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Abstract. In comparison with conventional content delivery networks,
peer-to-peer (p2p) content delivery is promising to save cost and handle
high peak-demand, and can also complement the decentralized storage
networks such as Filecoin. However, reliable p2p delivery requires proper
enforcement of delivery fairness, i.e., the deliverers should be rewarded
according to their in-time delivery. Unfortunately, most existing studies
on delivery fairness are based on non-cooperative game-theoretic assump-
tions that are arguably unrealistic in the ad-hoc p2p setting.

We for the first time put forth an expressive yet still minimalist secu-
rity notion for desired fair p2p content delivery, and give two efficient
solutions FairDownload and FairStream via the blockchain for p2p down-
loading and p2p streaming scenarios, respectively. Our designs not only
guarantee delivery fairness to ensure deliverers be paid (nearly) propor-
tional to their in-time delivery but also ensure the content consumers
and content providers are fairly treated. The fairness of each party can
be guaranteed when the other two parties collude to arbitrarily misbe-
have. Moreover, the systems are efficient in the sense of attaining nearly
asymptotically optimal on-chain costs and deliverer communication.

We implement the protocols and build the prototype systems atop
the Ethereum Ropsten network. Extensive experiments done in LAN
and WAN settings showcase their high practicality.
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1 Introduction

The peer-to-peer (p2p) content delivery systems are permissionless decentral-
ized services to seamlessly replicate contents to the consumers. Typically these
systems encompass a large ad-hoc network of deliverers to overcome the band-
width bottleneck of the original content providers. In contrast to conventional
pre-planned content delivery networks such as Akamai [1], p2p content delivery
can crowdsource unused bandwidth resources of tremendous Internet peers, thus
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having a wide array of benefits including robust service availability, bandwidth
cost savings, and scalable peak-demand handling [2,3]. Recently, renewed atten-
tions to p2p content delivery are gathered [2,19] due to the fast popularization
of decentralized storage networks (DSNs) [5,17,34,41,42]. Indeed, most DSNs
feature decentralized and robust content storage, but lack well-designed content
delivery mechanisms catering for a prosperous content consumption market in
the p2p setting, where the content shall not only be reliably stored but also must
be always quickly retrievable despite potentially malicious participants [18].

The primary challenge of designing a proper delivery mechanism for comple-
menting DSNs is to realize the strict guarantee of “fairness” against adversar-
ial peers. In particular, it has to promise well-deserved items (e.g., retrieval of
desired contents, rewards to spent bandwidth, payment for providing valid con-
tents) to all participants [14]. Otherwise, free-riding parties can abuse the sys-
tem [15,30,35] and cause rational ones to escape, eventually resulting in possible
system collapse [20]. We reason as follows to distinguish two types of quintessen-
tial fairness, namely delivery fairness and exchange fairness, in the p2p content
delivery setting where three parties, i.e., content provider, content deliverer and
content consumer, are involved.

Exchange Fairness is not Delivery Fairness. Exchange fairness [4,7,10,
12,28,31], specifically for digital goods (such as signatures, videos), emphasizes
that one party’s input shall keep confidential until it does learn the other party’s
input. Unfortunately, in the p2p content delivery setting, merely considering it
becomes insufficient, because a content deliverer would expect to receive rewards
proportional to the bandwidth resources that it spends. Noticeably, exchange
fairness fails to capture such new desiderata related to bandwidth cost, since it
allows a deliverer to receive no reward at all after transferring a huge amount of
encrypted data to the other party, which clearly breaks the deliverer’s expectation
on being well-paid but does not violate exchange fairness at all.

Consider FairSwap [12] as a concrete example: the deliverer first sends the
encrypted content and semantically secure digest to the consumer, then waits
for a message from the consumer (via blockchain) to confirm the receival of these
ciphertexts, then the deliverer can reveal his encryption key on-chain; but, in case
the consumer aborts, all bandwidth used to send ciphertexts is wasted, causing
no reward for deliverer. A seemingly enticing way to mitigate the above attack
could be splitting the content into n smaller chunks and run FairSwap for each
chunk, but the on-chain cost would grow linearly in n, resulting in prohibitive
on-chain costs for large-size content like movies. Adapting other fair exchange
protocols for delivery fairness would encounter similar issues. Hence, the efficient
construction satisfying delivery fairness remains unclear.

Thus, to capture the special fairness required by deliverers, we formulate
delivery fairness in Sect. 4, stating that deliverers can receive rewards (nearly)
proportional to the contributed bandwidth for delivering data to the consumers.

Insufficiencies of Existing “Delivery Fairness”. A range of literature [29,
38–40] studied problems similar to delivery fairness in p2p delivery. However,
to our knowledge, no one assures delivery fairness in the cryptographic sense
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as we seek to do. In particular, they [29,38–40] were studied in the non-
cooperative game-theoretic settings where independent attackers free ride sponta-
neously without communication of their strategies, and the attackers are rational
with the intentions to maximize their own benefits. Therefore, it boldly ignores
an adversary that intends to break the system. Unfortunately, such rational
assumptions are particularly elusive to stand in ad-hoc p2p systems accessible
by all malicious evils. The occurrences of massive real-world attacks in open sys-
tems [13,32] hint us how vulnerable the earlier heavy assumptions can be and
further weaken the confidence of applying the prior art to real-world p2p content
delivery.

Lifting for “Exchange Fairness” Between Provider and Consumer.
Besides the natural delivery fairness, it is equally vital to ensure exchange fairness
for providers and consumers in a basic context of p2p content delivery, especially
with the end goal to complement DSNs and enable some content providers to sell
contents to consumers with delegating costly delivery/storage to a p2p network.
In particular, the content provider should be guaranteed to receive payments
proportional to the amount of correct data learned by the consumer; vice versa,
the consumer only has to pay if indeed receiving qualified content.

Näıve attempts of tuning a fair exchange protocol [4,12,28,31] into p2p con-
tent delivery can guarantee neither delivery fairness (as analyzed earlier) nor
exchange fairness: simply running fair exchange protocols twice between the
providers and the deliverers and between the deliverers and the consumers,
respectively, would leak valuable contents, raising the threat of massive con-
tent leakage. Even worse, this idea disincentivizes the deliverers as they have
to pay for the whole content before making a life by delivering the content to
consumers.

Our Contributions. Overall, it remains an open problem to realize such strong
fairness guarantees in p2p content delivery to protect all providers, deliverers,
and consumers.1 We for the first time formalize such security intuitions into a
well-defined cryptographic problem on fairness and present a couple of efficient
blockchain-based protocols to solve it. In sum, our contributions are:

– We formulate the problem of p2p content delivery with desired security goals,
which capture the special fairness to ensure that each party (i.e., the content
provider, deliverer, and consumer) is fairly treated even if the other parties
arbitrarily collude or are corrupted.

