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Vehicle to Grid Frequency Regulation Capacity
Optimal Scheduling for Battery Swapping

Station Using Deep Q-Network
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Abstract—Battery swapping stations (BSSs) are ideal
candidates for fast frequency regulation services (FFRS)
due to their large battery stock capacity. In addition, BSSs
can precharge batteries for customers and the batteries
that are not in charging can provide a stable regulation
capacity to the market. However, uncertainties, such as
ACE signals and the EV per-hour visit counts, introduce
stochastic nonlinear dynamics into the operation of a BSS-
based FFRS. Currently, there is no quantification method to
ensure its optimal economical operation. To close this gap,
in this article, we propose a novel deep Q-learning-based
FFRS capacity dynamic scheduling strategy. This method
can autonomously schedule the hourly regulation capacity
in real time to maximize the BSS’s revenue for providing
FFRS. Case studies using real-world data verify the efficacy
of the proposed work.

Index Terms—Battery swapping station, deep Q-Network,
fast frequency regulation service, vehicle to grid (V2G) ser-
vice.

NOMENCLATURE

Indices

n Index referring to EV.
t Index referring to time horizon by hour.
j Index referring to regulation ACE signal.

Parameters

N Hourly BSS visit count.
Nbs Battery stock capacity of a BSS.
Sip Initial SOC in the battery to be precharged.
Sic Initial SOC in the coming EV.
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S̄f/Sf Battery SOC upper/lower bound for participating in
FFRS.

FB Lithium-ion battery price in $/kWh
P r/P̄r Per battery regulation capacity lower/upper limits.
Fch Charging price paid by EV owners ($/kWh).
Fl Locational marginal price.
Fp/c FFRS performance/capacity clearing price.
NCY Number of charge/discharge cycle per year
β Ratio of BSS visit count to traffic flow.
ηb Overall system efficiency for battery

charge/discharge.
U Battery capacity of an EV (kWh).
ϕ Performance score.
δ+/− Fractional regulation up/down signal.
μ1 Statistical means q.
σ1 Statistical standard deviations for q.
ε Battery value depreciation rate by year

Variables

Pr Per battery scheduled regulation capacity (kW).
q Fractional hourly cumulative battery SOC gain due to

FFRS.
λ Mileage ratio.
Rt Total scheduled FFRS capacity from a BSS.
Sf SOC in a battery participating in FFRS.
Sio/ig Battery’s SOC that is lower/higher than the bounds

[Sf , S̄f ] due to participating in FFRS.
Npc Number of precharged batteries.
Npf Number of battery participating in FFRS.
Nfc Number of batteries with SOC>S̄f due to FFRS.
Nod Number of batteries with SOC<Sf due to FFRS.
Pc Energy needed to compensate the batteries with

SOC< Sf to 50% SOC.
Pp Energy needed to precharge batteries.
Pf Energy needed to fully charge the batteries with

SOC>S̄f .
Bch Revenue for charging service.
Bfr Revenue from FFRS.
CB Cost of battery degradation.

Abbreviations

EV Electrical vehicle.
TF Traffic flow.
ACE Area control error.
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SOC State of charge.
FFRS Fast frequency regulation service
BSS Battery swapping station.
DQN Deep Q-learning Network.
AI Artificial intelligence.
NN Neural network.

I. INTRODUCTION

ACOMPREHENSIVE study conducted by the Renewable
Energy Institute (REI) [1] shows that renewable energy

penetration in the U.S. reached 18% of the total generation in
2017, and this number is continuously growing. The inherent
uncertainty and intermittent nature of renewables bring hazards
to the stability of grid frequency, and therefore attract extensive
research and attention [2]–[5]. One solution is to expand the
regulation reserves [6]. Conventional regulation resources such
as hydropower plants, combustion turbines, and steam turbines
lack fast ramping flexibility [7], and therefore cannot satisfy
the needs of the smart grid. On the other hand, faster ramping
units, such as battery storage and flywheel energy storage can
handle these challenges [7]. The motivation of this article is
to concentrate EV battery resources to provide affordable and
stable FFRS for the smart grid while guaranteeing the optimal
economic benefit to the service provider.

