
ECML: Improving Efficiency of Machine Learning
in Edge Clouds

Aditya Dhakal
University of California, Riverside

adhak001@ucr.edu

Sameer G Kulkarni
Indian Institute of Technology, Gandhinagar

sameergk@iitgn.ac.in

K. K. Ramakrishnan
University of California, Riverside

kk@cs.ucr.edu

Abstract—Edge cloud data centers (Edge) are deployed to
provide responsive services to the end-users. Edge can host more
powerful CPUs and DNN accelerators such as GPUs and may
be used for offloading tasks from end-user devices that require
more significant compute capabilities. But Edge resources may
also be limited and must be shared across multiple applications
that process requests concurrently from several clients. However,
multiplexing GPUs across applications is challenging. With edge
cloud servers needing to process a lot of streaming and the advent
of multi-GPU systems, getting that data from the network to the
GPU can be a bottleneck, limiting the amount of work the GPU
cluster can do. The lack of prompt notification of job completion
from the GPU can also result in poor GPU utilization.

We build on our recent work on controlled spatial sharing
of a single GPU to expand to support multi-GPU systems and
propose a framework that addresses these challenges. Unlike the
state-of-the-art uncontrolled spatial sharing currently available
with systems such as CUDA-MPS, our controlled spatial sharing
approach uses each of the GPU in the cluster efficiently by
removing interference between applications, resulting in much
better, predictable, inference latency We also use each of the
cluster GPU’s DMA engines to offload data transfers to the
GPU complex, thereby preventing the CPU from being the
bottleneck. Finally, our framework uses the CUDA event library
to give timely, low overhead GPU notifications. Our evaluations
show we can achieve low DNN inference latency and improve
DNN inference throughput by at least a factor of 2.

Index Terms—Machine Learning, Inference, Edge Clouds,
General Purpose Graphics Processing Unit (GPGPU)

I. INTRODUCTION

A large number of emerging applications, such as speech

recognition (e.g., Amazon Alexa, Apple Siri), image recog-

nition, vehicular safety, augmented reality/virtual reality

(AR/VR), etc. need low latency to satisfy the user’s quality of
experience (QoE) requirements. Frequently, these core services

also require accurate Inference and Machine learning (I&ML)

capabilities. These, I&ML applications often use compute inten-

sive Deep Neural Networks (DNNs) which require accelerators

such as GPUs for low latency inference and learning. These

services typically depend on cloud resources to offload compute

intensive tasks. Locating the cloud facilities close to users is

highly desirable to ensure low latency and to guarantee QoE.

In this regard, the Edge Cloud (such as at the end of the first

hop link from the user, whether wired or wireless) or the Edge

are often the most suitable to provide ’cloud’ services or act

as an intermediary to more centralized cloud services. Thus,

the usage of Edge for I&ML is also becoming more attractive.

However, unlike cloud environments that seek to provide

’almost infinite scalability’ of resources, edge resources are

likely to be constrained. Hence, the edge needs to judiciously

utilize resources by allowing multiplexing of multiple services.

Even in an Edge that includes systems with multiple GPUs

(e.g., NVIDIA’s Tesla T4 system), it is important to utilize

the GPUs efficiently and maximize throughput. Multiplexing

several applications on the GPU can help support a large

demand from I&ML applications. However, multiplexing

within the GPU is non-trivial and can be a major challenge,

especially to achieve low latency. Traditional approaches, such

as temporal multiplexing time-share the GPU among different

tasks, but in each time-slice they dedicate a complete GPU

(all of the compute engines or the Streaming Multiprocessors

(SMs)) to a single DNN task. Tasks with a lighter compute

requirement can result in under-utilization of the GPU

resources. Temporal multiplexing also has the consequence

of increasing inference delays. As an alternative, spatial

multiplexing shares a portion of GPU and run different tasks on

a GPU simultaneously. Controlled spatial multiplexing (CSM)

that carefully manages this sharing is able to control latency

for inference and improve throughput [1], [2]. Here, we further

complement CSM on a single GPU with techniques to scale to

larger number of I&ML applications running on an Edge with

the use of a cluster of GPUs as found in multi-GPU systems.