– We put forth a novel delivery fairness notion dubbed verifiable fair delivery
(VFD) to quantify one party’s bandwidth contribution. With the instantia-
tion of VFD, we propose the blockchain-enabled p2p content delivery protocol
FairDownload, which allows: (i) the consumers can download, i.e., view-after-
delivery, the content with minimum involvement of the provider; (ii) one-time

1 More thorough discussions about the insufficiencies of some pertinent studies (includ-
ing gradual-release based fair exchange [7,10], blockchain-based fair exchange/MPC
[6,9,12,25,31], fair off-chain payment channels [11,33], and some known decentral-
ized content delivery schemes [2,19]) are provided in the online full version [21].
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contract deployment and preparation while repeatable delivery of the same
content to different consumers.
To further reduce the latency in FairDownload and accommodate the stream-
ing scenario where the consumers expect view-while-delivery, we propose
another protocol called FairStream, such that every data chunk can be
retrieved by consumers in O(1) communication rounds. Though FairStream
requires more involvement of an on-line content provider, the provider’s online
workload remains much smaller than delivering the whole content by itself.

– Both FairDownload and FairStream attain only Õ(η + λ) on-chain computa-
tional costs even in the worst case, which only relates to the small chunk size
parameter η and the even smaller security parameter λ. Moreover, consid-
ering the fact that λ � η, both protocols essentially realize asymptotically
optimal deliverer communication complexity, as the deliverer only has to send
O(η + λ) bits amortized for each η-bit chunk.

– We also implement FairDownload and FairStream with making various non-
trivial optimizations to reduce their critical on-chain cost.2 Extensive exper-
iments in WAN and LAN settings showcase their real-world applicability.

2 Preliminaries

Notations. Let [n] denote {1, . . . , n}, [a, b] denote {a, . . . , b}, x||y denote con-
catenating x and y, ←$ denote uniformly random sampling, and � denote the
prefix relationship.
Global ledger. It provides the primitive of cryptocurrency that can deal with
“coin” transfers transparently. Specifically, each entry of the dictionary ledger[Pi]
records the balance of the party Pi, and is global (which means it is accessible by
all system participants including the adversary). Moreover, the global dictionary
ledger can be a subroutine of the so-called smart contract to transact “coins” to
a designated party when some conditions are met.
Cryptographic Primitives. We consider: (i) a hash function H : {0, 1}∗ →
{0, 1}λ modeled as a random oracle; (ii) a semantically secure (fixed-length)
symmetric encryption scheme consisting of (SE.KGen,SEnc,SDec); (iii) an exis-
tential unforgeability under chosen message attack (EU-CMA) secure digital sig-
nature scheme consisting of (SIG.KGen,Sign,Verify); (iv) a Merkle tree scheme
of (BuildMT,GenMTP,VerifyMTP); (v) a specific verifiable public key encryp-
tion scheme VPKE consisting of (VPKE.KGen,VEnc,VDec,ProvePKE,VerifyPKE)
allowing the decryptor to produce a proof besides the plaintext, thus attest-
ing correct decryption in a zero-knowledge fashion, i.e., without leaking private
key [8].

3 Warm-Up: Verifiable Fair Delivery

We first warm up and set forth a building block termed verifiable fair delivery
(VFD), which enables an honest verifier to validate that a sender indeed transfers
2 Code availability: https://github.com/Blockchain-World/FairThunder.git.

https://github.com/Blockchain-World/FairThunder.git
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some amount of data to a receiver. It later acts as a key module in the fair
p2p content delivery protocol (in Sect. 5). The high level idea of VFD lies in: a
receiver needs to send back a signed “receipt” in order to acknowledge a sender’s
bandwidth contribution and continuously receives the next data chunk. Consider
the data chunks of same size η are transferred sequentially starting from the first
chunk, the sender can always use the latest receipt containing the chunk index to
prove to a verifier about the contribution. Intuitively the sender at most wastes
bandwidth of transferring one chunk.

Syntax. The VFD protocol is among an interactive poly-time Turing-machine
(ITM) sender S, an ITM receiver R, and a non-interactive Turing-machine ver-
ifier V, and follows the syntax:

– Sender. S can be activated by an interface S.send() with inputting a sequence
of n data chunks and their corresponding validation strings, denoted by
((c1, σc1), . . . , (cn, σcn)), and there exists an efficient and global predicate
Ψ(i, ci, σci) → {0, 1} to check whether ci is the i-th valid chunk due to σci ;
once activated, S interacts with R and opens an interface S.prove() that can
be invoked to generate a proof π indicating the number of sent chunks;

– Receiver. R can be activated by an interface R.recv() with the input of the
global predicate Ψ(·) to interact with S, and outputs a sequence of ((c1, σc1),
. . . , (cn′ , σcn′ )), where n′ ∈ [n] and every (ci, σci) is valid due to Ψ(·);

– Verifier. V takes as input the proof π generated by S.prove(), and outputs
an integer ctr ∈ {0, · · · , n}.

Security. The VFD protocol must satisfy the following security requirements:

– Termination. If at least one of S and R is honest, the VFD protocol termi-
nates within at most 2n rounds, where n is the number of content chunks.

– Completeness. If S and R are both honest and activated, after 2n rounds,
S is able to generate a proof π that can be verified by V to output ctr = n,
while R can output ((c1, σc1), . . . , (cn, σcn)), which is same to S’s input.

– Verifiable η delivery fairness. When one of S and R maliciously aborts,
VFD shall satisfy the following delivery fairness requirements:

• Verifiable delivery fairness against S∗. The honest receiver R will always
receive the valid sequence (c1, σc1), . . . , (cctr, σcctr) if the corrupted S∗ can
produce the proof π that enables V to output ctr.

• Verifiable delivery fairness against R∗. The honest sender S can always
generate a proof π, which enables V to output at least (ctr − 1) if the
corrupted R∗ receives the valid sequence (c1, σc1), . . . , (cctr, σcctr). At most
S wastes bandwidth for delivering one content chunk of η-bit size.

VFD protocol ΠVFD. We consider the authenticated setting where the sender
S and the receiver R have generated public-private key pairs (pkS , skS) and
(pkR, skR), respectively, and they have announced the public keys to bind to
themselves. Then, VFD with the global predicate Ψ(·) can be realized by ΠVFD
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hereunder among S, R and V against probabilistic poly-time (P.P.T.) and static
adversary in the stand-alone setting3 with the synchronous network assumption:

– Construction of S. The sender, after activated via S.send() with the input
((c1, σc1), . . . , (cn, σcn)), pkS and pkR, starts a timer TS lasting two syn-
chronous rounds, initializes a variable πS := null, and executes as follows:

• For each i ∈ [n]: sends (deliver, i, ci, σci) to R, and waits for (receipt, i, σi
R)

from R. If TS expires before receiving the receipt, breaks the iteration;
otherwise S verifies whether Verify(receipt||i||pkR||pkS , σi

R, pkR) ≡ 1 or
not, if true, resets TS , outputs πS := (i, σi

R), and continues to run the
next iteration (i.e., increasing i by one); if false, breaks the iteration;

• Upon S.prove() is invoked, it returns πS as the VFD proof and halts.
– Construction of R. The receiver, after activated via R.recv() with the input

pkS and (pkR, skR), starts a timer TR lasting two synchronous rounds and
operates as: for each j ∈ [n]: R waits for (deliver, j, cj , σcj ) from S and
halts if TR expires before receiving the deliver message; otherwise R veri-
fies whether Ψ(j, cj , σcj ) ≡ 1 or not; if true, resets TR, outputs (cj , σcj ), and
sends (receipt, i, σi

R) to S where σi
R ← Sign(receipt||i||pkR||pkS , skR), halts if

false. Note that Ψ(·) is efficient as it just performs a signature verification.
– Construction of V. Upon the input πS , the verifier V parses it into (ctr, σctr

R ),
and checks whether Verify(receipt||ctr||pkR||pkS , σctr

R , pkR) ≡ 1 or not; if true,
it outputs ctr, or else outputs 0. Recall that Verify is to verify signatures.

