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Economic Assessment for Battery Swapping
Station Based Frequency Regulation Service

Xinan Wang

Abstract—Battery swapping stations (BSSs) have great potential
in providing fast frequency regulation service (FFRS) owing to their
large battery storage capacity. However, compared to a regular
BSS, a BSS providing FFRS faces the following financial risks:
first, higher infrastructure investment to support the vehicle-to-
grid services; second, higher battery aging costs due to FFRS; third,
FFRS causes uncertainties to batteries’ charging costs. Under such
a context, in this article, we propose an economic risk assessment
model for the BSS-based FFRS by comparing its economics with a
regular BSS. In this model, the value at risk (VaR) of daily revenue
and the long-term return on investment (ROI) of a regular BSS
and a BSS providing FFRS are compared. The assessment results
are obtained in three steps: first, we develop the operation and
economic models for the BSS-based FFRS. Next, the mathematical
models of the VAR and ROI analyses are formulated. Finally, the
VaR of daily revenue is compared through a statistical analysis of a
large number of scenarios. The ROI comparison is conducted by a
policy gradient based reinforcement learning algorithm, which can
handle the nonconvexity and stochastic dynamics brought by the
electric vehicle visits. The practicality of the proposed framework is
demonstrated by using the real ancillary market data from utilities
and the traffic count data from onsite traffic sensors.

Index Terms—Battery swapping station (BSS), fast frequency
regulation service (FFRS), policy gradient (PG), reinforcement
learning.

NOMENCLATURE
Indices
n Index referring to electric vehicle (EV).
t Index referring to time horizon by hour.
j Index referring to regulation area control error signal.
Parameters
Nies Battery stock capacity of a battery swapping station
(BSS).
Sip Initial state of charge (SOC) in the battery to be
precharged.
Sic Initial SOC in the coming EV.
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S¢/8 ¢  Battery SOC upper/lower bounds for participating in
FFRS.

P;/P; Battery regulation capacity upper/lower limits (kW).

P, 7 Per battery regulation capacity (kW).

Fen Charging price paid by EV owners ($/kWh).

F Real-time locational marginal price

o Market performance/capacity clearance price
Ratio of BSS visit count to traffic flow.

M Battery charge/discharge efficiency.

Q Battery capacity of an EV

o) Performance score.

A Mileage ratio.

€ Battery value depreciation rate by year.

¥ Interest rate.

3 Price inflation rate.

ot/- Fractional regulation up/down signal.

g Per unit hourly cumulative battery SOC gain due to
FFRS.

vF Uncertainty band for EV visiting ratio.

T Battery age.

Tite Battery life in years.

NCY Number of charge/discharge cycle per year.

Variables

Npc Number of precharged batteries.

Nps Number of batteries participating in FFRS.

Nic Number of batteries with SOC>5 jdue to FFRS.

Noa Number of batteries with SOC<S Jeduv: to FFRS.

Nrea Number of redundant fully charged batteries.

N Number of BSS visit count.

N’ Number of batteries precharged for EVs.

C Cost of a BSS on purchasing energy from the grid.

Cg Battery aging cost.

I Revenue of a BSS on charging service.

B Energy needed to compensate overdischarged
batteries to 50% SOC.

2 Energy needed to precharge batteries.

Py Energy needed to fully charge the batteries with
SOC>S;.

P, Energy needed to charge the replaced batteries to 50%
SOC.

R Deployed FFRS capacity from a BSS.

R Scheduled FFRS capacity from a BSS.

Sy SOC in the battery participating in FFRS.

Sio/ig Battery’s SOC that is lower/higher than the bounds
[St/S ] due to participating in FFRS.
Si SOC in the battery for precharging.
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B Revenue of a BSS participating in FFRS.

B Revenue of a BSS from charging service.

By Revenue of a BSS from FFRS.

Economic risk index for a BSS participating in FFRS.

a EV visiting ratio coefficient.

T Decision trajectory of a.

Py Probability of the AI agent to choose action
trajectoryT.

