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Abstract—Saving energy for latency-critical applications like
web search can be challenging because of their strict tail latency
constraints. State-of-the-art power management frameworks use
Dynamic Voltage and Frequency Scaling (DVFS) and Sleep states
techniques to slow down the request processing and finish the
search just-in-time. However, accurately predicting the compute
demand of a request can be difficult. In this paper, we present
Gemini, a novel power management framework for latency-
critical search engines. Gemini has two unique features to
capture the per query service time variation. First, at light loads
without request queuing, a two-step DVFS is used to manage
the CPU power. Our two-step DVFS selects the initial CPU
frequency based on the query specific service time prediction
and then judiciously boosts the initial frequency at the right
time to catch-up to the deadline. The determination of boosting
time further relies on estimating the error in the prediction of
individual query’s service time. At high loads, where there is
request queuing, only the current request being executed and
the critical request in the queue adopt a two-step DVFS. All the
other requests in-between use the same frequency to reduce the
frequency transition overhead. Second, we develop two separate
neural network models, one for predicting the service time and
the other for the error in the prediction. The combination of
these two predictors significantly improves the power saving and
tail latency results of our two-step DVFS. Gemini is implemented
on the Solr search engine. Evaluations on three representative
query traces show that Gemini saves 41% of the CPU power,
and is better than other state-of-the-art techniques.

Index Terms—power management, DVFS, search engine, neu-
ral network, service time prediction

I. INTRODUCTION

Power management in data centers is challenging because
of the fluctuating workloads and strict task completion time
requirements. Web search is an example of latency critical
applications, whose tail latency is critical to a data center
operator’s revenue [1]. Aggregation policies [2]–[4] in web
search enforce strict Service Level Agreements (SLAs) on the
tail latency of search requests at each Index Serving Node
(ISN) server [5], [6], to avoid search quality and response time
degradations [7], [8]. In order to meet tight latency constraints,
ISN server utilizations for search engines are typically kept
low [9]–[11]. But, lightly loaded ISN servers waste a lot of
energy in the data center [12], [13]. This has prompted plenty
of prior research [14]–[18] to save power for latency-critical
search engines.

Most of this research has been based on two broad tech-
niques: Dynamic Voltage and Frequency Scaling (DVFS) and

Sleep states. DVFS schemes such as Pegasus [14] and Rubik
[18] dynamically adjust the CPU’s frequency to save power.
Pegasus is a course-grained epoch-based policy suitable to
reduce power for long-term variability in the workload. Rubik,
on the other hand, is a query based policy that captures
short-term variability while guaranteeing that the constraint
on the high percentile latency is not exceeded. Sleep states
frameworks such as PowerNap [9] and DreamWeaver [11]
put the server into sleep during idle periods. On the other
hand, µDPM [17] adjusts both sleep period and DVFS to
meet the target latency. In this paper, we focus on using
DVFS, although the technique can also be extended to Sleep
states. The main challenge lies in the fact that search requests’
latencies have both short and long term variations and a
request’s computation requirement (i.e., total CPU cycles)
cannot be predicted accurately [16], [18]. Hence, maintaining
a balance between energy savings and meeting deadlines is
the goal of our work.

In this paper, we present Gemini, a fine grained DVFS
scheme with accurate per-query service time prediction. Our
latency prediction is based on a sophisticated Neural Network
(NN) model that captures realistic search engine characteris-
tics. Even then, it is unrealistic to have 100% accuracy. Hence,
Gemini proposes a heuristic approach, using a two step DVFS,
to achieve deadline constraints through frequency boosting. In
the first step upon a request arrival, Gemini selects an initial
CPU frequency according to the predicted service time based
on the NN model. In the second step, depending on the query
progress at a particular time, Gemini judiciously boosts the
CPU frequency, to catch up with the request’s deadline, if
the request processing is lagging. The boosted frequency is
set to the maximum core frequency, but the boosting time
must be determined accurately. In our model, this time is
calculated based on a second NN error predictor for the
latency estimation. Based on these two separate NN predictors,
Gemini automatically adjusts a request’s initial frequency and
boosting time to accommodate the query specific variations.

Our paper has some similarity to the step-wise DVFS
scheme proposed in PACE [19]. However, the theoretical
framework they proposed is difficult to implement in practice.
PACE still relies on a distribution to sample the residual work
for a request. Additionally, its per-query Linear Programming
(LP) model has a very high overhead, precluding real de-
ployment. Another scheme, proposed in EETL [16], is based
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TABLE I
POWER MANAGEMENT COMPARISON

Schemes Uncertainty Unknown Demand DVFS Control & Implementation Reconfigure for Critical Request

Pegasus [14] long-term
(per epoch)

deadline violation and
latency history centralized feedback based controller no concept of

critical request

Rubik [18] short & long
(per request)

tail of latency distribution
obtained from server profiling statistical model in software runtime !

PACE [19] short & long
(per request)

work distribution sampled
from recent tasks

simulated (unlimited) step-wise
DVFS through per query LP solver

latter request might
violate its deadline

EETL [16] long-term
(per epoch)

execute request until its
time threshold expires PID controller latter request might

violate its deadline

Gemini short & long
(per request)

neural network based
latency & error predictors

heuristic one or two-step DVFS in
user-space (with only 0.89% extra
predict and schedule overhead)

!

on readjusting the execution speed on Asymmetric Multicore
Processors at specific time epochs as predicted through a
feedback control circuit. Requests in an epoch share the same
boosting threshold without capturing short-term service time
variations. However, ours is a query specific approach that
captures both the service time and deadline violation for
each query. The characteristics of different DVFS approaches
including our Gemini are presented in Table I.

