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Abstract. Recently, Quach, Wee and Wichs (FOCS 2018) proposed a
new powerful cryptographic primitive called laconic function evaluation
(LFE). Using an LFE scheme, Alice can compress a large circuit f into a
small digest. Bob can encrypt some data x under this digest in a way that
enables Alice to recover f(x) without learning anything else about Bob’s
data. The laconic property requires that the size of the digest, the run-
time of the encryption algorithm and the size of the ciphertext should be
much smaller than the circuit-size of f . This new tool is motivated by an
interesting application of “Bob-optimized” two-round secure two-party
computation (2PC). In such a 2PC, Alice will get the final result thus
the workload of Bob will be minimized.

In this paper, we consider a “client-optimized” two-round secure mul-
tiparty computation, in which multiple clients provide inputs and enable
a server to obtain final outputs while protecting privacy of each individ-
ual input. More importantly, we would also minimize the cost of each
client. For this purpose, we propose multi-input laconic function evalua-
tion (MI-LFE), and give a systematic study of it.

It turns out that MI-LFE for general circuit is not easy. Specifically,
we first show that the directly generalized version, i.e., the public-key
MI-LFE implies virtual black-box obfuscation. Hence the public-key MI-
LFE (for general circuits) is infeasible. This forces us to turn to secret
key version of MI-LFE, in which encryption now needs to take a secret
key. Next we show that secret-key MI-LFE also implies heavy crypto-
graphic primitives including witness encryption for NP language and
the indistinguishability obfuscation. On the positive side, we show that
the secret-key MI-LFE can be constructed assuming indistinguishability
obfuscation and learning with errors assumption. Our theoretical results
suggest that we may have to explore relaxed versions of MI-LFE for
meaningful new applications of “client-optimized” MPC and others.
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1 Introduction

In a recent paper [31], Quach, Wee and Wichs described an interesting secure
two-round two-party computation (2PC) protocol which is “Bob-optimized”. In
such a protocol, Alice and Bob who have inputs xA and xB respectively want
to jointly compute f(xA, xB), and Alice initiates the first round message, and
learns the output f(xA, xB) in the second round. More interestingly, Alice does
all the work while Bob’s computation and communication during the protocol
execution are both smaller than the size of the circuit f or even Alices input xA,
(concretely, the computational cost of Bob is only (|xB | + |f(xA, xB)|) · poly(d),
where d is the depth of the circuit f). Such kind of “Bob-optimized” secure 2PC
was considered more natural as it is Alice who obtains the output should do
the work [31]. This is in contrast to prior solutions based on fully homomorphic
encryption [12,13,21,23] which optimized the work of Alice.

To construct such kind of two-round “Bob-optimized” secure 2PC, a new
cryptographic primitive laconic function evaluation (LFE) was formulated in
[31]. In an LFE scheme, Alice can compress a potentially large circuit f into
a small digest. Bob then can encrypt some data x under this digest s.t. Alice
can recover f(x) without learning anything else about the original data x. The
size of the digest, the run-time of the encryption algorithm and the size of the
ciphertext should all be much smaller than the size of circuit f , In this way, Bob’s
workload in the 2PC is minimized. In [31], they provided the first construction
of LFE for general circuits under the learning with errors (LWE) assumption.

“Client-Optimized” 2-Round MPC. The “Bob-optimized” two-round 2PC
is useful in many applications such as privacy preserving data analytics, espe-
cially when the client device (Bob in the above setting) is resource restrained
(e.g., mobile devices), while the circuit representing the analytic function is
substantially complex (e.g., some complicated data mining or machine learn-
ing algorithms). However, in many relevant scenarios, the data of “Bob” may
not be generated all at once, or even come from multiple clients. Consider the
following scenarios:

Privacy Preserving Data Analytic System. Many data analytic applications run-
ning in a server solicit input data via multiple data collectors. For instance, many
surveillance cameras are now deployed on the roads to monitor traffic conditions
by local governments, and the videos are collected and submitted to a central
server to analyze the road condition.

It is not hard to see that those individual inputs may be sensitive, e.g., the
videos could contain confidential geographic information regarding the cars trav-
eling on the roads, thus they should not be directly submitted to the server in
the plain. However, there are multiple clients (the cameras) to provide inputs,
we need now to deploy a multiparty computation protocol. On the other hand,
similar as before, those clients (cameras) are not powerful computing devices,
thus the computation and communication cost on the cameras (as data collec-
tors) have to be minimized. And it is not realistic to ask all the cameras to
coordinate other than directly communicating with a server.
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Privacy Preserving Call Records Surveillance. It is known that several major
telephone companies were cooperating with the intelligent service to monitor the
phone records of U.S. citizens, and store them in a large database known [1,2].
Though it is a constant debate that sometimes surveillance may be needed for
law enforcement to do investigations, it is obviously unacceptable that personal
call records are uploaded and stored in the clear. It would be necessary to design
a privacy preserving call records surveillance system.

In such a setting, each client continuously uploads obfuscated call records,
and the mobile phones are mostly not so powerful devices that would demand
the optimization on the client side workload for a privacy preserving protocol.
Moreover, since investigation may apply complex data mining algorithms on
multiple pieces of call records from each targeted individual, similar as above,
we would need to design a 2-round client-optimized multiparty (depending how
many pieces of records needed) computation.1

“Client-Optimized” 2-Round MPC. To capture above two exemplary application
scenarios, we need a 2-round “client-optimized” secure multi-party computation
protocol in which there might be multiple inputs from multiple clients. 2 In
particular, we wish to have a 2-round protocol, that the server initializes the
protocol with a first round message, then each client (the same client in different
time period sending a different input would be viewed as a different client) sends
out a message and then the server obtains the final output f(x1, . . . , xn), where
f is the analytic function and x1, . . . , xn are all the inputs. More importantly,
the “client-optimized” property here refers to (1) the computation and commu-
nication of each client is as efficient as that of Bob in the “Bob-optimized” 2PC;
and (2) there is no communication among each clients.

Insufficiencies of Existing Tools. There are several possible paths to pro-
ceed, unfortunately none of them reaches a satisfying solution. Let us analyze
one by one. (1) The second property above disallowing communication among
clients already excludes straightforward solutions such as the general multiparty
computation protocol [4,6,30,32], let alone it is not clear how to ensure the low
client costs. (2) Laconic functional evaluation [31] was also shown to be applica-
ble to MPC with small online computation. However, in our setting, the similar
idea letting the server first compress the function to obtain a digest, then all
clients and the server run an MPC protocol for the encryption function of the
laconic function evaluation scheme (with the server input of the digest) is not
satisfying. Although there exist 2-round MPC protocol [20], the communica-
tions among clients could be potentially large, let alone in some of the scenarios,
1 One may suggest to let the client wait and upload a bunch of call records all at once,

however, each individual has no incentive to do so and this is not how call records
stored nowadays.

