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Abstract
Domain adaptation aims to correct the classifiers
when faced with distribution shift between source
(training) and target (test) domains. State-of-the-
art domain adaptation methods make use of deep
networks to extract domain-invariant representa-
tions. However, existing methods assume that all
the instances in the source domain are correctly
labeled; while in reality, it is unsurprising that
we may obtain a source domain with noisy labels.
In this paper, we are the first to comprehensively
investigate how label noise could adversely affect
existing domain adaptation methods in various
scenarios. Further, we theoretically prove that
there exists a method that can essentially reduce
the side-effect of noisy source labels in domain
adaptation. Specifically, focusing on the general-
ized target shift scenario, where both label distri-
bution PY and the class-conditional distribution
PX|Y can change, we discover that the denoising
Conditional Invariant Component (DCIC) frame-
work can provably ensures (1) extracting invariant
representations given examples with noisy labels
in the source domain and unlabeled examples
in the target domain and (2) estimating the la-
bel distribution in the target domain with no bias.
Experimental results on both synthetic and real-
world data verify the effectiveness of the proposed
method.

1. Introduction
In the classical domain adaptation setting, given raw fea-
tures {x

T
1 , · · · , x

T
n} from a target domain, we aim to learn
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a function to predict the labels {y
T
1 , · · · , y

T
n } using labeled

data {(xS
1 , y

S
1 ), · · · , (xS

m, y
S
m)} from a different but related

source domain (Wu et al., 2019). Let X and Y be the vari-
ables of features and labels, respectively. In contrast to the
standard supervised learning, the joint distributions P

S
XY

and P
T
XY are different. For example, in medical data analy-

sis, health record data collected from patients of different
age groups or hospital locations often vary (Purushotham
et al., 2017). Inferring invariant knowledge from a domain
(e.g., an age group or a location) with a large set of labeled
examples to another with unlabeled data is desirable (Raghu
et al., 2019) since it is often laborious to obtain high-quality
labels for clinical data (Dubois et al., 2017).

According to the assumptions about how the joint distribu-
tion PXY shifts across domains, several domain adaptation
scenarios have been studied. (1) Covariate shift assumes
that the marginal distribution PX changes but the condi-
tional distribution PY |X stays the same. In this situation,
methods have been proposed to correct the shift in PX , for
instance, by importance reweighting (Huang et al., 2007)
and invariant feature learning (Long et al., 2015; Kumagai
et al., 2019; Meyerson & Miikkulainen, 2019; Chen et al.,
2019a). (2) Model shift (Wang et al., 2014) assumes that
PX and PY |X change independently. In this case, it also re-
quires Y to be continuous, the change in PY |X to be smooth,
and some labeled data to be available in the target domain.
(3) Target shift (Zhang et al., 2013a; Azizzadenesheli et al.,
2019) assumes that PY shifts while PX|Y stays the same.
In this scenario, PX and PY |X change dependently because
their changes are caused by the change in PY . (4) Gener-
alized target shift (Zhang et al., 2013a) assumes that PX|Y
and PY change independently across domains, causing PX

and PY |X to change dependently. An interpretation of the
difference between these scenarios from a causal standpoint
was also provided (Schölkopf et al., 2012a).

Additionally, the aforementioned domain adaptation meth-
ods extract invariant features across different domains based
on a strong assumption; that is, the source domain labels
are accurate. However, since accurately labeling training
set tends to be expensive, time-consuming, and sometimes
impossible, this assumption is often violated in practice. For
example, in medical data analysis, due to the subjectivity of
domain experts, insufficient discriminative information, and
digitalization errors (Sáez et al., 2016), noisy labels are of-
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ten inevitable. In computer vision, to reduce the expensive
human supervision, we often prefer directly transferring
knowledge from easily obtainable but imperfectly labeled
source data such as webly-labeled data or machine-labeled
data to target data (Xu et al., 2016; Lee et al., 2018).

Therefore, in this paper, we consider the setting of domain
adaptation that the observed labels in source domain are
noisy. As such, we have no access to the true source distri-
bution. One may think that this issue can be easy to solve
by combining existing label-noise learning methods and
domain adaptation methods. For example, simply applying
the label-noise robust classifiers after extracting invariant
features across domains by employing existing domain adap-
tation methods. However, for many setting, label noise will
degenerate invariant feature extracting and the unlabeled
data in the target domain is also helpful for denoising. Sim-
ple combination is therefore inefficient.

As expected, except the covariate shift scenario in which
correcting the shift in PX does not require label informa-
tion, we can show that label noise can adversely affect most
existing domain adaptation methods in different scenarios.
Taking target shift as an example, by assuming PX|Y is
invariant across domains, the shift in PY can be corrected
by estimating the class ratio between P

T
Y and P

S
Y from a

mixture proportion estimation problem (Zhang et al., 2013a;
Iyer et al., 2014). However, when labels in source domain
are corrupted, the information of PX|Y is unknown. Then, it
is unclear whether the class ratio P

T
Y /P

S
Y can be estimated.

Another example is generalized target shift. In this scenario,
the estimated P

T
Y /P

S
Y can be possibly incorrect. Further,

invariant features are often learned by matching distribu-
tions across domains which heavily rely on the estimate of
P

T
Y /P

S
Y . As a result, label noise can lead to biased learn-

ing of features with incorrect estimate of P
T
Y /P

S
Y . Label

noise also affects the learning in model shift, but we will not
consider this case because we are concerned with discrete
labels and the setting where no label exists in target domain.

To address this issue, we propose a label-noise robust do-
main adaptation method in the generalized target shift sce-
nario. To deal with label noise, we propose a novel method
to denoise conditional invariant components. Our method
can provably identify the changes in distribution PY and
extract the conditional invariant representations by reducing
the side effect of label noise using both source and target
data. Specifically, we construct a new distribution P

new
X0

which is marginalized from the weighted noisy source dis-
tribution P

S
⇢X0,Y . Here, we denote P⇢ as the distributions

associated with label noise. By matching P
new
X0 and P

T
X0 ,

the conditional invariant components and P
T
Y are identifi-

able from the noisy source data and unlabeled target data.
Moreover, in our denoising conditional invariant component
framework, we can also theoretically ensure the convergence

of the estimate of label distribution in target domain.