Managing such a multi-GPU cluster for handling I&ML tasks

at the Edge poses several challenges. Since an Edge may host

multiple I&ML applications concurrently, a lot of inference and

learning data would be streaming to the Edge. GPU runtime

environments, such as CUDA and OpenCL, require the CPU to

perform the major task of extracting the streamed data from the

network and transferring to the GPU i.e., the CPU has to copy
the payload from network packets to a contiguous buffer and

push the data to the GPU using runtime APIs. This is especially

concerning as we deploy multi-GPU systems, where the system

includes a multi-core CPU and several, up to 8, GPUs. This

can cause the CPU to become the bottleneck while performing

the data movement task. We seek to alleviate this overhead in

this work, building on our previous work on NetML [3]. We

use NetML’s cut-through approach to transfer data to the GPU

using the GPU’s DMA engines. This alleviates the overhead on

the CPU as it transfers data from network packets to the GPU

using the GPU’s DMA engine and its scatter-gather capability.978-1-7281-9486-8/20/$31.00 ©2020 IEEE

20
20

 IE
EE

 9
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lo
ud

 N
et

w
or

ki
ng

 (C
lo

ud
N

et
) |

 9
78

-1
-7

28
1-

94
86

-8
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CL

O
U

DN
ET

51
02

8.
20

20
.9

33
58

04

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 16:51:31 UTC from IEEE Xplore. Restrictions apply.

Moreover, scheduling of the I&ML tasks across different

GPUs, and load-balancing them among the cluster of GPUs,

is critical to ensure timely completion of the jobs and proper

utilization of the Edge resources. For this, the key is to monitor

the task completion time and ensure that the application can be

scaled appropriately to meet the desired latency requirements.

Further, the GPU being a different subsystem, does not have

an effective task completion notification mechanism. Callback

methods in current GPU runtimes are limited in functionality

and stall the execution in the GPU until the callback is pro-

cessed. This can cause delay, and idle the GPU resources. We

develop a method, exploiting a lightweight CUDA event API,

to know immediately that the execution of certain application

has completed. The use of the event API avoids the issue of

stalling the GPU execution, and prevents GPU from being idle.

In this paper, we first present the challenges associated with

the existing GPU multiplexing modes. We then make the case

for a framework that can manage multiple-GPUs and provide

controlled spatial sharing of the GPUs with proper resource

allocation, so as to provide DNN applications with the right

amount of GPU resources to meet their low latency requirement.

Our preliminary framework provides the foundation to support

more complex scheduling, load balancing and auto-scaling

mechanisms in the near future. Our framework can efficiently

utilize multiple GPUs of the cluster. At the time of initiation of

the I&ML function (IF), we check the number of GPUs in the

system and choose an available GPU to load the DNN model,

create the GPU contexts, and the necessary memory buffers.

Overall, our Edge inference framework reduces the CPU over-

head of transferring high volume of streaming data from net-

work to multiple GPU in a GPU cluster and multiplexes applica-

tions by spatially sharing GPUs in the cluster. Edge clouds can

facilitate low latency ML inference. However, due to resource

constraints, they do not offer the same economies of scale that a

centralized cloud may provide. Nonetheless, the proposed tech-

niques and optimizations of our framework can also improve

the utilization of centralized cloud. Multiplexing applications

across, and within individual resources can have much larger

impact in the utility and economics of relatively resource-scarce

edge clouds. Multiplexing within resources might not be as crit-

ical in a large centralized cloud due to its inherent economies of

scale. We demonstrate that our approach helps with getting over-

all higher throughput than providing single GPU to each DNN.

Moreover, our approach keeps latency low and predictable.

II. BACKGROUND AND RELATED WORK

A. NVIDIA CUDA Support for GPU Multiplexing

NVIDIA GPUs along with the CUDA runtime provide

support for sharing the GPU, both temporally and spatially.

The state-of-the-art CUDA MPS (multi-process service) [4]

allows to spatially share the GPU across multiple, different

processes. However, when GPU resources are insufficient,

multiple application contend with each other for the same

GPU resources, often resulting in interference with each

other’s kernel’s execution. This interference often results in

increased and unpredictable latency while performing inference

1

10

100

1000

10000

Densenet ResNeXt-50 VGG-16

T
im
e
to
In
fe
r
(m
s)

CPU Latency
GPU Latency

Fig. 1. Latency of inferring one image with CPU vs. a GPU

in conjunction with other inference or machine learning tasks.

By default, CUDA MPS does have the means to limit the

amount of GPU resources used by an application, but it needs

to be managed carefully, which we describe in this paper.