2 In this paper, we only consider semi-honest security for our MPC application, which
is analogous to the Bob-optimized 2PC in the LFE paper. In this setting, we assume
the server will only choose a proper function permitted by clients. Furthermore, a
semi-honest security protocol can be easily upgraded to adaptively secure by stan-
dard techniques such as adding NIZK.
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the clients may not be able to talk to each other. (3) Another related notion
is functional encryption [10,18,26], especially multi-input functional encryption
(MIFE) [9,24]. Straightforward application of MIFE requires an extra trusted
party to generate the decryption key for the server (which is already a huge
overload that is proportional to the size of f), while we cannot let the server
to do this, otherwise no security of the inputs can be present. (4) Last but not
least, similar as in [31], multi-key fully homomorphic encryption [15,30] cannot
enable the server to learn the output in two rounds.

Formalizing Multi-input Laconic Function Evaluation. Motivated by
the client-optimized 2-round MPC application and the deficiencies of existing
tools, we generalize the notion of LFE to multi-input laconic function evalua-
tion (MI-LFE). In a MI-LFE scheme, the server has a large circuit f defined
over n inputs, which can be deterministically compressed into a short digest
digestf = Compress(f). Then each client i can encrypt his input data xi under
this digest, resulting in a ciphertext cti ← Enc(digestf , xi), respectively. After
receiving n ciphertexts, the server is then able to decrypt using her knowledge
of f to recover the output f(x1, . . . , xn) = Dec(f, ct1, . . . , ctn). Security ensures
that the server does not learn anything else about the n inputs x1, . . . , xn beyond
the output f(x1, . . . , xn), as formalized via the simulation paradigm. Similar to
LFE, the laconic property of MI-LFE requires that each client’s computation
and communication complexity is small, and in particular, the size of the digest
digestf , the run-time of the encryption algorithm Enc(digestf , xi) and the size of
the ciphertext cti should be much smaller than the circuit-size of f .

With the new primitive at hand, the client-optimized 2-round MPC protocol
can be easy: the server compresses the function and broadcasts the digest to
all clients. Each client then uses the encryption algorithm to obfuscate his input
and sends it to the server. The server then pools all ciphertext and evaluate. The
laconic property guarantees that the workload of each client is small compared
to the complex function f , and no communication is needed among clients.

The Difficulty of Constructing MI-LFE. We then systematically study the
concept of MI-LFE. It turns out that such a notion is quite difficult to obtain.
In particular, the most nature model for MI-LFE is in the public-key setting
which generalizes LFE in [31] in a straightforward fashion. The only difference
is that the function here is evaluated on multiple inputs, so the different inputs
xi for i = 1, . . . , n are encrypted into different ciphertexts cti for i = 1, . . . , n,
and the decryption procedure involves multiple ciphertexts. In Sect. 4, we show
that public key MI-LFE actually implies virtual black-box obfuscation. Since
VBB obfuscation is known to be impossible for general circuits [5], this yields
us impossibility results for (general) MI-LFE in the public setting.

To circumvent such an impossibility but still enabling the client-optimized
MPC, we turn to MI-LFE in the private-key setting. It follows the syntax of
the version of the public-key setting, but an additional key generation procedure
is involved and the encryption procedure will always take the private key as
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input.3 Restricting encryption procedure allows us to bypass the implication to
VBB that essentially compresses a universal circuit and uses MI-LFE encryption
algorithm to encrypt the function and input as different ciphertext to evaluate.

Then we find that even in the private key setting, constructing MI-LFE from
standard assumptions is not an easy task. We show that the private-key MI-
LFE with reasonable security definition implies the witness encryption (WE)
for NP language [3,7,11,17,22] and the indistinguishability obfuscation (iO) for
general circuits [14,16,28,29], respectively. Since these two advanced primitives
have no constructions from the standard assumptions so far, leveraging some
heavy tools in the construction of MI-LFE seems inevitable. As a byproduct,
we notice that MI-LFE also implies MIFE, thus MI-LFE could be applicable in
multiple advanced scenarios, if it ever exists. But the reverse implication is not
straightforward, since MIFE do not have the compression property.

Constructing Private-Key MI-LFE. Next we show that the private-key MI-
LFE can indeed be constructed from indistinguishability obfuscation and learn-
ing with errors (LWE) assumption. Our construction of MI-LFE is inspired by
the techniques developed in the context of multi-input functional encryption [25]
and laconic function evaluation [31]. Intuitively, the message xi for i-th coor-
dinate of circuit C in MI-LFE is encrypted using public key encryption and
equipped with a proof showing that this encryption is done correctly. The other
part of the i-th ciphertext is an indistinguishability obfuscation of a circuit that
first checks the legitimacy of the input ciphertexts and then transforms pub-
lic key encryptions of messages {xi} into an LFE ciphertext of the message
x1, . . . , xn. A decryptor in MI-LFE that has all ciphertexts of messages {xi} for
a pre-compressed circuit C first obtains LFE encryption of messages for each
coordinate of circuit C after evaluating the obfuscated program, and then the
actual result C({xi}) by evaluating the decryption algorithm in LFE.

The laconic property of our scheme follows from the laconic property of
LFE encryption algorithm. Only the LFE encryption procedure in the indis-
tinguishable obfuscation is corresponding to the circuit C, and other parts in
our encryption procedure is independent with the circuit C, we know that LFE
encryption only scales with the circuit depth, much smaller than the circuit size.
Even after been obfuscated, should still much smaller than the circuit size.4

The security definition of MI-LFE requires to simulate the challenge cipher-
texts. Recall that there are two parts in a ciphertext: (1) two independent seman-
tically secure public key encryption of the actual message and a proof showing
the correctness and legitimacy of the encryption; (2) an obfuscation of a circuit

3 We remark here that a secret key MI-LFE is enough for many of our applications
of client-optimized 2-round MPC: if for one client generating inputs overtime, the
client’s device may have a pre-installed secret key by the device manufacturer; while
for data analytics via multiple data collectors such as cameras, a secret key maybe
installed by the government who deploy them.

4 we consider an unbounded-size circuit class C, meaning that there exists a large
size circuit C ∈ C. We refer to Lemma 3 for the details of laconic property of our
construction.
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that contains proofs verification and encryption transformation. Specifically, the
simulation of first part relies on semantic security of the public-key encryption
and special property of the proof system, i.e. witness indistinguishability. The
circuit to be obfuscated can be changed according to changes happened in the
first part of challenge ciphertext. We also would like to remark that in our con-
struction, we simply rely on a common random string, rather than a common
reference string used previously in MIFE.