To verify the effectiveness of our method, we conduct com-
prehensive experiments on both synthetic and real-world
data. The performance are evaluated on classification prob-
lems. For fair comparison, after extracting invariant features
using domain adaptation methods, we train the robust clas-
sifier by employing the forward method in (Patrini et al.,
2017). Compared with state-of-the-art domain adaptation
methods, our method achieves superior performance.

2. Related Work
Classification with Label Noise. Learning with noisy la-
bels in classification has been widely studied (Long & Serve-
dio, 2008; Van Rooyen et al., 2015). These methods can
be coarsely categorized into three categories, i.e., unbiased
losses or risk minimizers (Natarajan et al., 2013; Xu et al.,
2019a; Sukhbaatar et al., 2014; Patrini et al., 2017; Han
et al., 2018a), bootstrapping losses (Arazo et al., 2019),
label noise reweighting and cleansing (Jiang et al., 2018;
Han et al., 2018b; Chen et al., 2019b; Thulasidasan et al.,
2019; Nguyen et al., 2020). Learning with complemen-
tary labels (Xu et al., 2019b; Yu et al., 2018b; Ishida et al.,
2017; L. Feng & Sugiyama, 2020; Y.-T. Chou & Sugiyama,
2020) can also be viewed as a special case of learning with
label noise. They often exploit similar ideas when design-
ing robust models. Depending on whether we explicitly
model label noise using transition matrix, label noise-robust
methods can also be classified into transition matrix based
methods (B. Han & Sugiyama, 2020; Xia et al., 2019; 2020)
and transition matrix-free methods (Yang et al., 2019; Han
et al., 2018c; Cheng et al., 2020; Liu & Guo, 2020; Wu
et al., 2020). Here,, our method belongs to the first category.
However, the problem considered here is more challenging
because the clean source domain distribution is not assumed
to be identical to the target domain distribution. In contrast
to classification with label noise, our method can learn in-
variant features across different domains, where both PY

and PX|Y may change and the labels of the source data is
corrupted. Reports on the general results obtained in this
setting are scarce.

Traditional Generalized Target Shift Methods. Existing
generalized target shift methods assume that there exists a
transformation ⌧ , e.g., location-scale transformation (Zhang
et al., 2013a; Gong et al., 2016), such that the conditional
distribution P⌧(X)|Y is invariant across domains. In this
paper, we also assume that the conditional invariant com-
ponents (CICs) exist. We aim to find a transformation ⌧
such that P

T (⌧(X)|Y ) = P
S(⌧(X)|Y ) as in (Gong et al.,

2016) and to estimate P
T (Y ). However, we are given only

samples drawn from the distribution P
T
X and the noisy dis-

tribution P
S
⇢XY , which makes the problem challenging.
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3 Transfer Learning in the Presence of Label noise91

In this section, we examine the effect of label noise in four different transfer learning scenarios,92

namely 1) covariate shift, 2) model shift, 3) target shift, and 4) generalized target shift. From a causal93

perspective, 1) and 2) assume that X causes Y, indicating that PX and PY |X contain no information94

about each other. In transfer learning, the causal relation implies that changes in PX are independent95

of changes in PY |X . If the change in PY |X is large, then it is difficult to correct the shift in PY |X96

because we often have no or scarce labels in the target domain. On the contrary, 3) and 4) assume97

that Y is the cause for X, implying that changes in PY and PX|Y are independent, while changes in98

PX and PX|Y depend on each other. Figure 1 represents the causal relations between variables in99

transfer learning using selection diagram defined in [18].
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Figure 1: Possible situations of transfer learning in the presence of label noise. V

1
s and V

2
s are

independent domain-specific selection variables, leading to changing PXY across domains. (a) Model
shift: V

1
s and V

2
s change PX and PY |X , respectively. (b) Generalized Target shift: V

1
s and V

2
s change

PY and PX|Y , respectively. In the first scenario, X is a cause for Y , whilst in the second scenario,
Y is a cause of X . If V

2
s is not present, (a) reduces to covariate shift and (b) reduces to target shift.

Note that in our setting, the true labels Y in the source domain is unobservable, we can only observe
noisy labels Ŷ in the source domain.
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Figure 2: A simple illustration of the difficulties brought by noisy labels in the target shift situation.
(a)-(c) show the class conditionals in the clean source domain, noisy source domain, and target
domain, respectively.

• Covariate shift. In this situation, label noise has no effects on the correction of shift in PX ,101

because the changes in PX has nothing to do with Y . However, after correcting the shift in102

PX , one needs to take the effects of label noise into account when training a classifier on103

the source domain [9, 16].104

• Model shift. In the model shift scenario, since PX and PY |X change independently, we can105

correct them separately. Similar to covariate shift, correcting PX is not affected by label106

noise. However, correcting shift in PY |X requires matching P
S
Y |X and P

T
Y |X , which can be107

seriously harmed by label noise. In this scenario, since a small number of clean labels are108

assumed to be available in the target domain, PY |X is often assumed to change smoothly109

across domains to reduce the estimation error. The smoothness constraint can reduce the110

effects of label noise to some extent if one directly matches P
S
⇢Y |X and P

T
Y |X .111

• Target shift. In this scenario, it is required that P
S
X|Y = P

T
X|Y . The changes in PY112

are often corrected by matching the marginal distribution of the importance-reweighted113

source domain P
new
X =

Pc
i=1 PX|Y =iP

S
Y =i�(Y = i) and the target domain P

T
X , where114

�(Y = i) = P
T
Y =i/P

S
Y =i and c is the class number. In the presence of label noise,115

unfortunately, we only have access to P
S
⇢X|Y and P

S
⇢Y in the source domain. As shown in116

Figure 2, P
S
⇢X|Y =i becomes a mixture of P

S
X|Y =1 and P

S
X|Y =2 and is no longer identical to117

3

Figure 1. Possible situations of domain adaptation with label noise.
V 1

s and V 2
s are independent domain-specific selection variables,

leading to changing PXY across domains. (a) Model shift: V 1
s

and V 2
s change PX and PY |X , respectively. (b) Generalized target

shift: V 1
s and V 2

s change PY and PX|Y , respectively. In the first
scenario, X is a cause for Y , whilst in the second scenario, Y is a
cause of X . If V 2

s is not present, (a) reduces to covariate shift and
(b) reduces to target shift. In our setting, the true labels Y in the
source domain is unobservable. We only observe noisy labels Ŷ .

