
GSLICE: Controlled Spatial Sharing of GPUs
for a Scalable Inference Platform

Aditya Dhakal
University of California, Riverside

adhak001@ucr.edu

Sameer G Kulkarni
IIT, Gandhinagar

sameergk@iitgn.ac.in

K. K. Ramakrishnan
University of California, Riverside

kk@cs.ucr.edu

ABSTRACT
The increasing demand for cloud-based inference services re-
quires the use of Graphics Processing Unit (GPU). It is highly
desirable to utilize GPU e�ciently by multiplexing di�er-
ent inference tasks on the GPU. Batched processing, CUDA
streams and Multi-process-service (MPS) help. However, we
�nd that these are not adequate for achieving scalability by
e�ciently utilizing GPUs, and do not guarantee predictable
performance.

GSLICE addresses these challenges by incorporating a dy-
namic GPU resource allocation and management framework
to maximize performance and resource utilization. We vir-
tualize the GPU by apportioning the GPU resources across
di�erent Inference Functions (IFs), thus providing isolation
and guaranteeing performance. We develop self-learning
and adaptive GPU resource allocation and batching schemes
that account for network tra�c characteristics, while also
keeping inference latencies below service level objectives.
GSLICE adapts quickly to the streaming data’s workload in-
tensity and the variability of GPU processing costs. GSLICE
provides scalability of the GPU for IF processing through
e�cient and controlled spatial multiplexing, coupled with a
GPU resource re-allocation scheme with near-zero (< 100`s)
downtime. Compared to default MPS and TensorRT, GSLICE
improves GPU utilization e�ciency by 60-800% and achieves
2-13⇥ improvement in aggregate throughput.

CCS CONCEPTS
• Computer systems organization ! Cloud comput-
ing; • Computing methodologies!Machine learning.
ACM Reference Format:
Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. 2020.
GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Infer-
ence Platform. In ACM Symposium on Cloud Computing (SoCC ’20),

SoCC ’20, October 19–21, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8137-6/20/10.
https://doi.org/10.1145/3419111.3421284

October 19–21, 2020, Virtual Event, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3419111.3421284

1 INTRODUCTION
Deep Neural Networks (DNNs) used for machine learning
(ML) and inference have been continually improving in ac-
curacy, while becoming more complex and memory and
computation resource-hungry. Executing DNNs on Graphics
Processing Units (GPUs) has become key to meet quality of
experience and service level objectives (SLO) [12, 42].
DNN models used for inference services inherently have

a rich amount of parallelism. However, even the most com-
plex of the DNN models (VGG-19 [53] with 20 giga �oating
point operations (GFLOPS), GNMT [58] with 210 million
parameters [14]) are unable to fully exploit the potential of
massive compute and memory-bandwidth capabilities of-
fered by the modern GPUs. Especially the discrete-GPUs
(d-GPUs) e.g., NVIDIA Tesla V100 o�ers ⇠125 Tera �oat-
ing point operations per second (TFLOPS), and 900GBps
memory bandwidth) [45]. As such, time-sharing the GPU
to execute di�erent DNN models often leads to wastage of
GPU resources [13, 46, 62]. Hence, it is desirable to spatially
multiplex the GPU across multiple DNNs and accordingly al-
locate just the right amount of GPU resources to boost overall
throughput without sacri�cing the individual model’s infer-
ence performance. This requires us to understand the limits
of parallelism that a particular DNN model can exploit.
The state-of-the-art CUDA MPS (multi-process service)

helps improve GPU utilization by enabling spatial sharing of
the GPU across multiple processes. But the default mode of
MPS oversubscribes the GPU1 resulting in uncontrolled spa-
tial sharing. Thus, it cannot guarantee performance isolation
and often results in unpredictable application throughput
and latency [34]. Multiple streams and large batches further
exacerbate this unpredictability withMPS [60]. As an alterna-
tive to its default operation, MPS also allows us to set a �xed
limit for a process’s GPU %, with the goal of isolating the
performance of di�erent processes. However, this static pro-
visioning means the MPS provisioning would not be adaptive
to workload variations. When the workload changes, that
statically �xed GPU% can result in over-provisioning (thus
wasting the GPU) or under-provisioning (hurting application

1All applications are allowed to get the full 100% share of the GPU.

492

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

SoCC ’20, October 19–21, 2020, Virtual Event, USA Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan

performance). Our work, GSLICE, addresses these challenges
by providing the appropriate CPU-GPU coordination and
dynamic GPU resource-allocation mechanisms.

GSLICE advances the state-of-the-art spatial multiplexing
(MPS) and supports many ML frameworks that can be run
AS-IS. Additionally, GSLICE innovates by designing novel
self-learning adaptive batching, parameter sharing in GPU
for di�erent inference instances and optimized zero-copy
data transfer of streaming data to the GPU. We believe these
are applicable even for non-CUDA or non-NVIDIAGPU envi-
ronments such as OpenCL [54], ROCm [9], and METAL [6].

GSLICE is a Data Plane Development Kit (DPDK)[1] based
Generic/Integrated InferencePlatform. GSLICE can host
a number ofML frameworks such as CNTK [51], Darknet[49],
PyTorch [48], MXNet[15], TensorFlow[11], TensorRT[44],
etc. with minimal changes2, and support concurrent execu-
tion of di�erent real-time inference and machine learning
applications with streaming data (§3.1).
GSLICE builds on top of the CUDA MPS to provide per-

formance isolation through dynamic resource provision-
ing and spatial sharing of GPU. DNN models have in-
herent limitations in exploiting parallelism. We extensively
pro�led di�erent models (e.g., Alexnet[38], GNMTv2[58],
Jasper[39], Mobilenet[31], ResNet[29], VGG[53]), and ob-
served that after a certain GPU% (we call it the ’kneepoint’),
performance improvement reaches a point of diminishing
returns3. GSLICE overcomes this by allowing multiple infer-
ence applications (we call them inference functions (IFs)) to
spatially share the GPU. We implement a low-overhead mon-
itoring scheme to track an IFs’ bottleneck and system-wide
GPU resource usage. Then, GSLICE dynamically readjusts
the allocated GPU resources to meet the desired SLO and
demand (arrival rate) for each IF in a self-tuning, adap-
tive manner. In CUDA [22], adjusting GPU resources re-
quires the IFs to be restarted4. However, restarting IFs incurs
very high downtime (2-15s) due to the framework startup
costs [48]. We innovate by introducing an active-standby
IF pair with overlapped execution. We create a shadow
IF and transparently re-provision the IF’s GPU resources by
providing new allocations to its shadow.We then prevent the
GPU from being idle by a careful switchover to the shadow IF,
thus reducing downtime to less than 100`s. Similarly, when
an application requires a new instance with additional GPU
resources, we use an e�cient overlap technique to mask the
startup latency of instantiating a new IF (§3.2.1, §3.2.2, §3.2.3).

2We support all python based ML frameworks using Py-c plugin.
3the decrease in the marginal (incremental) output of a production pro-

cess as the amount of a single factor of production is incrementally increased,
while the amounts of all other factors of production stay constant [56].

4GPU% needs to be set as an environment variable before CUDA ini-
tialization, and it cannot be changed till the end of the process [46]

GSLICE includes several optimizations to improve GPU uti-
lization and loading time of IF models to the GPU (§3.2.4).
We recognize ‘Batching’ improves throughput and GPU

utilization for inference applications, but impact latency. Dy-
namically adapting the batch size is key in achieving im-
proved throughput while keeping latency below the SLO. We
devise a self-learning, adaptive batching scheme that
factors the network, CPU and GPU processing costs, and
SLO constraints, to batch just the su�cient number of re-
quests (e.g., images) for inference. (§3.3.1)
GSLICE also supports zero-copy data transfer to the

GPU. We share DPDK’s page-locked memory with GPU
and leverage the GPU’s DMA to directly scatter-gather data
from the network packets. (§3.3.2). Many popular DNN mod-
els have large memory requirements for storing the model
weights and parameters. They account for ⇠10-30% of to-
tal GPU memory footprint (Table 1). Memory intensive pa-
rameters (i.e., Weights) of IF models do not change across
inference executions. Thus they can be shared and reused
across multiple instances. Hence, we implement a method
for parameter sharing across multiple IFs once transferred
to GPU memory. This allows us to drastically reduce the
IF’s memory footprint on the GPU, and allows for scaling
and multiplexing a larger number of IFs on memory con-
strained GPU devices. (§3.3.3). Our work complements the
optimizations proposed in works [16, 28, 32] to lower the
GPU memory footprint for IF models.

2 BACKGROUND & MOTIVATION
We study several widely used ML frameworks and models,
and share experimental observations with spatial sharing
and the limited use of GPU resources by di�erent IF models.

2.1 Maximizing GPU Utilization
We brie�y describe the key relevant approaches proposed to
improve performance and GPU utilization.

2.1.1 Batched execution. Batch processing improves GPU
utilization because: i) the GPU can spawn additional compute
threads to work on multiple requests in parallel; ii) helps
amortize the CPU-GPU interaction and GPU transaction
overheads [27]. However, it can result in high latency, which
can be undesirable. We propose adaptive batching schemes,
to reap the bene�ts of batch processing, while controlling
the latency (see section §3.3.1).

2.1.2 Spatial GPU Multiplexing. NVIDIA GPUs can be spa-
tially shared using CUDA streams and MPS to provide con-
current execution of GPU kernels within and across multiple
processes respectively. Streams allow launching and execu-
tion of kernels concurrently within a single process [47].
CUDA MPS enables spatial sharing of the GPU and allows

493

GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Inference Platform SoCC ’20, October 19–21, 2020, Virtual Event, USA

0
15
30
45
60

La
te
nc
y

(m
s)

R1
R2
V

0
50
100
150
200
250

0 10 20 30 40 50 60Th
ro
ug
hp
ut
(ip
s.
)

Time (s)

R1
R2

V
Total Throughput

(a) No MPS (Only Temporal sharing)

R1 R2 V

0 10 20 30 40 50 60
Time (s)

R1
R2

V
Total Thpt.