As the EV penetration rapidly increases, the idea of using EV
batteries to offer regulation services is proved to be technically
feasible [8], [9] and attracts intense attention in academia [10]–
[24]. However, the implementation of V2G-based FFRS faces
several major challenges. The first challenge is scalability. The
frameworks proposed in [10] and [11] enable the EVs parking
at a single parking lot to participate in the FFRS and achieve
the optimal charging. However, the number of EVs parking
at a single facility is limited and they can hardly provide the
minimum FFRS capacity (mostly 1 MW) required by the utilities
[14]. Another challenge is the uncertainties of EV behaviors and
ACE signals. The current ancillary service market requires an
FFRS participant to maintain a stable regulation capacity on
an hourly basis, which requires the EV fleets to dynamically
adjust the regulation capacity of each EV to compensate for the
capacity changes due to EV departures/arrivals and battery SOC
limits. The V2G FFRS framework proposed in [12] considers the
random EV behaviors as a Markov process and uses a Markov
model to predict the FFRS capacity. The effectiveness of this
framework relies on the model prediction accuracy and the
optimization result may not be satisfactory if the model fails to
reflect the fact. A robust V2G FFRS framework in [13] handles
the EV and ACE uncertainties through a real-time greedy-index
dispatch policy. This policy assumes all the EV owners are fully
responsive to the designed incentive which compensates the
FFRS-induced delayed-charging and battery degradation. The
same assumption is made in [15], in which the droop control is
adopted to share regulation capacities among EVs in proportion
to their available battery capacities under the designed price
incentive. However, as many researchers suggest [16], [17], it
may not be realistic to assume the EV owners are willing to obey
the regulation or responsive to a specific price incentive. The
other challenge is the communication delay. FFRS requires the

participants to respond to the ACE signals within a few seconds,
failure to follow the ACE signals will lead to a low performance
payment. EV aggregators-based FFRS control strategies shown
in [18] and [19] require complex communication networks,
which support EV aggregator to EV aggregator, EV to EV,
and EV to aggregator information exchanges. Regardless of the
control complexity, the associated communication delay means
this method can hardly guarantee a timely response to the ACE
signals for FFRS.

To tackle these major challenges, we propose to use battery
swapping stations (BSSs) to provide FFRS in this article. A BSS
can provide stable, sufficient, and zero delay FFRS capacity.
Because a BSS does not need to worry about the EV owners’
expected SOCs, and the number of batteries stocked in the BSS is
sufficient to meet the capacity limit for FFRS [20]–[24]. How-
ever, the BSS-based FFRS still faces the challenges from EV
behavior and ACE signal uncertainties. Moreover, the revenue
model for FFRS might also involve market uncertainties. For
instance, PJM includes the mileage ratio into their FFRS revenue
model, which is decided by the real-time grid operation status
[25]. Currently, there is no comprehensive solution to tackle
these challenges and ensure the optimal economics of the BSS-
based FFRS model. The frameworks for plug-in EVs introduced
in [10]–[15], and [19] are infeasible to implement in BSS. For
instance, the methods in [10], [13], and [15] need to collect
every EV’s arrival/departure schedule and SOC expectation.
However, it is not possible for a BSS to accurately estimate the
EV activities for a long duration, and the optimization solution
will not be correct without an accurate prediction model. Other
frameworks in [11], [12], [14], and [19] consider a large number
of EVs and model the EV behaviors using certain distributions,
such as normal distribution, Poisson distribution, etc. However,
for a BSS which only serves a limited number of EVs per day, the
EV uncertainties still exist and cannot be ignored. In addition,
all those frameworks fail to consider the ancillary service market
uncertainty.

In recent years, deep reinforcement learning (DRL) ap-
proaches have been successfully adopted in EV optimal charging
scheduling [26]–[28] not only because it can handle the non-
convex relations between the EVs and the electricity market
and always guarantee a feasible solution but also because of its
real-time decision-making ability under severe uncertainties. In
this article, we leverage the advantages of DRL and develop
a DQN-based AI agent for the BSS-based FFRS to tackle the
involved uncertainties in the nonconvex model and perform the
optimal regulation capacity real-time scheduling for a BSS.
Under this context, the main contributions of this article are
as follows.

1) To the best of our knowledge, this is the first article that
attempts to formulate the BSS-based FFRS as a stochastic
dynamic problem and uses DQN for automatic optimal
control of a BSS.

2) This framework not only handles the uncertainties from
the EV behaviors and ACE signals but also deals with the
uncertainties of the ancillary service market.

3) The practicality of the case studies in this framework is
guaranteed by using real-world traffic data, ACE signals,
and FFRS market data.
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The rest of this article is organized as follows. Section II
introduces the BSS-based V2G FFRS model and the associated
uncertainties. Section III presents the BSS’s economic model
and the DQN agent training process for the proposed frame-
work. Section IV shows the case studies that use real-world
data to verify the effectiveness and economic feasibility of the
proposed model, the test results are presented. Finally, Section V
concludes this article.