Initial estimation of the frequency is very important to sat-
isfy the deadline constraint of a request. A working thread on
an ISN server has to score the documents of a query’s posting
list [20] one by one to retrieve the top-K relevant results
[21], [22]. This provides an opportunity to precisely estimate a
request’s service time. Although some documents on a query’s
posting list might be skipped due to pruning techniques [23],
[24], an advanced prediction model with multiple features can
be developed to improve the accuracy [25]. We propose a
NN model that incurs only 0.79% additional delay on our
platform, which is less than the centralized control overhead
in Pegasus [14]. Query specific latency prediction has been
proven useful to significantly reduce the 99th percentile tail
latency on Microsoft Bing [26]. Even then, this prediction is
likely to have some errors. Therefore, in Gemini, we use a
second NN model to predict the error. The sum of predicted
latency and error estimate for a query is used to determine the
correct frequency boosting time in the two-step DVFS scheme.

For medium and high server loads with request queuing, we
boost the current CPU frequency whenever a critical request
arrives. A critical request is the one for which the target latency
is violated if we adhere to the current DVFS setting. In the
general case, only the current request being executed and the
critical request adopt a two-step DVFS. All the other requests
in-between execute at the current frequency, to minimize
the frequency transition overheads. Requests using the same
frequency have already met their latency constraints before the
critical request arrives. The arrival of critical request results
in a higher current frequency. Thus, requests in-between will
finish their tasks before the deadline.

Gemini is implemented in the Solr search engine [27],
which is deployed on a 24-core platform with user-space
DVFS control and power measurement. Experimental results
on three different query traces [8], [16], [28] prove that

Gemini saves 41% of the CPU power, which is 1.53 times
better than Rubik [18] and 2.05 times better than Pegasus [14].
At the same time, Gemini produces the minimum deadline
violation rate compared to Pegasus and Rubik. Our major
contributions are the following:
• A novel heuristic two-step DVFS is proposed, which

properly boosts the CPU frequency to catch-up to dead-
lines, on a per-query basis. The frequency steps are
adjusted at the arrival and departure of a critical request
when there are multiple requests in the queue.

• A low overhead NN model is developed to precisely
predict the service time at a per-query granularity based
on realistic features in query processing. Additionally, a
separate error prediction model is utilized to determine
the exact time for boosting the frequency in our two-step
DVFS.

• Finally, Gemini is implemented on a real platform using
the commonly used Solr search engine. Three represen-
tative query traces are evaluated for energy saving and
compared with previous techniques.

II. BACKGROUND AND MOTIVATION

As shown in Fig. 1 (a), a search engine typically employs
a partition-aggregate architecture [29]. Data collections in a
search engine often contain billions of documents [20], [30],
which are partitioned into a number of shards. Typically, one
shard of documents is served by an ISN server. The ISN
organizes its local documents as an inverted index [31], in
which each key in the query term dictionary [32] is linked
with a list of matched documents (i.e., the query term’s posting
list). Whenever the aggregator receives a search request from
a client, it will broadcast the request to all the ISNs. Every
ISN then searches its local index performing a scoring of doc-
uments in the posting list. As there are millions of documents
in an index shard, only the top-K scored documents are sent
back to the aggregator [33]. Finally, the aggregator merges and
ranks all the responses from the ISNs before sending the search
results to the client [34]. The overall latency for a search result
is limited by the slowest response arriving from the ISNs.
Thus, it is critical to meet the strict tail latency constraint
at the ISN servers, for good search latency and quality. The
stragglers will by ignored by the aggregator of the responses.
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Fig. 1. Search workload exhibits high variations. In part (b), top-left figure presents the diurnal and day-of-week pattern for the normalized Request per
Second (RPS); top-right figure gives the corresponding CDF of RPS values; bottom-left figure shows the arrival variations in a short term; bottom-right figure
plots the inter-arrival time variations.

A. Search Workload Characteristics

Fig. 1 (b) shows that the incoming request rate to a search
engine can exhibit high variations over both long and short
time intervals. The top-left sub-figure plots the Request per
Second (RPS) rate for a Wikipedia query trace [28], [35] over
a period of 150 hours. All the data points are normalized to
the smallest observed RPS. The RPS of search queries follows
a diurnal and day-of-week pattern. For power management, a
coarse granularity epoch based latency prediction can capture
this workload variability [14]. The corresponding CDF for
the normalized RPS is given on the top-right sub-figure. The
highest RPS rate can be up to 4 times larger than the smallest
RPS. However, the results on bottom-left sub-figure shows
that the Wikipedia query trace also has a high per second
granularity RPS variability, in addition to the longer term
variability. This suggests that it is necessary to have a per
query basis design for the search engine power management.
The inter-arrival time between consecutive requests also has
a high uncertainty with significant variations, as shown in the
bottom-right sub-figure (of Fig. 1 (b)).

To account for the variation of incoming requests, prior
works [17], [18] adopt an analytical model, which considers
the queuing, for power management, upon every request
arrival and departure. To estimate the per request equivalent
latency (i.e., service time plus queuing time), they assume
that each request’s service time can be derived from the same
distribution. Nevertheless, the results in Fig. 1 (c) invalidate
this assumption. The top sub-figure presents the measured
request service times on a search engine with 16 ISNs, which
is deployed on our testbed platform. We find that the service
times for three consecutive queries (i.e., Canada, Bobby and
Tokyo) vary a lot on the same ISN server. For example, the
service time of query Canada is 14 times longer than the query
Tokyo on ISN-1. The CDF of service times in the bottom sub-
figure confirms that this kind of variability exists across a wide
range of 20K requests we measured. Although their analytical
models can capture the arrival variations, it can not fully
utilize the per query service time variation. Our experimental
results indicate that each query’s service time depends on the

particular query’s features and the posting list at the particular
ISN, which itself can vary quite widely.