(b) Default MPS (Spatial Sharing)

0
15
30
45
60

La
te
nc
y

(m
s)

R1=25%
R2=25%

V=50%

0 10 20 30 40 50 60
0
50
100
150
200
250

Th
ro
ug
hp
ut
(ip
s.
)

Time (s)
(c) MPS with resource isolation.

Figure 1: Inference Throughput & Latency - 2 ResNet-50 (R1& R2) & VGG-19 (V): TensorRT multiplexing modes.

0
15
30
45

0
5
10
15

R
eq
ue
st
s
Pe
rS

ec
on
d

0
50
100
150
200

5 10 20 30 40 50 60 70 80 90100
GPU Percentage

(a) Throughput.

0
20
40
60 GNMTv2

0
40
80
120
160

La
te
nc
y
(m
s)

Jasper

0
100
200
300

5 10 20 30 40 50 60 70 80 90100
GPU Percentage

ResNet-50
VGG-19
VGG-16

(b) Latency.
Figure 2: Di�erent DNN models at varying GPU %.

0
500
1000
1500
2000
2500
3000
3500
4000

1020 3040 5060 7080 90100

Th
ro
ug
hp
ut
(ip
s.
)

GPU Percentage

Batch 1
Batch 2
Batch 4

Batch 8
Batch 16

(a) Throughput.

0
5
10
15
20
25
30

10 20 30 40 50 60 70 80 90100

La
te
nc
y
(m
s)

GPU Percentage

Batch 1
Batch 2
Batch 4
Batch 8
Batch 16

(b) Latency.
Figure 3: Alexnet with di�erent batch size and GPU%.

concurrent execution of kernels from di�erent processes. By
default, an MPS client can use all the available threads (i.e.,
100% of GPU resources). However, this results in a large GPU
memory footprint for the process, which is wasteful when
the GPU is shared across multiple clients. Further, GPU re-
source contention among kernels from di�erent processes
can result in unpredictable latency for applications.
We experimented with three di�erent IFs (IF-1 and IF-2

are ResNet-50 and IF-3 is VGG-19). We start with IF-1 and
after 10 seconds(s) we launch IF-2 and bring up IF-3 after
20s. We repeat the same experiment for di�erent scenarios a)
without MPS. b) Default MPS. c) explicit allocation of GPU%.
Fig. 1 shows the impact on throughput and latency for these
scenarios. With the baseline, temporal sharing of GPU ‘No
MPS’ case, both the latency and throughput degrade with
every new addition of an IF. The latency of heavier model
(VGG-19) rises from ~20 ms with 1 model to ~60 ms when
all 3 models are running concurrently. Moreover, the �rst
instance of ResNet-50’s latency also rises from ~15 ms to
higher than 20 ms. With temporal sharing, adding a model

on the GPU causes the latency to rise for all concurrently run-
ning models. With ‘Default MPS’ mode, we can observe that
uncontrolled spatial sharing results in the heavier VGG-19
getting themajor share of GPU and getting better throughput
than with ’No MPS’. But, the two lighter ResNet-50 instances
see degraded performance (both in throughput and latency),
with latency rising from ~10 ms to ~30 ms due to GPU re-
source contention. Throughput drops from ~100 images/sec
to ~30 images/sec. Hence, in both cases (‘No MPS’ and ‘De-
fault MPS’), the interference due to addition/removal of IFs
results in unpredictable throughput and latency.
MPSwith resource provisioning: On the NVIDIA Volta

architecture, CUDA MPS allows limiting the available GPU
threads (in units of Streaming Multiprocessors (SMs)) for
each process. This helps us improve the GPU utilization by
apportioning just the right amount of GPU resources, while
at the same time providing the bene�ts of performance isola-
tion and reduced GPU memory footprint [46]. While this fea-
ture is useful, it still requires more careful consideration and
resource management to properly reap the bene�ts, while
fully utilizing the GPU. We repeat the previous experiments
with �xed resource provisioning. We explicitly restrict each
IFs to use only a �xed portion of available GPU resources.
We limit the heavy VGG-19 IF to 50% GPU, and allocate the
two ResNet-50 IFs with 25% GPU each. This results in almost
interference-free execution of the IFs (when all 3 IFs are
multiplexed). Further, it outperforms the other two modes,
providing almost 50% higher aggregate throughput. Note that
when only a single function (IF-1), or two functions (IF-1 and
IF-2) are executing (between 0 and 15sec), the throughput
is lower than the ‘Default MPS’ and ‘no MPS’ modes. This
is primarily due to our limiting the GPU resources for these
two instances. This demonstrates that, although �xed re-
source allocation and isolation is helpful, it has to be further
improved to achieve good system performance. Thus, along
with MPS, a judicious and dynamic resource allocation for
the contending IFs is vital to maximize GPU utilization. We
should note that using GSLICE’s dynamic provisioning of

494

SoCC ’20, October 19–21, 2020, Virtual Event, USA Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan

di�erent GPU% does not a�ect results of DNN operation as
the exact same DNN kernels are used to infer requests.
We also conducted experiments with di�erent combina-

tions of models. Due to lack of space, we omit these results.
Interestingly, we observed that the ‘NoMPS’ case always pro-
vided an equal share (round-robin time-sliced scheduling).
However, the ‘Default MPS’ mode preferred the heavier mod-
els (due to uncontrolled spatial sharing), resulting in perfor-
mance degradation of the light-weight models. We also ran
experiments to see if running multiple models concurrently
with resource isolation will cause an impact on throughput
or latency due to contention for other GPU resources such
as memory. We observed the same average inference latency
for a model running at a �xed GPU%, whether a single in-
stance of a model was running in the GPU, or the model was
concurrently running with other models. We �nd this to be
true, as long as the contention from other models doesn’t
bring the GPU% allocated to this model below its "knee".

2.1.3 Identifying the operating point for IF models. We pro-
�led several di�erent types of IF models, viz. Image (VGG-16,
VGG-19, ResNet-50), Audio (Jasper) and text (GNMTv2) to
understand their limits on exploiting parallelism and to de-
rive the kneepoint for an IF in terms of the amount of GPU
resources that achieve the best balance between achieved
performance and the GPU resources expended. Figures 2a
and 2b show the throughput and latency for processing a
task (batch size 1) by a variety of IF models provided with
di�erent GPU percentages. The �rst insight we derive is
that di�erent models exhibit di�erent degrees of parallelism.
Individual DNN layers can have many parallel kernels that
can concurrently execute in a GPU, exhibiting quite a bit
of parallelism. However, most of the DNN layers are still
unable to fully utilize the signi�cant parallelism o�ered by
high-powered GPUs. Note, both the throughput and latency
reach a point of diminishing return for Jasper at 50% GPU, for
GNMT, VGG-19 after 70%, for Resnet-50 at ~60%. We believe
this limit arises due to inherent communication overheads
and non-parallelizable work performed across di�erent lay-
ers of the DNN models. Therefore, it is wasteful to provide
full GPU to the models (as is done when the GPU is only tem-
porally shared). It is preferable to spatially share the GPU to
e�ectively utilize the GPU resources. Second, we can observe
that provisioning the GPU% has signi�cant impact on both
throughput and latency; and the relationship is non-linear.
It is crucial to �nd the right GPU% that would allows us to
meet the demand (arrival rate of requests) while being within
the budgeted latency (SLO) for each IF. At the same time, it
is also necessary to maximize the aggregate throughput for
all concurrently executing IFs and balance the overall GPU
resource demand across the contending IFs. This requires a

mechanism to apportion the GPU% to each of the concur-
rently executing inference applications, as a function of their
request arrival rate, inference computation cost and SLO.
Batch Size & Resource Provisioning Dependency Fur-
ther, to understand the implications of batched execution of
tasks on CUDA MPS resource provisioning, we extensively
evaluated di�erent ML models (Alexnet, ResNet, VGG, etc.)
on both CNTK and TensorRT frameworks for di�erent �xed
batch sizes. Figure 3 shows the impact of batch size when
varying the GPU% for a particular Alexnetmodel.We observe
that larger batch sizes increase both throughput and latency.
Also, for a given batch size, increasing the GPU% increases
the throughput (Fig. 3a) until it reaches a point of diminish-
ing returns. e.g., for a batch size of 1, we clearly observe that a
GPU% beyond 30% (‘kneepoint’) results in only amarginal im-
provement, and the corresponding latency (Fig. 3b) reduction
is also minimal. Moreover, we can observe that with larger
batch sizes, the knee shifts towards larger GPU%. The results
were similar for other models too. The key challenge here is
to correctly identify and provision the GPU% for all the IFs.

2.1.4 GPU-based IF System Design Challenges. We summa-
rize the major challenges in building a scalable spatially
shared inference platform. First, determining the correct
amount of GPU resources to provision di�erent IF applica-
tions based on the desired SLO (latency) and throughput
is key to e�ective multiplexing. However, provisioning the
right amount of GPU resources is complex for the following
reasons: i) IF models with di�erent complexity demand di�er-
ent amounts of GPU resources. ii) Operating with di�erent
batch sizes and concurrent streams further change the GPU
resource demand. iii) Underprovisioning the GPU resources
for an IF can hinder meeting that application’s SLO, while
overprovisioning degrades GPU utilization. Finally, we ob-
serve that being IF application-aware in sharing parameters
across instances and e�ciently moving streaming data to the
GPU subsystem is also important to maximize performance.
Quantifying GPU UtilizationWe noted that the ‘GPU oc-
cupancy’ provided by CUDA is misleading and shows 100%
even when only one thread is active on the GPU; and as such
there isn’t a good indicator for measuring the e�ectiveness
of GPU utilization. We introduce a metric, the GPU utiliza-
tion e�cacy (GUE ([)) for di�erent modes of operation as:
[= U ⇤)⌘A>D6⌘?DC (��)

!0C4=2~ (��) , choosing U = 1.

3 GSLICE: ARCHITECTURE & DESIGN
Fig. 4 shows the architecture of GSLICE. We describe the key
components of GSLICE and their roles below.