6 Neural network parameters.

1. INTRODUCTION

ITH the rapid growth of renewable energy penetration in
the U.S. [1], its inherent uncertainty and intermittency
bring challenges to the stability of grid frequency [2], [3].
Therefore, the demand for the fast frequency regulation units
surges. Compared with conventional regulation resources such
as pumped hydro storage plants, and combustion turbines [4],
fast ramping units, such as battery storage systems and flywheel
energy storage systems, are significantly advanced in energy
efficiency and accuracy to respond to an area control error
(ACE) signal. With those advantages, a relatively small-scale
deployment of fast ramping units can replace a large amount
of existing generation-based regulation resources. According
to a report of Pacific Northwest National Laboratory (PNNL),
California Independent System Operator (CAISO) could reduce
40% of its regulation requirement if a proper mix of generation
and storage-based regulation assets are deployed [5]. However,
replacing a large scale of conventional regulation resources with
those fast ramping unit is financially unaffordable [6] by utilities.
Inspired by the success of letting electric vehicle (EV) fleets
participate in energy arbitrage [6], [8], we alternatively inves-
tigate the profitability of providing fast frequency regulation
services (FFRSs) through the EV batteries. A typical EV battery
has a capacity between 12 and 90 kWh [9]. Those distributed bat-
teries can be managed through a proper battery charging strategy
to offer FFRS to the grid. Currently, most of the EV-based FFRS
strategies are developed for plug-in EV (PEV) [10]-[15]; very
few studies focus on battery swappable EV (BSEV) based FFRS
[16], [17] as battery swapping technology has only matured in
recent years [18], [19]. In general, BSEV has the following
advantages over PEV in providing FFRS: 1) a single battery
swapping station (BSS) can reserve a large regulation capacity
through the stored batteries to bid into the market, which requires
at minimum 1 MW [20] to bid in, whereas PEVs are sparsely
connected in the grid, they have to be centrally managed through
PEV aggregators to concentrate sufficient capacity, and 2) a
BSS can respond to the ACE signals in real time, while the
hierarchical communication network between PEV aggregators
and PEVs suffers from communication delay [13]-[15].
Although BSSs have been recognized as ideal FFRS resources
[16], [17], they might also need additional hardware and soft-
ware to support the ancillary services to the grid. A BSS that
provides FFRS requires hybrid ac—dc/dc—ac inverters to support
the bidirectional energy flow, while a regular BSS only requires
cheaper ac—dc inverters. In addition, BSS-based FFRS relies
on more complex software and robotic systems to properly
allocate the batteries between FFRS and charging services. We
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summarize the financial risks for a BSS participating in FFRS
into the following three aspects:

1) higher infrastructure investment to support the vehicle-to-
grid services,

2) higher battery aging costs due to FFRS, and

3) FFRS causes uncertainties to batteries’ charging costs.

Currently, there is no study to evaluate the economic risks
of such a BSS-based FFRS business model, partially because
there is no complete model for such a business. Besides, the
long-term economic risks assessment for the BSS-based FFRS is
a complicated Markov decision process (MDP), which involves
the nonconvex dynamics caused by uncertain EV visits and is
challenging to solve.

In this article, we model the BSSs as both energy consumers
and ancillary service providers in the hourly ahead market, and
its posterior economic assessment is conducted and compared
with a regular BSS. The comparison metrics include value at
risk (VaR) of daily revenue and long-term return on investment
(ROI). The comparison of VaR of daily revenue is conducted
through a statistical analysis on a large number of scenarios.
The comparison of long-term ROl is formulated into a stochastic
optimization problem that is solved using a policy gradient (PG)
based reinforcement learning algorithm where the artificial intel-
ligence (AI) agents learn to collect an increasingly higher reward
by iteratively updating their action policies under different states
given by the environment. In our framework, the environment
is the BSS-based FFRS model; an action is the number of EV
hourly visits to the BSS; a state refers to the operation status
of the BSS; a reward shows the revenue ratio between a regular
BSS and a BSS providing FFRS. The proposed method offers
the following contributions.

1) Complete modeling for the BSS-based FFRS: the model
simulates the continuous operation of a BSS providing
FFRS. It includes the battery management strategy for
FFRS and swapping service, battery aging model and EV
visiting model.

2) Reinforcement learning-based economic analysis for BSS-
based FFRS: the nonconvexity and stochastic dynamics
in the problem are handled by an AI agent. To the best of
authors’ knowledge, this is the first article that proposes
the methodology for long-term economic analysis of the
BSS-based FFRS.

3) Case studies using real-world data: The practicality of
the assessment results is demonstrated by using the real
ancillary market data from utilities and the traffic count
data from onsite traffic sensors.

The remainder of this article is organized as follows. Section II
presents the model details of a BSS participating in FFRS.
Section III introduces the PG-based Al agent formulation and
its training process. Section I'V presents the financial risk assess-
ment of the proposed BSS-based FFRS model using real-world
data. Section V provides some concluding remarks.

II. BATTERY CHARGING AND MANAGEMENT STRATEGY

A. Battery Management Strategy for FFRS

To guarantee supply and demand balance between charged
batteries and visiting EVs, a BSS requires every EV to submit a
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battery swapping request online prior to its visit. Then, BSS can
precharge batteries to full SOCs for visiting EVs on an hourly
basis. The battery chargers considered in this study are the Level
3 dc chargers [21], which can fully charge a depleted battery
within 30 min. Other batteries in BSS that are not scheduled
for precharging provide FFRS to the grid. Since the locational
marginal price of electricity and the FFRS market price are
cleared on an hourly basis, we set the time step to be one hour
as well in this study, which means the battery swapping request
needs to be at least one hour earlier before the vehicle arrives.