B. Power Management Techniques

Energy saving for latency critical applications was specif-
ically addressed by Lo et al. [14]. Their design, Pegasus,
addresses the long-term variability of the service time, such
as having a diurnal pattern, and assumes that the service
time rarely changes at short timescales. Pegasus utilizes the
measured deadline violation and latency headroom during
the past epoch to decide on frequency settings. When the
measured latency is smaller than 65% of the given time budget,
the CPU frequency is reduced. The performance of Pegasus
heavily relies on how quickly its feedback controller can
adapt to the request variations. On the other hand, Rubik [18]
observes that both the request service time and inter-arrival
time have a high short-term variability. To capture the per re-
quest variability, Rubik develops an analytical model for CPU
frequency selection at the granularity of every request arrival
and departure. However, it only approximately estimates each
request’s computation demand, as every query’s CPU cycles
are derived from the same distribution. For latency constraints,
it conservatively uses the tail of service time distribution for
each request’s latency prediction, thereby potentially missing
many energy saving opportunities. This motivates us to have
a precise per query service time prediction for improved
power saving. It can be done through a multi-feature machine
learning model, one which has already proved to be useful
for tail latency reduction in search applications [25], [26],
[36]. However, since it is impossible to develop a model
with 100% accuracy without resulting in over-fitting [37],
Gemini employs a two-step DVFS to meet the tight latency
constraint on ISN servers.

III. DVFS CONTROL

To make the analysis easy to understand, we first describe
our design with the assumption that there is always one request
in the queue. Then, we extend it to the case of two requests,
and finally to the general case of N requests.
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Fig. 2. Example of two-step DVFS with single request in the queue.

A. Single Request Without Queuing

In Fig. 2 (a), request R1 arrives at time A1 and has to finish
its work before the deadline D1. Suppose that CPU is running
at frequency fdefault before R1 enters the queue. For power
management, we predict request R1’s service time with our
NN model. The predicted service time S∗1 is:

S∗1 = PredictNN (Q1, I|fdefault) (1)

where Q1 is the request’s query and I is an ISN’s index.
Given Q1 and I , we can obtain request R1’s query features.
All the predicted service times are conditioned by the default
frequency fdefault. Previous works [14], [18], [38] assume
that a search request’s service time S is inversely proportional
to the CPU frequency. Specifically, Chou et al. in [17] reports
that a request’s total work W = Mf + C, where C is the
CPU cycles and M is the memory access time. Therefore,
W/f = M + C/f where f is the frequency. Since we focus
on the CPU management, we omit the memory access time
M , treating it as a constant, as in prior work [17] and [18].
For simplicity, we use the service time S to refer to W/f .
Then, the above equation becomes S = C/f .

To validate this equation, we measured a particular search
query’s latency at various CPU frequencies on our platform. In
Fig. 3, we see that the request’s latency increases from 40ms
to 97ms when the CPU frequency is slowed down from the
fastest 2.7GHz to the slowest 1.2GHz frequency. Additionally,
we fit a latency trending line on the same figure. Almost all the
<frequency, latency> sample points are exactly on this linear
trending line, confirming that a search request’s processing
time has a linear dependence to the CPU frequency. The time
delay for the CPU to transition from one frequency to another
with CPU stalls [39], is a constant, Tdvfs. If the predicted
service time S∗1 equals R1’s actual service time S1 with 100%
prediction accuracy, the frequency set during the time interval
A1 to D1 (in Fig. 2 (b)) should be constant [19]. This optimal
frequency f1 can be calculated as follows:

W1 =W ∗1 = S∗1fdefault (2)

f1 =W ∗1 /(D1 −A1 − Tdvfs) (3)

where W1 is request R1’s total work and W ∗1 is the predicted
value. However, a prediction is likely to not be 100% accurate.
Accounting for this, we have the following:

S∗1 = S1 + E1 (4)

where E1 is the prediction error. With unknown S1 during the
runtime, a step-wise DVFS can produce better power savings
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Fig. 3. The latency of search request is inversely proportional to the CPU’s
frequency.

[19], [40]. To reduce the transition overhead, we limit our
scheme to be a two-step design. For a two-step DVFS, shown
in Fig. 2 (b), we have to solve three problems: 1.) select the
initial frequency f1a 2.) determine the time T1 for boosting
and 3.) choose the boosted frequency f1b. In Gemini, we fix
the boosted frequency at maximum for the CPU core and use
the predicted service time S∗1 to select the f1a. Then, f1a is:

f1a = S∗1fdefault/(D1 −A1) (5)

In the following analysis, we focus on the case when S∗1 is
shorter than S1, as a deadline violation is more serious than
energy inefficiency. If the prediction of S∗1 is accurate, the line
of f1a in Fig. 2 (b) would be straight (to D1). Nevertheless,
the shaded area reflects a period in which we have to boost
to f1b to accommodate for prediction errors, so that we meet
the latency requirement.

To find the correct value of T1, we choose f1b to be fdefault,
since we want the CPU frequency to stay at the lower f1a for
as long as possible. As we do not know S1 precisely during the
runtime, we design a separate error predictor to help us in this
process. The output of our error predictor E∗1 for request R1

and the predicted service time S∗1 are used to approximate the
actual service time S1. E∗1 can be obtained by the following
equation:

E∗1 = PredictError(Q1, I|fdefault) (6)

Intuitively speaking, we leave a little latency slack for predic-
tion errors. Then, the following equation holds.

f1a(T1−A1)+f1b(D1−T1−Tdvfs) = (S∗1+E
∗
1 )fdefault (7)

Notice that we execute the request at frequency f1b for a time
interval D1 − T1 − Tdvfs, since the CPU will stall for Tdvfs
whenever we change the frequency. By combining equations
5 and 7, T1 can be calculated. In the worst case, T1 will be at
the beginning, A1, where we have to boost the frequency right
away to meet the deadline. If T1 is equal to A1 and request R1

still can not finish its work W1 before the deadline D1, our
DVFS scheme will directly drop request R1 to save energy.
Dropping this kind of request will not impact the search quality
seen by the client [2], as this response would be dropped by
the aggregator anyway [2], [41]. The accuracy of the service
time prediction is very important to the power saving achieved
with our two-step DVFS. In equations 5 and 7, f1a will be
closer to the optimal frequency f1, and the boosting time T1
will be closer to the deadline D1, if the error of service time
prediction is smaller.
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Fig. 4. Two requests in the queue. Example of critical request and non-critical
request.