3.1 Integrated Platform for IF
Today’s general IF platforms need to support a number of het-
erogeneous ML frameworks (ML libraries) like CNTK [51],

495

GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Inference Platform SoCC ’20, October 19–21, 2020, Virtual Event, USA

Pytorch [19], TensorRT [44] etc. While they may run on the
CPU alone, we focus on designing a platform that uses the
GPU to provide low latency. GSLICE provides a ’C/C++’ na-
tive platform to build and deploy IF functions (IFs). In order
to support heterogeneous ML frameworks, we use a callback
model to present a minimal set of generic interfaces that
abstract out framework-speci�c functionality in a library
(called libml), described below. This allows libml to provide
basic IF services without being coupled with any particular
ML framework.
The IF Manager component is the primary DPDK [1] pro-
cess responsible for routing and delivering network packets
to libml. While the IF Manager is agnostic of the ML frame-
works running, it has an IF model loader component that
holds the IF’s pro�le i.e., knee information for DNN model,
CPU-GPU bu�er requirement etc. .

libml implements a GPU resource allocation manager that
determines and allocates the right amount of GPU resources
to each IF. It also interacts with an Orchestrator service to
restart IFs when the GPU (%) resources are readjusted.
The libml provides the following features to IFs, i) zero-copy
network packet data transfer and aggregation (e.g., of im-
ages), ii) the bu�er pools (CPU and GPUmemory) for batched
execution. iii) GPU data transfer (DTTx in Fig. 4), iv) stream-
ing engine to manage multiple streams (spatial GPU sharing)
for performing inference, v) adaptive batching to intelligently
perform batched executions within the latency limits spec-
i�ed by the SLO. Further, it provides the callback APIs to the
IFs to setup framework speci�c functions. Once IFs setup the
framework speci�c functions, libml can perform IF services
transparently.We have kept libml lightweight with just 6 in-
terfaces (init, deinit, load_model, link_model, con�gure_batch,
infer_batch). Fewer interfaces allows us to quickly adjust
libml to work with newer version of ML frameworks, thus,
keeping libml usable even with ML framework churn.
The Orchestrator is responsible for instantiating new IFs
and decommissioning an existing IF.We leverage ZeroMQ [30]
to build asynchronous message-based communication be-
tween the IF Manager and the Orchestrator.

3.2 Key Features and Design choices
3.2.1 Lightweight monitoring . We determine the bottleneck
entity (CPU or GPU) in an IF operation based on timestamps
tracked for task (e.g., image) aggregation (�rst packet to last
packet) and inference processing time on GPU and CPU re-
spectively.5 libml tracks the timestamps and noti�es the IF
Manager which takes timely actions to overcome the bottle-
neck. The CPU becomes the bottleneck when performing
data copy operations (e.g., preparing the aggregated image

5CPU time:)4=3 :(release all packets) -)BC0AC :(when the �rst request
arrives); GPU time: time to transfer & infer a batch of requests.

Edge-CORXd NRde

I&ML MaQageU

PLQQed [ShaUed] MePRU\ PRRO

IQfeUeQce
MRdeO LRadeU¬ ¬ ¬ ¬¬

OUcheVWUaWRU

GPU ReVRXUce¬
AOORcaWLRQ MgU.

AcWLYe IFV (CNTK)

DTT[¬

libml

SWream
Engine

BXffer
Pool

AdaSWLYe BaWcKLQg

AcWLYe IFV (CNTK)

DTT[¬

libml

SWream
Engine

BXffer
Pool

AdaSWLYe BaWcKLQg

¬
IQfeUeQce FXQcWLRQ

DTT[¬

libml

SWream
Engine

BXffer
Pool

AdaSWLYe BaWcKLQg

P\TRUch
TeQVRURT

ShadRZ IFV

DTT[¬

libml

SWream
Engine

AdaSWLYe BaWcKLQg

BXffer
Pool

TeQVRURT

ShadRZ IFV

DTT[¬

libml

SWream
Engine

AdaSWLYe BaWcKLQg

BXffer
Pool

ShadRZ IFV

DTT[¬

libml

SWream
Engine

AdaSWLYe BaWcKLQg

BXffer
Pool

P\TRUch
CNTK CNTK

SRfWZaUe SWacN

PacNeW MePbXf PRRO

IQfeUeQce IQSXW
¬(Image/Text/Audio)
IQfeUeQce OXWSXW¬

OSeUaWiQg S\VWem

NVIDIA CUDA MPS

DPDK + libML

Inference Framework
+

Inference Function (IF)

Figure 4: Architecture of GSLICE Inference platform.

by copying data from multiple packet payloads into a pinned
contiguous bu�er). We use a zero-copy GPU scatter-gather
approach (e.g., o�oading image data transfer to GPU), to
overcome the CPU bottleneck.
The IF Manager tracks noti�cations from libml and read-

justs the GPU resources for bottlenecked IFs. However, such
a readjustment is a very expensive operation, since we have
to restart the IFs in order for the newly provisioned GPU
resources to take e�ect. This time varies, but is generally of
the order of 2-15s. Therefore, the IF Manager re-provisions
the GPU% only when essential, readjusting over a coarse
time-interval. We track the timestamp at each IF for the
last readjustment and hold-down any further changes till a
speci�ed minimum time (e.g., 10 sec.) has elapsed.

3.2.2 Self-tuning GPU Resources of an IF (GPU%) . In order
to ensure timely inference operation and dynamic adaptation
to demand variation (arrival rate), we develop a self-tuning
mechanism to enable IFs to readjust their GPU resource share.
We consider the following two aspects to distinguish the cor-
rect resource provisioning for an IF. i) ‘Residual Latency ca-
pacity’: the di�erence between SLO and observed latency for
inference. ii) ‘Residual Throughput capacity’: the di�erence
between the achieved GPU throughput and the actual de-
mand (arrival rate). When either of these residual capacities
is negative, we try to proportionally increase the GPU%, and
when both the capacities are positive and larger than a spec-
i�ed threshold (greater than 5%, to accommodate variability
in latency), we try to reduce the provisioned GPU% in propor-
tion to the available capacity. The resource allocation man-
ager handles re-provisioning of GPU resources for all the IFs.
The pseudocode for the self-tuning GPU resource alloca-

tion is described in Algorithm 1. We determine the GPU%
based on current inference latency and throughput to best
match the SLO for latency and improve throughput the most
(line 12/13). The output feeds into a MAX-MIN fair GPU
resource allocation algorithm which computes the GPU% to
IFs based on their demand, with the demand of IF’s requiring

496

SoCC ’20, October 19–21, 2020, Virtual Event, USA Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan

Algorithm 1: GPU Resource Tuning Algorithm
Input: currentGPU%, SLO, arrivalRate
Function ComputeNewGPU%():

avgL LatencyHistogram.EWMA()
avgT ThroughputHistogram.EWMA()
residualL SLO � avgL
residualT avgT � arrivalRate
di�L% A4B83D0;!⇥100

(!$

di�T% A4B83D0;)⇥100
0AA8E0;'0C4

if (di�L% < threshold) && (di�T% < threshold)
then

return currentGPU%
end
changeFactor MAX

⇣
abs (residualL)

avgL , abs (residualT)avgT

⌘
changeGPU% currentGPU% ⇥ changeFactor
if (residualL < 0) k (residualT<0) then

newGPU% currentGPU% + changeGPU%
end
if (residualL > 0) && (residualT>0) then

newGPU% currentGPU% � changeGPU%
end

return newGPU%

lowest GPU% being ful�lled �rst. To avoid oscillations, an
IF’s GPU% is reallocated only when the change is above a
threshold (we set it to 5% as default).

3.2.3 Resource Allocation Manager. During initialization,
each IF indicates the desired model to the IF Manager and
gets the portion of the GPU it can use. This communication
and setting of the GPU% is completely abstracted within
libml and performed transparently without any explicit in-
volvement of the IF. The IF Manager looks up the model
repository and identi�es the optimal GPU% (‘kneepoint’) for
the requested model - this serves as the ‘elastic demand’ for
the model.6 Further, we choose a conservative value of 30%
(a compile time con�gurable parameter) for IF models that
do not have an apriori pro�led GPU%, and our self-tuning
resource allocation allows the system to dynamically deter-
mine the appropriate GPU% based on the observed latency,
throughput and arrival rate. Our resource allocation scheme
provides a weighted (the weight being the newGPU% re-
quired by an IF in Algo. 1) allocation as follows:
• Resources (GPU%) are allocated to IFs based on demand,
maximizing the minimum resource allocation for any IFs
with unsatis�ed demands. The unsatis�ed IFs get resource
shares in proportion to their normalized (sum of newGPU%)
weights across all currently running IF models.

6The demand is considered elastic because the IFs can get more or less
than their demand’s GPU%.

• No IF obtains a resource share larger than its demand,
unless the GPU is underutilized.

Note: Any new IF instance addition or removal triggers a
resource reallocation and the resources for other active IFs
are readjusted (as we show, with very little downtime).