1.1 Additional Related Works

Multi-input Functional Encryption. MI-LFE also appears to be related to multi-
input functional encryption (MIFE) [9,24]. In MIFE, multiple ciphertexts are
also encrypted independently by different parties, while the one holding the
decryption key skf can only recover f(x1, . . . , xn) without learning anything else
about x1, . . . , xn. Despite of the similarities, a MIFE scheme involves a master
authority whose duty is to derive a decryption key skf respect to a function f
from the master key msk. More importantly, the complexity of the decryption
key generation procedure may be proportion to the size of the function f . Note
that in some application scenario like the one mention above, there are no parties
that can be both trustworthy and capable to afford such workload.

Fully Homomorphic Encryption. FHE [12,13,21,23] can be viewed as the dual
version of the LFE. In FHE, one party, say Alice, can encrypt different values
xi, resulting in a ciphertext cti ← Enc(pk, xi), respectively. Then another party,
say Bob, can homomorphically evaluate a function f on these ciphertexts. When
Alice sees the evaluation, she can decrypt and recover the message f(x1, . . . , xn).
In contrast with MI-LFE and LFE, here it is the encryptor to get the final result.

General MPC. Since our application is a special case of secure multi party com-
putation, theoretically it can be realized in two round by the general MPC
technique [4,6,32]. However, here we additionally require that the computa-
tion complexity for each surveillance to be cheap, and they only need to com-
municate with the data center but not with each other. Considering all these
additional requirements, this application is hard to be directly achievable via
general MPC. There exist 2-round MPC protocol [20,30], the communications
cost among clients could be potentially large, i.e. an multiplicative overhead of
the depth of circuit and size of input.

2 Preliminaries

In this section, we give background on two classical cryptographic primitives used
in paper: non-interactive witness-indistinguishable proofs and perfectly binding
commitments.
Non-interactive Proof Systems. Here, we recall the syntax and property of
non-interactive witness-indistinguishable proofs.



Multi-input Laconic Function Evaluation 375

Syntax. Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R,
we call x the statement and w the witness. Let L be the language consisting
of statements in R. A non-interactive proof system [8,27] for a language L,
consists of a CRS generation algorithm CRSGen, a proving algorithm Prove and
a verification algorithm Verify, defined as follows:

– CRSGen(1λ): On input the security parameter λ, it outputs a common refer-
ence string crs.

– Prove(crs, x, w): On input the common reference string crs, and a statement x
along with a witness w. If (x,w) ∈ R, it produces a proof string π, otherwise
it outputs fail.

– Verify(crs, x, π): On input the common reference string crs, and a statement x
along with a proof string π, it outputs 1 if the proof is valid, and 0 otherwise.

Definition 1 (Non-interactive Proof System). A non-interactive proof
system for a language L with a PPT relation R is a tuple of algorithms
(CRSGen,Prove,Verify) such that the following properties hold:

– Perfect Completeness. A proof system is complete if an honest prover with
a valid witness can convince an honest verifier. More formally, for all x ∈ [L]
and every w such that (x,w) ∈ R, it holds that

Pr[Verify(crs, x,Prove(crs, x, w)) = 1] = 1

where crs ← CRSGen(1λ) and the probability is taken over the coins of
CRSGen, Prove and Verify.

– Statistical Soundness. A proof system is sound if it is infeasible to convince
an honest verifier when the statement is false. More formally, for all adversary
(even unbounded) A, it holds that

Pr[Verify(crs, x.π) = 1 ∧ x /∈ L|crs ← CRSGen(1λ), (x, π) ← A(crs)] = negl(λ)

Definition 2 (NIWI). A non-interactive proof system (CRSGen,Prove,Verify)
for a language L with a PPT relation R is witness indistinguishable if for any
triplet (x,w0, w1) such that (x,w0) ∈ R and (x,w1) ∈ R, the distributions
{crs,Prove(crs, x, wo)} and {crs,Prove(crs, x, w1)} are computationally indistin-
guishable, where crs ← CRSGen(1λ).

Non-interactive and Perfectly Binding Commitment Schemes. We let
Com(·; ·) denote the commitment function of a non-interactive commitment
scheme. Com is a PPT algorithm that takes as input a string x and random-
ness r, and outputs c ← Com(x; r). A perfectly binding commitment scheme
must satisfy the following properties:

– Perfectly Binding. This property states that the two different strings
cannot have the same commitment. More formally, ∀x1 �= x2, Com(x1) �=
Com(x2).

– Computationally Hiding. For all strings x0 and x1 (of the same length),
and all PPT adversaries A, we have that:

|Pr[A(Com(x0)) = 1] − Pr[A(Com(x1)) = 1]| ≤ negl(λ)



376 B. Pang et al.

3 Multi-input LFE: Syntax and Security Definition

In this section, we define the notion of multi-input laconic function evaluation
(MI-LFE) for a class of n-ary circuits C. We assume that every circuit C ∈ C is
associated with some circuit parameters C.params. By default we consider C to
be the class of all circuits with C.params = (1n, 1k, 1d), which take as input n
bit-strings (x1, . . . , xn), where xi ∈ {0, 1}k, and d denotes the circuit depth.

Definition 3 (MI-LFE). A private-key multi-input laconic function evalua-
tion for circuits class C consists of five algorithms (crsGen,KeyGen,Compress,
Enc,Dec) with details as follows:

– crsGen(1λ, C.params) takes as input the security parameter 1λ and circuit
parameters C.params, and outputs a uniformly random common random
string crs of appropriate length.

– KeyGen(1λ, crs) takes as input the security parameter 1λ and the common
random string crs, and outputs a private key SK.

– Compress(crs, C) is a deterministic algorithm that takes as input the common
random string crs and a circuit C ∈ C, and outputs a digest digestC .

– Enc(crs, digestC ,SK, i, xi) takes as input the common random string crs, a
digest digestC , a private key SK, an index i, and a message xi, and outputs
a ciphertext cti.

– Dec(crs, C, ct1, . . . , ctn) takes as input the common random string crs, a circuit
C ∈ C, and n ciphertexts ct1, . . . , ctn, and outputs a message y.