The SOCs for the batteries participating in FFRS change
following the ACE signals:

. Rl BE
Q=) |7+ m)-At (M
j=1

. P, -
By =iy = T (SR @

U
+/— 15/~ : . :
where d;; (|d;; | < 1)isthejth fractional frequency regula-
tion signal (ACE signal) at the hour . “+” denotes regulation-up,
which requires the batteries to discharge, whereas “—> denotes
regulation-down, which requires the batteries to be charged. The
ACE signals used in this study are the RegD signals from PIM
[22]. mpis the battery charge/discharge efficiency. Atrepresents
the time interval between ACE signals. At each hour, a battery
has a fractional energy gain as g; - P.is the regulation capacity
from each battery. The product of g;and P,is the energy gain for
a battery at time f due to FFRS. In (2), U refers to the battery
capacity and ';“'Tp‘"represents the SOC updates for batteries.
S¥ ;indicates the SOC of the nth battery participating in FFRS

at time . If a battery’s SOC is out of the bound [S/S ], that
battery must quit FFRS in the next hour to ensure the BSS
has a firm regulation capability on an hourly basis. The total
regulation capacity available from the BSS at time ¢ isR;as
shown as follows:

Ri =Nyt P 3)
Noee—Nopeor—Nipi - Ny —Noae =N
+ Nod.t—2(0 < Npg ¢ < Niss) 4)
e S H [ Ned = N =Nioiia]
- (N¢x1 — Nicg—1 — Nrea,t) (5)
Nrieat = H[Nict 3 + Npeq,t—1 — N¢
- (Nic,t—2 + Nrea,i—1 — Ny). (6)

Npi,+ is the number of batteries participating in FFRS at the
hour 7. At each time interval of ACE signals, the energy required
for FFRS will be evenly distributed to the Nyt ; available bat-

p 5tH-
teries, and each battery will provide %“—kw capacity. In (4),
N{, denotes the number of cells that need to be precharged for
the coming EVs at the next hour. N{, equates to the number
of coming EVs N;,; minus Ng.; jand N,eq ;as shown in (5),
where H (x)is a Heaviside step function, H (x) = lwhenz > 0,
otherwise H(xz) = 0 . Ng.;—; refers to the number of batteries
with SOC > S; due to FFRS at the previous hour. Those
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Initialized the batteries in the BSS: Ny,

v

(1). Update SOC for batteries

e i | following ACE signals at time ¢
(2). Update EV visit at time ¢

Charge to 50%
SOC at t+1, and
put back at t+2

EV batteries been
swapped at =1:V,

L]

Charge to 50% SOC at
t-1, and put back at ¢

EV visit at time : N; |agg

v

Calculate N, ; using
equation (6)

Y

Caleulate N/, ; using
equation (5)

Fig. 1. Battery management logics for the BSS-based FFRS.

batteries quit FFRS and are fully charged at time f to serve
the visiting EVs at time f + 1. Nieq:is the number of the
redundant fully charged batteries at the hour f. Nyeq ;€xists when:
Ntct—2 + Nred,t—1 > N;, which is shown in (6). In (4), N;_;
represents the batteries replaced from the visiting EVs at time
t—1, they are charged to 50% SOC and then put into FFRS
at time f because a 50% SOC provides a battery with equal
ramping-up/down potential. Noq ;1 is the number of batteries
with SOC lower than .S rdue to FFRS attime t—1. Those batteries
are charged to 50% SOC at hour f and put back to FFRS at time
t + 1. The battery management logics shown from (3)—(6) are
plotted in Fig. 1.

The income of BSS from FFRS is calculated using the PIM
model as shown in the following equation, which is introduced
in [23]

Bui=Ri - (AeFpi+ Feyp). (7

In (7), ¢ is presented as the performance score, which mea-
sures the accuracy of a BSS in following the ACE signals;
Asrefers to the mileage ratio at time f, which is the ratio of
movement between the fast regulation signal and the regular
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regulation signal in a given time period [24]; F}, is marked as
the FFRS performance market clearing price; F,. denotes the
FFRS capacity market clearing price; and By ; indicates the
revenue that BSS receives from participating in FFRS.

B. Battery Management for Swapping Services

The other income source for the BSS is from battery swap-
ping services. Equation (8) shows the process of selecting the
precharging batteries, sorf(A, n, ‘descent’) is a function that
sorts the elements in the set A in descent and chooses the top
n elements.Sp ,is the initial SOC of the nth battery selected
for precharging at time f. The batteries that are selected for
precharging are those with the top N;,; highest SOCs in the
BSS, so that the charging cost is minimized. In (9), P ; refers
to the amount of energy needed to precharge batteries. In (10),
Py ¢ represents the energy required to fully charge the batteries
withSOC > 5 ¢ due to FFRS as Si; (1 > Siz ; > S) indicating
the initial SOC of those batteries. BSS also charges the batteries
with SOCs < S due to FFRS and the batteries from the visiting
EVs to 50% SOC, the energy needed is shown in (11). Sic;
indicates the initial SOC of the battery from a visiting EV
(0 < Sic,t <.Sf)and S ¢ refersto theinitial SOC of a battery
with SOC < S due to FFRS during the last hour

Sip,t =sort(Sy s 1,N¢,,, descent’) ®)
N;+|
Ppsg = ;+] 2 Si”;,?t & U VSip?t [ Sip?t (9)
n=1
Nfc,l'.—l
Pre= (10)

Necg1— Z Sigt—1 | -U
n=1

Nod,:—l

N,
1
Bop— s Noaz 1+ Ny — Z_:] Spi1— Z_:] s

(1)