B. Two Requests With Queuing

The scenario when two requests might stay in the queue is
more complicated as we need to re-configure the current CPU
frequency to guarantee the later request’s latency requirement.
Fig. 4 (Case 1a) depicts the arrival of the second request R2 at
time A2 after R1 started processing at time A1. The deadlines
for the two requests are D1 and D2, respectively. When the
inter-arrival time, A2−A1, is large enough as in Fig. 4 (Case
1b), such that request R2 can finish its job within the interval
D1 to D2, we call request R2 non-critical. When a non-critical
request arrives at the queue, we don’t need to re-configure the
current setup and request R2 still uses a two-step DVFS to
save power. On the other hand, request R2 in Fig. 4 (Case
2a) will violate its deadline when the interval between D1 to
D2 is too short. In Case 2b, request R2 is considered to be a
critical request when the following happens:

(D2 −D1)f2b < (S∗2 + E∗2 )fdefault (8)

W
′

2 = (S∗2+E
∗
2 )fdefault is the total amount of work predicted

for request R2, including prediction errors. When request R1

finishes, we skip step one for request R2 and directly boost
the CPU frequency to f2b (i.e., fdefault). With that being the
case, the maximum amount of work that can be done within
the residual time D2 − D1 is (D2 − D1)f2b. Request R2 is
critical when (D2 − D1)f2b is smaller than W

′

2. In order to
guarantee R2’s latency constraint in Fig. 4 (Case 3b), we have
to boost the current frequency immediately and re-configure
the second step frequency f1b (green line) to f ′1b (blue line),
in order to finish R1 early. Then, request R2 (i.e., shaded
area in Case 3b) can begin to execute even before D1. Notice
that we can boost the frequency earlier only when the arrival
time A2 of request R2 is earlier than the initial boosting time
T1. Otherwise, nothing can be adjusted as frequency f1b in
Case 3b is already fdefault, when A2 is between the initial
value of T1 and D1. To minimize the transition overhead, we

select the same frequency for f ′1b and f2a. If a combination of
< f2a, T2, f2b > can make request R2 meet its deadline D2,
then request R1 will definitely complete before the deadline
D1. So, we now focus on the calculation of < f2a, T2, f2b >
for request R2. Before selecting the frequencies and boosting
time for R2, we define its predicted equivalent CPU cycles
eW ∗2 as follows:

eW ∗2 = (S∗1 +E
∗
1 )fdefault− (A2−A1)f1a+S

∗
2fdefault (9)

where (S∗1 + E∗1 )fdefault − (A2 − A1)f1a is request R1’s
residual work and the S∗2fdefault is request R2’s predicted
work. With equivalent total work eW ∗2 , the initial frequency
f2a for request R2 becomes:

f2a = eW ∗2 /(D2 −A2 − Tdvfs) (10)

Similar to the single request design in Section III-A, we let
f2b be fdefault. In order to obtain the boosting time T2, we
have the following equation:

f2a(T2 −A2 − Tdvfs) + f2b(D2 − T2 − Tdvfs)
= eW ∗2 + E∗2fdefault

(11)

where we must finish the total work for the two requests before
deadline D2. By combining equation 10 and 11, the boosting
time T2 can be calculated. A special scenario of Case 3b is
when an incoming request R2 can not finish its work even if
we boost the CPU frequency to fdefault immediately after it
arrives. In such a case, it is safe to just directly drop request
R2, in the interest of saving more energy.

C. General Case with N Requests

We now address the general case. When there are N −
1 requests in the queue when critical request RN arrives. If
request RN is non-critical, no action needs to be taken. In
Fig. 5 (Case 1a), we give an example with N = 3. Request
R1 currently uses a two-step DVFS to save power and the
next request R2 is non-critical. When the critical request R3

arrives at the queue in Case 1a, we have to boost request R1’s
initial frequency f1a to f ′1b as in Fig. 5 (Case 1b). Similar to
equation 9, request R3’s equivalent total work eW ∗3 has to be
calculated before making the new frequency plan. In general,
request RN ’s equivalent total work eW ∗N is:

eW ∗N =W residual
1 +

∑
1<i<N

(S∗i + E∗i )fdefault

+S∗Nfdefault

(12)

where request R1’s residual work W residual
1 means:

W residual
1 = (S∗1 + E∗1 )fdefault − (AN −A1)f1a (13)

The new frequency f ′1b=f2a=...=fNa can be calculated using
the same method described in the case of two requests. Thus,
we have the following equation:

f ′1b = fNa = eW ∗N/(DN −AN − Tdvfs) (14)

In this design, all requests in between the current request R1

and critical request RN adopt the same frequency to minimize
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TABLE II
FEATURES FOR SERVICE TIME PREDICTION

Query Time
(ms)

AMean
Score

GMean
Score

HMean
Score

Max
Score

Estimated
Max Score

Score
Variance

Posting List
Length

# of Local
Maxima

Toyota 13 9.34 9.05 8.68 14.81 1131 5.99 20742 3084
United Kingdom
(Max) 21 6.9 6.9 6.89 7.42 2144 0.02 2369024 2834

Query Time
(ms)

Local Maxima
above AMean

# of
Max Score

Docs in 5%
of Max Score IDF

Docs in 5%
of Kth Score

Docs ever
in Top-K

Query
Length

Toyota 13 2639 1 199 6.81 322 85 1
United Kingdom
(Max) 21 2373 1 6357 3.41 9946 81 2

Case 1a    Case 1b    
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Time

R2 R3

Deadline 
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Case 2a    Case 2b    

R3

A4 Time

R4 R5

Deadline 
Violation

D4D3 D5A5

A2A1 D2A3 D3D1

Fig. 5. Example of N (=3) requests in the queue. In Case 2a, request R3

and R4 can finish before their deadlines if we use f3a as the current CPU
frequency. After R3 leaves, R5 suffers the deadline violation if R4 adopts a
two-step DVFS without considering the later request R5.