B. Edge Cloud GPU Inference Platforms

Computing at edge clouds promises to provide more

responsive services requiring significant compute resources

for functions not convenient to be supported on hand-held

devices (e.g., smart phones) because of computation, power

or cost limitations. Moreover, services often require fusing of

multiple sources of data (e.g., sensory inputs) that require more

computation, but also low latency [5]. Edge clouds are often

used to offload processing from end-devices [6]–[8]. With

central offices of traditional communication providers having

space, power, and climate-conditioning, they are becoming

prime candidates for housing edge cloud services. This is also

true for wireless environments, such as cellular, with more

distributed deployments of the packet core. While the edge

clouds have more processing capacity and storage than a single

system, they are still likely to be resource constrained relative

to the aggregated demand from edge devices e.g., smart
phones, IoT devices, vehicles, etc). Hence, it is important to
judiciously manage edge cloud resources. Further, the edge

workload and traffic characteristics, akin to centralized clouds,

can vary drastically over time [9]. This makes it necessary

to adapt the I&ML support to better match current workload.

DNNs are compute heavy and performing inference with

them in devices with limited computational capability (and

limited battery power) such as a smartphone can take several

seconds for even a single inference [10]. Offloading the com-

putation to servers with more compute power can drastically

bring down the inference time. However, even with additional

computational resources of an edge server, the inference would

be an order of magnitude slower if the platform only uses

CPUs compared to one with even a small GPU [11]. DNNs,

specially Convolutional Neural Network (CNNs) are often

composed of multiple matrix operations, which can benefit

from parallelization offered by the GPU. When compared to

CPUs, GPUs with a number of compute engines and cores

can accelerate DNN inference significantly (by 2-3 orders of

magnitude). We have computed the average latency to infer

one image with different models in Pytorch in one CPU core

and one NVIDIA V100 GPU. We present our results in Fig. 1.

We can see that a GPU can help infer the image 10× faster

than using a CPU. Therefore, it is necessary to use GPUs for

I&ML workloads with real-time response requirements.

DNN and other ML applications are typically modeled,

trained and deployed using one of a number of platforms,

such as PyTorch [12], Microsoft CNTK [13], NVIDIA Ten-

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 16:51:31 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DIFFERENT INFERENCE PLATFORMS AND THEIR CHARACTERISTICS.

ML Platform Programming
model(s) CUDA Streams Batching Startup Time (sec)

(ResNet-50 model)
CNTK [13] CUDA No Yes 2.2
Darknet [16] CUDA No No 5.7
MxNet [17] CUDA/OpenCL Yes Yes 5.53
PyTorch [12] CUDA/OpenCL Yes Yes 5.03
TensorFlow [15] CUDA/OpenCL Yes Yes 9.2
TensorRT [14] CUDA Yes Yes 3.2

sorRT [14], Tensorflow [15] etc. Table I presents the key
characteristics of the some of the most popular ML platforms.

All of these platforms support CUDA programming to

interface with the GPU and are designed to support NVIDIA

GPUs. There are differences in terms of their characteristics

and support for different performance enhancing options,

e.g., CNTK and Darknet do not support CUDA streams;

Darknet does not support batching DNN requests, etc. Another

interesting aspect is that these frameworks have different model

loading times. We evaluated the time for a ResNet-50 model

to load in different platforms in our testbed with NVIDIA

V100 GPU. We present our results in Table I. We can see that

loading time of a model for the ResNet-50 model is in seconds.

A high startup time is a concern when rapid change in demand

for a certain application requires additional instances of the

DNN model. Our prior work GSLICE [1] facilitates adjustment

of ML platforms’ GPU resources as well as gracefully dealing

with the long start-up delays while adjusting resources.

Many ML platforms now offer a inference/learning serving

interface that can be deployed in the cloud. Tensorflow

serving [18], Torchserve [19] can host models in the cloud

for inference. However, these cloud based platforms generally

use the default CUDA runtime and are not suitable for edge

cloud with scares resources. There is work for improving edge

based systems [20], [21], focusing on improving the DNN

algorithms to achieve a better balance between accuracy and

inference latency. Our work is complementary to these efforts.

We seek to maximize CPU and GPU utilization and lower

latency, by improving the I&ML system instead.