II. CAPACITY SCHEDULING STRATEGY AND UNCERTAINTIES

A. Regulation Capacity Scheduling Strategy

Like a gas station, a BSS functions as a centralized energy
distribution center that provides instant energy services to EV
owners. It can exchange energy with the grid by battery charging
and discharging. In this article, we assume every EV needs to
submit a service request to a BSS in advance so that the BSS
can precharge batteries for them. To ensure seamless services
to EV owners, a number of batteries equal to the BSS hourly
service requests are precharged. The remaining batteries in the
BSS can participate in FFRS. Batteries with an SOC that is out
of a predefined bound [ Sf,S̄f ] must quit the FFRS in the next
hour because their ramping capacities are insufficient. Those
batteries with SOC > S̄f are then fully charged in the next
hour and replace the ones in the visiting EVs. If the amount
of fully charged batteries exceeds the number of visiting EVs,
the excessive batteries will be held to serve the next hour’s
visiting EVs. Those batteries with SOC < Sf are charged to
a 50% SOC in the next hour and then put them back again
to provide FFRS because a 50% SOC provides a battery with
the equal ramping up and down capacity scheduling potential.
The replaced batteries from the EVs are put together with the
battery stock in the BSS to participate in FFRS. To minimize
the charging cost, the batteries selected to be precharged for
visiting EVs are several of the highest SOC batteries in the stock.
FFRS requires a scheduled unit to maintain a constant regulation
capacity on an hourly basis [7]. So that each battery maintains
a fixed regulation capacity within each hour, and in our model,
every battery has the same regulation capacity within each hour.
The Algorithm I is the pseudocode for this introduced regulation
capacity scheduling model.

Such a regulation capacity scheduling strategy indicates that
the hourly available number of batteries in a BSS to provide
FFRS dynamically changes in accordance with the EV visit
count and the FFRS service load, which results in an uncertain
hourly available FFRS capacity. The EV visit count N is stochas-
tic and uncontrollable by the BSS, but the FFRS service load can
be managed by adjusting the battery’s hourly regulation limit
Pr,t. Therefore, the BSS’s optimal economical operation can be
regarded as a problem of stochastic dynamic programming, there
is in need of a strategy to determine the optimal hourly regulation
limit Pr,t for batteries in a BSS to guarantee the BSS’s optimal
economic operation.

B. Uncertainty From BSS Visit Count

We assume that the customers’ adoption of BSSs is the
same as the customers’ adoption of gas stations. Under such an

Fig. 1. (a) TF count versus gas station visit. (b) BSS visit count esti-
mation.

assumption, we build a model that loosely binds the BSS’s daily
visiting profile within an uncertainty band. The model contains
two stages. 1) Collect the historical hourly TF data Nf,t for the
place where the BSS is located; 2) converting the TF data into
the BSS visit count Nt; the Nt is bounded by an uncertainty
band νF . The validity of this model is justified based on the
analysis shown below.

GasBuddy [30], examined more than 32.6 million consumer
trips to gas stations and convenience stores around the U.S. in
the first quarter of 2018, and they generate a gas station hourly
visit percentage chart, and it plots as the red curve in Fig. 1(a).
The blue curve is the daily average hourly TF percentage for
120 days’ [29] TF count from a measuring station on road I-280
in San Jose, California, in 2017. The two curves nicely match
with each other, and this match exists in the rest of the TF data
we collect as well. Hence, we have our second assumption, i.e.,
the actual BSS visit count is positively linearly related to TF, as
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Fig. 2. ACE signal δt from 00:00 to 01:00 AM in 01/01/2017 from PJM.

follows:

Nt = βNf,t, ts ≤ t ≤ te. (1)

ts and teare the start and end times of the interested period. β
is the EV visiting ratio. To model the uncertainty of EV visit
count, we apply an uncertainty band νF on the BSS visiting
ratio β as shown in (2) and Fig. 1(b). The true 24-h EV visit
count profile can be in an arbitrary shape as long as it is within
the red area bounded by νF(

1− νF
)
βNf,t ≤ Nt ≤

(
1 + νF

)
βNf,t, ∀t. (2)