the frequency transition overhead. Before the critical request
RN arrives, the current frequency plan has already guaranteed
that the existing N − 1 requests in the queue can meet their
deadlines. Due to the arrival of critical request, we have to
boost the current frequency. So, request R1 to RN−1 will finish
before their deadlines. It is safe to use the same frequency for
them to reduce the transition overhead. After determining fNa

from equation 14, we use the following equation to get TN ,
with fNb to be fdefault.

fNa(TN −AN − Tdvfs) + fNb(DN − TN − Tdvfs)
= eW ∗N + E∗Nfdefault

(15)

Fig. 5 (Case 2a) shows the scenario when request R1 and
R2 depart from the queue. Currently, request R3 is still critical
and new arrivals of request R4 and R5 are non-critical. In Fig.
5 (Case 2b), the non-critical request R4 might adopt a two-
step DVFS (green line) to save its power. However, request R5

in Case 2a suffers a deadline violation if R4 only considers its
own computation demand. In Gemini with N requests in the
queue, we plan the CPU frequency in groups. For example,
we find the next critical request (R5) in Case 2a after the
current critical request R3 departures. Then, our design uses
the method in Case 1 for selecting the frequencies such that
we can meet the deadlines and reduce transition overheads.

IV. LATENCY AND ERROR PREDICTORS

For power managements, inaccurate service time estimation
can result in deadline violations, when we attempt to finish
the requests just-in-time [17], [18]. Gemini employs two
NN models to estimate the query specific service time and
prediction error, respectively. As described in the last section,
the predicted service time S∗ is used for the initial frequency
selection in our two-step DVFS, and the error predictor is for
determining the boosting time T .

A. Latency Prediction

Recent research [25], [26], [36] in the Information Retrieval
area reports that with the adoption of selective pruning [5],
[21] in search engines such as Facebook Unicorn [20] and
Microsoft Bing [36], a simple linear model [42] is inadequate
to get a precise per query service time prediction. A few
researchers have developed sophisticated machine learning
models to predict the query latency [25], [26], [36]. We
considered many features in query processing and limited our
selection to a few important ones. Table II shows, across
the different columns, all the features used in our predic-
tion model. We have chosen to illustrate these features with
the example term query “Toyota” and phrase query “United
Kingdom”. The service time in column 2 is the prediction
label in our model. All the other columns are prediction
features. AMean score is a query term’s arithmetic average
score of all documents in the posting list. Similarly, the GMean
score is the geometric mean score and HMean is harmonic
mean. Estimated max score is an approximation of the max
score based on the algorithm in [43]. In a query term’s
score distribution, there might exist local maxima. The “# of
Local Maxima”, and “Local Maxima above AMean”, capture
these score distribution features. Additionally, we quantify the
number of documents that fall within 5% of max score and 5%
of the Kth score, where K is the size of result sets. Finally, the
feature “Docs ever in Top-K” is the number of documents that
are fully scored by the selective pruning algorithm. For those
phrase queries having more than one terms, the maximum of
query terms’ feature values is used.

In Gemini, we use a NN model with only 5 hidden layers
to make the latency prediction, because it achieves a good
balance between prediction accuracy and inference overhead
on our platform. Each hidden layer has 128 neurons and uses
the relu activation function. Our classification model is trained
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Fig. 6. The prediction accuracy when we keep adding new features from
Table II. Red bars are query features that will adversely impact the prediction
accuracy.

by the Adam optimization algorithm [44] with sparse categor-
ical cross-entropy loss function. For service time scaling in
Gemini DVFS, our NN model predicts each query’s service
time using the default CPU frequency. Next, we evaluate the
feature importance on our NN model. In this experiment, we
first develop a NN model with “Posting List Length” as the
only feature. Then, more features are added to this NN model
in the order of top to bottom as shown by the Y-axis of Fig. 6.
All the features listed on the Y-axis of Fig. 6 are from Table II.
In Fig. 6, we can observe that the NN model with single feature
(i.e., “Posting List Length”) only yields a prediction accuracy
of 23%. When having more features, the prediction accuracy
improves. Finally, the model with all the query features at
the bottom of Fig. 6 achieves 89% prediction accuracy. Red
bars in the figure, such as Local Maxima above Amean,
# of MaxScore and Docs in 5% of KthScore, are query fea-
tures that will degrade the prediction accuracy. In Gemini, we
carefully select the features for a search engine system such
that our NN model achieves the maximum prediction accuracy.

B. Model Comparison

We now compare the prediction error and overhead results
for the NN classifier, NN regressor and a simple linear clas-
sifier on the Wikipedia query trace and index. All the models
are using the same query features. During the experiment, we
observe that the prediction error will reduce if we train the
models over more iterations. The detailed comparison results
are given in Fig. 7. In Fig. 7 (a), each model’s X-axis value
is its prediction error and the Y-axis value is its prediction
overhead. For the NN regressor with the MSE loss function,
we train it by using the RMSprop optimization algorithm.
Due to the selection of a MSE loss function, we define
that a prediction error happens when the absolute value of
true service time minus the predicted service time is larger
than 4ms. On the other hand, the threshold for the (NN and
linear) classifier models is 1ms as the output neuron of our
classification model is at per millisecond granularity. Although
the simple linear classifier has the smallest overhead of 64µs,
its worst prediction error of 73% prevents us to use it. Next, the
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NN regressor has a better prediction error of 24% with similar
prediction overhead (i.e., 66µs). However, the 24% prediction
error is still too high for the search request processing with
strict latency constraints. Finally, the selected NN classifier in
Gemini has the smallest prediction error of only 11%. The
79µs of prediction overhead in our NN classifier is relatively
small compared with a search request’s total service time. In
Fig. 7 (b), we plot the average request service time on both
our platform and Microsoft Bing [36]. On our platform, the
average request service time is around 10000µs (i.e., 10ms).
Microsoft reports that the average service time for Bing search
is 13470µs (i.e., 13.47ms) due to the large index [26], [45].
The average request service time is 127 times of the prediction
overhead for our NN classifier.