In (12), C; shows the total charging cost for a BSS at time
t and F;; refers to the locational marginal price of electricity
at time £. In (13), I; indicates the income of the BSS received
from providing battery swapping services to EVs at time f. Fi, is
represented as the charging price in $/kWh paid by customers.
In (14), By, ; is the revenue the BSS receives from charging
services at time #, which equates to the differences between I;
and Ct

Ci=Fig- (Ppt+ Pre+ Pey) (12)
N,

L= Fa-U-(1-8g,) (13)
n=1

Bene=1I; — C. (14)

C. Battery Aging Model

Battery aging cost is included in our analysis because FFRS
induces higher cycle aging costs to batteries as they fol-
low the ACE signals. For instance, it is considered as one
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charge/discharge cycle if a battery’s SOC falls below S while
providing FFRS. We adopt a widely used depth of discharge
(DOD) based battery cycle life model [28] into our analysis, as
shown as follows:

nLife(DOD)
NCY

where Ti;se denotes the battery life in years, which is obtained
through dividing the battery cycle life nLife(DOD)by the num-
ber of operation cycles per year (NCY). The battery cycle life
nLifeis afunction of DOD as introduced in [28]. Then, we model
the per-cycle aging cost of a battery by evenly distributing its
annual value depreciation to each of its charge/discharge cycles
in that year

Thite = (15)

Nod,: + N

Cg; = Z

n=1

W By« {1 i) 2
NCY

] (0 S Tn S !-F]ife)-

(16)

Equation (16) shows the total battery aging cost of a BSS
participating in FFRS at time #, which includes the batteries
from the visiting EVs and the batteries that quit the FFRS
due to low SOCs. Fgrefers to the price of battery in $/kWh;
cindicates the value depreciation rate of a battery in a year.
U - Fg-(1— &)™ denotes the current value of the nth battery
at its age T5,. The value depreciation of this battery for the
current year is represented as U - F - (1 — €)™ - . Thus, the
per-cycle aging cost of this battery is derived by dividing its
value depreciation for the current age by its operation cycle per
year NCY. In our model, we consider the age distribution of
the batteries in a BSS is random between 0 to Tj;g. The battery
aging cost for a regular BSS is formulated in (17), which only
considers the batteries aging due to powering EVs. In a regular
BSS, batteries have a longer life, a smaller NCY, and a lower
value depreciation rate compared with the batteries in a BSS that
participate in FFRS due to the lower use intensity. We use T};,,
NCY*,and €* to indicate the length of battery life, number of
cycles per year and value depreciation rate for those batteries in
aregular BSS, respectively

Ny

5 N I o 3
Cha=) —— IEICY*) (0 < Ty < o). (17)

n=1

D. Model the EV Visit Uncertainty

Many research works model the EV uncertainty over time
using specific distributions, such as normal distribution, and
Poisson distribution [25]-[27]. These models are accurate when
being applied to a large number of EVs but not for relatively
small EV traffics experienced by a BSS. Since the service model
of a BSS is similar to a gas station, we assume the BSS visit
pattern is the same as the gas station visit pattern. GasBuddy
[29] conducts a statistic analysis on more than 32.6 million
customer trips to gas stations in 2018 and generates a 24-hour
visit percentage chart (ratio between each hour’s visits and the
daily visits) of gas stations, which is plotted in red in Fig. 2(a).
The blue curve in Fig. 2(a) shows the 24-hour average traffic flow
(TF) of 120 days in percentage from the road I-280 in San Jose,
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Fig.2. (a) TF count versus gas station visit. (b) BSS visit uncertainty band.

California [30] in 2017. These two curves are highly similar to
one another. We also discover this similarity in other traffic data
that we collected. Therefore, we assume the BSS visit count is
linearly related to TF data

=BNys. (18)

In (18), B denotes the EV visiting ratio and N ; refers to the
TF at time £. The value of /3 can be adjusted according to the
EV penetrations. However, if we consider the EV visits of each
day as a unique pattern, then an uncertainty band is needed to
simulate all the EV visits that belong to this pattern. Therefore,
we apply an uncertainty band v¥ on N, which can be found
in (19). The value of v¥'should be set to preserve the pattern
feature. In this optimization problem, Nis an integer variable
to be decided at each hour by the agent within the uncertainty
band formed by(1 — v*) 3N ; and(1 + v*) BN 1, as shown in
Fig. 2(b)

(1-v")BNge < Ne < (1+07)BNge.  (19)

E. Metrics for the Economic Assessment

The following equation shows the revenue received by a BSS
participating in FFRS from {; to £,

t'z
B=)" (B +Bie — Cry).

t=tg

(20)

The following equation shows the revenue model of a regular
BSS is presented, which only includes the incomes from battery
swapping services:

te

B =3 Z(Fch Fi) - (U = Sict) — Che|-

t=ip Ln=1

21

In this article, we introduce two metrics to compare the
economics between a BSS providing FFRS and a regular BSS,
they are the VaR of daily revenue and the long-term ROI ratio.
VaR of daily revenue directly reflects the short-term cash flows
of both business models whereas ROI reflects the long-term
profitability of an investment. For an investor who owns the
BSS-based FFRS business for P subperiods, the total profit gain
is the net present value (NPV) [31] of its subperiod cumulative
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revenues, which is shown as follows:
1
NPV = Z B, (1+ 1)

(1+7)*
where f represents the price inflation rate, vyindicates the inter-
est rate, and p refers to the number of subperiods. The long-
term ROIs of a BSS providing FFRS and a regular BSS are
ROI =Y and ROI*=EEYZ | respectively, where IV indicates
the investment for a BSS prov1d1ng FFRS and I'V* refers to the
investment for a regular BSS. The investors for BSSs expect a
higher long-term ROI by letting the BSSs participate in FFRS.