Correctness. For correctness, we require that for all λ and C ∈ C with C.params,
it holds that

Pr

⎡
⎢⎢⎢⎢⎣

y = C(x1, . . . , xn)

∣∣∣∣∣∣∣∣∣∣

crs ← crsGen(1λ, C.params),
SK ← KeyGen(1λ, crs),
digestC ← Compress(crs, C),
cti ← Enc(crs, digestC ,SK, i, xi),
y ← Dec(crs, C, ct1, . . . , ctn),

⎤
⎥⎥⎥⎥⎦

= 1

Definition 4 (SIM-Based Security). For security, we say a private-key
MI-LFE is (n, q)-SIM-secure, where n denotes the number of input strings for
a circuit C, and q is number of challenge message tuples, if there exists a PPT
simulator SIM such that for all stateful PPT adversary A, it holds:

∣∣∣Pr[ExptRealMI-LFE(1
λ) = 1] − Pr[ExptIdealMI-LFE(1

λ) = 1]
∣∣∣ ≤ negl(λ)

where the experiments ExptRealMI-LFE(1
λ) and ExptIdealMI-LFE(1

λ) are defined in Fig. 1.

In Fig. 1, oracle O(C, ·) denotes the trusted party. It accepts queries of the
form (j1, . . . , jn), where j1, . . . , jn ∈ {1, . . . , q}. On input such a query, O(C, ·)
outputs the C(xj1

1 , . . . , xjn
n ); otherwise outputs ⊥. We refer to the above as adap-

tive security.
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(a) ExptRealMI-LFE(1
λ)

1. C.params ← A(1λ)
2. crs ← crsGen(1λ, C.params)
3. SK ← KeyGen(1λ, crs)
4. ((xj

1, . . . , x
j
n)

q
j=1, C) ← A(crs) : C ∈ C

5. digestC ← Compress(crs, C)
6. ctji ← Enc(crs, digestC , SK, i, xj

i ),
∀i ∈ [n], j ∈ [q]

7. output A {ctji}i∈[n],j∈[q]

)
.

(b) ExptIdealMI-LFE(1
λ)

1. C.params ← A(1λ)
2. crs ← crsGen(1λ, C.params)
3. ((xj

1, . . . , x
j
n)

q
j=1, C) ← A(crs) : C ∈ C

4. digestC ← Compress(crs, C)
5. ctji ← SIMO(C,·)(crs, C, digestC , i),

∀i ∈ [n], j ∈ [q]
6. output A {ctji}i∈[n],j∈[q]

)
.

Fig. 1. SIM-based Security Experiments for MI-LFE

Definition 5 (IND-Based Security). We say a private-key MI-LFE is
(n, q)-IND-secure, where n denotes the number of inputs for a circuit C, and
q is the number of n-ary challenge message tuples, if for any PPT adversary A,

AdvIND
A,MI-LFE(1

λ) =
∣∣∣∣Pr[ExptIND

A,MI-LFE(1
λ) = 1] − 1

2

∣∣∣∣

is negl(λ), where the experiments ExptIND
A,MI-LFE(1

λ) is defined in Fig. 2.

ExptIND
A,MI-LFE(1

λ)

1. C.params ← A(1λ)
2. crs ← crsGen(1λ, C.params), SK ← KeyGen(1λ, crs)
3. (X0,X1, C) ← A(crs): where C ∈ C, Xb = ((xj,b

1 , . . . , xj,b
n )j∈[q]),

such that C(xj1,0
1 , . . . , xjn,0

n ) = C(xj1,1
1 , . . . , xjn,1

n ), ∀i ∈ [n], ji ∈ [q]
4. digestC ← Compress(crs, C),

5. b
$← {0, 1}, ctji ← Enc(crs, digestC , SK, i, xj,b

i ), ∀i ∈ [n], j ∈ [q]
6. b′ ← A {ctji}i∈[n],j∈[q]

)
.

7. Output 1 if b = b′ and 0 otherwise.

Fig. 2. IND-based Security Experiment For MI-LFE

Remark 1 (Selective Security). A weaker notion, called selective security, in both
SIM-based and IND-based security, can be defines as: adversary A has to choose
challenge plaintext at the very beginning of the experiments (as described in
Fig. 1 and Fig. 2) before seeing crs.

Lemma 1. If a MI-LFE scheme Π is SIM secure, then Π is also IND secure.
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Proof (Proof Sketch). We note that if a MI-LFE scheme Π satisfies SIM-based
security, then we show that it also satisfies IND-based security. Now, for challenge
message queries (X0,X1), where Xb = {(xj,b

1 , . . . , xj,b
n )}j∈[q], the challenger in

the IND-based security experiment chooses a random bit b, then invokes the
simulator in SIM-based security game to compute

ctji ← SIMO(C,·)(crs, C, digestC , i), ∀i ∈ [n], j ∈ [q]

where O(C, ·) accepts the queries of the form (j1, . . . , jn) and outputs
C(xj1,b

1 , . . . , xjn,b
n ). Hence, by the SIM-based security, for all i ∈ [n], j ∈ [q], each

respond ctji ← SIMO(C,·)(crs, C, digestC , i) is computationally indistinguishable
from real execution ctji ← Enc(crs, digestC ,SK, i, xj,b

i ). And the bit b is chosen
from random, this completes the IND-based security experiment for MI-LFE.
Since (X0,X1) satisfies C(xj1,0

1 , . . . , xjn,0
n ) = C(xj1,1

1 , . . . , xjn,1
n ),∀i ∈ [n], ji ∈

[q], we have that {ctji}, output by the challenger, is independent with the bit b.

Laconic property. Same as LFE, we insist that the size of (crs, digestC ,SK, cti)
and the running time of Enc are at most sublinear of the size of circuit C.

4 Hardness of MI-LFE

In this section, we show the difficulty of MI-LFE schemes. In particular, we show
public-key MI-LFE for general circuits is impossible by constructing a virtual
black-box obfuscator from it. Moreover, even the private-key MI-LFE implies
witness encryption and indistinguishability obfuscation.

Public-Key MI-LFE. We first discuss the syntax and security definition of
public key MI-LFE. Then, we show that a MI-LFE scheme for all circuits implies
virtual black-box obfuscation for all circuits, which is proved impossible by Barak
et al. [5]. The main difference between MI-LFE in public-key setting and that in
private-key setting (c.f. Sect. 3) is that algorithm KeyGen(1λ, crs) does not exist
in public-key setting, meaning that encryption algorithm can be performed by
anyone who knows common reference string and the digest of circuit.