The following lemma states the security of the above VFD protocol, the
detailed proof of which is presented in the online full version [21].

Lemma 1. In the synchronous authenticated network and stand-alone setting,
ΠVFD satisfies termination, completeness and the verifiable η delivery fairness
against static P.P.T. adversary corrupting one of the sender and the receiver.

4 Formalizing P2P Content Delivery

4.1 System Model

Participating Parties. We consider the following entities (i.e., interactive Tur-
ing machines by cryptographic convention) in the context of p2p content delivery:

– Content Provider P is an entity that owns the original content m composed
of n chunks,4 satisfying a public known predicate φ(·),5 and P is willing to

3 To defend against replay attack in concurrent sessions, it is trivial to let the authenti-
cated messages include a session id sid field, which, for example, can be instantiated
by the hash of the transferred data identifier rootm, the involved parties’ addresses
and an increasing-only nonce, namely sid := H(rootm||V address||pkS ||pkR||nonce).

4 Remark that the content m is dividable in the sense that each chunk is independent
to other chunks, e.g., the chunk is a small 10-s video fragment.

5 Throughout this paper, we consider φ is in the form of φ(m) = [root(BuildMT(m)) ≡
rootm], where root is the Merkle tree root of m. In practice, it can be acquired from
a semi-trusted third party, e.g., VirusTotal [23] or BitTorrent forum sites [28].
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sell to the users of interest. Also, P would like to delegate the delivery of m
to a deliverer with promise to pay BP for each successfully delivered chunk.

– Content Deliverer D contributes its idle bandwidth resources to deliver the
content on behalf of the provider P and would receive the payment propor-
tional to the amount of delivered data.

– Content Consumer C is an entity that would pay BC for each chunk in the
content m by interacting with P and D.

Adversary A. We consider the adversary with the following standard abil-
ities [24]: (i) Static corruptions: A can corrupt some parties only before the
protocol executions; (ii) Computationally bounded: A is restricted to P.P.T. algo-
rithms; (iii) Synchronous authenticated channel: it describes the ability of A on
controlling communications. W.l.o.g., we consider a global clock in the system,
and A can delay the messages up to a clock round [25,27].
Arbiter Smart Contract G. The system is in a hybrid model with oracle access
to an arbiter smart contract G, which is a stateful ideal functionality that leaks
all its internal states to the adversary A and all parties, and can check some
immutable conditions to transact “coins” over the cryptocurrency ledger, thus
“mimicking” the contracts in real life transparently. In practice, the contract can
be instantiated via real-world blockchains such as Ethereum [43]. Description of
G in the paper follows the conventional pseudo-code notations in [27].

4.2 Design Goals

Syntax. A fair p2p content delivery protocol Π = (P,D, C) is a tuple of three
P.P.T. interactive Turing machines (ITMs) consisting of two explicit phases:

– Preparation phase. The provider P takes as input public parameters and the
content m = (m1, . . . ,mn) ∈ {0, 1}η×n that satisfies φ(m) ≡ 1, where η is
chunk size in bit and n is the number of chunks, and it outputs some auxiliary
data, e.g., encryption keys; the deliverer D takes as input public parameters
and outputs some auxiliary data, e.g., encrypted content; the consumer C
does not involve in this phase. Note P deposits a budget of n · BP in ledger
to incentivize D so it can minimize bandwidth usage in the next phase.

– Delivery phase. The provider P and the deliverer D take as input their aux-
iliary data obtained in the preparation phase, respectively, and they would
receive the deserved payment; the consumer C takes as input public parame-
ters and outputs the content m with φ(m) ≡ 1. Note C has a budget of n ·BC
in ledger to “buy” the content m satisfying φ(m) ≡ 1, where BC > BP .

Properties. Besides, the protocol shall guarantee the following properties.

Completeness. For any content predicate φ(m) = [root(BuildMT(m)) ≡ rootm],
conditioned on P,D and C are all honest, the protocol Π attains: (i) C obtains
the content m satisfying φ(m) ≡ 1, and the balance of ledger[C] decreases by
n · BC ; (ii) D receives the payment n · BP over the global ledger; (iii) P gets the
payment n · (BC − BP), as it receives n · BC from C and pays n · BP to D.
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Fairness. The protocol Π should satisfy the following fairness requirements:

– Consumer Fairness. The honest consumer C is ensured that: the ledger[C]
decreases by 	 · BC only if C receives a sequence of chunks (m1, . . . ,m�) � m
where φ(m) ≡ 1, i.e., C pays proportional to valid chunks it de facto receives.

– Deliverer η-Fairness. The honest deliverer D is assured that: if D sent overall
O(	 · η + 1) bits during the protocol, D should at least obtain the payment of
(	 − 1) · BP . In other words, the unpaid delivery is bounded by O(η) bits.

– Provider η-Fairness. The honest provider P is guaranteed that: if A can out-
put η · 	 bits prefixed in the content m, P should at least receive (	−1) ·(BC −
BP) net income. Intuitively, P is ensured that at most O(η)-bit content are
revealed without being well paid.

Confidentiality Against Deliverer. A malicious D∗ corrupted by A cannot
output P’s original content in a delivery session even after receiving all protocol
scripts and all internal states leaked by the contract. Note that confidentiality is
not captured by fairness, as it is trivial to see that a protocol satisfying fairness
might not have confidentiality: upon all payments are cleared and the consumer
receives the whole content, the protocol lets the consumer send the content to
the deliverer.

Timeliness. When at least one of the parties P, D and C is honest (i.e., others
are corrupted by A), the honest ones are guaranteed to halt in O(n) synchronous
rounds where n is the number of content chunks. At completion or abortion of
the protocol, the fairness and confidentiality properties are always guaranteed.

Non-trivial Efficiency. We require the necessary efficiency to rule out possible
trivial solutions: (i) the messages sent to G from honest parties are uniformly
bounded by Õ(1) bits, which excludes a trivial way of directly delivering content
via smart contract; (ii) in the delivery phase, the messages sent by honest P are
uniformly bounded by n · λ bits, where λ is a small cryptographic parameter
such that n · λ is much smaller than the content size |m|. This makes P to save
bandwidth after preparation phase and excludes the idea of delivering by itself.