From (23), we can prove that if max(%] = E is satisfied at

each subperiod, then le,v > NPV (orROI > ROI*) First, let

NPV NPV* - Npv IV‘ NPV*
us transform <~ > =+~ intogpys < - Then, S5-can be

expanded usmg (22) as

(22)

P By-(1+0)°
o1 —F—

NPV* )
= - (23)
P By(l+])
NPV p=1 —(T+7)?

Define rp = max(gﬁ), (1 < p < P), where r,, indicates the
highest revenue ratio for a BSS providing FFRS compared with
a regular BSS at subperlod p.-Ifr, < gt Tv is satisfied at each
subperiod, we fit 2= Tv into (23) to have the followmg equation:

EP B;-(14+1)* EP IV*-Bp-(1+f)® X
p=1 " (17" =1 TV l 24
EP By (1+f)* ZP By (1+)*  — IV
G DV .S
Combine (23) and (24) we can conclude NEV. > NEV of

ROI > ROI*when r, < 5=, ¥p. Therefore, we use Tp to quan-
titatively represent the 1nvestment risk. A higher r, presents a
higher financial risk for a BSS participating in FFRS.

To evaluate the financial risk of the BSS-based FFRS, we

design an optimization problem as: 1, = max(g;%). The inputs

to this optimization problem are J;rt/  Fy/pe,ts A, and ¢, which
are the ancillary service market data released by utilitiy [22]. The
uncertain variable in this problem is the EV visit count N;. The
stochastic parameter is the intial SOC of the battery in each
coming EV.

The VaRs of daily revenue between the two business models
are compared through a statistical analysis on different sce-
narios. In each scenario, the daily EV visit pattern is uniform
random sampled within the boundaries defined by (19). Given
that the actual EV visit pattern is decided by the customer behav-
iors, and it can be any curve within the uncertainty band. When
comparing the ROIs of the two business models, an Al agent is
trained to find an EV visit pattern [Ny, Ny, N, ..., N¢_| within
the uncertainty band that yields themax( g:% ). The value of N;at
time f impacts the operation state trajectory of BSS and the Al
agent’s decision trajectory thereafter. Such a decision-making
chain turns the problem into a MDP. In this MDP, the state
transition probability is defined as P(s;y1|s¢, at), where s¢y
and s; refer to the operation states of BSS at time f + 1 and £; a;
is the decision made at time £. All the state transition possibilities
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Fig. 3. State and action trajectory in a PG problem.

sumup as 1: Y1V P(s;y1|ss, a;) = 1, where sy is the number
of possible state transitions.

Because the EV visit uncertainty band is defined by percent-
age using v¥', we design a BSS visiting ratio coefficient 1+a;
to model the N; uncertainty at each hour, which can be found
in (25). a;has a uniform variation boundary at each time step
represented as v, In this way, selecting value for a; becomes
the action the agent needs to decide and take at each time step

N; = [(1+a;)BNy ], (—v" < a; <o"). (25)

ITII. PG-BASED Al AGENT
A. Introduction to PG

PG is one of the most popular reinforcement learning tech-
niques, which applies gradient descent or ascent to its decision-
making policy to optimize the expected long-trajectory cu-
mulative reward in a dynamic process. PG outperforms many
other traditional reinforcement learning approaches because
PG does not suffer from problems such as the intractability
problem resulting from uncertain state information and the
complexity arising from contiguous states and actions [32].
Therefore, it is suitable to solve the problem in (23), which
also contains long-chain nonconvex dynamics. In each training
batch, the agent plays multiple episodes and makes decisions
on a; at each state s; based on its current policy 7 (s, a,f) =
Py{a; = a|s; = s,0}. We denote Tas a full state-action tra-
jectory T = {s1,@a1, 82, aa, ..., 8¢, at_}- Equation (26) shows
Py(7) is the possibility for the AI agent to travel through
this trajectory, which is the chain-product of the state tran-
sition possibilityP(sn+1|sn,an) and the decision possibility
Py(an|sn). The environment decides the state transition pos-
sibility P and the Al agent determines the decision possibility
Py, this process is shown in Fig. 3. The PG-based reinforcement
learning process trains an Al agent to optimize its decision-
making policy parameters #so that the possibility of choosing
the trajectory that yields the highest rewards r is maximized

Py(7) = P(s1)Ps(ai|s1)P(sz2]|s1,a1)Pe(az|s2)--- . (26)

Before starting the next batch of training, the Al agent updates
its policy parameter ¢ based on the current batch’s results. The
PG-based reinforcement learning assumes the policy  is dif-
ferentiable with respect to its parameterf, which means Balso)
exists. Furthermore, PG broadcasts the reward that the agent
receives from the current batch in the backpropagation-based
policy parameter updating process as in the way shown in (27)