Security Definition. In this part, we discuss the intuition of simulation-based
public key MI-LFE security. To illustrate the difference between public-key and
private-key setting, it suffices to consider the case of 2-ary functions and one
challenge message tuple (x1, x2). In this example, the simulation-based security
in the private-key setting guarantees that for one function f , an adversary cannot
learn anything more than f(x1, x2) where (x1, x2) is the challenge message pair.
However, its counterpart in the public-key setting cannot guarantee this prop-
erty. The reason is that an adversary who knows the public key can create its
own chiphertexts, thus can learn additional information {f(x1, ·)} and {f(·, x2)}
given ciphertexts for (x1, x2). This additional information must be taken into
account for the simulator (adversary in ideal world) in the ideal world. We refer
to the full version for the formal SIM-based security game.
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VBB Obfuscation from Public-Key MI-LFE. Here we show that a virtual black-
box obfuscator [5], can be derived from a two party public-key MI-LFE. The
basic idea is to let the compressed function of the MI-LFE be a universal circuit
U . The input of the first party is the function f which we wish to obfuscate,
and the input of the second party is the input value x of the function f . So the
obfuscator should output the first party’s ciphertext Enc(crs, digestU , 1, f).

Specifically, for a universal circuit U , the obfuscator VBB works as follow:

1. Obfuscation: Run the crsGen and Compress algorithm to generate crs and
digestU , compute ct1 ← Enc(crs, digestU , 1, f), and output the obfuscated cir-
cuit VBB(f) = (crs, digestU , U, ct1).

2. Evaluation: To evaluate the obfuscated circuit VBB(f) on an input
x, one just needs to compute ct2 ← Enc(crs, digestU , 2, x) and run
Dec(crs, U, ct1, ct2).

According to the correctness of MI-LFE, the decryption result should be
U(f, x) = f(x). The virtual black-box property of this obfuscator follows from
the simulation security of the MI-LFE, hence we have the following theorem.

Theorem 1. A (2, 1)-SIM-secure MI-LFE in public-encryption setting for gen-
eral 2-ary functions implies virtual black-box obfuscation for all circuits.

Given an VBB adversary A, we use A to construct an MI-LFE adversary B,
the full proof is given in full version.

Witness Encryption from Private-Key MI-LFE. Since public key MI-LFE
for general circuits does not exist, we have to turn our attention to private key
MI-LFE. We firstly introduce MI-ABLFE (a variant of private-key MI-LFE).
Then, we construct witness encryption for NP language, for general circuits.
Since MI-LFE trivially implies an MI-ABLFE, thus we conclude the implication
of private key MI-LFE to witness encryption, introduced by Garg et al. [19].

MI-ABLFE. We start from LFE for a restricted class of functionalities, which call
attribute-based LFE (AB-LFE) in analogy to attribute-based encryption [31].
We formalize the definition and security requirement of MI-ABLFE as follow:

Definition 6 (MI-ABLFE). Let C : ({0, 1}k)n → {0, 1} be a circuit. We
define the Conditional Disclosure Functionality (CDF) of C as the function

CDF[C] ((x1, u), . . . , (xn, u)) =
{

(x1, . . . , xn, u) if C(x1, . . . , xn) = 1
(x1, . . . , xn,⊥) if C(x1, . . . , xn) = 0

where xi ∈ {0, 1}k, and u ∈ {0, 1}.
A MI-ABLFE scheme for a circuit family C is a MI-LFE scheme that

supports circuits CDF [C] defined as above, for all C ∈ C. We define
CDF [C].params = C.params = (1n, 1k, 1d), where d is the depth of C.

Remark 2 (Security of MI-ABLFE). The IND-based security notion of MI-
ABLFE can be defined similarly as MI-LFE, except for the difference that
the payload u remains private if for any message queries (xi, u), it holds that
C(x1, . . . , xn) = 0.
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Witness Encryption from MI-ABLFE. Intuitively, the witness encryption [19]
can use the MI-ABLFE in the following way: the general circuit C is used as the
NP verifier such that the decryptor of MI-ABLFE can recover the message u if he
has the witness w for the statement x satisfying C(x,w) = 1. More specificially,
given an NP language L, the construction of Π = (Enc,Dec) for L is as follows:

– Enc(1λ, x, u): On input a statement x ∈ {0, 1}n (whose witness has length
bounded by m), and a message u ∈ {0, 1}, the executes the following:
1. Set C : {0, 1}n × {0, 1}m → {0, 1} to be the NP verifier for language

L that takes as the input x ∈ {0, 1}n, w ∈ {0, 1}m, and outputs 1 iff
(x,w) ∈ L. Compute MI-ABLFE.crsGen(1λ, C.params) to generate CRS
string crs.

2. Then it runs MI-ABLFE.Compress(crs, C) to generate digestC , and
MI-ABLFE.KeyGen(crs) to get SK.

3. For i ∈ [n], compute MI-ABLFE.Enc(crs, digestC ,SK, i, xi, u), where xi is
the i-th bit of x.

4. For b ∈ {0, 1}, j ∈ [m], compute MI-ABLFE.Enc(crs, digestC ,SK, j, b, u),∀
b ∈ {0, 1}, j ∈ [m].

Output ct =
(
crs, C, x, {cti}i∈[n], {ctj,b}j∈[m],b∈{0,1}

)
.

– Dec(ct, w): On input a witness w ∈ {0, 1}m for the statement x ∈ {0, 1}n,
and a ciphertext ct for x, the decryption algorithm computes and outputs

MI-ABLFE.Dec
(
crs, C, {cti}i∈[n], {ctj,wj

}j∈[m]

)

where wj is the j-th bit of witness w.

The correctness of the witness encryption follows from the correctness of the
MI-ABLFE.

Theorem 2. Assuming the (n + m, 2)-IND-based selective security of MI-
ABLFE scheme MI-ABLFE for general circuits, then the witness encryption
scheme Π described above is secure.

Given an witness encryption adversary A, we describe an MI-LFE adversary
B invoke A as a subroutine to attack the security of MI-LFE. The proof is
completed in full version.

Indistinguishable Obfuscation from Private-Key MI-LFE. We can derive
an indistinguishability obfuscator for all circuits [16], with k-bit inputs from a
(k + 1)-party MI-LFE in private-key setting. This, in particular, means that the
use of indistinguishable obfuscation is inevitable for the private-key MI-LFE.

Now, we describe how to construct an indistinguishable obfuscator for
a circuit class C, where for every C ∈ C, C : {0, 1}k → {0, 1}k′

and
|C| = �. Assuming there is a (k + 1, 2)-IND-secure MI-LFE scheme MI-LFE =
(crsGen,KeyGen,Compress,Enc,Dec), where k + 1 denotes the number of party
and 2 denotes the number of challenge message tuples. The intuition here is to
let the actual function to be evaluated in MI-LFE to be a universal circuit U ,
defined as following:

U(x1, . . . , xk, C) = C(x1, . . . , xk), ∀i ∈ [k], xi ∈ {0, 1}, C ∈ {0, 1}�
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For each party i ∈ [k], the input is random bit b ∈ {0, 1}. And the input of
the final party is the description of circuit C, the circuit to be obfuscated. The
indistinguishable obfuscation of circuit C is MI-LFE encryption of all possible
inputs bit plus description of circuit C.