C. Design of an Error Predictor

Finally, we investigate the prediction error E of our NN
model. In Gemini, the prediction error E is defined as
f(Xi) − yi, where we derive the predicted service time as
f(Xi), given the feature vector Xi and yi is the measured
query service time, for query i. Prediction results show that
89% of requests have an accurate service time prediction.
However, around 5.5% of requests have positive prediction
errors and the remaining 5.5% requests see negative prediction
errors.

The impact of this kind of prediction error is discussed in
Fig. 8 (a). The X-axis on Fig. 8 (a) is the prediction error and
the Y-axis is a request’s predicted latency. If the prediction
error is negligible, a long request (red circle) may violate the
SLA requirement while a short request (orange square) may be
slowed down for power saving and still not violate the SLA.
However, even for such a short request, if the prediction error
is negative and large, this will result in the predicted service
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time f(Xi) being much shorter than yi, causing us to select
a much lower CPU frequency than appropriate and result in a
violation of the SLA. Similarly, large positive prediction errors
will result in energy inefficiency because we will select too
high a frequency. In order to solve this problem, Gemini uses
an additional predictor to estimate a request’s service time
prediction error [26]. For the predicting error, we use the
same query features as listed in Table II. To train another
NN model for error prediction, the label E = f(Xi)− yi can
be easily obtained in training set since we can keep track of
the measured request latencies in the past. Fig. 8 (b) shows
the prediction accuracy for errors is 85%.

V. GEMINI IMPLEMENTATION

Gemini is implemented on the Solr search engine. The
high level architecture of Solr search engine is shown in
Fig. 9. When a client’s search request arrives, a SearchHan-
dler will forward the request to the IndexSearcher, which
calls the Apache Lucene APIs for retrieving the relevant
documents. The Solr search engine is written in Java. To
implement Gemini, we wrap the IndexSearcher and Lucene
Index Searching in Fig. 9 as a Java Callable task. The
reason for doing this is that the Java Executor framework can
automatically handle Callable tasks in a Blocking Queue and
provide mechanisms for thread management. When a search
request arrives, we submit its task to the Blocking Queue and
wait for an idle working thread to process its query. Currently,
our implementation only has one working thread as we focus
on single core power management. With multiple CPU cores,
we can maintain a separate queue for each core and have
a global broker to distribute the incoming requests to each
core, as suggested in [25]. Each core will manage its power
consumption independently by using Gemini’s DVFS scheme.
This is work we plan for the near future. Finally, we conduct
the ISN power management upon the arrival and departure of
every task.

We use the TensorFlow [37] to achieve Gemini’s NN
prediction model. The inference time for prediction is only 73
- 83ms, compared with tens of milliseconds for the query’s
service time. As Gemini is implemented as a part of the
ISN, we need user-space DVFS control. Gemini leverages the
Advanced Configuration and Power Interface to update the
CPU core’s frequency at runtime. Our frequency enforcement
is achieved by manipulating each core’s “scaling setspeed”
file. When this device file is changed, Linux triggers a group
of system calls that take only 40µs totally to update the
CPU core’s frequency. The extra latency overheads from the
Gemini implementation are negligible.

Our experimental setup has two machines connected by
a 1G Ethernet link: one as the client and the other as the
search engine server. The server machine has an Intel Xeon
E5-2697 CPU with 24 cores, 128G memory running CentOS
7 operating system. Three representative query traces are used
in our experiments: the Wikipedia [35], the Lucene nightly
benchmark [16] and the TREC Million Query Track (MQT)
[8] traces. On the server side, we deploy a Solr search
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IndexSearcher

Lucene Search 
APIs

Task<Callable>

Task-1Task-2
Blocking Queue

Working 
Thread

Index

Gemini

Submit Take

Fig. 9. Gemini implementation overview.

engine with 12 ISNs. In the search engine, we index the
complete dump of entire English Wikipedia web pages on
December 1st, 2018. This 65GB index has a total of 34
millions documents. The search engine machine supports per
core frequency scaling. The CPU frequency can be selected in
the range of 1.2 GHz to 2.7 GHz. The default CPU frequency
is 2.7 GHz. For power measurement, our CPU has sensors
to monitor per socket’s energy consumption. The accumulated
energy consumption of a CPU socket is stored in a Machine
Specific Register (MSR). By writing an energy measurement
daemon which reads the MSR register every 1 second through
the Running Average Power Limit (RAPL) interface, we can
obtain a CPU socket’s power consumption. As the measured
CPU energy per second is the socket package energy, we
deploy 12 single-working-thread ISNs on the 12-cores CPU
chip. Then, each ISN is bound to one core of the CPU chip.
The 12 ISNs receive the same search queries from our Solr
aggregator but schedule their core’s frequency independently.

VI. EVALUATION

Gemini is first evaluated with a range of server loads, in
terms of RPS, to show the significant CPU power saving
while still achieving the latency constraints. We also perform
trace-driven experiments using three different query traces
to characterize Gemini’s power management under realistic
workloads. Finally, we disable each component of Gemini in
turn, to show the underlying reasons for the increased power
saving of Gemini.

A. Power Saving

In Fig. 10, the baseline doesn’t have any power manage-
ment and always uses the default 2.7GHz CPU frequency.
Rubik [18] is an analytical power management framework
which adjusts the CPU frequency on every request arrival
and departure according to the tail (95th percentile) of the
service time distribution. Then, we compare with Pegasus
[14], which is a feedback based power management scheme.
It measures the request’s latency periodically and selects the
highest CPU frequency if a deadline violation happens. To
match the search load we use over 1000s, we scale Pegasus’
5s epoch length (over a 12-hours period for the load) to 125ms
in our experiment, so as to have the same ratio between epoch
length and load length. Apart from the complete design of
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Fig. 10. The CPU power results for various RPSs. Time budget uses the tail
latency at high load.