Note that our work is not a simple combination of traditional
generalized target shift methods and robust classifiers. As
aforementioned, simple combination of domain adaptation
and label-noise robust classifier overlooks that the learning
of invariant features can be affected by label noise, which
thus produces biased results. In the setting where only noisy
source data and unlabeled target data are available, learning
⌧ becomes pretty challenging. This is because without
clean label Y in both domains, no direct information is
available to ensure the identity of conditional distributions
P (⌧(X)|Y ). As such, ⌧ is hard to learn. Moreover, it is
challenging to estimate P

T (Y ) as briefly discussed in the
introduction. Therefore, we proposed a novel denoising
conditional invariant component framework. It is able to
identify P

T (Y ) and conditional invariant components ⌧(X)
from the noisy source data and unlabeled target data.

In this paper, the simple combinations of domain adaptation
methods with robust classifiers are included as baselines in
our experiments. Our method strongly outperforms the base-
lines, verifying that the superiority of the proposed method
to extract invariant features across different domains.

3. The Effects of Label Noise
In this section, we examine the effects of label noise in four
different domain adaptation scenarios, namely 1) covariate
shift, 2) model shift, 3) target shift, and 4) generalized target
shift. From a causal perspective, 1) and 2) assume that X

causes Y , indicating that PX and PY |X contain no informa-
tion about each other (Schölkopf et al., 2012b). In domain
adaptation, the causal relation implies that changes in PX

are independent of changes in PY |X . If the change in PY |X
is large, then it is difficult to correct the shift in PY |X be-
cause we often have no or scarce labels in the target domain.
On the contrary, 3) and 4) assume that Y is the cause for
X , implying that changes in PY and PX|Y are independent,
while changes in PX and PY |X depend on each other. Fig-
ure 1 represents the causal relations between variables in
domain adaptation using selection diagram defined in (Pearl

& Bareinboim, 2011). Here, although the noisy label Ŷ is
usually generated after X is observed, we exploit the causal
model Y ! Ŷ according to the assumption that flip rates
are independent of features, which is widely employed in
the label noise setting (Natarajan et al., 2013; Patrini et al.,
2017; Scott, 2015). The effects of label noise in different
scenarios are also summarized as follows:

Covariate shift. In covariate shift (Huang et al., 2007;
Zhang et al., 2013b), label noise has no effects on the cor-
rection of shift in PX . However, after correcting the shift in
PX , one needs to take the effects of label noise into account
when training a classifier on the source domain (Natara-
jan et al., 2013; Liu & Tao, 2016). This problem can be
efficiently solved by a simple combination of label-noise
learning and domain adaptation.

Model shift. In model shift (Wang et al., 2014), since PX

and PY |X change independently, we can correct them sep-
arately. Similar to covariate shift, correcting PX is not
affected by label noise. However, correcting shift in PY |X
requires matching P

S
Y |X and P

T
Y |X , which can be seriously

harmed by label noise. In this scenario, since a small num-
ber of clean labels are assumed to be available in the target
domain, PY |X is often assumed to change smoothly across
domains to reduce the estimation error. The smoothness con-
straint can reduce the effects of label noise to some extent if
one directly matches P

S
⇢Y |X and P

T
Y |X .

Target shift. In target shift (Iyer et al., 2014; Zhang
et al., 2013a; Jiaxian Guo & Tao, 2020), it is required that
P

S
X|Y = P

T
X|Y . The changes in PY are often corrected

by matching the marginal distribution of the reweighted
source domain P

new
X =

Pc
i=1 P

S
X|Y =iP

S
Y =i�(Y = i) and

the target domain P
T
X , where �(Y = i) = P

T
Y =i/P

S
Y =i

and c is the class number. In the presence of label noise,
however, we only have access to P

S
⇢X|Y and P

S
⇢Y in the

source domain. In this situation, the estimate of P
T
Y can

be incorrect. Take binary problem as an example, let
P

T
X = !⇢1P

S
⇢X|Y =1 + !⇢2P

S
⇢X|Y =2, P

T
X = !1P

S
X|Y =1 +

!2P
S
X|Y =2, and ⇡ij = P

S(Y = j|Ŷ = i), 8i, j 2 {1, 2}.
In fact, !i and !⇢i respent P

T
Y =i and P

S
⇢Y =i (i = 1, 2),

respectively. Then,

Proposition 1. We have !⇢i = !i, i = 1, 2 only when

⇡12!1 = ⇡21!2.

Here, P
S
⇢X|Y =1 = ⇡11P

S
X|Y =1 + ⇡12P

S
X|Y =2 and

P
S
⇢X|Y =2 = ⇡21P

S
X|Y =1 + ⇡22P

S
X|Y =2 are known as mutu-

ally contaminated distributions (Menon et al., 2015). We
can see, ⇡ij and transition probability P (Ŷ = j|Y = i),
i, j 2 {1, · · · , c} can be related via Bayes’ rule. According
to Proposition 1, in the special case where the label dis-
tribution of target domain is balanced and the label noise
is symmetric, label noise does not affect the estimation of
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P
T
Y . But in most cases, !i 6= !⇢i. This indicates that we

cannot directly estimate P
T
Y from the noisy source data and

unlabeled target data. Detailed proof of Proposition 1 can
be found in the Supplementary Material.

Generalized target shift. In general target shift (Zhang
et al., 2013a; Gong et al., 2016), PX|Y also changes
across domains, but it changes independently of PY . A
widely-employed approach is learning conditional invari-
ant components that satisfy P

S
X0|Y = P

T
X0|Y . Under the

assumption of conditional invariant components, many
works jointly learn X

0 and P
T (Y ) by matching P

new
X0 =Pc

i=1 PX0|Y =iP
S
Y =i�(Y = i) and P

T
X0 , which naturally

requires the information of P
S
XY and P

T
X .

However, in the setting of label noise, similar to target
shift, the estimates of invariant components and P

T
Y are very

likely to be inaccurate if we directly use the noisy source
distribution P

S
⇢XY to correct distribution shift. Specifically,

if we assume that X
0 is successfully learned, the estimate

of P
T
Y may be incorrect as that in target shift. A wrong

estimate of P
T
Y can in turn result in the biased learning of

invariant representations as in (Gong et al., 2016).

In conclusion, we can observe that label noise is harmful for
extracting invariant features and correcting distribution shift
in most domain adaptation scenarios. We target to reduce
these adverse effects of label noise in the following sections.