Remarks About Definition. It is worth noticing that: (i) the predicate φ(·)
is a public parameter; (ii) our fairness requirements have implied the case of
corrupting one party of P, D and C instead of two since A can always let some
corrupted one follow the original protocol; (iii) we do not consider the case that
all parties are corrupted; (iv) the deliverer and the provider might lose well-
deserved payment, but at most for one chunk, i.e., the level of unfairness is
strictly bounded; (v) though we focus on the case of a single content deliverer,
our formalism and design can be extended to capture multiple deliverers, e.g., by
cutting the content into multiple pieces and each piece is delegated to a distinct
deliverer, which forms a future extension; (vi) after the one-time preparation
phase, the delivery phase becomes repeatable.

In addition, one might wonder that a probably corrupted content provider
fails in the middle of a transmission, causing that the consumer does not get the
entire content but has to pay a lot. Nevertheless, this is not a serious worry in
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the peer-to-peer content delivery setting that aims to complement decentralized
content storage networks, because there essentially are a large number of deliver-
ers, and at least some of them can be honest. As such, if a consumer encounters
failures in the middle of delivery, it can iteratively ask another deliverer to start
a new session to fetch the remaining undelivered chunks. Moreover, our con-
structions in Sect. 5 and Sect. 6 allow the consumers to fetch the content from
any specific chunk instead of always starting from the first chunk, the expense
of which would be nearly proportional to the actual number of retrieved chunks.

5 FairDownload: Fair P2P Downloading

5.1 FairDownload Overview

At a high level, FairDownload is constructed around the module of verifiable fair
delivery (VFD) and operates in Prepare, Deliver and Reveal phases, as illustrated
in Fig. 1. The core ideas are: initially the provider P encrypts each chunk, signs
the encrypted chunks and delegates to the deliverer D; the consumer C and D
can run an instance of VFD, where the predicate Ψ(·) ensures each delivered
chunk is correctly signed by P; the arbiter smart contract G ledger

d (abbr. Gd)
shown in Fig. 2 can invoke VFD verifier to check the VFD proof and realize
whether D indeed delivers ctr chunks to C; P then presents to reveal the minimum
(i.e., a short Õ(λ)-bit message) number of elements (via our proposed structured
key derivation scheme composed of Algorithms 1, 2 and 4) on-chain, so that
C can use a small string to recover the decryption keys for all ctr chunks; the
revealed on-chain elements are encrypted by the consumer’s public key to ensure
confidentiality against malicious D; In case of dispute, C can complain to the
contract Gd via a short O(η + λ)-bit message to “prove” the error of decrypted
chunk and get refund, the on-chain cost of verifying which is O(log n) at worst.

Fig. 1. The execution flow of FairDownload protocol ΠFD.
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The Arbiter Contract Functionality Gledger
d for P2P Downloading

The arbiter contract Gd has access to the ledger, and it interacts with the provider P, the
deliverer D, the consumer C and the adversary A. It locally stores the times of repeatable
delivery θ, the number of content chunks n, the content digest rootm, the price BP , BC and
Bpf , the number of delivered chunks ctr (initialized as 0), addresses pkP , pkD , pkC , vpkC ,
revealed keys’ hash erkhash, state Σ and three timers Tround (implicitly), Tdeliver, and Tdispute.

Phase 1: Prepare
• On receive (start, pkP , rootm, θ, n,BP ,

BC,Bpf) from P:
- assert ledger[P] ≥ (θ · (n · BP + Bpf)) ∧

Σ ≡ ∅
- store pkP , rootm, θ, n,BP ,BC,Bpf

- let ledger[P] := ledger[P]−
θ · (n · BP + Bpf) and Σ := started

- send (started, pkP , rootm, θ, n,BP ,
BC,Bpf) to all entities

• On receive (join, pkD) from D:
- assert Σ ≡ started
- store pkD and let Σ := joined
- send (joined, pkD) to all entities

• On receive (prepared) from D:
- assert Σ ≡ joined, and let Σ := ready
- send (ready) to all entities

Phase 2: Deliver
• On receive (consume, pkC , vpkC) from C:

- assert θ > 0
- assert ledger[C] ≥ n · BC ∧ Σ ≡ ready
- store pkC , vpkC and let

ledger[C] := ledger[C] − n · BC
- start a timer Tdeliver and let

Σ := initiated
- send (initiated, pkC, vpkC) to all entities

• On receive (delivered) from C or Tdeliver

times out:
- assert Σ ≡ initiated
- send (getVFDProof) to D, and wait for

two rounds to receive (receipt, i, σi
C),

then execute verifyVFDProof() to let
ctr := i, and then assert 0 ≤ ctr ≤ n

- let ledger[D] := ledger[D] + ctr · BP
- let ledger[P] := ledger[P]+ (n − ctr) ·BP
- store ctr, let Σ := revealing, and send

(revealing, ctr) to all entities

Phase 3: Reveal
• On receive (revealKeys, erk) from P:

- assert Σ ≡ revealing

- store erk (essentially erk’s hash) and
start a timer Tdispute

- let Σ := revealed
- send (revealed, erk) to all entities

• Upon Tdispute times out:
- assert Σ ≡ revealed and current time

T ≥ Tdispute

- ledger[P] := ledger[P] + ctr · BC + Bpf

- ledger[C] := ledger[C] + (n − ctr) · BC
- let Σ := sold and send (sold) to all

entities
Below is the dispute resolution

• On receive (wrongRK) from C before
Tdispute times out:
- assert Σ ≡ revealed and current time

T < Tdispute

- if (ValidateRKeys(n, ctr, erk) ≡ false):
* let ledger[C] := ledger[C]+n ·BC +Bpf

* let Σ := not sold and send (not sold)
to all entities

• On receive (PoM, i, j, ci, σci
, H(mi),

πi
MT, rk, erk, πVD) from C before Tdispute

times out:
- assert Σ ≡ revealed and current time

T < Tdispute

- invoke the ValidatePoM(i, j, ci, σci
,

H(mi), πi
MT, rk, erk, πVD) subroutine,

if true is returned:
* let ledger[C] := ledger[C]+n ·BC +Bpf

* let Σ := not sold and send (not sold)
to all entities

Reset to the ready state for repeatable
delivery

• On receive (reset) from P:
- assert Σ ≡ sold or Σ ≡ not sold
- set ctr, Tdeliver, Tdispute as 0
- nullify pkC and vpkC
- let θ := θ − 1, and Σ := ready
- send (ready) to all entities

Fig. 2. The arbiter contract functionality G ledger
d for downloading. “Sending to all enti-

ties” captures that the smart contract is transparent to the public.

5.2 ΠFD: FairDownload Protocol

Now we present the fair p2p downloading protocol ΠFD. The session id sid and
the content digest rootm are omitted since they remain same in a delivery session.

Phase I for Prepare. The parties P and D interact with Gd in this phase as:



358 S. He et al.

– The provider P with (pkP , skP) deploys contracts and starts6 ΠFD by sending
(start, pkP , rootm, θ, n, BP ,BC ,Bpf) to Gd, where rootm is the content digest
in the form of Merkle tree root, θ indicates how many times of repeatable
delivery are allowed for this contract, n is the number of content chunks7,
BP ,BC ,Bpf ∈ N are price parameters, and Bpf is the penalty fee8 in a delivery
session to discrouage the misbehavior from P.