5885

and (28). The agent iteratively updates its policy parameters
until the expected reward Tpconverges. A positive reward will
encourage the current policy whereas a negative reward will
punish it

o= _1p(")Po(7) = Er_pyrrp(T)].  27)

T

By taking partial derivative of 7, toward #, the policy
parameter updating coefficient A#lis formulated as follows [33]:

Nex— VETMPQ(T)[TP(T)]
= Z Tp(T)VPy(7) + Py(1)Vrp(T)
~ Z rp(T)V Pg(T)

_ V Pg(1)
= erp(f)Pe(er

= 1p(1)Py(r)VIn Py(r)
= Er_py(r)[rp(7)V1n Py(r)]

K
" %er(Tk)vmpg(T*)

k=1

K t
1 e
& Z Z p(T%)V In Py (af|sF).

k=1 t=1

(28)

In the second step of (28), we ignore the term Pg(7)Vr,(7);
because the reward rp, () is obtained through the interactions be-
tween actions a(7) and the environment. In reality, the environ-
ment can be highly nonlinear or non-differentiable. Therefore,
it is tricky to get the gradient of (7). Fortunately, in [34], the
authors prove that we still can guarantee policy improvement
and reach a true local optimum even we ignore the gradient
of 7p(7). In the fifth step, we apply a gradient trick [32] to

replace Y240 with VIn Py(r) (Y&} & Vin Py(7)). This
gradient approximation significantly reduces the computational
cost of the algorithm. Because the form of Pg(7)is usually
considered as Gaussian distribution, it can be costly for the com-
puter to calculate the gradient of its probability density function.
However, the gradient of V In Py (7)is much easier to calculate
as the nonlinear formation is converted into a linear structure.
We approximate the expectation VE,_p, () [rp(7)V In Py(7)]
with an empirical average & Z,f;l r(7%)V In Py(7*) for the
stochastic policy (s, a, #)updates in the seventh step of (28).
This approximation is widely adopted in PG methods [35]. The
policy parameter § updates are shown in the following equation:

K
0=0+¢- (% > (r(r*) - A) VinPe(7*)  (29)
k=1

¢ is a deterministic learning rate and A is a baseline reward.
This baseline A is needed because the reward is constantly

positive in our application. If V7,is directly used in (28) to

update 6, the policy (s, a,f)will always be encouraged in
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—| Interpreter
e Reward for each episode:
[1=[B*/B]
Run for multiple episodes under
the current policy 6
' Environment: Caleulation:
B=B+8: | B*=B*+Br*

State 5

Policy update: AB

Fig.4. Al agent training process.

any circumstances. We need to subtract a baseline from the
received reward to ensure only the right policy is encouraged.
This baseline is created by taking the mean reward of multiple
random episodes that run prior to the agent training.

B. Al Agent Training Process

Equations (1)—(23) represent the training environment for
the AI agent. This environment can receive action a, from the
Al agent and respond to the agent with a new operation state
s¢+1. The dynamics of this environment are characterized by
state transition probabilities P2, = P{s;y = &'|st = s,a: =
a}, which is shown in Fig. 3.

The AI agent makes decisions a; based upon the current
state s;. In the environment that we designed, the state vector
is defined as s; = [Npt ¢, Nec,t—1, Nod,e—1, Ni 41, Nip1]because
those variables are closely related to the objective 1, through
(1)~23): B; = ®(Npt,t, Nic,t—1, Noa,t—1, N{1 1, Ney1), Bf =
W(N,). ® denotes the process of calculating the temporal rev-
enue of a BSS participating in FFRS using (1)—(20); Urepresents
the process of calculating the temporal revenue of a regular BSS
using (21). The agent training process is shown in Fig. 4; the
pseudocode for the training process is in Algorithm I. A memory
buffer M is predefined to store the historical state and action in
each training batch; the policy updates using the data sampled
from M after each batch of running.

IV. CASE STUDIES

We use real-world data in the training environment, the en-
vironment specifications can be found in Table I. The ACE
signals used in the case study are the RegD signals from PIM
[22], the FFRS market data can be accessed from PIM [22],
and the traffic count data in California can be obtained from
PeMS [30]. The hourly market and traffic data for 2017 and
2018 is used in the case study. The initial number of batteries
stored in BSS is randomly selected between 80 and 100 (the
maximum battery storage capacity Npss is 200). The initial
SOCs of the batteries in the BSS are set randomly between
0.2 and 0.8; the initial SOCs of visiting EVs are set randomly
between 0.2 and 0.3; the uncertainty level of EV visiting flow
v¥is set to be 30%; according to the current level of technology,
the cycle life of lithium-ion batteries is between 2500 and 6000
cycles [28], [36] at 80% DOD. In this study, we consider the
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Algorithm I: PG-Based Al Agent Training.

Input: FFRS market price F'; ., locational marginal
price F';, per battery regulation limit P, traffic flow
Ny, B and v¥, trajectory length L, batch size W, batch
number V

Output:

Initialize neural network nn and memory buffer M

Random run n episodes and get baseline A.