C. Uncertainty From ACE Signals and Mileage Ratios

Batteries participating in FFRS are obligated to follow ACE
signals δ = {δt ∈ [−1, 1]} . The upper and lower bounds refer
to the full scheduled capacities [31]. Fig. 2 shows the PJM ACE
signal plot between 00:00 to 01:00 AM on 01/01/2017. The ACE
signals bring severe uncertainties to the battery SOCs as shown
in (3), where ηb is the battery charging/discharging efficiency,
δ+j,t is the ramping up signal at time slot j in hour t, δ−j,t is the
ramping down signal at time slot j in hour t. qt decides the SOC
change of each battery at hour t due to participation in FFRS.
When qt is negative, the battery SOC will increase; when it is
positive, the battery SOC will decrease.

qt =
J∑

j=1

(
δ+j,t
ηb

+ δ−j,t · ηb
)
·Δt (3)

qt ∼ N
(
μ1, σ

2
1

)
. (4)

According to PJM 2017 and 2019 historical data, qt’s value
(ηb = 0.9) can be best fitted using a normal distribution as shown
in Fig. 3(a) with its mean value−0.0216 and a standard deviation
of 0.1508. It is seen that the mean value is on the left side of the
peak value, this is because the left tail of the data is larger than
the right tail, which pushes the mean value shifting to the left. We
model the uncertainty of qt using standard normal distribution
N (−0.0216, 0.15082). When the SOC of a battery exceeds S̄f

or is under Sf , that battery has to quit the next hour’s FFRS and
results in a decrease in the total FFRS available capacity of the
BSS at the next hour. Therefore, the decision made on Pr,t will
impact the BSS’s current and future income.

Mileage ratio, λt, is a market parameter that measures the
relative work (movement) of fast ramping resources relative

Fig. 3. (a) Distribution of qt. (b) Distribution of λt.

to conventional ramping resources, it plays an important role
in the PJM’s FFRS model [33]. Since the real-time mileage
ratio depends on the grid operation status, we model it as
a random variable in the dynamic control process. We col-
lect the PJM 2017 and 2019 mileage ratio data, and fit the
0-99.6 percentile λt data into a generalized extreme value
(GEV) distribution, as shown in Fig. 3(b), with shape param-
eter kλ = 0.0355, scale parameter σλ = 0.8713, and location
parameter μλ = 5.0572. In the DQN agent training process,
the λt is randomly generated following the GEV distribution:
λt ∼ GEV(kλ = 0.0355, σλ = 0.8713, μλ = 5.0572).

III. PROBLEM FORMULATION AND MODELING

A. Mathematical Modeling of BSS Economic Benefits

The gross profit of the proposed BSS model contains two
parts: 1) Battery charging services (5a)–(5g); 2) FFRS services
(6a)–(6d)

Pp,t =

⎛
⎝Npc,t −

Npc,t∑
n=1

Sn
ip,t

⎞
⎠ · U (5a)

Nred,t = H [Nfc,t−2 +Nred,t−1 −Nt]

· (Nfc,t−2 +Nred,t−1 −Nt) (5b)

Npc,t = H [Nt+1 −Nfc,t−1 −Nred,t]

· (Nt+1 −Nfc,t−1 −Nred,t) (5c)

H [n] =

{
0, n < 0

1, n ≥ 0
(5d)

Pc,t =
1
2

⎛
⎝Nod,t−1 +Nt −

Nod,t−1∑
n=1

Sn
io,t−1 −

Nt∑
n=1

Sn
ic,t

⎞
⎠ · U

(5e)

Pf,t =

⎛
⎝Nfc,t−1 −

Nfc,t−1∑
n=1

Sn
ig,t−1

⎞
⎠ · U, ∀t (5f)

Bch,t=

Nt∑
n=1

Fch,t · U · (1− Sn
ic,t)− Fl,t · (Pp,t+Pc,t+Pf,t).

(5g)
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Equation (5a) is the energy needed to precharge the batteries
based on the BSS visit request. Nred,t is the number of the
redundant fully charged batteries at the hour t.Nred,t exists when
Nfc,t−2 +Nred,t−1 > Nt, which is shown in (5b). In (5c),Npc,t

is the number of batteries that needs to be precharged at time t.
Equation (5d) is a Heaviside step function, whose value is zero
for negative arguments and one for positive arguments. Equation
(5e) is the energy needed to charge the batteries with SOC < Sf

to 50% SOC before putting them back to FFRS at the next hour.
Nod,t−1 is the number of batteries with SOC < Sf due to FFRS
at time t-1. Nt indicates the number of visiting EVs at time t.
Equation (5f) is the energy needed to fully charge the batteries
with SOC higher than S̄f due to FFRS at time t-1, those batteries
replace the depleted batteries in the visiting vehicles. Equation
(5g) shows the profits received from charging service, the first
term is the customers’ payment for charging service which is
based on the difference between the left SOC in their batteries
and the full SOC; the second term is the cost for BSS to purchase
the charging energies from the grid

