in the SM. We implemented TAC-GAN in Pytorch. To illustrate
the algorithm, we submit the implementation on the synthetic datasets in SM. The source code to
reproduce the full experimental results will be made public on GitHub.

4.1 MoG Synthetic Data

We start with a simulated dataset to verify that TAC-GAN can accurately match the target distribution.
We draw samples from a one-dimensional MoG distribution with three Gaussian components, labeled
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Figure 2: Comparison of sample quality on a synthetic MoG dataset.

Marginal Class_0 Class_1 Class_2
. v Projection cGAN 0
08
60 o o AC-GAN 5 600 e o o
@8- TAC-GAN
osn © o o ® Clwo o om o ° ° T
Qe | o . 2 0 2, S p
Sw = = -] = a0
®—¢o 20
2 02 o o 200
10 v " - v o I 100
= —= g
o —8—s—8—a—pg—e—0—8 o & i=g—= &8-Ea o 8808 #-u-E-u o B—A—g—8—8—8—8—F8
1 2 3 s s ' 2 3 s 1 2 3 s s ' 2 3 4 5
dm(Distance between means) dm (Distance between means) dm (Distance between means) dm (Distance between means)

Figure 3: The MMD evaluation. The x-axis means the distance between the means of adjacent
Gaussian components (d,, ). Lower score is better.

as Class_0, Class_1, and Class_2, respectively. The standard deviations of the three components
are fixed to og = 1,01 = 2, and 02 = 3. The differences between the means are set to p1 — pg =
o — p1 = d.,, in which d,,, ranges from 1 to 5. These values are chosen such that the supports of
the three distributions have different overlap sizes. We detail the experimental setup in Section S4 of
the SM.

Figure [2 shows the ground truth density functions when po = 0, 11 = 3, 1o = 6 and the estimated
ones by AC-GAN, TAC-GAN, and Projection cGAN. The estimated density function is obtained
by applying kernel density estimation [35] on the generated data. When using cross-entropy loss,
AC-GAN learns a biased distribution where all the classes are perfectly separated by the classification
decision function, verifying our Theorem|I} Both our TAC-GAN and Projection cGAN can accurately
learn the original distribution. Using Hinge loss, our model can still learn the distribution well, while
neither AC-GAN nor Projection cGAN can replicate the real distribution (see Supplementary S4
for more experiments). We also conduct simulation on a 2D dataset and the details are given in
Supplementary S5. The results show that our TAC-GAN is able to learn the true data distribution.

Figure 3 reports the Maximum Mean Discrepancy (MMD) [36] distance between the real data and
generated data for different d,,, values. Here all the GAN models are trained using cross-entropy
loss (log loss). The TAC-GAN produces near-zero MMD values for all d,,,’s, meaning that the data
generated by TAC-GAN is very close to the ground truth data. Projection cGAN performs slightly
worse than TAC-GAN and AC-GAN generates data that have a large MMD distance to the true data.

4.2 Overlapping MNIST

Following experiments in [33] to show that AC-GAN learns a biased distribution, we use the
overlapping MNIST dataset to demonstrate the robustness of our TAC-GAN. We randomly sample
from MNIST training set to construct two image groups: Group A contains 5,000 digit ‘1’ and
5,000 digit ‘0’, while Group B contains 5,000 digit ‘2’ and 5,000 digit ‘0’,to simulate overlapping
distributions, where digit ‘0’ appears in both groups. Note that the ground truth proportion of digit
‘0’, ‘1’ and 2’ in this dataset are 0.5, 0.25 and 0.25, respectively.

Figure[4 (a) shows the generated images under different \.. It shows that AC-GAN tends to down
sample ‘0’ as )\, increases, while TAC-GAN can always generate ‘0’s in both groups. To quantitatively
measure the distribution of generated images, we pre-train a “perfect” classifier on a MNIST subset
only containing digit ‘0’, ‘1°, and ‘2, and use the classifier to predict the labels of the generated data.
Figure ] (b) reports the label proportions for the generated images. It shows that the label proportion
produced by TAC-GAN is very close to the ground truth values regardless of \., while AC-GAN
generates less ‘0’s as A, increases. More results and detail setting are shown in Section S6 of the SM.
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Figure 4: (a) Visualization of the generated MNIST digits with various A, values. For each section,
the top row digits are sampled from group A and the bottom row digits are from group B. (b) The
label proportion for generated digits of two methods. The ground truth proportion for digit 0,1,2 is
[0.5, 0.25, 0.25], visualized as dashed dark lines.
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Figure 5: Generated images from five classes of CIFAR100.
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Figure 6: Impact of A, on the image generation quality on CIFAR100.