While batch number< V and r is not converged do

Clear buffer M
Initialize episode reward 7,
For each episode in a batch do
While t<L do
a; ~ Py(aqls;)
St41 P(St+1 |St, at)
Bt —
®(Nps,t, Npet—1,Noae—1, Niy 1, Neg)
B} = U(N,)
M+ MU [C\'.t, Sg]
B=B+ B
BY =B . B?
t=1+1
End While
T (rpU %)
End for
Af « I'(Py,T, A) # I'refers to the function of
gradient calculation
{81, anr } + sample(M) # sample state and action
pairs from buffer M
0 < 6 + ¢ - Af #update the policy

End While
TABLEI
SYSTEM PARAMETER SETTING
Parameter Value Parameter Value
M 0.9 [37] F PIM [22]
Npss 200 A PIM [22]
u 30kWh [9] F, PIM [22]
[} 0.98 [38] A PIM [22]
TF data PeMS [30] @ PIM [22]
B 0.05 a+/- PIM [22]
£ 0.01 P. 15 kW
S/S; 0.2/0.8 Fen $0.12/kWh
V 300 W 50
M 10e6 L Hours of a month
vF 30% Npss 200
Fg 280 [39] € 0.2
Tiire/Tiize 5/10 [28] NCYINCY*  730/365 [28]

battery life can last 35004000 cycles. With a 30 kWh battery,
the EV owners are expected to swap their battery on a daily
basis (NCY* = 365) under a heavy use intensity. Therefore,
the battery life Tj;;, is over 10 years, and we conservatively set
T}ie= 10 years. Since there is no theoretical study to investigate
FFR S’s influences on battery life, we can only estimate the
NCY based on our simulation platform. Our analysis shows that
batteries in BSS that participate in FFRS will experience one
more charge/discharge cycle compare with those batteries that
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Fig. 5. (a) Daily revenue distribution and the associated PDF plot for a BSS
participating in FFRS. (b) CDF of the distribution. (a) and (c) Daily revenue
distribution and the associated PDF plot for a regular BSS. (d) CDF of the
distribution in (c).

do not participate in FFRS or NCY = 730. Therefore, according
to [28] and (15), under the same DOD level, we set battery life
as Tjjge = 5 years.

The maximum training batch for the AI agent is V = 300.
There are 50 episodes (W) in each batch, the decision trajectory
length L is either 672, 720, or 744 depending on the number of
hours within that month.

A. VaR of Daily Revenue Comparison

In this section, we compare the VaR of daily revenue between
a BSS participating in FFRS and a regular BSS using the 730
day’s data we collected. The EV visit pattern for each scenario
is generated by adding uncertainties within the uncertainty band
+v¥ to daily traffic data. The daily revenue distributions of
the two business models during 2017 and 2018 are plotted in
Fig. 5. For a BSS participating in FFRS, its daily revenue is
close to a generalized extreme value distribution with k=0, . =
957.0518, and o = 222.0743 according to a data fitting analysis.
The associated distribution and probability density function are
plotted in Fig. 5(a) and the cumulative probability density is
plotted in Fig. 5(b). For a regular BSS, the daily revenue follows
an extreme value distribution with the p = 557.4886 and o
= 68.0903. The associated distribution and probability density
functions are plotted in Fig. 5(c) and the cumulative probability
density is plotted in Fig. 5(d).

According to both business models’ daily revenue distribu-
tions, we calculate the corresponding VaR of daily revenue
and summarize the results in Table II. For a regular BSS, the
probability of having a daily revenue higher than $600 is merely
17.08%. However, the daily revenue of a BSS participating in
FFRS has a 99.33% probability to exceed $600. A regular BSS
has zero possibility to have a daily revenue higher than $1000,
while that probability is 55.92% for a BSS participating in FFRS.
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TABLEIT
VALUE AT RISK OF DAILY REVENUE COMPARISON

Daily revenue ($) Possibility of B Possibility of B

=200 1.0000 0.9933
=400 1.0000 0.8967
=600 0.9933 0.1708
=800 0.8678 0.0000
=1,000 0.5592 0.0000
=1,200 0.2822 0.0000
>1,400 0.1256 0.0000

a a o 0.62

l'é 0.42 § 0.46 E

@ @ 044 @ 0.61

§ § o4 g 08

w 04 o o

a M 0.38 @ o509
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Fig. 6. (a) PG agent’s batch reward band for April 2017. (b) PG agent’s batch
reward band for May 2017. (c) PG agent’s batch reward band for February 2018.
(d) EV visit uncertainty pattern for April 2017 that yields the rp. (e) EV visit
uncertainty pattern for May 2017 that yields the r,. (f) EV visit uncertainty
pattern for February 2018 that yields the rp.

B. ROI Comparison Between the Two Business Models

To compare the long-term ROIs of the two business models,
the risk index r, needs to be calculated at each subperiod.
Therefore, we use one month as the period base forr,. As
discussed in Section II-B, the EV visit pattern contains signifi-
cant uncertainties. Different EV visit patterns result in various
revenue for both the business models. For each month of 2017
and 2018, we train an Al agent to explore an EV visit pattern
that causes the highest revenue risk . The training process for
April 2017, May 2017, and February 2018 are shown in Fig. 6.