4. Label-Noise Robust Domain Adaptation
Here, we study a new domain adaptation setting in which
(1) both PX|Y and PY change across different domains;
(2) and we have access to only “noisy” observations
{(xS

1 , ŷ
S
1 ), · · · , (xS

m, ŷ
S
m)} in the source domain and un-

labeled data {x
T
1 , · · · , x

T
n} in the target domain. Here, ŷ

refers to a noisy label; and we consider the class-conditional
label noise (Natarajan et al., 2013). The label noise is
stochastically modeled via a transition probability P (Ŷ =
j|Y = i), i.e., the flip rate from clean label i to noisy label
j. All these transition probabilities are summarized into
a transition matrix Q, where Qij = P (Ŷ = j|Y = i).
The class-conditional label noise is the vast majority noise
setting adopted in the label noise community. It has been
widely used and been proved to be effective for evaluating
label noise methods such as (Natarajan et al., 2013; Chen
et al., 2019b).

In this section, we first study how to provably identify invari-
ant feature across different domains and correct the distribu-
tion shift in the general target shift scenario with label noise.
Then, an importance reweighting framework is introduced
for correcting classifiers. Both our end-to-end deep domain
adaptation model is finally presented.

4.1. Denoising Conditional Invariant Components

In the label noise setting, learning invariant features and P
T
Y

is challenging due to that we can only observe the noisy
labels but have no clean label Y in the source domain. To
address this issue, we first introduce the conditional invari-
ant components to ensure this problem being tractable. That
is, we assume that for every d-dimensional data X , there
exists a transformation ⌧ : Rd ! Rd0

satisfying

P
T
⌧(X)|Y = P

S
⌧(X)|Y , (1)

where X
0 = ⌧(X) 2 Rd0

are known as conditional invariant
components (CICs) (Gong et al., 2016) across domains.

Since label noise makes existing domain adaptation methods
ineffective, we propose a novel method to denoise the condi-
tional invariant components. We find that if the information
of label noise model is available, a unique relationship be-
tween P

S
⇢X0Y and P

T
X0 can be built, which, in turn, is a clue

for us to identify X
0.

We observe that label noise does not affect the distribution
of X

0. Then, intuitively, if we marginalize out the variable
Ŷ of the noisy labels, we may achieve Eq. (1) by matching
the marginal distribution PX0 . But we need some nontrivial
strategies to make it possible. Specifically, we first construct
a new distribution P

new
X0 , which is marginalized from the

reweighted distribution P
S
⇢X0Y as follows,

P
new
X0 =

X

y0

�⇢(Ŷ = y
0)PS

⇢ (X 0
, Ŷ = y

0)

=
X

y

X

y0

�⇢(Ŷ = y
0)PS

⇢ (X 0
, Y = y, Ŷ = y

0),
(2)

where �⇢ are the weights for noisy labels. Note that, in the
rest of this paper, when no ambiguity occurs, we use Y as
the variable for both “clean” and “noisy” labels; otherwise,
both Y and Ŷ are used as variables for “clean” and “noisy”
label, respectively.

Then, under mild conditions, by matching the distribution
P

T
X0 with the new distribution P

new
X0 , we can provably iden-

tify the invariant components ⌧(X):
Theorem 1. Suppose the transformation ⌧ satisfies that

P (⌧(X)|Y = i), i 2 {1, · · · , c} are linearly independent,

and that the elements in the set {viP
S(⌧(X)|Y = i) +

�iP
T (⌧(X)|Y = i); i 2 {1, · · · , c}; 8vi,�i (v2

i + �
2
i 6=

0)} are linearly independent. Then, if P
new

X0 = P
T
X0 , we have

P
T
X0|Y = P

S
X0|Y ; and �(Y = y) =

P
y0 P

S(Ŷ = y
0|Y =

y)�⇢(Ŷ = y
0), 8y, y

0 2 {1, · · · , c}, where �(Y = y) =
P

T (Y = y)/P
S(Y = y).

Please see the proof of Theorem 1 in the Supplementary
Material. Note that the linearly independent property is a
weak assumption which has been widely used as the basic
condition for class ratio estimation (Gong et al., 2016).
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Let u = [�(Y = 1), · · · ,�(Y = c)]> and u⇢ = [�⇢(Y =
1), · · · ,�⇢(Y = c)]>. According to Theorem 1, we have
u = Qu⇢. In label noise, we assume that Q is usually di-
agonally dominant and invertible. Then, the relationship
between �⇢ and � is uniquely determined, as well as the
relationship between P

S
⇢ X0Y and P

T
X0 . In this case, if Q is

known and these two marginal distributions are successfully
matched, we can (1) identify the conditional invariant com-
ponents; (2) and learn �⇢ which indicates that the changes
in the distribution PY is also identifiable. In practice, the
transition matrix Q is not available, but we can estimate it
by methods in (Liu & Tao, 2016; Patrini et al., 2017).

In Thoerem 1, we focus on the linear independence assump-
tion on PX0|Y . In the following section, we exploit � and
Q to correct �⇢ such that we can correct the distribution
shift directly on the unbiased estimators of clean distribu-
tions. But it is also interesting to note that this theorem
indicates that the learning of conditional invariant compo-
nents are not affected by label noise. Let ⇡ be the matrix
in which ⇡ij = P (Y = j|Ŷ = i). Again, ⇡ and Q are
related by Bayes’ rule. If Q is invertible, then it is easy
to obtain that ⇡ is also invertible. In this condition, if we
assume PX0|Y =i, 8i 2 {1, · · · , c} are linear independent,
then P⇢X0|Ŷ =i, 8i 2 {1, · · · , c} are also linear independent.
According to Theorem 1 in (Gong et al., 2016), we can see
that the conditional invariant components can be identified
by correcting the changes in �⇢(Ŷ = y)P⇢(X 0

, Ŷ = y).
That is to say, we provably find that CIC method in (Gong
et al., 2016) is robust to label noise when identifying condi-
tional invariant components.

But this conclusion may be not empirically correct. In our
experiments, we find that by correcting �⇢ to obtain an unbi-
ased estimator of clean distributions, the proposed denoising
maximum mean discrepancy (MMD) loss can perform bet-
ter. The modified MMD loss is present as follows.

Denoising MMD Loss. To enforce the matching between
P

new
X0 and P

T
X0 , we employ the kernel mean matching of

these two distributions and minimize the squared maximum
mean discrepancy (MMD) loss:

kµP new
X0 [ (X 0)] � µPT

X0
[ (X 0)]k2

= kEX0⇠P new
X0 [ (X 0)] � EX0⇠PT

X0
[ (X 0)]k2

,
(3)

where  is a kernel mapping. According to Eq. (2), we have

EX0⇠P new
X0 [ (X 0)] = E(X0,Y )⇠PS

⇢X0Y
[�⇢(Y ) (X 0)].