Specifically, the construction of iO is as follows:

– Obfuscation: On input circuit C, Run the crsGen(U.params) to generate crs,
KeyGen(crs) to generate SK and Compress(crs, U) to generate digestU . Then
for i ∈ [k], b ∈ {0, 1}, compute: ctbi ← Enc(crs, digestU ,SK, i, b) and next
compute

ctk+1 ← Enc(crs, digestU ,SK, k + 1, C)

Finally, output the obfuscated circuit as iO(C) =
({ctbi}i∈[k],b∈{0,1}, ctk+1,

crs, U).
– Evaluation: On input x ∈ {0, 1}k, evaluate the obfuscated circuit iO(C) as

computing Dec(crs, U, ctx1
1 , . . . , ctxk

k , ctk+1).

The correctness of our iO construction directly follows that of MI-LFE
scheme. By the correctness of MI-LFE, the decryption result should be
U(x1, . . . , xk, C) = C(x1, . . . , xk).

Theorem 3. Assuming MI-LFE is (k+1, 2)-IND-secure (c.f. Definition 5), then
the above construction is a secure indistinguishability obfuscator for all circuits.

Given an iO adversary A, we use it to construct an MI-LFE adversary B,
the full proof is completed in full version.

MIFE from MI-LFE. We have shown that private-key MI-LFE implies iO. Since
Goldwasser et al. have proved that MIFE can be constructed from the indistin-
guishable obfuscation and one-way function, the detour inspires us that MI-LFE
can imply MIFE. However, one can imagine a more directly reduction from n+1
inputs private-key MI-LFE to n inputs private-key MIFE. Here we present the
intuition. One can fix the circuit of MI-LFE as a universal circuit U . Given the
description of a function f , we should have U(f, x1, . . . , xn) = f(x1, . . . , xn).
The master secret key and the encryption key of MIFE are both the secret key
of the MI-LFE scheme. The decryption key for function f of the MIFE is a MI-
LFE ciphertext c0 of the description of the function f respect to digestU . The
encryption of MIFE of message x1, . . . , xn are the MI-LFE ciphertexts c1, . . . , cn

of the same messages respect to digestU . The decryption of the MIFE is just
the MI-LFE evaluation on the ciphetexts c0 and c1, . . . , cn. Such an implication
alone is trivial, but as a byproduct, MI-LFE could be used for all the applications
of MIFE, which might provide a new route for the special cases.

5 Constructing Private-Key MI-LFE

The components we use in the construction include: (1) an indistinguishable
obfuscator iO [16](of polynomial p of its input size), (2) a NIWI proof sys-
tem (NIWI.crsGen,NIWI.Prove,NIWI.Verify), (3) a perfectly binding commit-
ment scheme Com, (4) a semantically secure public-key encryption scheme
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PKE = (PKE.Setup,PKE.Enc,PKE.Dec) and (5) a secure laconic function evalu-
ation LFE = (LFE.crsGen, LFE.Compress, LFE.Enc, LFE.Dec) [31].

We denote the length of ciphertext in PKE by �ct. In particular, for a circuit
C : ({0, 1}k)n → {0, 1}� of circuit size |C| = ω(p(n, k, λ)) and depth d, the
description of our MI-LFE construction is as follows:

– crsGen(1λ, C.params = (1n, 1k, 1d)): The CRS generation algorithm first
computes a common random string crs1 ← NIWI.crsGen(1λ) for the
NIWI proof system. Next, it computes a common random string crs2 ←
LFE.crsGen(1λ, (1n×k, 1d)). The algorithm outputs crs = (crs1, crs2).

– KeyGen(1λ, crs): The key generation algorithm first computes two key pairs
(pk1, sk1) ← PKE.Setup(1λ) and (pk2, sk2) ← PKE.Setup. Then it computes
the following commitments:

zj
1,i ← Com(02�ct),∀i ∈ [n], j ∈ [q], z2 ← Com(0; r0)

It outputs SK = (pk1, pk2, sk1, {zj
1,i}, z2, r0), where r0 is the randomness used

to compute the commitment z2.
– Compress(crs, C): The deterministic algorithm compression runs and outputs
digestC ← LFE.Compress(crs2, C).

– Enc(crs, digestC ,SK, i, xi): On input crs, digest digestC , secret key SK, index
i and input xi, the encryption algorithm.
1. Choose two random strings ri,1, ri,2, and compute ci,1 = PKE.Enc(pk1,

xi; ri,1) and ci,2 = PKE.Enc(pk2, xi; ri,2).
2. Generate proof π ← NIWI.Prove(crs1, y, w) for statement y =

(ci,1, ci,2, pk1, pk2, {zj
1,i}i∈[n],j∈[q], z2):

• Either ci,1 and ci,2 are encryptions of the same message and z2 is a
commitment to 0;

• Or there exists j ∈ {1, . . . , q}, such that zj
1,i is a commitment to

ci,1 ‖ ci,2.
A witness ωreal = (m, ri,1, ri,2, r0) for the first part of the statement,
referred as the real witness, includes the message m, and the randomness
ri,1 and ri,2 used to compute the ciphertexts ci,1 and ci,2, respectively, and
the randomness r0 used to compute z2. A witness ωtd = (j, rj

1,i) for the
second part of the statement, referred as the trapdoor witness, includes
an index j and the randomness rj

1,i used to compute zj
1,i.

3. Compute iO(GdigestC ), defined in Fig. 3.
Output ciphertext CTi = (ci,1, ci,2, πi, iO(GdigsetC )).

– Dec(crs, C,CT1, . . . ,CTn): The decryption algorithm first runs

ct ← iO(GdigsetC )((c1,1, c1,2, π1), . . . , (cn,1, cn,2, πn))

Then it computes and outputs y = LFE.Dec(crs2, C, ct′).

Lemma 2 (Correctness). Assuming the correctness of the underlying seman-
tically secure PKE, laconic function evaluation LFE and indistinguishability
obfuscation iO, the completeness property of NIWI, then the construction above
is correct.
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GdigestC [SK, digestC ]((c1,1, c1,2, π1), . . . , (cn,1, cn,2, πn))

Input: PKE ciphertexts and proof pairs (ci,1, ci,2, πi), for i ∈ [n].
Hardcoded: secret key SK and digest digestC .