III. SYSTEM DESIGN

We propose ECML, an I&ML framework for Edge clouds,

as shown in Fig. 2. The framework consists of applications

running on the OpenNetVM (ONVM) environment [22] which

aids in low latency high throughput packet processing. Each

I&ML application can load its DNN model into any GPU in the

cluster and specify the GPU% such that the GPU can be shared

with another I&ML’s model. Each I&ML application in the

environment will have access to shared memory where packets

are forwarded by the NIC and can use NetML [3] to transfer

application data, e.g., images, to the GPU for inference.
The ECML application environment consists of three main

modules: 1) An enhanced NetML module that helps move the

data from packet payloads to and from GPU memory, utilizing

the GPU’s DMA engine(s); 2) The host CPU ML module

that hosts ML platform libraries such as PyTorch, TensorRT,

and Tensorflow, and is able to run DNNs developed for such

platforms. 3) A Streams & Notification module that helps

the inference task running in the GPU and monitor the GPU,

such that the CPU-resident application is promptly informed

when the inference task completes.

ONVM Manager

Streams &
GPU

Notification

GPU-1

ResNext-50

PyTorch
NetML

 ONVM
 App. -1

Densenet

TensorRT
NetML

ONVM
App. -2

GPU (50%)
Application 1

GPU (50%)
Application 2

DNN
Kernels

Streams
&

GPU
Notification

GPU
Memory

ONVM Shared Memory
NIC Packet Packet Packet

CPU

GPUs

DNN
Kernels

GPU
Memory

Streams &
GPU

Notification

ResNext-50

PyTorch
NetML

 ONVM
 App. -1

Densenet

TensorRT
NetML

ONVM
App. -2

Streams
&

GPU
Notification

GPU-N

GPU (20%)
Application 1

GPU (80%)
Application 2

DNN
Kernels

GPU
Memory

DNN
Kernels

GPU
Memory

VGG-19

TensorRT
NetML

ONVM
App. -3

Streams
&

GPU
Notification

VGG-19

TensorRT
NetML

ONVM
App. -3

Streams
&

GPU
Notification

Fig. 2. ECML framework for edge cloud

A. NetML: Data Transfer to GPU

Unlike a standalone node, edge I&ML platforms with

multiple GPUs and hosting multiple I&ML applications

will need to handle a large amount of streaming data. A

single GPU might easily get fully utilized by running 2 or

3 different I&ML applications. However, with a cluster of

8-16 GPUs in a server, a lot more I&ML applications can

be run concurrently, therefore, it involves moving a lot more

incoming data to the GPU to perform inference. We can see

from Fig. 2 that the streaming data arrives from the NIC and

is buffered in ONVM’s shared memory. Copying the payload

from each packet to a contiguous buffer and then to the GPU

is expensive in terms of CPU cycles and adds latency.

We developed NetML [3] to avoid the extra copy by running

a GPU kernel that uses the GPU’s DMA engine to perform

scatter-gather from host memory. This approach provides two

key benefits: i) it is efficient and timely; ii) more importantly,

it saves host CPU cycles. The original NetML design only

infers a single image and start transferring data from packet

payload to GPU as soon as first packet with image data arrives.

However, to get the throughput improvement that can be gained

from batching, we now modify the original NetML design to

support batching. In NetML, if we miss a portion of data for

an image due to network loss, we would have to wait for it

or choose to not infer the image depending on user settings.

However, to infer a batch of images, all of the batch’s image

data has to be present in contiguous memory buffer in the GPU.

If we start building the batch in GPU from the first received

data packet and subsequently miss some data for images in

middle of the batch due to network loss, we would have to

recreate a batch in GPU only with images that have all their

data available, by copying data within GPU. To avoid this,

we design a lightweight verification mechanism that verifies

that the data for an entire image is present in received packets

before transferring data to the GPU.

B. GPU Multiplexing

We describe 3 different methods of multiplexing I&ML

applications in a GPU.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 16:51:31 UTC from IEEE Xplore. Restrictions apply.

0

20

40

60

0 2 4 6 8 10 12 14

La
te
nc
y
(m
s)

Timeline (sec)

D R V

(a) Temporal Sharing

0

20

40

60

0 2 4 6 8 10 12 14

Timeline (sec)

D R V

(b) Default MPS

0

20

40

60

0 2 4 6 8 10 12 14

Timeline (sec)

Densenet (D) (25% GPU)
ResNeXt-50 (R) (15% GPU)

VGG-16 (V) (60% GPU)

(c) Fixed GPU%.