Therefore, minimizing Eq. (3) is equivalent to minimizing

kE(X0,Y )⇠PS
⇢X0Y

[�⇢(Y ) (X 0)] � EX0⇠PT
X0

[ (X 0)]k2
.

In practice, we can only observe the corruptly labeled
source data {(x1, ŷ

S
1 ), · · · , (xm, ŷ

S
m)} and the unlabeled

target data {x
T
1 , · · · , x

T
n}. Therefore, we approximate the

expected kernel mean values by the empirical ones:

k 1

m
 (x0S)�⇢(ŷ

S) � 1

n
 (x0T )1k2

, (4)

where �⇢(ŷS) = [�⇢(ŷ1), · · · ,�⇢(ŷm)]>; x0 denotes the
matrix of the invariant representations.

However, Eq. (4) is not explicitly formulated w.r.t. P
T
Y . If

we directly optimizing Eq. (4) w.r.t. �⇢(ŷS), it will result in
incorrect �⇢ that violates the fact that �⇢(ŷ) should be the
same for the same ŷ. It is thus impossible to identify P

T
Y .

Therefore, we need to reparameterize the formulation by
applying the relationship between �⇢ and P

T
Y in Theorem

1, i.e., �⇢(Ŷ = i) =
Pc

j=1 Q
�1
ij

PT (Y =j)
PS(Y =j) . It is also easy to

derive that [PS(Y = 1), · · · , P
S(Y = c)]Q = [PS

⇢ (Y =

1), · · · , P
S
⇢ (Y = c)]. Given estimated Q̂ and [P̂S

⇢ (Y =

1), · · · , P̂
S
⇢ (Y = c)]>, we can construct the vectors gi =

[
Q̂�1

i1

P̂S(Y =1)
, · · · ,

Q̂�1
ic

P̂S(Y =c)
], i 2 {1, · · · , c}. If ŷk = i, 8k 2

{1, · · · , m}, define the matrix G 2 Rm⇥c, where the k-th
row of G is gi. Let �⇢(ŷS) = G↵. Then, ↵ is an estimate
of [PT (Y = 1), · · · , P

T (Y = c)]>.

The denoising MMD loss now can be reparametrized as

k 1

m
 (x0S)G↵� 1

n
 (x0T )1k2

=
↵

>
G

>KS
G↵

m2
� 21>KT,S

G↵

mn
+

1>KT1

n2
,

(5)

where KS and KT are the kernel matrix of x0S and x0T ,
respectively; KT,S is the cross kernel matrix. In this paper,
the Gaussian kernel, i.e., k(xi, xj) = exp

⇣
�kxi�xjk2

2�2

⌘
is

applied, where � is the bandwidth.

Therefore, according to Theorem 1, optimizing the denois-
ing MMD loss in Eq. (5) ensures us to identify the condi-
tional invariant components and P

T (Y ).

A New Perspective on Denoising MMD Loss. Here, we
discuss why using � and Q to correct �⇢ can be more help-
ful. By correcting �⇢ by � and Q, we actually provide an
unbiased estimator of

P
y �(Y = y)PS(X 0

, Y = y). This
proof is straightforward. We can easily prove that ⇡Q is
identity matrix when Q is invertible; and u⇢ = ⇡u. Replace
�⇢(Ŷ ) with �(Y ) using the above relationship. Then, we
can easily obtain P

new
X0 =

P
y �(Y = y)PS(X 0

, Y = y).

That is to say, by correcting �⇢, we can build the direct
relationship between P

T
X

0 and P
S
X0|Y . This is very important

because this enables us to directly correct the changes in
P (Y = y)P (X 0|Y = y) and extract P

T
Y . Even though

when Q is invertible, �⇢ is provably identifiable according
to Theorem 1, the learning process is more difficult since the
mixed noisy data are closer to each other especially when
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only finite examples are given. This is why our denoising
MMD loss can work better.

4.2. Importance Reweighting

After adapting invariant features, we can now correct the
classifiers. Here, we aim to learn a hypothesis function
f

⇤ : Rd0 ! Rc from the noisy source data that can gen-
eralize well on the target data. Ideally, f

⇤ minimizes the
expected loss E(X0,Y )⇠PT

X0Y
[`(f(X 0), Y )], where ` is the

loss function; X
0 are the conditional invariant components.

In practice, we assume that f
⇤ can predicts P

T (Y |X 0)
(Reid & Williamson, 2010; Patrini et al., 2017) and
arg maxi2{1,··· ,c} f

⇤
i predicts the label. Here, f

⇤
i is the

i-th entry of f
⇤. To facilitate the learning of f

⇤, we first
imagine that the target domain has the same label noise
model as the source domain. Note that, this does not
necessarily imply that label noise really exists in target
domain because, in our setting, we even have no label
information of target data. We can see, the minimizer
f

⇤
⇢ = arg minf

R
`(f(X 0), Y )PT

⇢ (X 0
, Y )dX

0
dY is also

assumed to be able to predict P
T
⇢ (Y |X 0). If the classifier

f
⇤
⇢ is found and Q is invertible, we can obtain f

⇤ according
to the following relationship:

[PT (Y = 1|X 0), · · · , P
T (Y = c|X 0)]Q

= [PT
⇢ (Y = 1|X 0), · · · , P

T
⇢ (Y = c|X 0)].

(6)

Thus, the problem remains to learn f
⇤
⇢ , which can be ob-

tained by exploiting the importance reweighting strategy:

f
⇤
⇢ = arg min

f

Z
`(f(X 0), Y )PT

⇢ (X 0
, Y )dX

0
dY

= arg min
f

Z
P

T
⇢ (X 0

, Y )

PS
⇢ (X 0, Y )

`(f(X 0), Y )PS
⇢ (X 0

, Y )dX
0
dY.