3.2.4 IF resource adjustment with zero downtime. To meet
the SLO and varying tra�c demands, it is necessary to re-
provision the GPU resources so that we can maximize GPU
utilization and IF throughput. This is non-trivial because
after computing the correct GPU%, we have to restart the IF
process and reapply the GPU resources for the IF7.
In order to amortize the long startup cost, we developed

a low-cost ‘shadow IF’ and ‘overlapped execution’ mecha-
nisms. They combine to transparently re-provision the GPU
resources of an IF with a quick switchover of processing to
the ‘shadow IF’. Our evaluations show the mean idle time
for this IF switchover is less than 100` seconds.
Shadow IF: For every IF (primary/active), we also instanti-
ate a shadow IF (hot-standby). Shadow IFs share the same
resources (bu�er pool, packet ring bu�ers, ML framework,
CPU core) as the primary, but the key di�erence is that they
do not access the GPU and packet ring bu�ers. Note: After
initialization, the shadow IFs do not consume any CPU until
they are explicitly transitioned to active state by the IF Man-
ager. Thus, they have no adverse impact on the performance
of the primary IFs. The shadow IF masks the instance initial-
ization (DPDK and ML framework) time and brings down
the GPU load time of IF model. However, this solves only
half the problem, as the GPU and ML platform (e.g., PyTorch)
initialization, still incur delays of the order of a few seconds.
Therefore, we let the ‘Shadow IF’ perform GPU initialization
and overlap its execution with active IF.
Intermediate load: Depending on the type of ML frame-
work, the shadow IFs load the IF model to CPU and immedi-
ately yield8. This intermediate loading of the IF model on the
CPU helps to signi�cantly reduce the load time to GPU by
exploiting the CPU cache memory and avoiding disk reads
and re-serialization of the model data. Only after the IF Man-
ager provisions the GPU resources and wakes up the shadow
IF, does it continue loading the model to GPU.
Overlapped Execution: Upon a GPU% readjustment, the IF
Manager con�gures the GPU%, wakes up the shadow IF and
switches its role to being the primary/active IF. This requires
strict co-ordination with the previous primary/active IF to en-
sure correctness and avoid data corruption (network packets,
which reside in common bu�er pool). While the shadow IF
model is loaded into the GPU to become ready for execution,

7Currently, this stems from the limitation in NVIDIA, CUDA MPS, and
is likely to remain for Volta and the upcoming Turing GPUs [8].

8The only exception being the TensorRT framework; TensorRT opti-
mized models lack the support for loading on CPU.

497

GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Inference Platform SoCC ’20, October 19–21, 2020, Virtual Event, USA

the previous primary/active model continues to execute. The
IF Manager waits till the previous primary IF completes the
current inference completely. It then handles the transition-
ing and switch over of roles for the primary and shadow IFs in
co-ordination with libml. It switches the shadow IF to ’active’
and eventually terminates the previously active IF. This �nal
coordination by manager incurs around 50-60` seconds (idle
time). Overall, this mechanism masks the IF’s startup time
(order of 2-15s) and improves overall system performance.

3.3 How many CUDA Streams?
Although, CUDA Streams improve GPU utilization and over-
all throughput, they have an adverse impact on latency. We
show through experiments with di�erent batch sizes, the
impact of using multiple streams. In particular, we see the re-
sults for ResNet-50 model with TensortRT in Fig. 5a. Beyond
2 streams (for batch sizes of 1,8), there is barely any improve-
ment in throughput. But, the latency keeps increasing. We
observed the same with VGG-19. We saw that Alexnet was
an exception that showed improvement with more streams,
but only for the small batch size (1). Our analysis is that
streams are helpful only when there are su�cient resources
to take advantage of multiplexing. Otherwise, the tasks con-
tend for the limited resources resulting in high execution
overhead, re�ected by the latency increase. Hence, streams
are bene�cial only for light weight models and lower batch
sizes. However, we do see some drawbacks of using a sin-
gle stream for processing. We pro�led for the single stream
case for Alexnet, as shown in Fig. 5b. The GPU remains idle
for a fairly large amount of time, ⇠700 `s, between every
execution. This corresponds to the time taken to notify the
CPU of inference completion and the processing on the CPU
side to perform cleanup and return the callback. Note that,
until the callback is completed, the CUDA driver does not
launch the next inference execution, even if the tasks were
queued before. Fig. 5c shows the pro�ler results with two
streams for Alexnet. We still observe similar gaps in each
of the streams, but since the two streams have overlapped
execution, the GPU utilization is higher in this case.

However, the streams are problematic while multiplexing
models with unequal compute requirement e.g., ResNext-50
running concurrently with Alexnet. In such cases, streams
do not provide any meaningful overlap in the execution of
the kernels of the distinct streams, as seen in Fig. 6. Here,
ResNext-50’s kernels (stream 14) do not overlap with the exe-
cution of Alexnet’s kernels (stream 16). Thus, the streams are
restricted to time-share share the GPU, resulting in increased
inference task completion time. This causes lower utilization
of GPU as well, since only one application is running at a
time in the GPU. We can extract higher GPU utilization by
rather running each DNN as an individual application and
spatially sharing the GPU using MPS with resource usage

limits. Fig. 7 shows that ResNext-50 and Alexnet can con-
currently run in the GPU if we run them with MPS with a
resource usage limit. This allows for much better utilization
of GPU as well as lower latency, as one DNN’s inference does
not have to wait for other’s to end. Therefore, in GSLICE
we prefer using MPS with resource provisioning instead of
CUDA streams, whenever possible. We limit to 2 streams in
the cases where streams can help boost the throughput.

3.3.1 Self-learning Adaptive Batching. A larger batch size
improves throughput and GPU utilization (amortizing the in-
teractions between CPU and GPU). A naive approach would
be to batch asmany requests as possible till the previous infer-
ence operation completes. This approach yields high through-
put, but can result in high latency. Alternatively, we can learn
and adapt (limit) the batch size to be just su�cient tomeet the
SLO. This adaptive batching, used in Clipper and Nexus [21,
52] works well when the GPU is temporally shared. However,
when the GPU is spatially shared, several additional factors
also contribute to latency, namely i) variation in provisioned
GPU resources; ii) multiple streams that contend to spatially
share GPU; iii) interference due to concurrently executing
GPU tasks, with MPS. Most of these factors are dynamic in
nature and can happen outside the scope of an individual IF.
Therefore, we develop a ‘self-learning’ approach to dynam-
ically adapt the maximum operational batch-size.
Self-learning Adaptive Batching (SLAB): On the host
CPU, libml tracks the inference completion time of each
batch and heuristically determines the batch size that allows
us to operate within the SLO. SLAB works by increasing or
decreasing the batch size in proportion to the current batch
size, observed latency and deviation from the speci�ed SLO,
by checking the headroom (SLO - avg. latency for the pre-
vious batch). Thus, it quickly readjusts the batch size. An IF
is considered to be underprovisioned when it misses its SLO
even with a batch size of 1. Instead, if the IF operates within
the SLO, then the IF may be overprovisioned. libml tracks (5
successive) such occurrences and noti�es the IF Manager to
readjust (increase/decrease) its GPU resources.

3.3.2 Data Aggregation and Transfer to GPU. DNN appli-
cations such as Imagenet models require the entire image’s
data (and all of the batch, if batch size is > 1) to be available
in a contiguous GPU memory bu�er before an inference
is started. To detect requests that are ready, GSLICE imple-
ments a CPU side zero-copy aggregation list of network
packets (i.e., store only the packet pointers in an indexed
array) and tracks aggregation status for up to 64 distinct re-
quests (as bit �elds). This allows quick detection of all ready
requests (images, text, etc.) to be transferred to the GPU. We
bu�er packets until the IF operation completes. Alternatively,
we could release the packets as soon as the data is copied to

498

SoCC ’20, October 19–21, 2020, Virtual Event, USA Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan

0

200

400

600

800

1000

1 2 3 4 1 2 3 4
0

20

40

60

80

100

Streams

Th
ro
ug
hp
ut
(ip
s.
)

La
te
nc
y
(m
s)

Latency
Batch 1
Batch 8

Batch 8Batch 1

(a) Throughput & latency (b) Inference with 1 CUDA stream (c) Inference with two CUDA streams

Figure 5: (a)ResNet50 throughput & latencyw/multiple streams (b),(c) Pro�le of Alexnet (TensorRT) using streams

Figure 6: Sequential kernel execution with streams

Figure 7: Overlapping inference: MPS+resource limits

GPU, requiring a callback from GPU to notify copy comple-
tion. This is expensive (40-100`s). We found it has negligible
bene�t, and sometimes detrimental because of host-side con-
text switching to process CUDA driver callbacks.
Data transfer to GPU: To e�ciently transfer data without
taxing the host CPU, we pin the DPDK hugepages (used
for network packets) with CUDA. Then, using NetML’s ap-
proach [23] the GPU’s DMA performs zero-copy scatter-
gather of the packet data using a GPU kernel. An alternative
is a NIC to GPU transfer using GPUDirect. However, GPUDi-
rect places all ingress packets into GPU memory and the
GPU kernels have to perform packet processing. This has
many limitations, such as ine�cient packet processing in
GPU [55]. Using NetML’s approach [23], we only transfer
data for ML processing to the GPU, leaving packet processing
to the CPU. This avoids the CPU copy overhead.

3.3.3 Shared Inference Parameters. The IF Manager includes
a model loader component that loads the inference model
related parameters only once to the GPU and allows reuse
of those parameters across di�erent instances of the same
IF. This has two bene�ts: i) increased multiplexing due to
reduced GPU memory footprint per IF; ii) faster module
loading due to reuse of already mapped GPU parameters.
ML frameworks (e.g., Pytorch, CNTK), export APIs to re-

trieve the parameters (weights and biases) of the DNNmodels
and their GPU addresses. The IF Manager takes advantage
of these platform speci�c API’s to build the GPU address
mapping for the parameters of di�erent models. It then ex-
ports these GPU addresses to di�erent IF instances through

the CUDA API cudaIpcGetMemHandle(). We extended the
CNTK and Pytorch libraries to make them attach parameters
to the speci�ed GPU address. These changes are minimal
(less than 30 lines of code).

Table 1: Bene�ts of Parameter Sharing (PS) (CNTK).
Alexnet Resnet-50 Resnet-152 VGG-19

Model Parameters size (MB) 240 98 232 549
SA Load time (ms) 781 430 747 1561
PS Load time (ms) 97 89 103 107

SA mode GPU Memory (MB) 1037 917 1101 1389
PS mode GPU Memory (MB) 795 805 805 825

SA num. of instances 15 17 14 11
PS num. of instances 18 18 18 17

Table 1 shows the bene�ts of parameter sharing (PS) in
comparison to standalone (SA) mode of operation. Parameter
sharing is both time and space e�cient, enabling us to swiftly
load the models to GPU with 8-10⇥ reduction in load time,
and �t 5%-54% more IF instances.