0
10
20
30
40
50
60
70
80

Temporal
Sharing

Default
MPS

Controlled
Sharing

La
te
nc
y
(m
s)

Densenet
ResNext-50

VGG-16

(d) GPU sharing latency variation
Fig. 3. Latency of DNN models multiplexing GPU (a) temporally, (b) default MPS and (c) spatially with fixed GPU%.(d) box plot of inference latency

1) Temporal Sharing: Both CUDA and OpenCL support
scheduling GPU kernels from different processes with regular

time quanta, to temporally share the GPU. But, GPUs may be

underutilized, as a single process usually fails to fully utilize

all the GPU resources. We run an experiment with three

different models, DenseNet, ResNeXt-50 and VGG-16 (start

and finish in that order) concurrently on the PyTorch platform,

temporally sharing the GPU. We see from Fig. 3a that initially

the latency of Densenet is low, ∼ 20 ms per inference. With

contention from the ResNeXt model, the latency of Densenet

increases more than 2×. VGG-16 then further increases the
latency of both the DenseNet and ResNeXt models.

2) Spatial Multiplexing of the GPU: MPS allows spatially
sharing of the GPU among multiple processes. We ran a similar

experiment with default MPS (i.e., spatial sharing of GPU).
Fig. 3b shows that the latency of all three models are lower

compared to temporal sharing. This is because MPS allows

applications to use the spare GPU resources, if another con-

currently running model is not fully utilizing the GPU. When

ResNeXt comes up, the latency of Densenet does not increase

as there are enough GPU resources to allow both to execute

concurrently. But, when the third, VGG-16, model comes up,

the latency of Densenet increases significantly, while ResNeXt’s

latency also increases by a small amount. But more importantly,

the inference latency for each of the models is highly variable.

While default MPS may improve GPU utilization, it leads to

unpredictable latency for the concurrently running models.

3) MPS with resource usage limits: The recent NVIDIA
CUDA architectures (i.e., Volta) provides resource provisioning

limits in MPS, setting a fixed maximum proportion (GPU%)

of the available threads (in units of # SMs) for individual

clients. We leverage our work in [1] in ECML to provide

controlled spatial sharing of the GPU. Our approach achieves

good performance isolation through proper GPU resource

separation among the different GPU applications.

To demonstrate the resource isolation and essentially elimi-

nating interference, we run the 3 DNN models concurrently in

the GPU with fixed GPU% for each. For this experiment, we

provided Densenet with 25% GPU, ResNeXt-50 with 15% GPU

and VGG-16 with 60% GPU. We see from Fig. 3c and Fig. 3d

that the latency of the models remain about same for the entire

experiment, with low variance (see boxplot), indicating almost

no interference between concurrently running models. Since the

latency of Densenet is the same throughout, we conclude that

only 25% GPU is necessary for Densenet to run and still achieve

the lowest latency across the different multiplexing options.

C. Inference deadline and adaptive batching

Batching multiple requests together helps amortize the cost

of launching DNN functions and transferring data to GPU,

thus, increasing inference throughput. However, larger batch

sizes also increase the inference latency as bigger batch takes

a longer time time to form, as well as take longer to complete

inference in the GPU. Many tasks in the edge cloud can be

latency sensitive and come with a deadline, or a service level

objective (SLO). We have used self-learning adaptive batching

(SLAB) as described in GSLICE [1] to benefit from both higher

throughput from higher batch size, as well as to complete

inference before the deadline. SLAB increases the batch size

till total inference latency does not exceed the deadline.

D. Inference using multiple GPUs: Notification and Scheduling

Utilizing multiple GPUs in an I&ML inference platform

requires coordination between applications and the GPUs to

perform inference efficiently. Depending on demand, a DNN

may be running in a single GPU or can have multiple instances

within the GPU cluster. Moreover, with spatial sharing within

a GPU, multiple different DNNs may be concurrently using

the GPU. Load balancing across multiple instances of the

same DNN service and coordinating between multiple services

within a GPU are necessary.

Managing multiple inference tasks on the CPU & GPU is

especially challenging as the GPU computation is asynchronous

with respect to the CPU. The asynchronous execution helps to

free up the CPU after it submits the job to GPU and allows

a single CPU thread to submit multiple tasks to the GPU

without waiting for the tasks to be completed. However, there

is no simple way for the CPU task to know when a submitted

task has completed on the GPU. The CUDA API offers a

’callback’ function cudaLaunchHostFunction() to notify the
end of processing in the GPU by running a callback function on

the CPU. Although the callback provides a notification of the

end of a task, the current implementation of the callback does

not help achieve effective GPU multiplexing. First, multiple

concurrent callbacks are serialized, which halts the subsequent

execution on the GPUs until the completion of the execution

of the callback routine on the CPU. This results in the GPU

idling. Second, the callback functions generated by the GPU

prevent the CPU thread from running any CUDA API functions.