– Upon Σ ≡ joined, the provider P would: (i) randomly sample a master key
mk, run Algorithm1 to get the key derivation tree KT, and store mk and
KT locally; (ii) use the n leaf nodes of KT to encrypt (m1, . . . ,mn) to get
(c1, . . . , cn); (iii) then sign the encrypted chunks to obtain a sequence of
ciphertext-signature pairs ((c1, σc1), . . . , (cn, σcn)); compute content’s Merkle
tree MT and sign MT to obtain the signature σMT

P ; locally store (MT, σMT
P ) and

then send (sell, ((c1, σc1), · · · , (cn, σcn))) to D off-chain; (iv) wait for (ready)
from Gd to enter the next phase.

– The deliverer D with (pkD, skD) would: (i) upon receiving the (started) mes-
sage from Gd, send (join, pkD) to Gd; (ii) wait for the (sell) message from
P, then verify each pair (ci, σci). If valid, send (prepared) to Gd, and store
((c1, σc1), · · · , (cn, σcn)) locally, otherwise halt; (iii) wait for (ready) from Gd

to enter the next phase.

Upon the completion of the above execution, P owns a master key mk, the
key derivation tree KT, and the Merkle tree MT, while D receives the delegated
encrypted content chunks and is ready to deliver the content to consumers.
Phase II for Deliver. The parties C, P, and D interact with Gd as follows:

– The consumer C with (pkC , skC) and (vpkC , vskC) ← VPKE.KGen(1λ) would:
(i) assert Σ ≡ ready, and send (consume, pkC , vpkC) to Gd; (ii) upon receiv-
ing (mtree,MT, σMT

P ) from P, verify the signature σMT
P and check whether

root(MT) ≡ rootm or not, if both hold, store MT and then activate the
receiver R in the VFD module via R.recv() and instantiating the predicate
Ψ(·) as Verify(i||ci, σci , pkP). Then C waits for the execution of VFD to obtain
the delivered chunks ((c1, σc1), (c2, σc2), · · · ) and stores them; upon receiving
all the n chunks, sends (delivered) to Gd; (iii) waits for the (revealing) message
from Gd to enter the next phase.

– The provider P would execute as follows: upon receiving (initiated) from Gd,
asserts Σ ≡ initiated, sends (mtree,MT, σMT

P ) to C, and enters the next phase.
– The deliverer D executes as follows: (i) upon receiving (initiated) from Gd,

asserts Σ ≡ initiated, and then activates the sender S in the VFD module
via S.send() and instantiating the predicate Ψ(·) as Verify(i||ci, σci , pkP), and
feeds the VFD module with input ((c1, σc1), . . . , (cn, σcn)); (ii) upon receiving
(getVFDProof) from Gd, sends the latest receipt, namely (receipt, i, σi

C) to Gd;
(iii) waits for the (revealing) message from Gd to halt.

6 P can retrieve the deposits of BP and Bpf back if no deliverers respond timely.
7 W.l.o.g., we assume n = 2k for k ∈ Z for presentation simplicity.
8 Bpf can be required proportional to (n × BC) in case P deliberately lowers it.
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Algorithm 1. GenSubKeys algorithm

Input: n, mk
Output: a (2n − 1)-array KT
1: let KT be an array of length (2n − 1)
2: KT[0] = H(mk)
3: if n ≡ 1 then
4: return KT

5: if n > 1 then
6: for i in [0, n − 2] do
7: KT[2i + 1] = H(KT[i] || 0)
8: KT[2i + 2] = H(KT[i] || 1)
9: return KT

Algorithm 2. RevealKeys algorithm

Input: n, ctr, and mk
Output: rk, an array containing the minimum

number of elements in KT that suffices to
recover the ctr keys from KT[n−1] to KT[n+
ctr − 2]

1: let rk and ind be empty arrays
2: KT ← GenSubKeys(n, mk)
3: if ctr ≡ 1 then
4: rk appends (n − 1,KT[n − 1])
5: return rk
6: for i in [0, ctr − 1] do
7: ind[i] = n − 1 + i
8: while true do
9: let t be an empty array

10: for j in [0, �|ind|/2� − 1] do
11: pl = (ind[2j] − 1)/2

12: pr = (ind[2j + 1] − 2)/2
� merge elements with the same parent
node in KT

13: if pl ≡ pr then
14: t appends pl

15: else
16: t appends ind[2j]
17: t appends ind[2j + 1]
18: if |ind| is odd then
19: t appends ind[|ind| − 1]
20: if |ind| ≡ |t| then
21: break
22: ind = t
23: for x in [0, |ind| − 1] do
24: rk appends (ind[x],KT[ind[x]])
25: return rk

Algorithm 3. ValidateRKeys algorithm

Input: n, ctr and erk
Output: true or false indicating if the correct

number (i.e., ctr) of keys can be recovered
1: if n ≡ ctr and |erk| ≡ 1 and the position of

erk[0] ≡ 0 then
2: return true {root of KT}
3: Initialize chunks index as a set of numbers

{n − 1, · · · , n + ctr − 2}
4: for each (i, ) in erk do
5: di = log(n) − �log(i + 1)�
6: li = i, ri = i

7: if di ≡ 0 then
8: chunks index removes i
9: else

10: while (di--) > 0 do
11: li = 2li + 1
12: ri = 2ri + 2
13: chunks index removes the elements from

li to ri

14: if chunks index ≡ ∅ then
15: return true
16: return false

Algorithm 4. RecoverKeys algorithm

Input: n, ctr, and rk
Output: a ctr-sized array ks
1: let ks be an empty array
2: for each (i,KT[i]) in rk do

3: ni = 2(log n−�log(i+1)�)

4: vi = GenSubKeys(ni, KT[i])
5: ks appends vi[ni − 1 : 2ni − 2]
6: return ks

At the end of this phase, C receives the encrypted chunks (c1, c2, . . . ), and D
obtains the payment for the bandwidth contribution of delivering chunks, and
the contract updates and records the number of delivered chunks ctr.