3.4 Implementation Details
We implemented GSLICE as a DPDK [1] based platform.
Overall, implementation of GSLICE is ~2.5: lines of ‘C/C++’
code. We minimally enhanced the CNTK and PyTorch li-
braries to support parameter sharing and improve inference
performance. Key extensions to CNTK and PyTorch include:
• Parameter Sharing: We extend ML frameworks to at-
tach ML parameters from a speci�ed GPU address - helps
minimize startup time and memory footprint.

• Reuse of GPU I/O bu�ers: We allocate the input and
output bu�ers only once (typically done for every infer-
ence operation), and reuse the existing GPU bu�ers for
subsequent inference operations - helps avoid expensive
GPU memory alloc/dealloc for each inference operation.

• Share GPU I/O bu�ers acrossmultiple processes:We
enable sharing of GPU I/O bu�ers directly across processes
(Primary and Shadow IF) - helps overlap execution and
eliminates multiple data copy overheads.

4 EVALUATION
Our experimental testbed uses Dell PowerEdge R740xd servers
with Intel(R) Xeon(R) Gold 6148 CPU@ 2.40GHz dual-socket

499

GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Inference Platform SoCC ’20, October 19–21, 2020, Virtual Event, USA

CPUs with 20 cores each, 252GB RAM and includes one
NVIDIA Tesla V100 GPU and quadport Intel XL710 10 GbE
NIC. The Tesla V100 GPU has 16 GB of memory, 80 Stream-
ing Multiprocessor and 640 Tensor Cores. The server node
runs Ubuntu SMP Linux kernel 4.4.0-150-generic with DPDK
v19.02. We used Moongen [24] and tcpreplay [10] as work-
load generators to transmit data at up to 30 Gbps. We used
3 ML frameworks, CNTK, PyTorch and TensorRT. We ran
imagenet models in CNTK (Table 1) and TensorRT (§ 4.1).
GNMT and Jasper in Pytorch. We chose Alexnet (1 GFLOPs),
ResNet-50 (4 GFLOPS), VGG-19 (20 GFLOPs) [14] and to
represent diverse GPU computational loads. Our IF work-
load consists of color images based on Imagenet dataset [50],
with resolution of 224⇥224, and size of 588 KB transmitted
as 588 UDP packets (1 KB each); and for GNMTv2, 5-word
sentences as packet payloads.

4.1 GSLICE: System Performance
First, we demonstrate the e�ectiveness of GSLICE in improv-
ing overall inference performance and GPU utilization, and
compare it with default MPS (as baseline) and batched mode
of MPS ‘MPS+SLAB’ (M+S). In this experiment, we run six
distinct IFs (Alexnet, Mobilenet, ResNet-50, VGG-16,VGG-19
& GNMT) in isolation. We choose an SLO of 25ms to illus-
trate how GSLICE can meet a timeliness requirement, e.g.,
for a real-time system processing videos at 30 frames/sec.

0
750
1500
2250
3000
3750
4500

Alexn
et
Mobi

lenet
ResN

et-50 Alexn
et
Mobi

lenet
ResN

et-50
0
5
10
15
20
25Throughput Latency

Th
ro
ug
hp
ut
(rp
s.
)

La
te
nc
y
(m
s)

MPS M+S GSLICE

Figure 8: Performance of GSLICE and Default MPS (1)

50
100
150
200
250
300
350

VGG
-19
VGG

-16GNM
T

VGG
-19
VGG

-16GNM
T

0
5
10
15
20
25
30Throughput Latency

Th
ro
ug
hp
ut
(rp
s.
)

La
te
nc
y
(m
s)

MPS M+S GSLICE

Figure 9: Performance of GSLICE and Default MPS (2)
Table 2: Measure of GPU Utilization E�cacy (GUE ([))

IF model Alexnet Mobilenet ResNet-50 VGG-19 VGG-16 GNMT
Default MPS ([) 235.75 330.0 29.08 4.96 3.79 1.97

MPS + SLAB (M+S) ([) 382.4 341.2 42.4 5.11 11.13 6.66
GSLICE ([) 579.41 379.55 47.93 5.25 12.49 6.74

Improvement M+S (%) 62.54 3.36 46.11 2.92 193.32 187.23
Improvement GSLICE (%) 146.28 14.99 65.18 5.71 229.25 190.83

Figure 8 and 9 show the results for GSLICE (throughput
(left) and latency (right)). For clarity, we split IFs with dif-
ferent complexities into two groups. The error bars indicate

95% con�dence interval. GSLICE achieves signi�cant im-
provement over ‘default MPS’ in throughput for Alexnet
(⇠10⇥), and Mobilenet (⇠9⇥). VGG-19 (a computationally
heavy model) shows ⇠2⇥ improvement. Improvement comes
from more e�ective GPU utilization with GSLICE. While
we observe increased latency with GSLICE and ‘M+S’, judi-
cious batching limits latency to be within the speci�ed SLO.
Since only one model executes at a time here, throughput is
primarily improved by batching.The incremental bene�t of
GSLICE, beyond just our adaptive batching applied to MPS
(M+S), is higher for lighter models, Alexnet, Mobilenet and
VGG-16. However, GSLICE signi�cantly improves through-
put and latency, beyond the bene�ts from adaptive batching,
with multiple heterogeneous models running concurrently
(see below). GSLICE improves GPU utilization e�cacy (GUE)
across all IFs, compared to ‘default MPS’ by 5-229% (Table 2).

4.2 Concurrent execution of multiple IFs
Table 3: Measure of GPU Utilization E�cacy (GUE ([))

Concurrent IFs Alexnet & ResNet-50 Alexnet & VGG-19 3 IFs 4 IFs
Default MPS ([) 38.82 6.39 3.38 2.01

MPS + SLAB (M+S) ([) 72.69 15.76 7.83 7.29
GSLICE ([) 94.04 44.79 24.59 19.98

SLAB Improvement (%) 108.7 146.65 131.74 261.41
GSLICE Improvement (%) 170.02 600.79 627.67 890.10

We demonstrate the bene�t of GSLICE in multiplexing
di�erent IFs in the GPU. We use combinations of 2, 3 and 4
IFs, which run concurrently in the GPU, while achieving an
SLO of 25ms with varying GPU demand/load.

0
400
800
1200
1600
2000
2400
2800
3200
3600

M S G M S G

Th
ro
ug
hp
ut
(ip
s.
)

Alexnet
ResNet-50
VGG-19

C2C1
(a) Exec. of 2 di�erent IFs

0
500
1000
1500
2000
2500
3000
3500

M S G M S G

Th
ro
ug
hp
ut
(ip
s.
)

Alexnet
Mobilenet
VGG-19

ResNet-50

C4C3
(b) (left) 3 IFs & (right) 4 IFs

Figure 10: Concurrent execution of multiple IF com-
binations: C1 (Alexnet & ResNet-50), C2 (Alexnet &
VGG-19), C3 (C1 & VGG-19), C4 (C3 & Mobilenet) with
Default MPS (M), SLAB (S) and GSLICE (G)

Fig. 10a shows the combined throughput (with breakdown
by IF) of two IFs, Alexnet and ResNet-50 (Fig. 10a(left)) and
Alexnet and VGG-19 (Fig. 10a(right)). A similar experiment
with 3 di�erent concurrent IFs (Alexnet, ResNet-50 & VGG-
19) is shown in Fig. 10b (left) and 4 di�erent IFs (Alexnet,
Mobilenet, ResNet-50 & VGG-19) in Fig. 10b (right). GSLICE
outperforms both ‘default MPS’ and ‘M+S’ to provide ⇠6-
13⇥ and 1.2-4⇥ improvement in throughput respectively,
across all the combinations. We note in Fig. 10b that the
throughput of VGG-19 in GSLICE (22 images/sec) is lower
than in SLAB (32 images/sec). In GSLICE, an IF’s share of

500

SoCC ’20, October 19–21, 2020, Virtual Event, USA Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan

the GPU resource is determined using a Max-min fair share
algorithm to maximize overall system performance without
penalizing any IF more. There is some penalty for compute
heavy DNN models, compared to letting them grab all the
GPU resources at the expense of other models, as in the
SLAB experiment. Similarly, Table 3 shows that GSLICE
provides ⇠1.7 to 9⇥ improvement in GPU Utilization e�cacy.
Thus, GSLICE provides improved, consistent throughput and
performance isolation for each IF by a judicious allocation
of a �xed GPU% (refer §3.2.3).

4.3 Comparison with TensorRT Server
We focus on single GPU to present subsequent bene�ts
and use case demonstrations for simplicity. We compare
GSLICE with state-of-the-art NVIDIA TensorRT (Triton)
Server ver.19.02 [44]. For this experiment, we used the perfor-
mance evaluation tool published by NVIDIA [3]. For a fair
comparison, only for this experiment, we restrict GSLICE’s
adaptive batching to not exceed a con�guredmaximum batch
size. Note: the throughput and latency shown are purely for
the execution time of a ready batch on the GPU. Thus, we
eliminate any di�erences as a result of the overheads due to
HTTP/TCP in TensorRT and UDP processing in GSLICE.

0
200
400
600
800
1000
1200

Th
ro
ug
hp
ut
(ip
s.
)

Batch Size

TensorRT Server
GSLICE

16841

(a) Throughput (ips).

0
5
10
15
20
25
30

La
te
nc
y
(m
s)

Batch Size

TensorRT Server
GSLICE

16841

(b) Latency (milliseconds).
Figure 11: Comparison with Triton (ResNet-50 model)
Table 4: GSLICE’s Improvement vs. TensorRT server

Batch size 1 4 8 16
Throughput Improvement (%) 73.85 31.43 50.83 92.34
Latency Improvement (%) -7.52 23.96 34.12 45.64

From Fig. 11a, we observe that GSLICE achieves higher
throughput across all batch sizes. Especially for large batches
(4..16), GSLICE is able to achieve 31-92% higher throughput
than NVIDIA TensorRT server and 23-45% lower latency
for larger batches. Also, in Fig. 11b, GSLICE outperforms
TensorRT server in providing low-latency service for most
batch sizes. Table 4 summarizes the performance improve-
ments of GSLICE. Especially, with the largest batch size (16),
GSLICE provides almost 2x improvement in throughput with
about half the latency of TensorRT server. TensorRT server
provides slightly lower latency for batch size of 1, but has
much lower throughput than GSLICE. Note that although
we restrict batch size in both cases, GSLICE incorporates
adaptive-batching and two streams that seek to maximize
GPU occupancy and minimize idling of GPU (i.e., avoids

wait for a batch to complete), which is evident from the
lower latency with GSLICE. In addition, Zero-Copy GPU
scatter-gather o�oads the CPU to further reduce the batch-
ing overhead, resulting in overall better throughput.