Thus, this limitation demands an additional CPU context and

signalling scheme to perform GPU related operation.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 16:51:31 UTC from IEEE Xplore. Restrictions apply.

To overcome these limitations, we devise a lightweight

method to check the GPU task completion status. We leverage

CUDA’s event-based API to record an ’event’ (can be per GPU

stream) when the DNN is executed. The CUDA event acts as a

flag. When it is executed by the GPU, it records the time of the

execution. The CUDA API function cudaEventRecord() allows
us to put an event marker at the end of the DNN’s execution.

We then use another API function cudaEventQuery() to check
if the event that we placed has completed execution or not.

Together with the lightweight notification scheme, we utilize

a lightweight data structure to keep track of all active I&ML

applications and utilization information of each GPU. With

every task completion notification for an I&ML application,

we compute the throughput and latency for inference. With the

completion of every inference, we also change the status of

I&ML application to becoming available for another inference.

In contrast to running inference in a single GPU, where, a

particular DNN, e.g., ResNet-50, might only be served by 1
I&ML application, a multiple GPU cluster can host multiple

ResNet-50 services. Therefore, it is necessary to maintain the

availability state of each I&ML application.

With the throughput and latency statistics and the information

about the arrival rate of DNN requests, we can autoscale, i.e.,
start a new DNN instance, or scale down the DNN instance

based on the request arrival rate. These statistics help us

increase or decrease GPU resources for a particular I&ML

application and load balance among multiple existing I&ML

applications. Similarly, these statistics help design a scheduler

for I&ML applications based on the demand. Enhancing our

ECML framework with detailed auto-scaling, load-balancing

and scheduler algorithms is part of our future work.

IV. EVALUATION

A. Evaluation Testbed
Our experimental testbed uses a Dell Poweredge R740xd

with Intel(R) Xeon(R) Gold 6148 CPU with 20 cores, 256 GB

of system memory and one NVIDIA Tesla V100 GPU and an

Intel X710 10GbE quadport NIC. The V100 GPU has 80 stream-

ing multiprocessors (SMs) and 16 GB of memory. Our multi-

GPU test bed consists of 8 NVIDIA Tesla T4 GPU. We use 4

quadport Intel XL710 10 GbE NICs (40Gb aggregate capacity).

Each Tesla T4 GPU has 16 GB of GPU memory and 40 SMs.

We use PyTorch and TensorRT platform for our evaluations.

Our DNN workload consists of color images of resolution

224×224. For the experiments using NetML and data transfer
we transmit each image through network as 588 UDP packets

where each packet has a payload of 1 kilobytes. We use Moon-

gen and TCPreplay as traffic generator for transmitting images.

With 10 GbE connection between traffic generator and the re-

ceiving server, we can transmit 1920 images per second. For all

our experiments we only report the execution time of inference

and eliminate the additional network-related latency contributed

by network protocols, including HTTP, TCP or UDP.

B. Data Transfer To GPU
We measured the CPU utilization of CPU-Copy and NetML

by measuring percentage of CPU cycles spent in transferring

TABLE II
CPU USAGE IN DIFFERENT MODES FOR DATA TRANSFER TO GPU

Batch Size Data Size (MB) CPU-Copy (%) NetML (%)
1 0.57 10.6 0.12
4 2.29 29.2 0.15
8 4.59 35.99 0.16
16 9.19 43.8 0.20
32 18.37 45.73 0.21

image data of different batch sizes to GPU out of all the CPU

cycles used in one inference task. We present the utilization of

CPU in Table. II. We observe that, the amount of CPU cycles

as well as proportion of CPU cycles increases for CPU-Copy

as the batch size increases. This is because the operations

other than data copying i.e., calling GPU kernels for inference,

CUDA API calls, etc. are amortized across a batch of images.

But the data copy overhead itself sees no such amortization.

But, NetML barely uses any CPU cycles for data transfer, with

the maximum being 0.21% used to transfer batch of 32 images

as NetML offloads the data transfer to GPU’s DMA engine.