The agent policy updates at each batch of training, the highest
and the lowest reward at each batch are plotted as the upper and
lower boundaries of the reward bands as shown in Fig. 6(a)—(c).
For April 2017, the reward converges at around 0.42 after 100
batches and the highest reward is rp,= 0.4248 as shown in
Fig. 6(a), which means the monthly revenue of the BSS provid-
ing FFRS is at least 22 > —L—= = 2.3540 times of the regular
BSS in April 2017. F?g. 6(d) shows the EV visit uncertainty
pattern in April 2017 that yields the 7. The same training results
for May 2017 and February 2018 are shown in Fig. 6(b) and (e)
and (c) and (f), respectively. The values of 7, at each month of
2017 and 2018 are summarized in Table III.

In December 2018, the BSS providing FFRS earns at least
1040.25% more profits than a regular BSS. This is because
in that month, the average FFRS capacity clearance price is
4.46 times higher than the other months. So we treat the rp, in
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TABLE III
REVENUE RATIO SUMMARY FOR 2017 AND 2018
Month - Revenue Month - Revenue
Of 2017 2 Increase | Of2018 ? Increase
Jan 0.5749 73.94% Jan 0.5361 86.54%
Feb 0.5859 70.69% Feb 0.6179 61.85%
Mar 0.4689 113.27% Mar 0.5474 82.63%
Apr 0.4248 135.40% Apr 0.4187 138.83%
May 0.4721 111.82% May 0.5021 99.17%
Jun 0.4778 109.29% Jun 0.4672 114.06%
Jul 0.5166 93.57% Jul 0.5414 84.70%
Aug 0.4463 124.06% Aug 0.3547 181.91%
Sep 0.5234 91.07% Sep 0.3851 159.66%
Oct 0.4157 140.58% Oct 0.4455 124.47%
Nov 0.4453 124.55% Nov 0.5066 97.40%
Dec 0.3826 161.73% Dec 0.0877 1040.25%
2 Distribution: Normal
4 | mu =0.4807
sigma = 0,0688
g,
g
g2
e
1
0
0.2 0.3 0.4 0.5 0.6 0.7
"o
Fig. 7. Distribution of rp.
TABLE IV
PROBABILITY CHART FOR ROI > ROI*
v v* v wv* v v*
I P(?‘p = W) v P(?'p = W) v P(?'p < F)
1.0 1.0000 1.3 1.0000 1.6 0.9820
1.1 1.0000 14 0.9997 1.7 0.9409
1.2 1.0000 IS 0.9966 1.8 0.8616

December 2018 as an outlier and fit the 7, of other months into
an normal distribution as shown in Fig. 7, with its mean value p
as 0.4807 and standard deviation o as 0.0688. Fig. 7 represents
the distribution of r,.

As discussed earlier, if rp, < % is satisfied at each subperiod,
then it is sufficient to guarantee ROI > ROI*. According to
the distribution of r,, we calculate the confidence for a BSS
participating in FFRS to have a higher monthly ROI than a
regular BSS with respect to different investment ratios, which is
shown in Table IV. The following statement can be made from
the results: if the investment of a BSS participating in FFRS
is no more than 30% higher of a regular BSS, we have 100%
confidence to guarantee ROI > ROI* no matter how long the
investors hold this business. If the investment is 40% higher
and the holding-period is 5 years, we have more than 0.9997%
= 98.37% confidence that ROI > ROI*. The risk of having a
5-year ROI > ROI" will significantly increase if the investment
for a BSS providing FFRS is 50% higher than a regular BSS.

C. Algorithm Performance Comparison

The proposed PG-based optimization framework does not
require the explicit formulation of the problem and can avoid
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Fig. 8. Algorithm performance comparison with Monte Carlo.

the insolvability and intractability of the traditional methods.
It shows a good convergence toward the designed nonlinear
dynamic optimization problem. To evaluate the quality of the
solutions given by the PG-based algorithm, we compare the
solutions with the results generated from the Monte Carlo simu-
lation. For each month, 10 000 EV visit scenarios are uniformly
sampled within the uncertainty band. The highest reward among
the 10 000 scenarios is then compared with 7. The comparison
results are shown in Fig. 8.

From Fig. 8, it is seen that the result of the proposed PG-
based algorithm is always better than the result of the Monte
Carlo simulation. Therefore, the quality of solutions given by
the proposed method in this article is guaranteed and can serve
as a benchmark method for other relative studies.

V. CONCLUSION

In this article, we designed the operation and economic mod-
els for a BSS participating in FFRS and compared its economics
with a regular BSS. The PG-based Al agent was used to deal
with the nonconvex dynamics contained in the analysis. The
results of this study demonstrated two important conclusions:
1) the proposed PG-based algorithm was capable of providing
a high-quality solution to the economic analysis of BSS-based
FFRS, and 2) with a proper system setup, a BSS participating in
FFRS could have much higher ROI and revenue than a regular
BSS. As technology improves, the profitability of the BSS-based
FFRS can be more attractive in the future as the batteries’ cost
will be lower but life will be longer.
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