4.4 Bene�t from each GSLICE component
To illustrate the e�ectiveness of GSLICE’s proposed tech-
niques, we run the same experiment as in §4.1 and enable
each component of GSLICE individually, viz., multi-streams,
Zero-Copy GPU scatter-gather and adaptive-batching. We
set the SLO to a nominal value of 25 ms. Figs. 12a and 12b
show the throughput and median latency respectively.
Table 5: Throughput & Latency, di�erent batch sizes

Model Batch = 8 Batch = 16 Batch = 32
Thpt.(ips) Lat. (ms) Thpt. Lat. Thpt. Lat.

ResNet-50 816 9.75 1088 14.5 1152 25.9
VGG-19 264 30.54 400 40.95 512 63.12
Withmulti-streams (we limit to using only 2 CUDA streams)

alone, the lighter models Alexnet (39%) and Resnet-50 (66%)
show throughput improvement. With the heavier model
VGG-19, as the computation load dominates, the throughput
contribution from streams support is limited. But, multi-
streams does increase latency. Nonetheless, unlike single
stream, multiple streams avoid idling the GPU during the
execution of the GPU callback.
The zero-copy approach helps improve both throughput

and latency, although it depends on the complexity of the
IF model. For Alexnet, the data transfer takes about 100 `s,
which is a signi�cant percentage of the inference time of
~1 millisecond. We see about a 17% increase in Alexnet’s
throughput (Default MPS: 460 images/sec, Zero-Copy GPU:
540 images/sec) in Fig. 12a, and the latency of inference also
decreases slightly. However, the improvements are marginal
for more compute intensive models like ResNet-50 and VGG-
19, which spend more time (~10-15ms) for DNN computation,
dwar�ng the data movement time. Nonetheless, the main
bene�t of Zero-Copy GPU scatter-gather is o�oading the
CPU, avoiding it from becoming the bottleneck.
We note that batching a number of inference tasks im-

proves throughput. But, this is only up-to a point where all
SMs of a GPU are used. Forming and inferring larger batch
sizes hurts inference latency, which can be a concern for real-
time operations. Table 5 shows the impact of batching on
throughput and latency for ResNet-50 and VGG-19 models
on our testbed. We can see the throughput improvement is
much higher from Batch 8 to 16. However, from 16 to 32 the
throughput improvement is smaller, but the latency increases
quickly for both models. Thus, to balance between through-
put and latency, we utilize adaptive batching in GSLICE.

Adaptive batching helps improve throughput for all mod-
els. In fact, the heavier the model (e.g., VGG-19) the larger the
improvement. With lighter models (e.g., Alexnet, ResNet-50),

501

GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Inference Platform SoCC ’20, October 19–21, 2020, Virtual Event, USA

0
500
1000
1500
2000
2500
3000
3500
4000
4500

Th
ro
ug
hp
ut
(rp
s.
) MPS

Zero-Copy GPU
Streams
SLAB

GSLICE

VGG-19ResNet-50Alexnet

0
50
100
150

VGG-19

(a) Throughput (ips).

0
5
10
15
20
25
30

La
te
nc
y
(M
illi
se
co
nd
s) MPS

Zero-Copy GPU
Streams
SLAB

GSLICE

VGG-19ResNet-50Alexnet

(b) Latency (milliseconds).

0
10
20
30
40
50
60
70
80

0 0.5 1 1.5 2 2.5 3 3.5 4
0
5
10
15
20
25
30
35
40

SLO = 50

La
te
nc
y
(m
s)

Ba
tc
h
Si
ze

Time (s)

C Latency
G Latency

C Batch Size
G Batch Size

(c) Batch size tuning at startup

Figure 12: (a), (b) Bene�ts of individual GSLICE components. (c) startup comparison: GSLICE (G) vs. Clipper (C)

0
100
200
300
400
500
600
700

25 50 75 100 25 50 75 100
101

102

103

104

105

Th
ro
ug
hp
ut
[T
hp
t.]
(ip
s)

C
on
ve
rg
en
ce

Ti
m
e
(C
T)
(m
s)

SLO (ms)

Clipper Thpt.
GSLICE Thpt.

Clipper CT
GSLICE CT

Figure 14: GSLICE vs Clipper: for di�erent SLOs.
the improvement is still good, as shown in Fig. 12a. However,
we do observe an increase in latency (2-3x) for all the models
compared to the baseline MPS with each of our improve-
ments, especially with VGG-19 and adaptive batching. We
note that although the latency is higher than default MPS, we
can still maintain an SLO of 25ms. GSLICE is able to use all
the available time-budget to right-size the batch, maximizing
throughput while limiting the latency increase.

4.5 Self-learning Adaptive Batching
We compare GSLICE’s adaptive batching with another in-
ference system, Clipper [21]. We integrated the adaptive
batching code from Clipper’s Github repository [4]. We use
a VGG-19 on TensorRT IF (with latency ~14ms for a batch
size of 1) and vary the SLO across di�erent runs.
Fig. 12c shows the convergence time of the two adaptive

batching schemes for SLO of 50ms. We chose a higher SLO of
50 ms with IF running VGG-19 to give it more time to form
a bigger batch. VGG-19 being a compute heavy model would
only form very small batch with SLO of 25ms. GSLICE uses
the available latency headroom to rapidly increase the batch
size (in less than 300ms) to the maximum that would not vio-
late the SLO. On the other hand, Clipper’s batch size increases
gradually and takes ~3.5s to reach the right value. With Clip-
per, the convergence time keeps rising with higher SLOs,
and exceeds 10s for SLO of 100ms, while GSLICE quickly
converges within 500ms in all the cases as shown in Fig. 14
(right).

We also show the impact on throughput for di�erent val-
ues of the speci�ed SLO as shown in Fig. 14 (left). GSLICE
shows ~2 to 50% throughput improvement across the mea-
sured cases. At lower SLOs (25-50ms), we observed Clipper

to be sensitive to SLO violations (due to multiplicative de-
crease) and converge to a relatively smaller batch size, hurt-
ing throughput. However, GSLICE �nds the right batch size
to operate within the SLO and provide higher throughput.

4.6 GPU resource re-provisioning
4.6.1 Adaptation to workload variation. To show GSLICE’s
ability to adapt to changing workload, we dynamically vary
the workload presented to the GPU. We start with a VGG-16
IF active with an SLO of 50 ms. After 20s, we launch another
VGG-19 IF. We run both (VGG-16 & VGG-19) IFs together
and terminate the �rst IF (VGG-16) at 50s. Figure 15, shows
the timeline of events, the observed batch size, throughput,
and latency for each execution round of the two IFs.

With SLAB using default MPS (both IFs are provided with
100% GPU), shown in Fig. 15a, VGG-19 IF gets a throughput
of ~550 at the start (and remains below the SLO of 50 ms).
The IF’s throughput drops to ~200 when VGG-19 IF starts at
23-sec mark. When the VGG-16 IF stops at 53 sec, the batch
size and throughput of VGG-19 IF increases quickly.9 Thus,
adaptive batching in SLAB adjusts the batch size to utilize
freed up GPU resources.

In Fig. 15b we further demonstrate GSLICE’s capability to
provide proper GPU isolation. We run the same experiment
with GSLICE, which provides 100% GPU to �rst IF (VGG-16).
We maintain the SLO of 50 ms and high throughput. When
the VGG-19 IF starts, it restricts the GPU resources for VGG-
19, to 30%, and provides the remaining 70% GPU allocation to
VGG-16. We can see from Fig. 15b, that throughput of VGG-
16 still remains quite high (~300) compared to the default
MPS case even when the VGG-19 IF comes up. Once, the
VGG-16 IF stops at 53 sec mark, GSLICE starts the process
to increase the GPU% for VGG-19 IF by getting the Shadow
VGG-19 IF ready with 100% GPU. The process of switching
to a di�erent GPU% is not instantaneous, as the shadow IF
takes some time (~ 12 sec) to load the ML model into the
GPU. However, the active ’primary’ VGG-19 IF continues
to infer new requests, with minimal downtime. When the
shadow IF is ready to execute, at 66 sec., GSLICE almost

9To begin with VGG-16 has 100% GPU share, and once VGG-16 termi-
nates, VGG-19 IF operates with 100% GPU share.

502

SoCC ’20, October 19–21, 2020, Virtual Event, USA Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan

0
100
200
300
400
500
600

Th
ro
ug
hp
ut
(ip
s.
)

V-16 Thpt.
V-19 Thpt.

0
15
30
45
60
75
90

10 20 30 40 50 60 70 80

SLO = 50

La
te
nc
y
(m
s)

Time (s)

V-16 Latency
V-19 Latency

V-16 Batch
V-19 Batch

(a) SLAB with Default MPS

V-16 Throughput
V-19 Throughput

10 20 30 40 50 60 70 80

SLO = 50

Time (s)

V-16 Latency
V-19 Latency

V-16 Batch
V-19 Batch

(b) GSLICE.

V-16 Throughput
V-19 Throughput

10 20 30 40 50 60 70 80
0
15
30
45
60
75
90

SLO = 50

Ba
tc
h
Si
ze

Time (s)

V-16 Latency
V-19 Latency

V-16 Batch
V-19 Batch

(c) Clipper with Default MPS
Figure 15: Dynamic adaptation of batch size; [VGG-16 (V-16) & VGG-19 (V-19)] w/Default MPS, GSLICE & Clipper

seamlessly switches (in about 100 `sec.) to the shadow VGG-
19 IF, utilizing 100%GPU and quickly increases batch size and
throughput. Thus, GSLICE achieves resource isolation and
avoids the interference between IFs and improves throughput
without impacting the SLO.