We evaluate NetML using (i) single V100 GPU and (ii)

cluster of 8 Tesla T4 GPUs. We use a fixed batch size of 8 for

inferring incoming requests in both experiments. In Fig. 4a we

show the throughput achieved by Alexnet in a single V100 GPU

with increasing requests. Inference with NetML provides higher

throughput than CPU-Copy as the request rate exceeds 2000 im-

ages per second. We also see the inference with NetML peaks at

about 4000 images per second. This is when the GPU utilization

is maximized and becomes the bottleneck. Inference with CPU-

Copy remains lower, as the CPU becomes the bottleneck due to

the data transfer overhead. In Fig. 4b we evaluate the inference

with NetML and CPU-Copy in a 8 GPU cluster. Here, we see

that with NetML we can infer virtually all requests coming in

from 40GbE bandwidth (7680 images per second). However,

CPU-Copy hits the peak inference at about 3500 images per

second due to CPU data transfer being the bottleneck.

C. Inference in Multiple GPU
Figure 4c (left) shows the performance running 3 different

type of IFs (Alexnet, ResNet-50 and VGG-19) in each of

the 4 GPUs concurrently (total of 12 IF instances). Fig. 4c

(right) shows the performance of running 4 different type of

IFs (Alexnet, Mobilenet, ResNet-50 and VGG-19) concurrently

in each of 4 GPUs (16 IF instances). We set the SLO to

50 ms. We compare the throughput of MPS+SLAB and

ECML for both setups. We should note that SLAB provides

batching but no NetML, while ECML provides both. For the

aggregate throughput of all models, ECML provides more than

2× that of MPS+SLAB. ECML eliminates the interference

caused by the model with high computational requirement

(VGG-19), thus allowing lighter models (computationally) to

achieve higher throughput. However, ECML only marginally

reduces the throughput of the heavy model (for VGG-19,

84 inferences/sec with MPS+SLAB vs. 79 with ECML). We

recognize that a cloud provider may choose to have a GPU

cluster to provide additional spatial multiplexing across GPUs,

given the limitations of CUDA-MPS. But, with ECML, multiple

DNN models can run concurrently on each GPU in a multiple

GPU system, thus further improving multiplexing capability.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 16:51:31 UTC from IEEE Xplore. Restrictions apply.

1500
2000
2500
3000
3500
4000
4500

1920 2880 3840 4800 5760T
hr
ou
gh
pu
t(
im
ag
es
/s
)

Request Rate (images/sec)

CPU-Copy
NetML

(a) Inference throughput with Single GPU

1000
2000
3000
4000
5000
6000
7000
8000

1920 2880 3840 4800 5760 6720 7680T
hr
ou
gh
pu
t(
im
ag
es
/s
)

Request Rate (images/sec)

CPU-Copy
NetML

(b) Inference throughput of Alexnet with 8 GPUs

0
250
500
750
1000
1250
1500
1750
2000
2250

MPS SLAB ECML MPS SLAB ECML

T
hr
ou
gh
pu
t(
ip
s.
) Alexnet

Mobilenet
ResNet-50
VGG-19

C2C1

(c) Throughput with 8 GPU cluster, C1 = Alexnet,
ResNet-50 and VGG-19. C2 = C1 + Mobilenet

Fig. 4. (a)(b) Inference throughput of Alexnet (TensorRT) with CPU-Copy and NetML. (c) Throughput of ECML and alternatives in 8 GPU cluster

TABLE III
LATENCY AND THPT. OF DNNS WITH ENTIRE GPU VS. SHARING GPUS

Mobilenet ResNet-50
Throughput Latency Throughput Latency

1 DNN per GPU 1720 (images/s) 18.3 ms 480 66
DNNs Sharing GPU 1720 18.3 680 45

D. Benefits of Multiplexing models across multiple GPU
We evaluated scenarios where each individual model has an

entire GPU, versus one where GPU is shared between models.

We shared 2 Tesla T4 GPUs with Mobilenet and ResNet-50,

where Mobilenet DNN gets 35%, and ResNet-50 gets 65%

of each GPU. The request rate is 1920 images/sec and the

maximum batch size is 32. We do not set an SLO to allow

unconstrained batch formation. Average throughput shown in

Table III. Controlled spatial sharing of the GPU increases

ResNet-50 throughput by 40% and reduces inference latency,

while keeping throughput for Mobilenet same as with dedicated

GPU. In essence, ResNet-50 gets 130% of a GPU’s capacity

by sharing, while Mobilenet uses 70% GPU across 2 GPUs,

and gets same throughput as dedicating a GPU for it.

V. SUMMARY AND FUTURE WORK

With the growing need for ML for latency-sensitive applica-

tions, executing them at an edge cloud is desirable. Because of

limited compute capacity at an edge cloud (compared to central-

ized clouds), we need to better utilize CPU and GPU resources.