4.3 CIFAR100

CIFAR100 [27] has 100 classes, each of which contains 500 training images and 100 testing images
at the resolution of 32 x 32. The current best deep classification model achieves 91.3% accuracy on
this dataset [37], which suggests that the class distributions may have certain support overlaps.

Figure[5]shows the generated images for five randomly selected classes. AC-GAN generates images
with low intra-class diversity. Both TAC-GAN and Projection cGAN generate visually appealing and
diverse images. We provide the generated images for all the classes in Section S6 of the SM.

To quantitatively compare the generated images, we consider the two popular evaluation criteria,
including Inception Score (IS) [38]] and Fréchet Inception Distance (FID) [39]. We also use the
recently proposed Learned Perceptual Image Patch Similarity (LPIPS), which measures the perceptual
diversity within each class [40]]. The scores are reported in Table[T. TAC-GAN achieves lower FID
than Projection cGAN, and outperforms AC-GAN by a large margin, which demonstrates the efficacy
of the twin auxiliary classifiers. We report the scores for all the classes in Section S7 of the SM. In
Section S7.2 of the SM, we explore the compatibility of our model with the techniques that increase
diversity of unsupervised GANs. Specifically, we combine pacGAN [41] with AC-GAN and our
TAC-GAN, and the results show that pacGAN can improve both AC-GAN and TAC-GAN, but it
cannot fully address the drawbacks of AC-GAN.

Effects of hyper-parameters \.. We study the impact of A, on AC-GAN and TAC-GAN, and
report results under different A, values in Figure|6. It shows that TAC-GAN is robust to A, while
AC-GAN requires a very small ). to achieve good scores. Even so, AC-GAN generates images with
low intra-class diversity, as shown in Figure 5]
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Figure 7: Comparison of generated face samples from three identities in VGGFace2 dataset.

Table 1: The quantitative results of all models on three datasets.

Methods AC-GAN (\. =1) TAC-GAN (Ours) (A, = 1) Projection cGAN
Metrics IS 1 FID | ISt FID | ISt FID |

CIFAR100 537£0.064 8245 | 9.34+0.077 7.22 9.56 £0.133 8.92
ImageNet1000 | 7.26 + 0.113 184.41 | 28.86 £ 0.298 23.75 38.05 + 0.790 22.77
VGGFace200 | 27.81 £0.29 95.70 | 48.94 + 0.63 29.12 3250 £044 66.23
VGGFace500 | 2596 £0.32 31.90 | 77.76 + 1.61 12.42 3596 £0.62 43.10
VGGFacel000 ~ ~ 108.89 + 2.63 13.60 71.15£ 093  24.07
VGGFace2000 ~ ~ 109.04 + 2.44 13.79 79.51 £1.03 2242

4.4 TImageNet1000

We further apply TAC-GAN to the large-scale ImageNet dataset [25]] containing 1000 classes, each of
which has around 1,300 images. We pre-process the data by center-cropping and resizing the images
to 128 x 128. We detail the experimental setup and attach generated images in Section S8 of the SM.

Table|[T]reports the IS and FID metrics of all models. Our TAC-GAN again outperforms AC-GAN
by a large margin. In addition, TAC-GAN has lower IS than Projection cGAN. We hypothesize
that TAC-GAN has a chance to generate images that do not belong to the given class in the overlap
regions, because it aims to model the true conditional distribution.