Finally, we compare with Clipper in Fig. 15c, which gets
an initial throughput of ~500 with VGG-16 at a latency below
the SLO of 50ms while running alone in the GPU. When the
VGG-19 IF starts at ~23 secs., the VGG-16 model su�ers from
interference and struggles to maintain the SLO, and through-
put drops to ~200 images per sec. When, VGG-16 stops at 53
sec., VGG-19’s throughput increases slightly as more GPU
resources are freed up for it. However, Clipper’s batch size
remains the same and the throughput remains at almost the
same low value. This is due to the fact that Clipper’s adaptive
batching system is only reactive to violating the SLO, but
once stabilized at a value, does not readjust to capitalize on
now free resources, unlike GSLICE’s continual adaptation.

0
20
40
60

SLO = 50

La
te
nc
y

(m
s)

ResNet-50 (R)
VGG-19 (V)

R Load Time
V Load TimeR = 30%

V = 30% R = 8%,V = 60% GPU% Change Over

0
20
40
60

Arrival Rate = 35

0
15
30

0 2 4 6 8 10 12 14 16 18

Arrival Rate = 35
GPU% Change W/O OverlapTh

ro
ug
hp
ut

(rp
s.
)

Time (s)
Figure 16: Self-tuning of GPU Percentage for two IFs.
4.6.2 Self-Tuning of GPU proportion Allocation. We extend
the previous experiment (§4.6.1) to demonstrate GSLICE’s
ability to re-allocate GPU resources for the active IFs in a self-
tuning manner, adapting to the demand without impacting
their performance. We assume the ’knee’ GPU percentages
of the IF models are unknown, with no apriori pro�ling. We
start with two models, VGG-19 and ResNet-50, allocating
each IF with (somewhat arbitrarily chosen) 30% GPU, each
receiving requests of 35 images/sec. as shown in Fig. 16. As

the IFs process the inference requests, it is evident that VGG-
19 IF is underprovisioned, as the throughput (15 ips, Fig. 16
middle plot) is below the request arrival rate of 35 ips. The
latency (65ms, Fig. 16 top plot) is above the 50 ms SLO. On
the other hand, ResNet-50 IF’s throughput easily exceeds the
arrival rate and GPU resources are over-provisioned. At the
2 sec. mark, GSLICE’s manager which periodically employs
a heuristic to compute GPU% that can best serve the request
rate and the SLO for both of the IFs, begins adjusting the GPU
percentage of ResNet-50 to 8% and VGG-19 to 60%. While the
shadow IFs are being setup with their new GPU%, both active
IFs continue processing incoming requests. The ResNet-50
shadow IF is loaded into the GPU with the new GPU% earlier
(at 7 sec). GSLICE’s manager switches the ResNet-50 active
and shadow IFs. Eventually, the more complex VGG-19 IF
completes loading the ML model to the GPU (14 sec). With
GSLICE’s self-tuning having increased GPU% for VGG-19, it
now processes all incoming requests while maintaining the
SLO. This self-tuning capability of GSLICE ensures that VGG-
19 gets the required GPU share while not over-provisioning
the ResNet-50 model either.
We compare our result with an implementation where a

new IF instance is started from scratch to e�ect change in
GPU% (Fig: 16 (bottom plot)). If the IF percentage is changed
without utilizing our innovative overlap technique, no re-
quests are served for a long interval - until the new IF is
loaded and ready. This dramatically hurts servicing infer-
ence requests and degrades overall throughput.
5 RELATEDWORK
GPU based Inference Platforms: Clipper [21] is a low-
latency inference system providing a commonmodel abstrac-
tion API, and predictive IF model & ML framework selection
service to better suit user requests. It uses an AIMD-based
adaptive batching scheme and delayed batching modes to
optimize the batch size to meet a target SLO. GSLICE goes
beyond Clipper to support heterogeneous ML frameworks
and models to run concurrently by spatially sharing the GPU.
GSLICE also provides a variant of adaptive batching that can
swiftly adapt to GPU resource variations.

503

GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Inference Platform SoCC ’20, October 19–21, 2020, Virtual Event, USA

Nexus [52] and Themis [41] create an inference service
with a cluster-wide GPU resource management framework.
Nexus proposes batching-aware scheduling using pre�x adap-
tive batching, and early drop mechanisms to improve over-
all performance and utilization for a GPU cluster. Nexus
scheduler relies on temporal-only sharing of GPUs, with the
adaptive batching operating on a �xed batch size for each
epoch (30s). Themis proposes a two-level GPU scheduling
approach with �xed batch size and a novel fairness measure
called ‘�nish-time fair allocation’ for the GPU cluster. Both
Nexus and Themis operate at a higher management plane
(cluster level management), while GSLICE spatially shares a
GPU to maximize GPU utilization and improve IF application
performance. Gandiva[59] is a DNN learning and inference
architecture that increases throughput by ’packing’ DNN
applications in the GPU. Packing in Gandiva corresponds
to temporally multiplexing applications. Temporal sharing
increases utilization but not to the extent of spatial sharing.
GSLICE uses controlled-spatial-multiplexing to share the
GPU with applications and increase GPU utilization.

TensorRT [57] by NVIDIA Inc. is a high-performance deep
learning inference library for production environments [26].
NVIDIA also released the container runtime for Docker with
TensorRT support [2]. However, the current release does
not yet fully support MPS. We used the publicly available
TensorRT libraries and built the TensorRT IF on our platform
with MPS support. PowerAI Vision Inference Server [33] by
IBM Inc. is a new generation of video/image analysis plat-
forms that can deploy both the image classi�cation models
and object detection models. EdgeEye [40] presents an edge-
computing framework for real-time intelligent video analyt-
ics applications. It uses NVIDIA TensortRT inference engines
to improve inference performance, and provides a high-level,
task-speci�c API for developers. Unlike GSLICE, their focus
is to provide a framework for real-time video analytics.
Works on CUDA MPS: NVIDIA’s latest Ampere GPU has
Multi-Instance GPU(MIG), where the GPU resource partition-
ing goes beyond SMs and includes memory partitioning [7].
Ampere keeps the underlying CUDA platform same, so we
expect optimization in GSLICE would be bene�cial in Am-
pere GPU as well. In [34], authors identify the performance
gap issues with GPU resource sharing (temporal and spatial),
and propose a dynamic space-time multiplexed scheduling to
optimize the GPU inference throughput. It also tries to priori-
tize predictability, but proposes to micro-manage the kernels
that execute on GPU, monitor the latency for each kernel ex-
ecution and control the eviction of degraded task. GSLICE is
simpler, providing platform level optimization mechanisms
that are non-intrusive (no need to micro-manage kernels),
and readily leverage and deploy available IF frameworks.
MLAcceleration: Several works optimize and produce light-
weight versions of the DNN models [25, 43, 62] to make

DNNs fast and less compute intensive.SqueezeNet [32], has
fewer parameters and a small model size. Others acceler-
ate ML training and inference with binarized neural net-
works [20] or compress the DNN model[28]. There are hard-
ware accelerators such as NVIDIA’s tensor cores[8], Google’s
TPU[36] and Eyeriss[17] made to speedup DNN processing.
GPU accelerator functions: Many works leverage GPUs
to accelerate packet processing. PacketShader[27] utilizes
GPUs to process packet headers for switching and routing,
and SSLShader[35] provides high throughput SSL processing
in the GPU. Similarly, NBA[37] presents an adaptive load
balancer to balance the workload of network functions (NFs)
running on both CPU and GPU. APUNet [25] uses integrated
GPU to process packets and eliminates the data transfer over
PCIe bus. G-NET[61] is a scheduling and virtualization frame-
work to share GPU resources across multiple NFs. G-NET
uses Hyper-Q to spatially share the GPU, and provisions the
GPU SMs for each of the NFs. In contrast, GSLICE utilizes
MPS to provision GPU. Using MPS allows GSLICE to support
low level ML libraries such as cuDNN[18] and cuBLAS[5]
which do not expose thread blocks information and prevent
the use of thread block counting technique to provision GPU.

6 CONCLUSIONS
We presented GSLICE, a platform supporting cloud-based
low-latency inference applications. GSLICE supports a num-
ber of ML frameworks and IF models, and speci�cally ad-
dresses the challenges of e�ciently utilizing the GPU while
multiplexing several concurrently running streaming IFs.
GSLICE builds on top of CUDA MPS to provide controlled
spatial sharing of the GPU across multiple IF models to
ensure performance guarantees. GSLICE’s ‘self-tuning’ re-
source allocation scheme dynamically adjusts and apportions
just the right amount of GPU resources for the IFs to meet
their SLO and demand. GSLICE’s ‘Self-Learning Adaptive
Batching’ helps maximize GPU utilization and IF throughput
without violating latency SLOs. Using a shadow IF and an e�-
cient overlap technique, GSLICEmasks the high startup costs
(2-15s) and re-provisions GPU resources and instantiates new
IFs with less than 100`s downtime. GSLICE also improves IF
performance and reduces the overhead on CPU through data
aggregation and e�cient data transfer mechanisms. Param-
eter sharing in GSLICE improves scalability by reducing IF
memory footprint and helps multiplex multiple instances of
an IF. Overall, GSLICE dramatically improves GPUmultiplex-
ing (5-54%) and utilization e�cacy (up to 800%) to achieve
2-13⇥ overall IF throughput improvement.
Acknowledgements: We thank the anonymous reviewers
and our shepherd, Dr. K. R. Jayaram for their valuable feed-
back and the US NSF for their generous support of this work
through grant CNS-1763929.