Npf,t = Npf,t−1 −Npc,t −Nod,t−1 −Nfc, t−1

+Nod,t−2 +Nt−1 (6a)

Rt = Npf,t · Pr,t (6b)

Bfr,t = Rt · ϕ · (λtFp,t + Fc,t) (6c)

Sv
f,t = Sn

f,t−1 −
qt · Pr,t

U
(P r ≤ Pr,t ≤ P̄r) (6d)

Equation (6a)–(6d) is the BSS’s financial gain from partic-
ipating in the FFRS. Equation (6a) is the number of batteries
participating in FFRS at hour t. Equation (6b) is the scheduled
FFRS capacity. Equation (6c) is the PJM model [25] for profit
received for participating in FFRS. Equation (6d) is the SOC
update for batteries participating in FFRS.

Battery degradation should also be considered in the cost of
the operation since additional charge/discharge cycles will be
added to the EV batteries in the BSS. Therefore, we incorporate
a widely accepted depth of discharge (DOD) battery cycle life
model [34] into our framework, as shown in (7)

Tlife =
nLife (DOD)

NCY
(7)

in which Tlife refers to the battery life in years, which is cal-
culated by dividing the battery cycle life nLife(DOD) by the
number of charge/discharge cycles per year (NCY). The battery
cycle life nLife is a nonlinear function of DOD as introduced
in [34]. We flatten the battery’s annual value depreciation cost
to each charge/discharge cycle at that year to be the per-cycle
degradation cost as shown in (8). The battery degradation cost is
calculated for each battery swapped from EVs and the batteries
quit FFRS due to low SOC

CB,t =

Nod,t+Nt∑
n=1

U · FB · (1− ε)Tn · ε
NCY

, (0 ≤ Tn ≤ Tlife)

(8)
In (8), FB denotes the battery price in $/kWh; ε indicates the

yearly value depreciation rate of a battery. U · FB · (1− ε)Tn

refers to the remaining value of the nth battery at its age Tn.

The value depreciation of this battery at the current year is
U · FB · (1− ε)Tn · ε. Therefore, the per-cycle aging cost of this
battery is evenly distributed to the NCY operation cycles in that
year. In our model, the age of each battery is uniform randomly
generated between 0 to Tlife.

The daily gross profit of this model is the 24-h summation
of (5g), (6c), and (8) shown as (9), which is also our objective
function

obj : max B =

tn∑
t=t0

(Bch,t +Bfr,t − CB,t). (9)

The whole problem is a stochastic dynamic programming
problem, in which the value of parameters Nt, qt, and q̂t
are uncertain. The decision to be made at each time step
is Pr,t. Different parameter values and decision making at
one step might change the remained solution trajectory of
the whole problem. To solve this complicated nonconvex
problem, we introduce a DQN agent to learn the optimal
decision-making strategy at every time step. In our model,
the inputs of the problem are the FFRS day ahead market
prices, including F p,F c, and F l, and the stochastic parameters
N , q, and λ. The output of the problem is the trained DQN
network which can schedule P r in the way of maximizing a
BSS’s daily operation profit B. From 5(a)–(9), we know that
B = Φ(Npf ,Nod,Nfc,Npc,N red,N , P r), Φ denotes a
BSS’s financial model, while[Npf ,Nod,Nfc,Npc,N red] is
generated by the nonconvex function Algorithm I: [Npf ,
Nod,Nfc,Npc,N red] = Ψ(N , q, q̂, P r) (Ψ denotes the
Algorithm I). Therefore, in the training process Nt and qt are
stochastically generated following their distributions introduced
in Section II-B and C. The initial SOCs for the swapped bat-
teries are uniform random generated from [0, 0.2]. The DQN
agent learns to make action at (the value of Pr,t) based on
the state st = [Npf,t, Nod,t, Nfc,t, Npc,t, Nred,t, Nt]. The ac-
tion space and state space are both discrete, the dimension of

action space is P̄r−P r

τ , where P̄r and P r are the upper and lower
bounds for Pr,t, and τ is Pr,t ’s value incremental step. The
size of state space is the product of dimensions of each element
in the state vector st. Such a large state space and relatively
small action space combination makes the DQN an ideal solver
[36] for the problem. The training environment for the DQN
agent is the BSS’s operating model, which includes the battery
management strategy in Algorithm I and the revenue models
from (1)–(9). Fig. 4 is a flow chart summarizing the DQN agent’s
training environment. In Fig. 4, the solid line indicates the battery
management flow of the BSS, and the dashed line refers to the
revenue flow along the battery flow path.