4.5 VGGFace2

VGGFace2 is a large-scale face recognition dataset, with around 362 images for each person.
Its main difference to CIFAR100 and ImageNet1000 is that this dataset is more fine-grained with
smaller intra-class diversities, making the generative task more difficult. We resize the center-cropped
images to 64 x 64. To compare different algorithms, we randomly choose 200, 500, 1000 and 2000
identities to construct the VGGFace200, VGGFace500 VGGFACE1000 and VGGFACE2000 datasets,
respectively.

Figure|/|shows the generated face images for five randomly selected identities from VGGFACE200.
AC-GAN collapses to the class center, generating very similar images for each class. Though
Projection cGAN generate diverse images, it has blurry effects. Our TAC-GAN generates diverse
and sharp images. To quantitatively compare the methods, we finetune a Inception Net [42] classifier
on the face data and then use it to calculate IS and FID score. We report IS and FID scores for all
the methods in Table[I. It shows that TAC-GAN produces much better/higher IS better/lower FID
score than Projection cGAN, which is consistent with the qualitative observations. These results
suggest that TAC-GAN is a promising method for fine-grained datasets. More generated identities
are attached in in section S9 of the SM.

5 Conclusion

In this paper, we have theoretically analyzed the low intra-class diversity problem of the widely
used AC-GAN method from a distribution matching perspective. We showed that the auxiliary
classifier in AC-GAN imposes perfect separability, which is disadvantageous when the supports of
the class distributions have significant overlaps. Based on the analysis, we further proposed the Twin
Auxiliary Classifiers GAN (TAC-GAN) method, which introduces an additional auxiliary classifier
to adversarially play with the players in AC-GAN. We demonstrated the efficacy of the proposed



method both theoretically and empirically. TAC-GAN can resolve the issue of AC-GAN to learn an
unbiased distribution, and generate high-quality samples on fine-grained image datasets.
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Supplementary Materials for ‘“Twin Auxiliary Classifiers GAN”

This supplementary material provides the proofs and more experimental details
which are omitted in the submitted paper. The equation numbers 1n this material are
consistent with those in the paper.

S1. Proof of Theorem 1

Proof. The optimal Q*{/‘  is obtained by the following optimization problem:

pin - E, es@(YV[X)] = ZQ = i[X)log Q“(Y = i[ X)],
K
s.t. ZQ(Y =ilX =2)=1and Q(Y =i|X =z) > 0. (E1)
=1

The optimization problem in (ET) is equivalent to minimizing the objective point-wisely for each ,
ie.,

K
min —» QY =i|X = 2)log Q°(Y = i|X = x),
1=1

Qy|x=2
K
st Y QY =i|X =z)=1and Q(Y =i|X =) >0, (E2)

which is a linear programming (LP) problem. The optimal solution must lie in the extreme points of
the feasible set, which are those points with posterior probability 1 for one class and O for the other
classes. By evaluating the objective values of these extreme points, the optimal solution is (5) with
objective value — log Q°(Y = k|X = x), where k = argmax; Q°(Y =i|X = x). O

S2. Proof of Theorem 2

Proof. The minimax game (7) can be written as

minmax V(G,C™) = B [log(C™(G(Z,Y),Y))]
= E [log(C™(X,Y
XNQxy[og( (X,Y))]

K
1 y i
K ;; X“QI)Ec\y:k [log(C™(X,Y = k))]

K
s.t. Z C™(X,Y = k) =1, (E3)
k=1

where the constraint is because C™ is forced to have probability outputs that sum to one. In the
following proposition, we will give the optimal C"™ for any given G, or equivalently () xy .

Proposition 1. Let for a fixed generator G, the optimal prediction probabilities C™(X =z,Y =k)
of C™" are

Quly =k)
S QY =#)

C™* (2,Y = k) =

12



Proof. For a fixed G, (E3) reduces to maximize the value function V (G, C™) w.r.t. C™(z,Y =
1,...,C™(z,Y = K):

{C™* (2, Y =1),...,C™*(2,Y = K)}

K
= AT MATCmi 2,y —1),....om (Y —K) P, | Q@]Y =k)log(C™ (2,Y = k))dx
k=1"7%
K .
sty C™(x,Y =k) =1. (E5)

k=1

By maximizing the value function pointwisely and applying Lagrange multipliers, we obtain the
following problem:

(O™ (2,Y = 1),...,0™*(2,Y = K)}

K
=argmarcmi(z,y=1),...,Cmi(z,y =K) Z Q(x]Y = k) log(C™ (x,Y = k))
k=1

K
+A0 i@,y =k) - 1). (E6)
k=1
Setting the derivative of @) W.I.L. C”Li(m, Y = k) to zeros, we obtain
. Y=k
sz*(l,7y — k,) — _%. (E7)
.o o . . K mi
We can solve for the Lagrange multiplier A by substituting into the constraint ) ©,~ , C™(z,Y =
k) =1togive A\ = — Zszl Q(z]Y = k). Thus we obtain the optimal solution

QY = k)

C"*(x,Y =k) = —5 . (E8)
D=1 QY =F)
O
Now we are ready the prove the theorem. If we add K log K to U(G), we can obtain:
U(G)+ Klog K
K
XY =k
=Z]EXNQ(X\Y:k) {log KQ( | ) - } + KlogK
k=1 Zklzl Q(X|Y =k )
K
QXY =)
=Y Ex~q(x|y=r | log
= | # Lo QXY = k’ﬂ
K 1 X
_ — — =k’
_ZKL<Q(X|Y_I€)HKZQ(X|Y k)). (E9)
m=1 k=1
By using the definition of JSD, we have
U(G) =—-Klog K + K -ISD(Qx|y=1,---,@x|y=k)- (E10)

Since the Jensen-Shannon divergence among multiple distributions is always non-negative, and zero
if they are equal, we have shown that U* = —K log K is the global minimum of U(G) and that the
only solutionis Qx|y—1 = Qxjy=2 = - = Qx|y=k- O

S3. Proof of Theorem 3

According to the triangle inequality of total variation (TV) distance, we have

drv(Pxy,Qxy) < drv(Pxy, Py|xQx) + drv(PyxQx,Qxy)- (E11)
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Using the definition of TV distance, we have

drv(Pyix P PrixQx) = 3 [ 1Prix(ula)Px (o) = Prix(uf)Qx @)lin(e. )

<5 [ IPextiniute.y) [ 1Pc@) - Qx(@nt)
< aidrv (Px, @x), (E12)

where P and Q are densities, 1. is a (o-finite) measure, ¢; is an upper bound of 1 [ | Py x (y|z)|u(z,y)
, and (a) follows from the Holder inequality.

Similarly, we have
drv (Py|xQx, Qy|xQx) < cadryv (Py|x, Qy|x), (E13)
where c; is an upper bound of 1 [ |Qx (2)|p(z) . Combining (E11), (EIZ), and (E13), we have

drv(Pxy,Qxy) < cidrv(Px, Qx) + cadrv (Py|x, Qy|x)
< adry (Px, Qx) + codrv (Pyx, Qv x) + c2drv (Qvx, Qy x)-  (E14)

According to he Pinsker inequality drv (P, Q) < 4/ %P”Q) [1]], and the relation between TV and
ISD, i.e., idryv(P,Q)? < JSD(P,Q) < 2dry (P, Q) [2], we can rewrite (E14) as

JSD(Pxy,Qxy) < 2¢11/2JSD(Px, Qx) + (;2\/2KL(PYlX||QchX) + c2\/2KL(QY‘X\|Q§/‘X).
(E15)

S4. 1D MoG synthetic Data

S4.1. Experimental Setup

For all the networks in AC-GAN, Projection cGAN, and our TAC-GAN, we adopt the three layer
Multi-Layer Perceptron (MLP) with hidden dimension 10 and Relu [3]] activation function. The only
difference is the number of input and output nodes. We choose Adam [4] as the optimizer and set the
learning rate as 2e-4 and the hyperparameter of Adam as 5 = (0.0, 0.999). We train 10 steps for D,
C, and C™ and 1 step for G in every iteration. The batch size is set to 256.
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S4.2. More Results

AC-GAN TAC-GAN Projection cGAN

Ground Truth

s

Q

35 oo 75 5o 75 w0 s mo ws

]

Figure 8: Change distance between the means of adjacent 1-D Gaussian Components, in this figure,

all models adopt cross entropy loss.
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Ground Truth AC-GAN TAC-GAN Projection cGAN
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z
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Figure 9: Change distance between the means of adjacent 1-D Gaussian Components, in this figure,
all models adopt hinge loss.