Gemini, we also implement another version of our scheme
called Gemini-α, in which we don’t use the second NN model
for error prediction. Instead, we use the moving average of
errors in the past 60 request arrivals to estimate the current
request’s latency prediction error. By doing this, we quantify
the benefit of having the second predictor for the error in our
design on CPU power saving and request tail latency.

To compare across the different power management frame-
works, we use the same query workload (i.e., Wikipedia trace)
on the Solr search engine. The results are shown in Fig. 10.
Each request rate (in RPS) is maintained for 120s to obtain
the corresponding average CPU power consumed at that server
load. Fig. 10 (a) shows the CPU powers for RPS varying
from 20 to 100. In our experiment, the measured CPU power
includes the power consumed by CPU cores, caches and other
components on the chip. The results show that CPU power
increases for all the frameworks, as we increase the request
intensity. For example, the CPU power for the baseline case
increases from 34W to 36.5W when the RPS value goes up
from 20 to 100. Higher server load results in more request
queuing. Thus, the latency slack that power management
frameworks used to slow down requests is reduced. Among
all the power management alternatives, Pegasus consumes the
highest CPU power, because of its epoch based design. Rubik
performs better than Pegasus, but still consumes more CPU
power than our Gemini variants. The results in Fig. 10 (a)
shows that the complete design of Gemini uses the least CPU
power and outperforms the Gemini-α which doesn’t include
a second error predictor. The reason is that the inaccurate
moving average prediction in Gemini-α makes our two-step
DVFS enter the second frequency step too early in its goal of
meeting the latency constraint. So, Gemini-α consumes more
CPU power than Gemini across the entire range of loads.
The second error predictor in Gemini is clearly beneficial in
reducing the CPU power consumption.

Fig. 10 (b) presents the power saving in percentage com-
pared to the baseline. Although the actual power consumption
increases linearly in Fig. 10 (a) for each technique, the percent-
age power saving remains similar for each technique compared
to the baseline. As the relative differences across frameworks
are similar for the range of RPS, we focus on the high server

(a) Latency (0-45ms scale) (b) Latency (37-43ms scale) 
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Fig. 11. Tail latency results for different RPS. Part (b) is the tail latency with
37-43ms scale for part (a).

load of 100 RPS, where power saving is more challenging to
achieve. At this high server load, Pegasus saves 9.23% of CPU
power while Rubik achieves 16.8% power saving compared
to the baseline. The power saving for Gemini-α is 32.7%,
which is 1.95 times better than Rubik. The complete design
of Gemini performs the best, with 37.9% CPU power saving
compared to the baseline. This is 2.25 times better than Rubik,
and is even better when compared to Pegasus.

B. Tail Latency

For the same experiment as above, the 95th percentile tail
latency for different RPS is shown in Fig. 11. In Fig. 11 (a),
we observe that the tail latency for the baseline, with a fixed
2.7 GHz frequency, increases with load, due to the request
queuing. For example, the request’s tail latency is 12.3ms at
100 RPS, compared with the 7.05ms at 20 RPS. To utilize
the latency slack, and save CPU power, power management
frameworks such as Rubik and our Gemini will slow down
the request’s processing time to be close to the 40 ms latency
bound. Fig. 11 (a) shows that all the compared frameworks
can roughly achieve this performance constraint. In Fig. 11
(b), we look into the tail latency at a finer granularity (i.e., the
37-43ms range), with the red bar in the figure being the time
budget given. At 100 RPS, the tail latency of Rubik is 39.36ms
and the others are similar, across the range of RPS (all within
about a 1ms range). Because Pegasus has a feedback based
controller to select the CPU frequency, it has a higher tail
latency variations across the range of loads. Pegasus violates
the 95th tail latency constraint by achieving 41.67ms at 100
RPS. Due to the inaccurate error estimation in Gemini-α,
which uses a simple moving average from recently processed
queries, Gemini-α sometime has a higher 95th tail latency than
the target time budget of 40 ms. Finally, the complete design
of Gemini along with the error predictor consistently meets
the 40ms tail latency constraint all the time. Compared with
Rubik and Pegasus, Gemini meets the deadline requirement
but still achieves higher CPU power savings, as shown in
Fig. 10 and 11. This is because we accurately “reshape” the
request’s latency distribution, so that more of the requests have
their latencies closer to the time budget.
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Fig. 12. Power consumption results for the Wikipedia, Lucene and TREC traces.
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Fig. 13. Gemini achieves the smallest tail latency and lowest deadline
violation rate.

C. Trace-Driven Characterization

For the next experiment, we evaluate Gemini with a few
trace-driven workloads, for sensitivity analysis. On the 1000s
traces, Gemini is compared with Rubik and Pegasus. Fig. 12
(a) and (b) present the CPU power for the Wikipedia and
Lucene nightly benchmark traces, respectively. Similar to prior
works [4], [8], [46], we also show the comparison results
for the TREC query traces (widely used in the information
retrieval area), in Fig. 12 (c). For these three query traces,
we still use 40ms as the target tail latency. With all the
traces, power consumptions of the baseline are in the range of
29.1W to 38.2W as the server load varies over time. Pegasus
still consumes the most CPU power among the alternative
frameworks, primarily because of its epoch based design.
Rubik outperforms Pegasus at most of the time. On the other
hand, Gemini leverages a two-step DVFS equipped with a
NN latency predictor for the initial frequency selection and
a second predictor for the boosting time determination to
improve the CPU power saving. The results in Fig. 12 (a),
(b) and (c) show that Gemini consumes the least amount of
CPU power, across all the three traces. We show the average
power savings in Fig. 12 (d). Rubik achieves around 23.7%-
27.8% CPU power savings with the three traces. The average
power savings for Pegasus on the three traces are in the range
of 20.07% to 24.72%. The best power management among
these schemes, Gemini, achieves up to 42.15% power saving
on the Lucene trace which is 1.53 times better than Rubik and
outperforms Pegasus by 70.5%.