To more effectively use multi-GPU machines, we seek to better

utilize each of the GPUs by controlled spatial multiplexing

of the GPU. Compared to pure temporal sharing or even the

uncontrolled spatial sharing offered by CUDA MPS, controlled

spatial multiplexing gives much lower, predictable, inference

latency and higher inference throughput. We also need a timely

notification of GPU task completions to the CPU to effectively

use the GPUs and reduce latency. Having a small kernel thread

in the GPU subsystem to fully take advantage of the GPU-

resident DMA (as in NetML) substantially improves movement

of streaming data to the GPU, relieving CPU load, a critical

factor in multi-GPU systems to improve inference throughput.

Our current work is to develop a framework to support a richer

scheduling, load-balancing auto-scaling algorithms to support

a variety of ML frameworks with limited or no modifications

to their existing algorithms in multi-GPU systems.

VI. ACKNOWLEDGEMENT

We thank all the anonymous reviewers for their valuable

feedback and the US NSF for their generous support of this

work through grant CNS-1763929.

REFERENCES

[1] A. Dhakal et al., “Gslice: controlled spatial sharing of gpus for a scalable
inference platform,” in Proceedings of the 11th ACM Symposium on
Cloud Computing, 2020, pp. 492–506.

[2] A. Dhakal et al., “Machine learning at the edge: Efficient utilization of
limited cpu/gpu resources by multiplexing,” in AI towards Mission-
Critical Communications and Computing at the Edge (AIMCOM2)
workshop at ICNP 2020, 2020.

[3] A. Dhakal and K. K. Ramakrishnan, “Netml: An nfv platform with
efficient support for machine learning applications,” in 2019 IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2019.

[4] NVIDIA, Tesla, “Multi-process service,” NVIDIA. May, p. 108, 2019.
[5] M. Satyanarayanan, “Edge computing for situational awareness,” in Local

and Metropolitan Area Networks (LANMAN), 2017 IEEE International
Symposium on. IEEE, 2017, pp. 1–6.

[6] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[7] L. Liu et al., “Edge assisted real-time object detection for mobile
augmented reality,” in The 25th Annual International Conference on
Mobile Computing and Networking, 2019, pp. 1–16.

[8] X. Ran et al., “Deepdecision: A mobile deep learning framework for
edge video analytics,” in IEEE INFOCOM 2018-IEEE Conference on
Computer Communications. IEEE, 2018, pp. 1421–1429.

[9] H. Chang et al., “Bringing the cloud to the edge,” in 2014 IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2014, pp. 346–351.

[10] A. Ignatov et al., “Ai benchmark: Running deep neural networks on
android smartphones,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 0–0.

[11] X. Zhang et al., “pcamp: Performance comparison of machine learning
packages on the edges,” in {USENIX} Workshop on Hot Topics in Edge
Computing (HotEdge 18), 2018.

[12] R. Collobert et al., “Torch7: A matlab-like environment for machine
learning,” in BigLearn, NIPS Workshop, 2011.

[13] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning
toolkit,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[14] NVIDIA, “Tensorrt developer guide,” https://docs.nvidia.com/
deeplearning/sdk/tensorrt-developer-guide/index.html, 2019, [ONLINE].

[15] M. Abadi et al., “Tensorflow: A system for large-scale machine learning,”
in 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), 2016, pp. 265–283.

[16] J. Redmon, “Darknet: Open source neural networks in c,” http://
pjreddie.com/darknet/, 2013–2016.

[17] T. Chen et al., “Mxnet: A flexible and efficient machine learning library
for heterogeneous distributed systems,” arXiv preprint arXiv:1512.01274.

[18] “Tensorflow serving,” https://www.tensorflow.org/tfx/guide/serving.
[19] “Torchserve,” https://pytorch.org/serve, 2020.
[20] C.-J. Wu et al., “Machine learning at facebook: Understanding inference

at the edge,” in 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2019, pp. 331–344.

[21] S. Wang et al., “High-throughput cnn inference on embedded arm big.
little multi-core processors,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2019.

[22] W. Zhang et al., “OpenNetVM: A Platform for High Performance
Network Service Chains,” in Proceedings of the 2016 ACM SIGCOMM
Workshop on Hot Topics in Middleboxes and Network Function Virtual-
ization. ACM, Aug. 2016.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 16:51:31 UTC from IEEE Xplore. Restrictions apply.