B. Form Deep Q-Network

In reinforcement learning, an agent performs actions in a spe-
cific environment, and the environment responds to the actions
by generating a new state, at the same time the agent receives
a reward depending on what state it is in and what will be the
next state when it performs the action, this process is shown in
Fig. 5. In this manner, the agent is trained to maximize the total
reward along the whole decision trajectory.
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Fig. 4. Flow chart for DQN agent’s training environment.

Fig. 5. DQN agent’s training loop.

For a simple Q-learning, the agent learns the action-reward
function Q(s, a) in the manner of iteratively updating the Q value,
as shown in (10), which is served to evaluate how good it is to
take action a at state s. This equation is known as the Bellman
equation which is also a necessary condition for optimality
in dynamic programming. In (10), the term Q(st, at) on the
right side of the equation is the Q value of taking action at at
state st based on the previous updated Q function; α denotes
learning rate which discounts the Q updates to ensure the model
doesn’t overestimate the reward; rt is the immediate reward
at time t when action at is taken under the current state st;
maxQ(st+1, a) is the maximum possible Q value at the next
state, this means the agent is looking forward to determining
the best action to be taken to get the maximum future reward;

γ is the discount factor which decreases the impact of future
rewards impact on the current action decision-making. In our
application, Q value is defined as the summation of the current
operation profit Bt and anticipated discounted future reward
Bt+1. If both the state space and the action space are small, the
function Q can be formed into a Q-table to serve as a “cheat
sheet” for the agent. However, if the action space and the state
space are in thousands especially when states are in continuous
form, it becomes inconvenient to learn and search in that huge
table. In this context, an NN can be trained to interact with the
environment and learn the sophisticated action-reward function
Q. Then it can serve as an agent to take actions based on the
current state

Q(st, at)=(1− α)Q(st, at) + α · (rt + γ · maxQ(st+1, a)).
(10)

To develop an NN which can perform Q-learning, its in-
put should be the current state and some other informa-
tion about the environment. In our setup, the state is st =
[Npf,t, Nod,t, Nfc, t, Npc,t, Nt]; the actions at the agent can
take is the per-battery FFRS capacity limit Pr,t, the output is the
Q value following the updating rule in (10). The reward function
is the hourly profit Bt. The loss function of the NN is (11),
which minimizes the difference between the predicted Q value
Q̃(st, at) given by the learning NN agent and the desired Q value
Q̂ = [rt + γ ·maxQ(st+1, a)] based on the current reward rt
and discounted future reward estimated by a target NN. Notice
that Q̃(st, at) �= Q(st, at), Q̃(st, at) is given by a NN which
updates at every step, Q(st, at) is given by a target NN which
has a delayed update, the reason will be introduced later

L =
∥∥∥rt + γ ·maxQ (st+1, a)− Q̃ (st, at)

∥∥∥ . (11)

Algorithm II shows the full training process of a DQN agent
in our framework. Some steps need to be explained in detail.

1) For each training episode, the daily EV visit count vec-
tor is generated stochastically following the distribution
shown in (2).

2) ε-greedy action selection policy is implemented to avoid
the training process to be locked in a locally optimal
solution. Given the random nature of the environment,
if the agent makes a wrong decision at the beginning,
then this decision will continue to be made by the agent
because it only selects the maximum Q in any state.
However, the ε-greedy action selection policy allows the
agent to jump out of the locked solution and randomly
explore another action because of its conditional selection
mechanism shown in the If function in Algorithm II.

3) Two neural networks are needed instead of one;these two
neural networks have an identical structure, one neural
network (nn1) updates at every training step, the other
neural network (nn) serves as a target network that pro-
vides a target Q vector for nn1. The target network nn has
a delayed update, in our application nn is updated every 24
steps, because if nn is also updating at every step or only
use nn1, then the nn1’s training process is to minimize the
difference between itself and a moving target [35]. This
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will cause a severely unstable training process. A delayed
update in nn can provide a stable target to nn1.