16



SS. 2D MoG Synthetic Data

Ground Truth AC-GAN TAC-GAN Projection cGAN

distance = 1

distance =1.5 °

distance = 2.0

distance = 2.5

distance = 3.0

distance =3.5

distance = 4.0

distance =4.5

distance = 5.0

Figure 10: Change distance between the means of adjacent 2-D Gaussian Components in x-axis, in
this figure, all models adopt cross entropy loss.
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S6. Overlapping MNIST

S6.1. Experimental Setup

For the network settings, the G network consists of three layers of Res-Block and relies on Conditional
Batch Normalization (CBN) [5] to plug in label information. The network structure of D mirrors G
network without CBN. To stabilize training, D, C, O™ share the the convolutional layers and differ
in the fully-connected layers. The chosen dimension of latent z is 128 and optimizer is Adam with
learning rate [r=2e-4 and 5 = {0.0,0.999} for both G and D networks. Each iteration contains 2
steps of D, C, C™ training and 1 step of G training. The batch size is set to 100.

S6.2. More Results

In this experiment, we fix the training data and change the weight of classifier from A\, = 0.5 to
Ae = 3.0 with step 0.5 for our model TAC-GAN and AC-GAN. For AC-GAN, when the value of A\,
becomes larger, the proportion of the generated digit ‘0’, which is the overlapping digit, goes smaller.
However, our model is still able to replicate the true distribution.

r}//fdfbollif/fIOUOOLf[OC)O

CDO02Z220220222230202020200
AC-GAN, | v I N A S '~ A U B U B U A~/ S B B B B B '/
RN 2 12248420002 220d222.0002600
ILSCLYN ) o 0cO/ /20100 LV L/ VOLOY ) OF
LR 0 001020 A2220210200202>000
AC-GAN, STV S Ir-2 A B R A GO A B I A A/ N o]
PERYUN ) ) 0200220240222 0d2da2A2
ISV O /1 /O /o1 Q) DOOO/ PO O0 INOHD
VEBNE O 022 0 00FZ0OA0N2O0RXR2RAIAKA2032/7
AC-GAN, [RIARVAR e I N U I A AN N A N A VAV A A B A A
YRERRN Y 7. L 2322292223232 202222
UGN / O\ /00002000 1000/ /2 1L/ 1O
ISR O 0 2320000272000 20000286000 2
o\ \\ / (/7 V5V T/ 27707 L7
INVAND 2052223028201 232322¢22323 2
W=\ / 02 ( (7 \ /S |0 /D01 /2| 0006¢/0!(
JENN . 2 00 L 2200220070000 Q@020220
S\ / \ (\ /S /NSNS NN
VREWAN ) ) A 2 A2 L AdAS2 IR 232A22A
LAl | V& /0/ [ &/00010Q01 (0671 /71 LD
IEEENMO O 020020220200 0223222002
AC-GAN, [ENRY SRV N R VY A A G A VA A NI V30 4 LBV A B |
IENIN A 2 22022023722 22020222202232Q
e\ ( 272/ V00271 (01 /1007 )] [@0002
VRERIN 2. 022 7000207220020202022072

Figure 11: More generated results for the overlapping MNIST dataset.
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S7. CIFAR100

S7.1. Experimental Setup

Due to the complexity and diversity of this dataset, we apply the latest SN-GAN [6] as our base
model, the implementation is based on Pytorch implementation of Big-GAN [7] and SN layer is
added to both G and D networks [8]]. On this dataset, there is no need to add Self-Attention layer
[8] and only three Res-Blocks layers are applied due to the low resolution as 32 x 32. As done by
SN-GAN [6], we replace the loss term (2) by the hinge loss in order to stabilize the GAN training
part. For all evaluated methods, the batch size is 100 and total number of training iterations is 60K.
The optimizer parameters are identical to those used in the overlapping MNIST experiment.