(a) For i = 1 to n, let yi = (ci,1, ci,2, pk1, pk2, {zj
1,i}, z2) be the statement associate

with the proof string πi. If NIWI.Verify(crs1, yi, πi) = 0, then stop and output ⊥;
Otherwise continue to i + 1.

(b) Compute xi = PKE.Dec(sk1, ci,1).
(c) Outputs ct ← LFE.Enc(crs2, digestC , (x1, . . . , xn)).

Fig. 3. Description of circuit GdigestC

Proof. Now, by the perfect completeness of NIWI, the honest encryption algo-
rithm can use the real witness ωreal = (m, ri,1, ri,2, r0) to generate the proof
string πi, such that NIWI.Verify(crs1, yi, πi) = 1, for every i ∈ [n]. Then, by the
property of iO and the correctness of the underlying PKE and LFE, we have:

y = LFE.Dec(crs2, C, ct′)
= LFE.Dec(crs2, C, iO(GdigsetC )((c1,1, c1,2, π1), . . . , (cn,1, cn,2, πn)))

= LFE.Dec(crs2, C, LFE.Enc(crs2, digestC , x1 ‖ . . . ‖ xn)) = C(x1, . . . , xn)

Lemma 3. (Laconic Property). According to the efficiency of underlying
PKE, NIWI, iO (assume iO is of polynomial p to its input size), and LWE-based
LFE [31], our construction above is laconic for unbounded-size circuit class C.

Proof. Now, for a circuit C ∈ C : ({0, 1}k)n → {0, 1}� of circuit size |C| =
ω(p(n, k, λ)) and depth d, and security parameter λ, according to the parameters
of LWE-based LFE, we analysis the parameters in our construction as follows:

– The crs consists of crs1 forNIWI, and crs2 of size (n×k)·poly(λ, d) for LWE-based
LFE. Hence, the size of crs is much smaller than the circuit size of C.

– The digest is of size poly(λ) for LWE-based LFE. The SK consists of
(pk1, pk2, sk1) forPKE encryption scheme, commitments {zj

1,i} and z2, and ran-
domness r0. Then, both the size of the digest and SK is independent with |C|.

– The encryption algorithm consists of generating two PKE encryptions, a NIWI
proof string and an indistinguishable obfuscation for a circuit. The generation
of two PKE encryptions and the corresponding proof string is independent
with the circuit size of C. And, the main size of the circuit been obfuscated
is the size of LWE-based LFE.Enc, about Õ(n × k + �) · poly(λ, d). Then, the
obfuscation of the circuit should be around p(λ, n, k, �, d). Therefore, both the
run-time of the encryption algorithm and the size of the ciphertext are much
smaller than the circuit size |C| = ω(p(n, k, λ)) of circuit C.

As the discussion above, we conclude that our construction is laconic.

Theorem 4. (Security Proof). Let q = q(λ) be such that qn = poly(λ),
Then assume indistinguishability obfuscator for all polynomial-size computable
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circuits, one-way functions and selectively (adaptively) secure laconic function
evaluation, the above construction is (n, q)-SIM selectively (adaptively) secure.

Proof. (Proof Sketch). To prove the above theorem, we first construct an ideal
world simulator S.

Simulator S Recall the security definition in Fig. 1, the simulator is
given the common reference string crs, circuit C, digest digestC , and values
{C(xj1

1 , . . . , xjn
n )} for j1, . . . , jn ∈ [q]. The simulator S works as follows:

Simulate PKE Encryptions of Challenge Message:
– For all i ∈ [n] and j ∈ [q], S computes cj

i,1 ← PKE.Enc(pk1, 0) and
cj
i,2 ← PKE.Enc(pk2, 0).

– S computes z2 ← Com(1).
Simulate NIWI proof for PKE Encryptions of Challenge Message:

– For every i ∈ [n], j ∈ [q], S computes zj
1,i ← Com(cj

i,1 ‖ cj
i,2). Let rj

1,i

denote the randomness used to compute zj
1,i.

– Let yj
i = (cj

i,1, c
j
i,2, pk1, pk2, {zj

1,i}, z2). S computes the proof string πj
i ←

NIWI.Prove(crs1, y
j
i , ω

j
i ), where the witness ωj

i corresponds to the trap-
door witness (j, rj

1,i). That is, ωj
i establishes that zj

1,i is a commitment to
cj
i,1 ‖ cj

i,2.
Simulate Indistinguishable Obfuscation: S computes indistinguishable

obfuscation of the circuit SIM.GdigestC , where SIM.GdigestC is defined in Fig. 4

Then we describe a sequence of hybrid experiments H0, . . . ,H7, where H0

corresponds to the real world experiment and H7 corresponds to the ideal world
experiment. For every i, we will prove that the output of Hi is computationally
indistinguishable from the output of Hi+1.

Hyb H0: This is the real world experiment.
Hyb H1: This experiment is the same as H0 except that in every challenge

ciphertext CTj
i = (cj

i,1, c
j
i,2, π

j
i , iO(GdigestC ), the indistinguishable obfusca-

tion of GdigestC is replaced by the indistinguishable obfuscation of G′, G′ is
defined in Fig. 5.
The indistinguishability between hybrids H0 and H1 follows from the prop-
erty of indistinguishable obfuscator and security of laconic function evalua-
tion. We refer to the full version for more details.

Hyb H2: This experiment is the same as H1 except that we start generating
zj
1,i as a commitment to cj

i,1 ‖ cj
i,2 rather than 02�ct , for all i ∈ [n], j ∈ [q].

The indistinguishability between hybrids H1 and H2 follows directly from
the computational hiding property of the commitment scheme, since that
there is nothing else corresponding to the commitments {zj

1,i} in these two
experiments.

Hyb H3: This experiment is the same as H2 except that in every challenge
ciphertext CTj

i = (cj
i,1, c

j
i,2, π

j
i , iO(G′), the corresponding proof string πj

i is
computed using a trapdoor witness (j, rj

1,i), where rj
1,i be the randomness

to generate zj
1,i ← Com(cj

i,1 ‖ cj
i,2), for all i ∈ [n], j ∈ [q].
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SIM.GdigestC [{(cj
i,1, c

j
i,2)}, {zj

1,i}, z2, {C(xj1
1 , . . . , xjn

n )}]((c1,1, c1,2, π1), . . . , (cn,1, cn,2, πn

))
Input: PKE ciphertext and proof pairs (ci,1, ci,2, πi), for i ∈ [n].
Hardcoded: statements of challenge ciphertext (cj

i,1, c
j
i,2, pk1, pk2, {zj

1,i}, z2) for i ∈
[n], j ∈ [q], and values {C(xj1

1 , . . . , xjn
n )} for j1, . . . , jn ∈ [q].