4) A replay buffer should be deployed to store the historical
state transition. For each training epoch, a mini batch
of historic data D should be sampled from the buffer
M. D is then combined with the latest transition (st,
a, r,s′t) to train the neural network nn1. This process
is necessary because allowing the agent to learn from
earlier memories can speed up the learning and break
undesired temporal correlation. Besides, because DQN
training is a circulation process between neural network
and environment, it is vital to allow DQN to sample the
past state transitions in each training episode so that it
does not overfit to the most recent cases.

The DQN training work is conducted on GPU with model
NVIDIA GTX 960M 2 GB memory. The computer used is
equipped with Intel(R) Core(TM) i7-4720HQ processor with
a clock rate of 3.60 GHz and 16 GB memory.

IV. CASE STUDY

In the case study, we perform dynamic regulation capacity
scheduling work in different scenarios. To demonstrate the

TABLE I
SYSTEM PARAMETER SETTING

practicality of our strategy, we use real-world data to set up
the environment. The detailed system parameters are shown in
Table I and described here: 1) 2017 traffic data at the intersection
of SR-17 and I-280 in San Jose, California from PeMS [29]
is used. However, this data is measured on the highway, we
scaled the data 10 times down to represent the TF on a local
street where a BSS can possibly be built at; 2) FFRS market
data from PJM in 2017 and 2019 [32] is collected and used in
case studies, each case uses one day’s data which is randomly
selected; 3) For a typical DQN, the action space should be in a
discrete manner [37]. In our work, the action to be taken refers
to the hourly per-battery regulation capacity limit Pr,t which is
bounded by the predefined upper limit 35 kW and lower limit
15 kW. To discrete the action, we space the selectable Pr,t at
0.5 kW intervals: Pr,t ∈ [15 : 0.5 : 35], therefore the dimension
of action space is 41; 4) we assume the batteries in a regular
EV without participating in FFRS have high use intensity and
experience 365 charge/discharge cycles per year on average,
and according to our simulation results those EV batteries that
participate in the FFRS experience 1 time more charge/discharge
cycles or 730 cycles per year. With 80% discharge depth, the
battery life for those batteries participating in FFRS lasts 6 years.

A. Case I: FFRS Capacity Scheduling
Without Uncertainties

Case I is to verify the applicability of a DQN to our problem
setup. Therefore, the stochastic parameters Nt, λt, and qt are set
to be deterministic: N = βNf , λ = [5], and q = [−0.1503].
In such a way, Case I becomes a dynamic programming problem.
The training process converges within 2000 episodes; each
episode refers to a 24-h period. For each episode, the 24-h
cumulative financial gain is recorded and plotted in Fig. 6.

The reward converges after 1700 episodes of training. For
the first 200 episodes, the reward variation is from $1050.11 to
$1239.43, and the mean reward is $1168.51. For the last 200
episodes, the reward variation is from $1241.60 to $1291.08,
and the mean reward is $1271.08. When the training converges,
the reward variation is reduced by 73.86%; in addition, the mean
reward is increased by 6.25%. In Fig. 7(a), the blue bar shows the
Pr,t 24-h scheduling decision made by the trained DQN agent;
and the pink line shows the total regulation capacity of the BSS
for 24 h. To demonstrate the performance of the DQN agent,
we design a regular agent that determines a constant regulation
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Fig. 6. DQN agent’s episode reward during the training process.

Fig. 7. (a) Pr,t Scheduling comparison. (b) Reward for the regular
agent.

capacity for batteries each day. Fig. 7(b) shows the reward
received by the regular agent at different capacity levels, and
the maximum reward received is $891.33 when P r = [29]kW .
According to Fig. 6, the DQN agent gains at least 39.30% more
profit than the regular agent. This case verifies that a DQN agent
can adapt to our designed action/state space and the environment.

B. Case II: FFRS Capacity Scheduling With
Uncertainties From ACE Signals and Mileage Ratios

In Case II, we set q and λ as random
variables following the distributions introduced
in Section II: qt ∼ N (−0.0216, 0.15082), λt ∼
GEV (kλ = 0.0355, σλ = 0.8713, μλ = 5.0572). N is set as
a deterministic parameter N = βNf . Case II is to verify the
DQN’s applicability to scenarios that the BSS can decide the
EV charging service load, such as bus fleets. Fig. 8 shows the
reward for 2000 training episodes.