504

SoCC ’20, October 19–21, 2020, Virtual Event, USA Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan

REFERENCES
[1] 2014. Data plane development kit. http://dpdk.org/. [������].
[2] 2019. NVIDIA Container runtime for Docker. https://github.com/

NVIDIA/nvidia-docker. (2019). [������].
[3] 2019. NVIDIA TensorRT Inference Server. https://github.com/NVIDIA/

tensorrt-inference-server. [������].
[4] 2020. Clipper Github. https://github.com/ucbrise/clipper.
[5] 2020. CUBLAS LIBRARY. https://docs.nvidia.com/cuda/cublas/index.

html. Accessed: 2020-02-19.
[6] 2020. Metal Documentation. https://developer.apple.com/

documentation/metal. Accessed: 2020-04-25.
[7] 2020. NVIDIA Ampere MIG. https://www.nvidia.com/en-us/

technologies/multi-instance-gpu.
[8] 2020. NVIDIA Tesla V100 GPU Architecture. http://images.nvidia.com/

content/volta-architecture/pdf/volta-architecture-whitepaper.pdf. Ac-
cessed: 2020-02-01.

[9] 2020. ROCm Github. https://github.com/RadeonOpenCompute/
ROCml. Accessed: 2020-04-25.

[10] 2020. tcpreplay Github. https://github.com/appneta/tcpreplay.
[11] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Je�rey Dean, Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving,
Michael Isard, et al. 2016. Tensor�ow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16). 265–283.

[12] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík, Krishna Chin-
talapudi, Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha.
2017. Real-time video analytics: The killer app for edge computing.
computer 50, 10 (2017), 58–67.

[13] Tal Ben-Nun and Torsten Hoe�er. 2019. Demystifying parallel and
distributed deep learning: An in-depth concurrency analysis. ACM
Computing Surveys (CSUR) 52, 4 (2019), 1–43.

[14] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano.
2018. Benchmark Analysis of Representative Deep Neural Network
Architectures. IEEE Access 6 (2018), 64270–64277. https://doi.org/10.
1109/ACCESS.2018.2877890

[15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet:
A �exible and e�cient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274 (2015).

[16] Tianqi Chen, ThierryMoreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
et al. 2018. {TVM}: An automated end-to-end optimizing compiler
for deep learning. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18). 578–594.

[17] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial
architecture for energy-e�cient data�ow for convolutional neural
networks. In ACM SIGARCH Computer Architecture News, Vol. 44. IEEE
Press, 367–379.

[18] Sharan Chetlur, Cli� Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn:
E�cient primitives for deep learning. arXiv preprint arXiv:1410.0759
(2014).

[19] R. Collobert, K. Kavukcuoglu, and C. Farabet. 2011. Torch7: A Matlab-
like Environment for Machine Learning. In BigLearn, NIPS Workshop.

[20] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. 2016. Binarized neural networks: Training deep neural
networks with weights and activations constrained to+ 1 or-1. arXiv
preprint arXiv:1602.02830 (2016).

[21] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. 2017. Clipper: A low-latency online
prediction serving system. In 14th {USENIX} Symposium on Networked

Systems Design and Implementation ({NSDI} 17). 613–627.
[22] C Cuda. 2018. Best practice guide, 2018.
[23] Aditya Dhakal and K. K. Ramakrishnan. 2019. NetML: An NFV Plat-

formwith E�cient Support for Machine Learning Applications. In 2019
IEEE Conference on Network Softwarization (NetSoft). IEEE, 396–404.

[24] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohl-
fart, and Georg Carle. 2015. Moongen: A scriptable high-speed packet
generator. In Proceedings of the 2015 Internet Measurement Conference.
ACM, 275–287.

[25] Younghwan Go, Muhammad Jamshed, YoungGyoun Moon, Changho
Hwang, and KyoungSoo Park. 2017. APUNet: revitalizing GPU as
packet processing accelerator. In Proceedings of the 14th USENIX Con-
ference on Networked Systems Design and Implementation. USENIX
Association, 83–96.

[26] Allison Gray, Chris Gottbrath, Ryan Olson, and Shashank Prasanna.
2017. Deploying deep neural networks with nvidia tensorrt. https:
//devblogs.nvidia.com/deploying-deep-learning-nvidia-tensorrt/.

[27] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. Pack-
etShader: a GPU-accelerated software router. In ACM SIGCOMM Com-
puter Communication Review, Vol. 40. ACM, 195–206.

[28] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression:
Compressing deep neural networks with pruning, trained quantization
and hu�man coding. arXiv preprint arXiv:1510.00149 (2015).

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770–778.

[30] Pieter Hintjens. 2013. ZeroMQ: messaging for many applications. "
O’Reilly Media, Inc.".

[31] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. Mobilenets: E�cient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017).

[32] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. 2016. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and 0.5 mb model size. arXiv
preprint arXiv:1602.07360 (2016).

[33] IBM Corporation. 2018. PowerAI Vision Inference Server.
https://www.ibm.com/support/knowledgecenter/SSRU69_1.1.2/
base/vision_pdf.pdf?view=kc. Accessed:2019-12-01.

[34] Paras Jain, Xiangxi Mo, Ajay Jain, Harikaran Subbaraj, Rehan So-
hail Durrani, Alexey Tumanov, Joseph Gonzalez, and Ion Stoica. 2018.
Dynamic Space-Time Scheduling for GPU Inference. arXiv preprint
arXiv:1901.00041 (2018).

[35] Keon Jang, Sangjin Han, Seungyeop Han, Sue B Moon, and KyoungSoo
Park. 2011. SSLShader: Cheap SSL Acceleration with Commodity
Processors.. In NSDI.

[36] Norman P Jouppi, Cli� Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al
Borchers, et al. 2017. In-datacenter performance analysis of a tensor
processing unit. In Computer Architecture (ISCA), 2017 ACM/IEEE 44th
Annual International Symposium on. IEEE, 1–12.

[37] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma, Junhyun Shim,
and SueMoon. 2015. NBA (network balancing act): a high-performance
packet processing framework for heterogeneous processors. In Pro-
ceedings of the Tenth European Conference on Computer Systems. ACM,
22.

[38] Alex Krizhevsky, Ilya Sutskever, and Geo�rey EHinton. 2012. Imagenet
classi�cation with deep convolutional neural networks. In Advances
in neural information processing systems. 1097–1105.

[39] Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary, Oleksii
Kuchaiev, Jonathan M Cohen, Huyen Nguyen, and Ravi Teja Gadde.
2019. Jasper: An End-to-End Convolutional Neural Acoustic Model.

505

GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Inference Platform SoCC ’20, October 19–21, 2020, Virtual Event, USA

arXiv preprint arXiv:1904.03288 (2019).
[40] Peng Liu, Bozhao Qi, and Suman Banerjee. 2018. Edgeeye: An edge

service framework for real-time intelligent video analytics. In Proceed-
ings of the 1st International Workshop on Edge Systems, Analytics and
Networking. ACM, 1–6.

[41] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram
Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla.
2020. Themis: Fair and E�cient {GPU} Cluster Scheduling. In 17th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 20). 289–304.

[42] Mellanox Inc. 2018. AI composabilitity and Virtualization: Mellanox
Network attached GPUs. http://www.mellanox.com/related-docs/
solutions/SB_ai_composability_virtualization.pdf. [������].

[43] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. 2019. PipeDream: generalized pipeline parallelism for DNN
training. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles. ACM, 1–15.

[44] NVIDIA. 2019. TensorRT Developer Guide. https://docs.nvidia.com/
deeplearning/sdk/tensorrt-developer-guide/index.html. [������].

[45] NVIDIA, Tesla. 2017. V100 GPU architecture. The world‘s most ad-
vanced data center GPU. Version WP-08608-001_v1. 1. NVIDIA. Aug
(2017), 108.

[46] NVIDIA, Tesla. 2019. MULTI-PROCESS SERVICE. (2019).
[47] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. 2015. Chimera:

Collaborative preemption for multitasking on a shared GPU. ACM
SIGPLAN Notices 50, 4 (2015), 593–606.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. 2019. PyTorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information
Processing Systems. 8024–8035.

[49] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks
in C. http://pjreddie.com/darknet/.

[50] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV) 115, 3 (2015), 211–252. https://doi.org/10.1007/
s11263-015-0816-y

[51] Frank Seide and Amit Agarwal. 2016. CNTK: Microsoft’s open-source
deep-learning toolkit. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. ACM,
2135–2135.

[52] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.
Nexus: a GPU cluster engine for accelerating DNN-based video analy-
sis. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 322–337.

[53] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[54] John E Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A
parallel programming standard for heterogeneous computing systems.
Computing in science & engineering 12, 3 (2010), 66.

[55] Giorgos Vasiliadis, Lazaros Koromilas, Michalis Polychronakis, and
Sotiris Ioannidis. 2014. {GASPP}: A GPU-Accelerated Stateful Packet
Processing Framework. In 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14). 321–332.

[56] Wikipedia Article. 2018. Diminishing returns. https://en.wikipedia.
org/wiki/Diminishing_returns. [������].

[57] Piotr Wojciechowski, Purnendu Mukherjee, and Siddharth Sharma.
2018. How to Speed Up Deep Learning Inference Using TensorRT.
https://devblogs.nvidia.com/speed-up-inference-tensorrt/.

[58] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. 2016. Google’s neural machine translation
system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144 (2016).

[59] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Si-
vathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, et al. 2018. Gandiva: Introspective clus-
ter scheduling for deep learning. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18). 595–610.

[60] Peifeng Yu and Mosharaf Chowdhury. 2020. Fine-Grained GPU Shar-
ing Primitives for Deep Learning Applications. In Proceedings of Ma-
chine Learning and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze
(Eds.). Vol. 2. 98–111. https://proceedings.mlsys.org/paper/2020/�le/
f7177163c833d�4b38fc8d2872f1ec6-Paper.pdf

[61] Kai Zhang, Bingsheng He, Jiayu Hu, Zeke Wang, Bei Hua, Jiayi Meng,
and Lishan Yang. 2018. G-NET: E�ective {GPU} Sharing in {NFV}
Systems. In 15th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 18). 187–200.

[62] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer.
2018. Deepthings: Distributed adaptive deep learning inference on
resource-constrained iot edge clusters. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 37, 11 (2018), 2348–
2359.

506