S7.2. PAC-GAN Improvement

PacGAN is a method that significantly increases the diversity of GANs. Here we combine pacGAN
with both AC-GAN and our TAC-GAN and the results are shown in Table 2. The results indicates
that pacGAN can increase the performance of both AC-GAN and TAC-GAN but the drawbacks in
AC-GAN loss cannot be fully addressed by pacGAN.

TAC-GAN  pacGAN4+TAC-GAN AC-GAN pacGAN4+AC-GAN
IS 9.34 £ 0.077 9.85 + 0.116 5.37 £ 0.064 8.54 +£0.143
FID 7.22 6.79 82.45 20.94

Table 2: IS and FID scores

S7.3. More Results

We show the generated samples for all classes in Figure|12|and report the FID and LPIPS scores for
each class in Figure [13|and Figure[T4] respectively.
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AC-GAN, A, = 0.2
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TAC-GAN, A, = 1.0
Y e

Figure 12: 100 classes of CIFAR100 generated samples, we choose the classifier weight A\, = 0.2 for
AC-GAN model.
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Figure 13: The FID score is reported for each class on CIFAR100 generated data, lower is better. The

y axis denotes class label and x axis denotes FID score.
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Figure 14: The LPIPS score is reported for each class on CIFAR100 generated data, larger values
means better variance inner class. The y axis denotes class label and x axis denotes LPIPS score.
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S8. ImageNet1000

S8.1. Experimental Setup

We adopt the full version of Big-GAN model architecture as the base network for AC-GAN, Projection
c¢GAN, and TAC-GAN. In this experiment, we apply the shared class embedding for each CBN
layer in G model, and feed noise z to multiple layers of G by concatenating with class embedding
vector. We use orthogonal initialization for network parameters [[7]. In addition, following [7], we add
Self-Attention layer with the resolution of 64 for ImageNet. Due to limited computational resources,
we fix the batch size to 256. To boost the training speed, we only train one step for D network and
one step for G network.

S8.2. More Results

TAC-GAN (Ours)

Figure 15: In this figure, we randomly select some generated samples from 1000 classes. It contains
birds, snakes, bug, dog, food, scene, etc. Our model shows a very competitive fidelity and diversity.
Generative models are all trained on ImageNet1000 and the image resolution is 128 x 128.
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Figure 16: The FID score is reported for each class on ImageNet1000 generated data, we randomly
select 100 classes from our generated samples for comparison between our model TAC-GAN and
Projection cGAN. The method with a lower FID score is better. The y axis denotes class label and x
axis denotes FID score.
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Figure 17: The LPIPS score is reported for each class on ImageNet1000 generated data. we randomly
select 100 classes from our generated samples for comparison between our model TAC-GAN and
Projection cGAN, higher LPIPS socre means larger intra-class variance. The y axis denotes class
label and x axis denotes LPIPS score.
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S9. VGGFace200

S9.1. Experimental Setup

We adopt the full version of Big-GAN model architecture as the base network for AC-GAN, Projection
c¢GAN, and TAC-GAN. In this experiment, we apply the shared class embedding for each CBN
layer in G model, and feed noise z to multiple layers of G by concatenating with class embedding
vector. We use orthogonal initialization for network parameters [[7]. In addition, following [7], we add
Self-Attention layer with the resolution of 32 for VGGFace. Due to limited computational resources,
we fix the batch size to 256. In this setting, we train two steps for D network and two steps for G
network. The only difference of the networks applied on ImageNet and VGGFace is that the network
on ImageNet has one additional up-sampling block and one more down-sampling block added to G
and D Networks to accommodate higher resolution.

S9.2. More Results

TAC-GAN (Ours) Projection cGAN

Figure 18: In this figure, we randomly select some generated samples for illustration. All the
generative models are trained on 200 classes on the randomly sampled 200 classes from the VGGFace?2
dataset.
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Figure 19: The LPIPS score is reported for each class on VGGFace200 generated data. we randomly
select 100 classes from our generated samples for comparison between our model TAC-GAN and
Projection cGAN, higher LPIPS score means larger intra-class variance. The y axis denotes class
label and x axis denotes LPIPS score.
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