Phase III for Reveal. The parties P and C interact with Gd as:
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Algorithm 5. ValidatePoM algorithm

Input: (i, j, ci, σci
, H(mi), πi

MT, rk, erk, πVD);
also, (rootm, n, erkhash, pkP , vpkC) are stored
in the contract and hence accessible

Output: true or false
1: assert j ∈ [0, |erk| − 1]
2: assert H(erk) ≡ erkhash

3: assert VerifyPKEvpkC (erk, rk, πVD) ≡ 1

4: assert Verify(i||ci, σci
, pkP) ≡ 1

5: assert VerifyMTP(rootm, i, πi
MT, H(mi)) ≡ 1

6: ki = RecoverChunkKey(i, j, n, rk)
7: assert ki �= ⊥
8: m′

i = SDec(ci, ki)
9: assert H(m′

i) �= H(mi)
10: return false in case of any assertion error

or true otherwise

– The provider P executes as follows: asserts Σ ≡ revealing, executes Algo-
rithm 2 to obtain revealed keys rk, encrypts rk using consumer’s vpkC to
obtain erk, and then sends (revealKeys, erk) to Gd; waits for (sold) from Gd

to halt.
– The consumer C in this phase would first assert Σ ≡ revealing, and wait

for (revealed, erk) from Gd to execute the following: (i) runs Algorithm3 to
preliminarily check erk, if false, sends (wrongRK) to Gd and halts, or if true
is returned, decrypts erk to obtain rk via vskC , and then runs Algorithm4 to
recover chunk keys. Then C uses these keys to decrypt (c1, · · · , cctr) to obtain
(m′

1, · · · ,m′
ctr); for each m′

i, i ∈ [ctr], checks whether H(m′
i) is the i-th leaf

node in MT received from P in the Deliver phase. If all are consistent, C
outputs (m′

1, · · · ,m′
ctr), and then waits for (sold) from Gd to halt. Otherwise,

C can raise complaint by: choosing one inconsistent position (e.g., the i-th
chunk), and then sending (PoM, i, j, ci, σci ,H(mi), πi

MT, rk, erk, πVD) to Gd,
where i is the index of the incorrect chunk to be proved; j is the index of the
element in erk that can induce ki; ci and σci are the i-th encrypted chunk
and its signature received in the Deliver phase; H(mi) is the value of the i-th
leaf node in MT; πi

MT is the Merkle proof for H(mi); rk is decryption result
from erk; erk is the encrypted revealed key; πVD is the verifiable decryption
proof attesting to the correctness of decrypting erk to rk.

Subroutine for Dispute Resolve. For the sake of completeness, the
ValidatePoM subroutine of the arbiter contract is detailed in Algorithm5, which
is needed to handle the PoM message sent from consumer. In general, it verifies
that the consumer sends the correctly decrypted elements in the key derivation
tree KT, and computes the encryption key to a specific chunk (sent from the
consumer) according to the KT tree elements, and then it decrypts the chunk
and verifies it is essentially committed to the Merkle tree root. Its time com-
plexity corresponds to on-chain cost and is O(log n), which minimizes the critical
on-chain cost.

Analyzing FairDownload. Theorem 1 characterizes the needed security and non-
trivial efficiency guarantees of ΠFD. The proof is provided in the full version [21].

Theorem 1. Conditioned on that the underlying cryptographic primitives
are secure, the protocol FairDownload satisfies the completeness, fairness,
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Algorithm 6. RecoverChunkKey algorithm

Input: (i, j, n, rk)
Output: ki or ⊥
1: (x, y) ← rk[j]

{parse the j-th element in rk to get the key
x and the value y}

2: let k path be an empty stack
3: ind = n + i − 2 {the index in KT}
4: if ind < x then
5: return ⊥
6: if ind ≡ x then

7: return y {ki = y}
8: while ind > x do
9: k path pushes 0 if ind is odd

10: k path pushes 1 if ind is even
11: ind = �(ind − 1)/2�
12: let b = |k path|
13: while (b--) > 0 do
14: pop k path to get the value t
15: ki = H(y||t)
16: return ki

confidentiality against deliverer, timeliness and non-trivial efficiency properties
in the synchronous authenticated network, G ledger

d -hybrid and stand-alone model.

6 FairStream: Fair p2p Streaming

6.1 FairStream Overview

As shown in Fig. 3, FairStream works as Prepare, Stream, and Payout phases, at
a high level. The core ideas are: during streaming, the consumer C retrieves an
encrypted chunk from the deliverer D and a corresponding decryption key from
the provider P, yielding O(1) communication rounds to obtain each chunk; any
party may abort in a certain round due to, e.g., untimely response or invalid
message; especially, C can complain during streaming to the arbiter contract
G ledger

s (abbr. Gs) illustrated in Fig. 4 and get compensated with a valid proof;
the Stream phase finishes either any party aborts or the timer Treceive in contract
expires; Later, D and P can claim the deserved payment by submitting the
latest receipt signed by C before another timer Tfinish (naturally Tfinish > Treceive) in
contract expires; the contract determines the ctr, namely the number of delivered
chunks or revealed keys, using the larger index in P and D’s receipts. If no receipt
is received from P or D before Tfinish expires, the index for that party is set as
0. Such a design is critical to ensure fairness as analyzed in the full version [21].

6.2 ΠFS: FairStream Protocol

Phase I for Prepare. This phase executes the same as in the ΠFD protocol.
Phase II for Stream. The parties C, D and P interact with Gs as follows:

– The consumer C interested in the content with rootm would initialize a vari-
able x := 1 and then: (i) asserts Σ ≡ ready, and sends (consume, pkC) to
Gs; (ii) upon receiving (mtree,MT, σMT

P ) from P, verifies the signature σMT
P

and root(MT) ≡ rootm, then stores the Merkle tree MT, or else halts; (iii) on
receiving (deliver, i, ci, σci) from D, checks if i ≡ x∧Verify(i||ci, σci , pkP) ≡ 1,
if hold, starts (for i ≡ 1) a timer TkeyResponse or resets (for 1 < i ≤ n) it,
sends (keyReq, i, σi

C) where σi
C ← Sign(i||pkC , skC) to P. If failing to check
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Fig. 3. The overview of FairStream protocol ΠFS. The dispute may arise in a certain
round in the Stream phase, and the messages (claimDelivery) and (claimRevealing) may
be sent to the contract in a different order.

or TkeyResponse times out, halts; (vi) upon receiving (reveal, i, ki, σki
) from P

before TkeyResponse times out, checks whether i ≡ x∧Verify(i||ki, σki
, pkP) ≡ 1,

if failed, halts. Otherwise, starts to validate the content chunk based on
received ci and ki: decrypts ci to obtain m′

i (m′
i := SDecki

(ci)) and then
checks whether H(m′

i) is consistent with the i-th leaf node in MT, if inconsis-
tent, sends (PoM, i, ci, σci , ki, σki

,H(mi), πi
MT) to Gs. If it is consistent, sends

the receipts (receipt, i, σi
CD) to D and (receipt, i, σi

CP) to P, where σi
CD ←

Sign(receipt||i||pkC ||pkD, skC) and σi
CP ← Sign(receipt||i||pkC ||pkP , skC), and

sets x := x + 1, and then waits for the next (deliver) message from D. Upon
x is set to be n + 1, meaning that all chunks are received, sends (received) to
Gs; (v) waits for the messages (received) from Gs to halt.