Since P
T
⇢ (X 0

, Y ) is constructed from P
T (X, Y ) by using

the same transition matrix Q and P
T (X 0|Y ) = P

S(X 0|Y ),
we can easily have P

T
⇢ (X 0|Y ) = P

S
⇢ (X 0|Y ) and thus

f
⇤
⇢ = arg min

f

Z
P

T
⇢ (Y )

PS
⇢ (Y )

`(f(X 0), Y )PS
⇢ (X 0

, Y )dX
0
dY

= arg min
f

Z
�(Y )`(f(X 0), Y )PS

⇢ (X 0
, Y )dX

0
dY,

where �(Y ) =
PT

⇢ (Y )

PS
⇢ (Y ) . In practice, only the training sample

is observable, we thus minimize the empirical loss,

R̂ =
1

m

mX

i=1

�(ŷS
i )`(f(x0S

i ), ŷS
i ), (7)

to find the approximated classifier f⇢.

Instead of separately finding f
⇤
⇢ by minimizing Eq. (7)

and transiting f
⇤
⇢ to f

⇤ according to Eq. (6), in this paper,
we employ the forward strategy proposed in (Patrini et al.,
2017); that is, we directly minimize the following risk,

R̂ =
1

m

mX

i=1

�(ŷS
i )`(Q>

f(x0S
i ), ŷS

i ), (8)

As we know, by minimizing the risk R̂, Q
>

f(x0S
i ) can

approximately predict P
T
⇢ (Y |X 0). Then, according to Eq.

(6), f(x0S
i ) can finally approximately predict P

T (Y |X 0).

Note that, in practice, the ratio �(Y ) is also unknown. But
P

S
⇢ (Y ) can be empirically estimated from the noisy source

data, and P
T (Y ) is estimated by our denoising MMD loss,

P
T
⇢ (Y ) can also be computed according to the relationship

similar to Eq. (6). In this way, �(Y ) can be obtained.

4.3. The Overall Models

In order to extract conditional invariant components, the
transformation ⌧ varies from linear ones to non-linear ones
depending on the complexity of input data space. Since
linear model is similar except a two-stage procedure, we
mainly present our end-to-end deep learning model. We
modify the conventional deep neural network for classifica-
tion, e.g., AlexNet (Krizhevsky et al., 2012), in two aspects:
(1) Due to that the domain discrepancy becomes larger for
the features in higher-level layers (Long et al., 2015; 2017),
we impose the denoising MMD loss on a higher-level layer
for extracting the invariant representations; (2) to learn a
classifier robust to label noise, we add the forward procedure
(Patrini et al., 2017) before the cross-entropy (CE) loss as in
Eq. (8). Descriptions about linear model and the structure
of deep model can be found in Supplementary Material.

Let h
l be the responses of the l-th hidden layer, W1:l be the

parameters in the 1-th to l-th layers, and L be the total num-
ber of layers in our deep model. Suppose that we impose
the denoising MMD loss on the features in the l-th layer;
that is, ⌧(xi) = h

l
i. Then, the denoising MMD loss is

D̂(W1:l,↵) = k 1

m
 (hlS)G↵� 1

n
 (hlT )1k2

, (9)

where hl is the matrix of the responses of the l-th layer.

Denote f(xk) as the softmax output w.r.t. the input xk.
According to Eq. (8), the loss for classification is

R̂(W1:L) =
1

m

mX

k=1

�(ŷS
k )CE(Q>

f(xS
k ), ŷS

k ), (10)

where �(ŷS
k ) = ↵>Q:i

PS
⇢ (Y =i) if ŷ

S
k = i; Q:i denotes the i-th

column of Q. Together with the regularization ⌦(W1:L)
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(e.g., l2 norm) of the parameters, our final model becomes

min
W1:L,↵

R̂(W1:L) + �1D̂(W1:l1 ,↵) + �2⌦(W1:L),

s.t.
cX

i=1

↵i = 1;↵i � 0, 8i 2 {1, · · · , c},

(11)

where �1 and �2 are the tradeoff parameters of denoising
MMD loss and regularization, respectively. Again, by mini-
mizing Eq. (11), if Q

>
f(X) approximates P

T
⇢ (Y |X), then

f(X) approximates P
T (Y |X). We can then successfully

learn the classifier for the target data.

4.4. Convergence Analysis

In this subsection, we study the convergence rates of the es-
timates to the true label noise rates and optimal class priors.
Estimation of noise rate can be viewed as a mixture propor-
tion estimation problem (Yu et al., 2018a; Ramaswamy et al.,
2016; Yao et al., 2020). The convergence rate for the label
noise rates has been well studied under the “anchor set” con-
dition that for any y there exist x in the domain of X such
that P (Y = y|X) = 1 and P (Y = y

0|X) = 0, 8y
0 6= y,

which is likely to be held in practice. For example, esti-
mators with convergence guarantees has been proposed in
(Liu & Tao, 2016). Recently, (Ramaswamy et al., 2016)
exploited the “anchor set” condition in Hilbert space and
designed estimators that can converge to the true label noise
rates with an order of O(m� 1

2 ). Some work based on a
weaker assumption, i.e, linearly independent assumption, is
also proposed to estimate label noise, and a fast convergence
is also guaranteed (Yu et al., 2018a). Therefore, we mainly
focus on the convergence analysis of estimating class ratios.

To analyze the convergence rate of the estimated class prior
↵̂ to the optimal ↵⇤ in the presence of label noise, we
first abuse the training samples {(xS

1 , ŷ
S
1 ), · · · , (xS

m, ŷ
S
m)}

and {x
T
1 , · · · , x

T
n} as i.i.d. variables, respectively. Abuse

W as the parameters related to the transformation ⌧ and
let D(W,↵) = kE 1

m (x0S)G↵ � E 1
n (x0T )1k2

. We ana-
lyze the convergence rate by deriving an upper bound for
D(W, ↵̂) � D(W,↵

⇤) with fixed Q and W .
Theorem 2. Given learned Q̂ and Ŵ , let the induced RKHS

be universal and upper bounded that k (⌧(x))k  ^Ŵ for

all x in the source and target domains, and let the entries of

G be bounded that |Gij |  ^Q̂ for all i 2 {1, · · · , m}, j 2
{1, · · · , c}. 8� > 0, with probability at least 1� �, we have

D(Ŵ , ↵̂) � D(Ŵ ,↵
⇤)

 8(^Q̂ + 1)2 ^2
Ŵ

s p
cp
m

+

p
cp
n

+

r
2(

1

m
+

1

n
) log

1

�
.