The reward converges after 1750 episodes. For the first 200
episodes, the reward variation is from $1035.12 to $1301.80,
and the mean reward is $1190.04. For the last 200 episodes, the
reward variation is from $1378.08 to $1573.16, and the mean
reward is $1369.42. When the training converges, the reward
variation is reduced by 26.85%; in addition, the mean reward is
increased by 15.80%. In Fig. 9(a), the red bar shows the Pr 24-h
scheduling decision made by the trained DQN agent, and the
black line shows the total FFRS capacity scheduled from the BSS
for 24 h. In the test case using real-world data, the trained DQN
agent earns $1399.47 for the day. While the maximum reward

Fig. 8. DQN agent’s episode reward during the training process.

Fig. 9. (a) Pr Scheduling comparison. (b) Reward for the regular
agent.

Fig. 10. DQN agent’s episode reward during the training process.

received by the regular agent is $892.08 when P r = [31] kW
as shown in Fig. 9(b). The DQN gains 56.88% more than the
regular agent.

C. Case III: FFRS Capacity Scheduling With
Uncertainties From ACE Signals, Mileage Ratios, and EV
Visits

In Case III, we set q, λ, and N as random variables;
the values of q, λ follow their distributions introduced ear-
lier. For Nt, we set νF = 0.1 to bound the Nt in the
range [0.9βNf,t, 1.1βNf,t]. Fig. 10 shows the plot of reward
for 2000 training episodes.
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Fig. 11. (a) Pr Scheduling comparison. (b) Reward for the regular
agent.

Fig. 12. 10-day profit comparison between three scenarios.

In this case, due to the large uncertainty involved in the
environment, the episode reward does not converge as well as
Case I and Case II. But the mean reward for the last 200 episodes
still increases by 20.41% compared with the first 200 episodes.
Fig. 11(a) shows the FFRS capacity scheduling decision made
by both the DQN agent and the regular agent under real-world
data. In this case, the regular agent gets the maximum reward
of $819.03 when P r = [31] kW . The DQN agent receives
$1461.29 which accounts for a 78.42% increase compared with
the regular agent.

Case II and Case III show that the DQN can handle the
large uncertainties in the environment and provide a satisfying
FFRS capacity scheduling result for the BSS. However, the
more uncertainties involved in the environment, the larger the
reward variance will be. For a regular agent, the optimal FFRS
scheduling capacity can be different every day; therefore, in
practice, it is hard for a regular agent to make the optimal
decision. In contrast, the DQN agent not only can adapt to a
dynamic environment but also earns a much higher profit than
the regular agent.

In Fig. 12, we show a 10-day profit comparison between a BSS
participating in FFRS with a DQN agent, a BSS participating in
FFRS with a regular agent, and a BSS without participating in
FFRS. As discussed earlier, in this comparison these batteries in
the regular BSS experience 365 charge/discharge cycles per year
and their battery life lasts 12 years according to (8). These three
models have the same service intensity and the same operation
uncertainties. For the BSS with a regular agent, we assume the
agent can make the optimal capacity decision P r for every day.
The results show that the BSS with a regular agent can make
2.72 times the profit of the BSS without participating in FFRS.

The BSS with a DQN agent can make 3.45 times the profit of the
BSS without participating in FFRS. The DQN agent can help
a BSS to gain 26.72% more profit than the regular agent. The
training time for each case is about 20–25 min, which makes it
feasible to implement in the day-ahead market.

V. CONCLUSION

In this article, we proposed a comprehensive economic assess-
ment model for a BSS to participate in FFRS. Because of the
nonconvex nature and the stochastic parameters involved in the
problem, we introduced the DQN agent to perform the optimal
scheduling of the BSS regulation capacity. The results showed
that a well-trained DQN agent can handle the large uncertainties
in the model, and it was capable of making optimal dynamic
decisions to ensure good profitability of the BSS. Although
the profitability may vary for different system parameters and
FFRS payment models, in the long run, as the battery cost
drops and regulation demand increased, the BSS-based FFRS
business model saw a promising future. Our case study was
conducted based on real-world data, which makes the results
very meaningful to the industry. The drawback of this method
was that the BSS’s available regulation capacity was determined
on an hourly basis, therefore it could only passively participate
in the ancillary service market as a price-taker. In the future, we
will consider letting BSS participate in energy arbitrage so that
the economic benefits of the BSS-based FFRS can be further
enlarged by actively optimizing its charging/discharging activi-
ties. The associated bidding strategy will turn the problem into
a more challenging multitime horizon optimization problem.
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