– The deliverer D initializes a variable y := 1 and executes as: (i) upon receiv-
ing (initiated, pkC) from Gs, sends (deliver, i, ci, σci), i = 1 to C and starts a
timer TchunkReceipt; (ii) upon receiving (receipt, i, σi

CD) from C before TchunkReceipt

times out, checks whether Verify(receipt||i||pkC ||pkD, σi
CD, pkC) ≡ 1 ∧ i ≡ y or

not, if succeeds, continues with the next iteration: sets y := y + 1, sends
(deliver, i, ci, σci), i = y to C, and resets TchunkReceipt; If fails or TchunkReceipt

times out, enters the next phase.
– The provider P initializes a variable z := 1 and executes as: (i) upon receiv-

ing (initiated, pkC) from Gs: sends (mtree,MT, σMT
P ) to C; (ii) upon receiving

(keyReq, i, σi
C) from C, checks whether i ≡ z ∧ Verify(i||pkC , σi

C , pkC) ≡ 1, if
succeeds, sends (reveal, i, ki, σki

), where σki
← Sign(i||ki, skP), to C and starts

(for i ≡ 1) a timer TkeyReceipt or resets (for 1 < i ≤ n) it, otherwise enters the
next phase; (iii) on receiving (receipt, i, σi

CP) from C before TkeyReceipt expires,
checks whether Verify(receipt||i||pkC ||pkP , σi

CP , pkC) ≡ 1 ∧ i ≡ z, if hold, sets
z := z + 1, otherwise enters the next phase if TkeyReceipt times out.

Phase III for Payout. The parties P and D interact with Gs in this phase as:
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The Arbiter Contract Functionality Gledger
s for p2p Streaming

The contract Gs can access to ledger, and it interacts with P, D, C and the adversary A. It
locally stores θ, n, rootm, BP , BC, Bpf , ctrD , ctrP , ctr (all ctrD, ctrP , ctr are initialized as 0),

pkP , pkD , pkC , the penalty flag plt (initialized by false), the state Σ and three timers
Tround (implicitly), Treceive, Tfinish.

Phase 1: Prepare

• This phase is the same as in Gd.
Phase 2: Stream

• On receive (consume, pkC) from C:
- assert θ > 0
- assert ledger[C] ≥ n · BC ∧ Σ ≡ ready
- store pkC and let

ledger[C] := ledger[C] − n · BC
- start two timers Treceive, and Tfinish

- let Σ := initiated and send
(initiated, pkC) to all entities

• On receive (received) from C before Treceive

times out:
- assert current time T < Treceive and

Σ ≡ initiated
- let Σ := received and send (received) to

all entities
• Upon Treceive times out:

- assert current time T ≥ Treceive and
Σ ≡ initiated

- let Σ := received and send (received) to
all entities

Dispute resolution in this phase
• On receive (PoM, i, ci, σci

, ki, σki
,

H(mi), πi
MT) from C before Treceive expires:

- assert current time T < Treceive and
Σ ≡ initiated

- assert Verify(i||ci, σci
, pkP) ≡ 1

- assert Verify(i||ki, σki
, pkP) ≡ 1

- assert
VerifyMTP(rootm, i, πi

MT, H(mi)) ≡ 1
- mi = SDec(ci, ki)
- assert H(mi) = H(mi)
- let plt := true
- let Σ := received and send (received) to

all entities

Phase 3: Payout
• On receive (claimDelivery, i, σi

CD) from D:
- assert current time T < Tfinish

- assert i ≡ n or Σ ≡ received or
Σ ≡ payingRevealing

- assert ctr ≡ 0 and 0 < i ≤ n

- assert Verify(receipt||i||pkC||pkD ,

σi
CD , pkC) ≡ 1

- let ctrD := i, Σ := payingDelivery,
and then send (payingDelivery) to all
entities

• On receive (claimRevealing, i, σi
CP) from

P:
- assert current time T < Tfinish

- assert i ≡ n or Σ ≡ received or
Σ ≡ payingDelivery

- assert ctr ≡ 0 and 0 < i ≤ n
- assert Verify(receipt||i||pkC||pkP ,

σi
CP , pkC) ≡ 1

- let ctrP := i, Σ := payingRevealing,
and then send (payingRevealing) to
all entities

• Upon Tfinish times out:
- assert current time T ≥ Tfinish

- let ctr := max{ctrD , ctrP}
- let ledger[D] := ledger[D] + ctr · BP
- if plt:

let ledger[P] := ledger[P]+
(n − ctr) · BP + ctr · BC
let ledger[C] := ledger[C]+
(n − ctr) · BC + Bpf

- else:
let ledger[P] := ledger[P]+
(n − ctr) · BP + ctr · BC + Bpf

let ledger[C] := ledger[C]+
(n − ctr) · BC

- if ctr > 0:
let Σ := sold and send (sold) to all

entities
- else let Σ := not sold and send

(not sold) to all entities

Reset to the ready state
• On receive (reset) from P:

- assert Σ ≡ sold or Σ ≡ not sold
- set ctr, ctrD, ctrP , Treceive, Tfinish as 0
- nullify pkC
- let θ := θ − 1 and Σ := ready
- send (ready) to all entities

Fig. 4. The streaming-setting arbiter functionality G ledger
s . “Sending to all entities”

captures that the smart contract is transparent to the public.

– The provider P executes as: (i) upon receiving (received) or (delivered) from
Gs, or receiving the n-th receipt from C (i.e., z is set to be n + 1), sends
(claimRevealing, i, σi

CP) to Gs; (ii) waits for (revealed) from Gs to halt.
– The deliverer D executes as: (i) upon receiving (received) or (revealed) from

Gs, or receiving the n-th receipt from C (i.e., y is set to be n + 1), sends
(claimDelivery, i, σi

CD) to Gs; (ii) waits for (delivered) from Gs to halt.
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Analyzing FairStream. Theorem 2 characterizes the security of the protocol ΠFS.
The proof details are given in the online version [21].

Theorem 2. Conditioned that the underlying cryptographic primitives are
secure, the protocol FairStream satisfies the completeness, fairness, confidential-
ity against deliverer, timeliness, and non-trivial efficiency properties in the syn-
chronous authenticated network, G ledger

s -hybrid and stand-alone model.

Extension for Delivering from Any Specific Chunk. The protocol
FairStream (as well as FairDownload) can be easily tuned to transfer the con-
tent from the middle instead of the beginning. Specifically, for the downloading
setting, one can simply let the content provider reveal the elements that are able
to recover a sub-tree of the key derivation tree KT for decrypting the transferred
chunks. The complaint of incorrect decryption key follows the same procedure
in Sect. 5. For the streaming setting, it is more straightforward as each chunk
ciphertext and its decryption key are uniquely identified by the index and can
be obtained in O(1) rounds by the consumer, who can immediately complain to
contract in the presence of an incorrect decryption result.

7 Implementation and Evaluations

To shed some light on the feasibility of FairDownload and FairStream, we imple-
ment, deploy and evaluate the protocols of ΠFD and ΠFS in the Ethereum Rop-
sten network. The arbiter contracts are split into Optimistic (no dispute) and
Pessimistic (additionally invoked when dispute occurs) modules. Note that the
contracts deployment and the Prepare phase can be executed only once and used
multiple times to facilitate the delivery of same content to different consumers.
Therefore, these one-time costs can be amortized, and we mainly report the costs
after the completeness of Prepare phase.