See the proof of Theorem 2 in the Supplementary Material.
Although the bound in Theorem 2 involves two fixed param-
eters, the result is informative if Q

⇤ and W
⇤ are given or Q̂
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Figure 2. The estimation error of �. (a), (b), and (c) present the
estimate errors with the increasing class ratio �(Y = 1), the in-
creasing flip rate ⇢, and the increasing sample size n, respectively.
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Figure 3. The effectiveness of invariant components extraction. (a),
(b), and (c) present the classification error with increasing flip rate
⇢ when �1 = 1.4, 1.6, and 1.8, respectively.

and Ŵ quickly converges to Q
⇤ and W

⇤, respectively. From
previous analyses, we know that fast convergence rates for
estimating label noise rate are guaranteed. However, the
convergence of Ŵ to W

⇤ is not guaranteed because the ob-
jective function is non-convex w.r.t. W . How to identify the
transferable components ⌧(X) should be further studied.

5. Experiments
To show the robustness of our method to label noise, we con-
duct comprehensive evaluations on both simulated and real
data. We first compare our method, denoising conditional
invariant components (abbr. as DCIC hereafter), with CIC
(Gong et al., 2016) on identifying the changes in PY given
noisy observations. The effectiveness of our method is then
verified on both synthetic and real data. We compare DCIC
with the domain invariant projection (DIP) (Baktashmot-
lagh et al., 2013), transfer component analysis (TCA) (Pan
et al., 2011), Deep Adaptation Networks (DAN) (Long et al.,
2015) and CIC (Gong et al., 2016). In our experiments, the
bandwidth � of the Gaussian kernel is set to be the median
value of the pairwise distances between all invariant (resp.
raw) features for deep (resp. linear) model.

5.1. Synthetic Data

We use the linear model to verify the effectiveness of DCIC
in two situations: (a) the estimation of class ratio � in the
target shift (TarS) scenario given the true flip rates (i.e.,
transition probabilities); and (b) the evaluation of the ex-
tracted invariant components in the generalized target shift
(GeTarS) scenario, with various class ratios and different la-
bel flip rates. In all experiments, the flip rates are estimated
using the method proposed in (Liu & Tao, 2016). We repeat
the experiments for 20 times and report the average scores.
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We generate the binary classification training and test data
from a 2-dimensional mixture of Gaussians (Gong et al.,
2016), i.e., x ⇠

P2
i=1 ⇡iN (✓i,⌃i) where the mean param-

eters ✓ij , j = 1, 2 are sampled from the uniform distribution
U(�0.25, 0.25) and the covariance matrices ⌃i are sam-
pled from the Wishart distribution W(2 ⇥ I2, 7). The class
labels are the cluster indices. Under TarS, PX|Y remains
the same. We only change the class priors across domains.
Under GeTarS, we apply location and scale transformations
on the features to generate target domain data. To get the
noisy observations, we randomly flip the clean labels in the
source domain with the same transition probability ⇢.

First, we verify that with corrupted labels, the proposed
DCIC can almost recover the correct class ratio under TarS.
We set the source class prior P

S(Y = 1) to 0.5. The
target domain class prior P

T (Y = 1) varies from 0.1 to
0.9 with step 0.1. The corresponding class ratio �(Y =
1) = P

T (Y = 1)/P
S(Y = 1) varies from 0.2 to 1.8 with

step 0.2. Then, we compare the proposed method with CIC
(Gong et al., 2016) on finding the true class ratio �⇤ with
noisy labels in source domain. We evaluate the performance
by using the class ratio estimation error k�est � �

⇤k/k�⇤k,
where �est is the estimated class ratio vector. Figure 2(a)
shows that DCIC can find the solutions close to the true
�

⇤ for various class ratios. In this experiment, given large
label noise (⇢ = 0.4), � estimated by CIC is close to the
true one only when �⇤(Y = 1) is close to 0, 1, and 2. The
estimation of CIC is accurate at �⇤(Y = 1) = 1 because we
set the class prior P

S
Y =1 to 0.5 in the clean source domain,

which happens to make P
S
⇢Y = P

S
Y . If P

S
Y =1 6= 0.5, then

P
S
⇢Y 6= P

S
Y , the estimated � will be wrong (see Section

3). CIC gives accurate results when �⇤(Y = 1) is close
to 0, 2 because target domain collapses to a single class,
rendering the estimated results trivially right. Figure 2(b)
shows the superiority of the proposed method over CIC at
different levels of label noise. When ⇢ > 0.1, CIC finds the
incorrect solutions. However, our method can find a good
solution even when ⇢ is close to 0.5. Figure 2(c) shows that
the estimate of � improves as the sample size gets larger.

Second, under GeTarS, we evaluate whether our method can
discover the invariant representations given the noisy source
data and unlabeled target data. In these experiments, we fix
the sample size to 500, and the class prior P

S(Y = 1) to 0.5.
We use classification accuracies to measure the performance.
The results in Figure 3 show that our method is more robust
to the label noise than DIP, TCA, and CIC.

5.2. Real Data

MNIST-USPS. USPS dataset is a handwritten digit dataset
including ten classes 0-9 and contains 7,291 training images
and 2,007 test images of size 16 ⇥ 16, which is rescaled to
28 ⇥ 28. MNIST shares the same 10 classes of digits which

consist of 60,000 training images and 10,000 test images
of size 28 ⇥ 28. In our experiments, these two datasets are
resampled to construct the domain adaptation datasets in
which the class priors PY across different domains vary. For
MNIST, we assume that the class priors are unbalanced. For
the first 5 classes, the class prior is set to 0.04. For the rest 5
classes, the class prior is equal to 0.16. For USPS, the class
priors are balanced; that is, the class prior is set to 0.1 for
each class. According to these class priors, we sample 5,000
images from both MNIST and USPS datasets to construct
the new dataset mnist2usps. We switch the source/target pair
to get another dataset usps2mnist. Same with (Patrini et al.,
2017), in the source data, noise flips between the similar
digits: 2 ! 7, 3 ! 8, 5 $ 6, 7 ! 1 with the transition
probability ⇢ = 0.2 or 0.4. After the noisy data are obtained,
we leave 10 percent of source data as validation set. The
LeNet (LeCun et al., 1998) structure in Caffe’s (Jia et al.,
2014) MNIST tutorial is employed to train the model from
scratch. Our denoising MMD loss is imposed on the first
fully connected layer. In all experiments, l2 regularization
is applied and we set ⇡1 = 1 and ⇡2 = 1e � 4. The batch
sizes for both source and target data are set to 100. The
initial learning rate r0 = 0.01 and is decayed exponentially
according to r0(1 + 0.0001t)�0.75, where t is the index of
current iteration. Each experiment is repeated 5 times.