In addition to the power saving, the request latency dis-

tribution for each scheme on the Wikipedia trace is shown
in Fig. 13 (a). Rubik, Pegasus and Gemini save CPU power
because they can shift the “knee” of latency distribution to
the right, towards the deadline. Although the tails of their
latencies are similar in Fig. 13 (a), Gemini is able to slow
down more requests, such that they are closer to the deadline.
This allows Gemini to have better energy savings. The detailed
tail latency and deadline violation rate for this trace-driven
experiment are presented in Fig. 13 (b). On the top sub-figure,
the baseline has the smallest 95th tail latency with 13.8ms
(much smaller compared to our 40ms time budget). Rubik
utilizes this latency slack to shift the tail to 37.9ms, completing
just before the deadline, to save energy. The 95th tail latency
on Gemini is 39.3ms. However, Pegasus has a 95th tail latency
of 44.2ms, thereby resulting in more than 5.8% of the requests
having deadline violations as seen in the bottom sub-figure.
Rubik always uses the 95th percentile on the service time
distribution for frequency selection. Thus, Rubik’s deadline
violation rate is lower, at 4.7%. But, by having a precise
per query service time prediction and using a second error
predictor to reduce the deadline violation, Gemini achieves a
2.4% deadline violation rate which is less than half of that
for Pegasus. Thus, Gemini achieves a much better balance
between the CPU power saving and deadline violation rate
than the alternatives we compare.

D. Breakdown of Power Saving

In Gemini, our two-step DVFS initially selects a low CPU
frequency to save power, but incorporates mechanisms to
make sure that the initial selected frequency is not too low
to miss the deadline. Then, our two-step DVFS boosts the
initial frequency at just the right time, such that the deadline
is met. In fact, PACE [19] theoretically proves that a step-wise
DVFS scheme produces the optimal CPU power saving when
a task’s total work is unknown. Both synthetic and trace-driven
experiments show a significant power saving for Gemini.
To further enhance the power management, we develop two
separate latency and error predictors with high accuracy. The
latency predictor enables a suitable initial frequency selection
in our two-step DVFS and the error predictor enables our
scheme to boost the initial frequency at the correct time.

In this experiment, we examine the reasons behind the
significant power saving of Gemini on three different query
traces. We develop two variants of Gemini. In particular, we
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Fig. 14. Comparing Gemini, Gemini-α, and Gemini-95th.

seek to determine the impact of our NN predictors. First,
Gemini-α described in the previous experiments is reused.
Gemini-α doesn’t use the second error predictor of Gemini at
all. Building on Gemini-α, Gemini-95th also removes its
latency predictor. Instead, similar to Rubik, we use the 95th
percentile of service time distribution to estimate a query’s
latency in Gemini-95th. In Fig. 14 (a), (b) and (c), we report
the CPU power variation with time for the Wikipedia, Lucene
and TREC traces. For all the traces, the power consumption of
Gemini-α is slightly higher than Gemini. This is because the
moving average in Gemini-α is unable to provide a measure
of each request’s precise residual work. Thus, the two-step
DVFS has to boost the CPU frequency earlier to achieve a
lower deadline violation rate. When we further disable the
latency predictor and use the 95th percentile of the service time
distribution for frequency selection, Gemini-95th consumes
even more CPU power than both Gemini-α and Gemini. The
average power saving results are shown in Fig. 14 (d). When
comparing Gemini with Gemini-α, we find that the use of a
second error predictor brings us around 6.53% more power
saving on the Lucene trace. On the other hand, the power
saving improvement contributed by our service time predictor
in Gemini is 10.8% on the Lucene trace. On the TREC trace,
the average power saving of Gemini is 36.09%. Breaking this
down, when only the two-step DVFS (without the predictors)
is used, as in Gemini-95th, the power saving is 58% of Gemini.
By having the latency predictor but not the error predictor in
Gemini-α, we achieve 86% of the complete design’s power
saving. Thus, we conclude that it is important to have both
the two-step DVFS and the two predictors in Gemini for
significant power savings.

VII. RELATED WORK

To improve the energy efficiency of data centers, most of the
existing work on server power management is based on DVFS
or Sleep states techniques. PowerNap [9] dynamically switches
the server state between a minimal power consumption “nap”
state and a high performance active state, to accommodate
workload variations. Based on PowerNap, DreamWeaver [11]
coalesces requests across multiple cores so that some cores can
enter deeper sleep states. Instead of using request coalescing,
DynSleep [47] procrastinates the processing of requests at a
single core while still avoiding deadline violations. By doing

this, the CPU core can enter the deepest sleep state to save
more energy. KnightShift [12] designs a heterogeneous server
architecture by having a low power consumption “Knight”
node. When the server utilization is low, KnightShift puts
the entire server into sleep, except for the Knight node. The
low utilization workloads are served by the Knight node
when other server components go to sleep. On the other
hand, Pegasus [14] proposes a feedback based DVFS scheme
to save server power. Similarly, TimeTrader [15] considers
both the network slack and server slack to save power for
latency-critical applications. Rubik [18] is a fine grain DVFS
scheme which leverages a service time distribution to select
frequency for critical requests. Both Rubik and Gemini use an
analytical model to capture the request arrival variation, but
our framework also adopts two NN models to fully utilize the
per query service time variation.

VIII. CONCLUSION

It is difficult to predict a search request’s compute de-
mand perfectly. This becomes a big challenge for managing
power consumption of search engines that have to process
latency-critical queries. To save power and meet strict latency
constraints, we presented Gemini that employs a two-step
DVFS policy for CPU frequency control. Our two-step DVFS
utilizes a request’s service time to initially slow down the
query processing. To achieve good power savings, a precise
NN based latency predictor is designed in Gemini. In the
second step of our DVFS scheme, we have to properly boost
the CPU frequency to meet a request’s deadline. A separate
error predictor is developed in Gemini to determine the correct
time for frequency boosting. We have shown that the overhead
due to NN based predictors is negligible. After implementing
Gemini in the well known Solr search engine, experimental
results on three representative query traces show that our
framework can achieve up to 41% CPU power saving and
outperform other state-of-the-art schemes, while reducing the
deadline violation rates.
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