In our implementations, the hash function is keccak256 and the signature is
via ECDSA over secp256k1 curve. The encryption of each chunk mi with key
ki is instantiated as: parse mi into t 32-byte blocks (mi,1, . . . , mi,t) and output
ci = (mi,1 ⊕H(ki||1), . . . ,mi,t ⊕H(ki||t)). The decryption is same to the encryp-
tion. Public key encryption is based on ElGamal: Let G = 〈g〉 to be G1 group over
alt-bn128 curve [36] of prime order q, where g is group generator; the public key
h = gk, where k ←$ Zq is the private key; VEnch(m) = (c1, c2) = (gr,m · gkr)
represents encryption, where the message m is encoded into G with Koblitz’s
method [26] and r ←$ Zq; the decryption VDeck((c1, c2)) = c2/ck

1 . To lift ElGa-
mal for verifiable decryption, we adopt Schnorr protocol [37] for Diffie-Hellman
tuples with Fiat-Shamir transform [16]. Specifically, ProvePKEk((c1, c2)) works
as: run VDeck((c1, c2)) to obtain m; let x ←$ Zq, and compute A = gx,
B = cx

1 , C = H(g||A||B||h||c1||c2||m), Z = x + kC, π = (A,B,Z), and output
(m,π); VerifyPKEh((c1, c2),m, π) works as: parse π to obtain (A,B,Z), compute
C ′ = H(g||A||B||h||c1||c2||m), and verify (gZ ≡ A · hC′

) ∧ (mC′ · cZ
1 ≡ B · cC′

2 ),
and output 1/0 to indicate whether the verification succeeds or fails.
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7.1 Evaluating FairDownload

Table 1 presents the on-chain costs of ΠFD, i.e., the costs of all functions in
the contract Gd. We adopt a gas price at 10 Gwei to ensure over half of the
mining power in Ethereum would mine this transaction,9 and an exchange rate
of 259.4 USD/Ether (the average market price10 of Ether from 01/01/2020 to
11/03/2020). We stress that utilizing other cryptocurrencies such as Ethereum
classic11 can substantially decrease the actual price of the protocol execution.
The price and exchange rate also apply to the streaming setting.

(a) on-chain costs (b) erk revealing costs

Fig. 5. Experiment results for the ΠFD protocol.

Optimistic Case. Without complaint ΠFD executes the functions in Deliver
and Reveal phases, yielding a total cost of 1.032 USD for all involving parties.
The on-chain cost is constant regardless of the content size and the chunk size,
as shown in Fig. 5a. In worse cases, up to log(n) elements in the key derivation
tree KT need to be revealed (where n is the size of content), and the on-chain
cost of revealing these elements in KT is depicted in Fig. 5b.

Table 1. Cost of ΠFD’s on-chain side Gd

Phase Gd’s Function Caller Gas USD

Deploy (Optimistic) P 2 936 458 7.617

Deploy (Pessimistic) P 2 910 652 7.550

Prepare

start P 110 751 0.287

join D 69 031 0.179

prepared D 34 867 0.090

Deliver

consume C 117 357 0.304

delivered C 57 935 0.150

verifyVFDProof D 56 225 0.146

Reveal
revealKeys P 113 041 0.293

payout Gd 53 822 0.139

Dispute
resolve

wrongRK C 23 441 0.061

PoM C 389 050 1.009

Table 2. Cost of ΠFS’s on-chain side Gs

Phase Gs’s Function Caller Gas USD

Deploy (Optimistic) P 1 808 281 4.691

Deploy (Pessimistic) P 1 023 414 2.655

Prepare

start P 131 061 0.340

join D 54 131 0.140

prepared D 34 935 0.091

Stream

consume C 95 779 0.248

received C 39 857 0.103

receiveTimeout Gs 39 839 0.103

PoM C 90 018 0.234

Payout

claimDelivery D 67 910 0.176

claimRevealing P 67 909 0.176

finishTimeout Gs 88 599 0.230

9 https://ethgasstation.info/.
10 https://www.coindesk.com/price/ethereum/.
11 https://ethereumclassic.org/.

https://ethgasstation.info/
https://www.coindesk.com/price/ethereum/
https://ethereumclassic.org/
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Pessimistic Case. When some complaint arises by the consumer, the arbiter
contract involves to resolve it. The cost of executing wrongRK function relates
to the concrete values of n, ctr and |erk|, and in Table 2, the cost is evaluated on
n ≡ ctr ≡ 512, and |erk| ≡ 1. The cost of PoM function validating misbehavior
varies by the content chunk size η, as depicted in Fig. 5a pessimistic costs. The
results demonstrate that the on-chain costs increase linearly in the chunk size.

7.2 Evaluating FairStream

Table 2 lists the costs of contract Gs to show the on-chain expense of the stream-
ing protocol ΠFS.

(a) Time cost of streaming
512 content chunks in LAN

(b) Time cost of streaming
512 content chunks in WAN

(c) Average time cost and
the corresponding bitrate

Fig. 6. The performance of FairStream protocol in the LAN and WAN.

Optimistic Case. Without dispute, ΠFS executes the functions in Stream and
Payout phases except the PoM function for verifying proof of misbehavior, yield-
ing a total cost of 0.933 USD for all involved parties. The costs in this mode is
constant regardless of the content size and chunk size.
Pessimistic Case. With complaint, the total on-chain cost is 1.167 USD for
all involved parties. The cost of the PoM function: (i) increases slightly in num-
ber of chunks n, since it computes O(log n) hashes to verify the Merkle proof;
(ii) increase linearly in the chunk size η for the chunk decryption, which follows
a similar trend to Fig. 5a pessimistic costs but with lower costs as no verification
of verifiable decryption proof is needed.
Streaming Efficiency. Fig. 6a and b illustrate the efficiency of streaming 512
chunks (via ΠFS) of various sizes in both LAN and WAN.12 Results indicate
that: (i) obviously the time costs increase due to the growth of chunk size;
(ii) the delivery process remains stable with only slight fluctuation, as reflected
by the slope for each chunk size in Fig. 6a and b. Furthermore, Fig. 6c depicts
the average latency for delivering each chunk (over the 512 chunks) and the
corresponding bitrate. It shows that the bitrate can reach 10 Mbps even in the
public network, which is potentially sufficient to support high-quality content
streaming. E.g., the video bitrate for HD 1080 are at most 8 Mbps [22].
12 The experimental configuration details are described in the full version [21].
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8 Conclusion

We present the first two fair p2p content delivery protocols atop blockchains to
support fair p2p downloading and fair p2p streaming, respectively. They enjoy
strong fairness guarantees to protect any of the content provider, the content
consumer, and the content deliverer from being ripped off by other colluding
parties. Essentially, our new delivery fairness notion circumvents the limit of
conventional exchange fairness, thus supporting to pay the delivers according to
their bandwidth usages. Detailed complexity analysis and extensive experiments
are conducted to demonstrate the high efficiency of our designs. Yet still, the
area is largely unexplored and has a few immediate follow-ups, for example:
(i) in order to realize maximized delivery performance, it is desirable to design
a mechanism of adaptively choosing deliverers during each delivery task; (ii) it
is also enticing to leverage the off-chain payment channels to handle possible
micropayments and further reduce the on-chain cost.
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