Here, DCIC is compared with the baseline that training
with source data only (SO), DAN, and CIC. These methods
are integrated with the forward procedure in (Patrini et al.,
2017) to reduce the effects of label noise. They are denoted
as methods with “Forward Q (resp. Q̂)” given the true
(resp. estimated) transition matrix. Note that, DAN has
verified that adapting more layers and using MK-MMD are
more helpful. Here, we use single-layer adaptation and the
modified vanilla MMD to compare with baselines, which
futher verified the effectiveness of our method. We are
also aware that DAN is for covariate shift problem, so we
extended it to CIC to adress generalized target shift. CIC is
also added in the first fully connected layer and the vanilla
MMD loss is used. Further, the exploited CIC here is not
the original one in (Gong et al., 2016) but the extension
of DAN with idea from (Gong et al., 2016). The results
are shown in Table 1. When label noise is present, CIC
based methods cannot correctly estimate the class ratios,
which adversely affects the identification of the invariant
components. It thus performs worse than the DAN based
methods in some cases. The latter, however, ignores the
change of PY in different domains. In contrast, our method
often gives better estimation of the class ratios and can
effectively identify the invariant components, which leads
to the higher performances.

VLCS. VLCS dataset (Torralba & Efros, 2011) consists of
the images from five common classes: “bird”, “car”, “chair”,
“dog”, and “person” in the datasets Pascal VOC 2007 (V),
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Table 1. Classification accuracies and their standard deviations for USPS and MNIST datasets.
mnist ! usps

(⇢ = 0.4)
usps ! mnist

(⇢ = 0.4)
mnist ! usps

(⇢ = 0.2)
usps ! mnist

(⇢ = 0.2)
SO+Forward Q 58.12 ± 0.32 61.02 ± 0.90 59.27 ± 1.51 65.90 ± 0.65
SO+Forward Q̂ 54.93 ± 2.23 60.80 ± 0.49 56.97 ± 1.36 65.51 ± 3.07
DAN+Forward Q 59.34 ± 5.43 64.68 ± 1.07 62.82 ± 1.15 67.05 ± 0.77
DAN+Forward Q̂ 54.76 ± 1.62 63.87 ± 0.84 61.28 ± 1.44 65.70 ± 1.24
CIC 65.23 ± 2.63 58.09 ± 2.17 66.70 ± 1.31 61.02 ± 3.96
CIC+Forward Q 65.37 ± 2.49 63.35 ± 4.43 66.84 ± 3.62 68.45 ± 0.91
CIC+Forward Q̂ 64.18 ± 1.49 62.78 ± 2.92 63.42 ± 0.99 67.99 ± 1.30
DCIC+Forward Q 69.94 ± 2.25 68.77 ± 2.34 72.33 ± 2.15 70.80 ± 1.59
DCIC+Forward Q̂ 68.50 ± 0.37 66.78 ± 1.53 69.29 ± 4.07 70.47 ± 2.29

Table 2. Classification accuracies and their standard deviations for VLCS dataset.
VLS2C LCS2V VLC2S VCS2L

SO+Forward Q 85.88 ± 2.17 62.07 ± 0.86 59.40 ± 1.37 49.34 ± 1.39
SO+Forward Q̂ 78.62 ± 4.36 59.49 ± 0.50 57.09 ± 1.81 49.14 ± 1.39
DAN+Forward Q 87.66 ± 2.37 64.37 ± 2.07 59.54 ± 0.83 51.07 ± 1.26
DAN+Forward Q̂ 84.69 ± 0.24 58.64 ± 1.91 57.51 ± 1.25 50.41 ± 1.20
CIC 75.15 ± 6.23 54.69 ± 0.96 53.61 ± 2.35 49.30 ± 0.48
CIC+Forward Q 86.83 ± 2.53 64.22 ± 0.27 60.36 ± 0.36 51.76 ± 0.82
CIC+Forward Q̂ 85.69 ± 1.76 59.80 ± 0.47 57.65 ± 0.60 50.33 ± 0.31
DCIC+Forward Q 91.60 ± 0.51 65.67 ± 0.37 61.79 ± 0.77 52.47 ± 0.50
DCIC+Forward Q̂ 87.28 ± 1.18 63.35 ± 0.37 58.88 ± 0.74 51.60 ± 1.48

LabelMe (L), Caltech (C), and SUN09 (S), respectively. For
these four datasets, we first randomly select at most 300
images for each class to construct the new datasets, respec-
tively. Then, we construct the domain adaptation datasets
by using the leave-one-domain-out evaluation strategy. For
example, in “VLS2C”, the source data is the combination of
the new Pascal VOC 2007, LabelMe, and SUN09 datasets.
The target dataset is the new Caltech. In each source data,
the labels flip from “person” to “car”, “chair” to “person”,
and “dog” to “person” with the probability ⇢ = 0.4. We
leave 30% of the source data as the validation set. Each
experiment is repeated 5 times.

In this experiments, the source data is finetuned on the pre-
trained AlexNet (Krizhevsky et al., 2012) model with the
parameters in conv1-conv3 layers being freezed. We impose
our denoising MMD loss on the fc7 layer. As discussed in
DAN, we also focus on high-level features because the trans-
ferability gap grows from low-level to high-level features,
and that the gap becomes large in high-level ones. Further,
high-level semantic features are more prone to be affected
by wrong labels. However, if label noise possibly affects the
low-level features, correcting the low-level features directly
could be more powerful.

The batch sizes for both source and target data are 32. The
initial learning rate is 0.001 and decayed exponentially ac-
cording to 0.001(1 + 0.002t)�0.75. The results are shown
in Table 2. Our proposed method also improves the per-
formances of the compared baselines, which indicates the
effectiveness of the proposed model to correct the shift in

different domains even though the label noise is present.

6. Conclusion
We have studied domain adaptation with label noise. We
found that label noise is detrimental to the performance of
existing domain adaptation methods. In particular, when
the label is the cause for the features, the estimate of target
domain class distribution and conditional invariant represen-
tations can be unreliable. To alleviate the effects of label
noise on domain adaptation, we have proposed the novel
denoising MMD loss to improve the estimation of both
target domain label distribution and conditional invariant
components from the noisy source data and the unlabeled
target data. We have provided both theoretical and empirical
studies to demonstrate the effectiveness of our method.
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