1. For every i = 1, . . . , n, let yi = (ci,1, ci,2, pk1, pk2, {zj
1,i}, z2) be the statement

corresponding to the proof string πi. If NIWI.Verify(crs1, yi, πi) = 0, then stop
and output ⊥; Otherwise continue to i + 1.

2. If ∃(j1, . . . , jn), s.t for every i ∈ [n]: ci,1 = cji
i,1, and ci,2 = cji

i,2, then stop and
output LFE.SIM(crs, digestC , C, C(xj1

1 , . . . , xjn
n )); Otherwise output ⊥.

Fig. 4. Description of the Circuit SIM.GdigestC

The indistinguishability between hybrids H2 and H3 follows directly from
the witness indistinguishable property of NIWI proof system.

Hyb H4: This experiment is the same as H3 except that we start generating z2
as a commitment to 1 instead of 0.
The indistinguishability between hybrids H3 and H4 follows directly from
the computational hiding property of the commitment scheme.

Hyb H5: This experiment is the same as H4 except that in the ciphertexts of
PKE encryption for challenge message pairs, the second ciphertext cj

i,2 is an
encryption of zeros, i.e., cj

i,2 ← PKE.Enc(pk2, 0).
The indistinguishability between hybrids H4 and H5 follows immediately
from the semantic security of PKE encryption scheme.

Hyb H6: This experiment is the same as H5 except that in each challenge
ciphertext CTj

i = (cj
i,1, c

j
i,2, π

j
i , iO(G′), the indistinguishable obfuscation of

G′ is replaced by the indistinguishable obfuscation of SIM.GdigestC .
The indistinguishability between hybrids H5 and H6 follows from the prop-
erty of indistinguishable obfuscator, the perfectly binding property of the
commitment scheme, and the statistical soundness property of NIWI proof
system. We refer to the full version for formal proof.

Hyb H7: This experiment is the same as H6 except that in the ciphertexts of
PKE encryption for challenge message pairs, the first ciphertext cj

i,1 is an
encryption of zeros, i.e., cj

i,1 ← PKE.Enc(pk1, 0). Note that this is the ideal
world experiment.
The indistinguishability between hybrids H6 and H7 follows immediately
from the semantic security of PKE encryption scheme.

This completes the security proof of our construction.
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G′[SK, digestC , {(cj
i,1, c

j
i,2)}, {C(xj1

1 , . . . , xjn
n )}]((c1,1, c1,2, π1), . . . , (cn,1, cn,2, πn))

Input: PKE ciphertext and proof pairs (ci,1, ci,2, πi), for i ∈ [n].
Hardcoded: secret key SK, digest digestC , PKE encryptions for challenge message
{(cj

i,1, c
j
i,2)} and values {C(xj1

1 , . . . , xjn
n )}.

1. For every i = 1, . . . , n, let yi = (ci,1, ci,2, pk1, pk2, {zj
1,i}, z2) be the statement

corresponding to the proof string πi. If NIWI.Verify(crs1, yi, πi) = 0, then stop
and output ⊥; Otherwise continue to i + 1.

2. If ∃(j1, . . . , jn), s.t for every i ∈ [n]: ci,1 = cji
i,1, and ci,2 = cji

i,2, then stop and
output LFE.SIM(crs, digestC , C, C(xj1

1 , . . . , xjn
n )); Otherwise continue to the next

step.
3. Compute xi = PKE.Dec(sk1, ci,1).
4. Outputs ct′ ← LFE.Enc(crs2, digestC , (x1, . . . , xn)).

Fig. 5. Description of the circuit G′

6 Conclusion

The client-optimized MPC is the main motivation for this work, which yields
the first study regarding multi-input laconic function evaluation. We propose
definitions of variant multi-input laconic function evaluation and then explore
construction and impossibility result of variants of it. Specifically, We show that
public-key MI-LFE implies VBB obfuscation for all circuits, a primitive that is
impossible to achieve. Then we build private-key MI-LFE from iO. The use of
iO is inevitable here as private-key MI-LFE can be used to construct witness
encryption or iO, which do not have constructions based on standard assump-
tions yet. Therefore, an interesting open problem is to explore MI-LFE for some
special function families, such as inner product, or weaken the security require-
ment of MI-LFE to make it plausible to have a construction based on standard
assumptions.
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witness encryption and null-io from standard assumptions. In: Catalano, D., De
Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 425–441. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98113-0 23

12. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

13. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor,
M., (ed.) ITCS 2014, pp. 1–12. ACM, January 2014

14. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and
indistinguishability obfuscation for RAM programs. In: Servedio, R.A., Rubinfeld,
R., (eds.) 47th ACM STOC, pp, 429–437. ACM Press, June 2015

15. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learn-
ing with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 31

16. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

17. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 29

18. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 480–
511. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0 18

https://doi.org/10.1007/978-3-030-03807-6_6
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/978-3-662-46447-2_14
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-319-98113-0_23
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-44371-2_29
https://doi.org/10.1007/978-3-662-49099-0_18


388 B. Pang et al.

19. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J., (eds.) 45th ACM STOC, pp. 467–
476. ACM Press, June 2013

20. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009

22. Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance indepen-
dent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 426–443. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 24

23. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

24. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

25. Goldwasser, S., Goyal, V., Jain, A., Sahai, A.: Multi-input functional encryption.
Cryptology ePrint Archive, Report 2013/727 (2013). http://eprint.iacr.org/2013/
727

26. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Boneh, D., Roughgarden,
T., Feigenbaum, J., (eds.) 45th ACM STOC, pp. 555–564. ACM Press, June 2013

27. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

28. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: Servedio, R.A., Rubinfeld, R., (eds.) 47th
ACM STOC, pp. 419–428. ACM Press, June 2015

29. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-
trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49387-8 17

30. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

31. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In:
Thorup, M. (ed.) 59th FOCS, pp. 859–870. IEEE Computer Society Press, October
(2018)

32. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-662-44371-2_24
https://doi.org/10.1007/978-3-662-44371-2_24
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-55220-5_32
http://eprint.iacr.org/2013/727
http://eprint.iacr.org/2013/727
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26

	Multi-input Laconic Function Evaluation
	1 Introduction
	1.1 Additional Related Works

	2 Preliminaries
	3 Multi-input LFE: Syntax and Security Definition
	4 Hardness of MI-LFE
	5 Constructing Private-Key MI-LFE
	6 Conclusion
	References




