2020 IEEE 9th International Conference on Cloud Networking (CloudNet) | 978-1-7281-9486-8/20/$31.00 ©2020 IEEE | DOI: 10.1109/CLOUDNET51028.2020.9335804

ECML: Improving Efficiency of Machine Learning
in Edge Clouds

Aditya Dhakal
University of California, Riverside
adhak001 @ucr.edu

Abstract—Edge cloud data centers (Edge) are deployed to
provide responsive services to the end-users. Edge can host more
powerful CPUs and DNN accelerators such as GPUs and may
be used for offloading tasks from end-user devices that require
more significant compute capabilities. But Edge resources may
also be limited and must be shared across multiple applications
that process requests concurrently from several clients. However,
multiplexing GPUs across applications is challenging. With edge
cloud servers needing to process a lot of streaming and the advent
of multi-GPU systems, getting that data from the network to the
GPU can be a bottleneck, limiting the amount of work the GPU
cluster can do. The lack of prompt notification of job completion
from the GPU can also result in poor GPU utilization.

We build on our recent work on controlled spatial sharing
of a single GPU to expand to support multi-GPU systems and
propose a framework that addresses these challenges. Unlike the
state-of-the-art uncontrolled spatial sharing currently available
with systems such as CUDA-MPS, our controlled spatial sharing
approach uses each of the GPU in the cluster efficiently by
removing interference between applications, resulting in much
better, predictable, inference latency We also use each of the
cluster GPU’s DMA engines to offload data transfers to the
GPU complex, thereby preventing the CPU from being the
bottleneck. Finally, our framework uses the CUDA event library
to give timely, low overhead GPU notifications. Our evaluations
show we can achieve low DNN inference latency and improve
DNN inference throughput by at least a factor of 2.

Index Terms—Machine Learning, Inference, Edge Clouds,
General Purpose Graphics Processing Unit (GPGPU)

I. INTRODUCTION

A large number of emerging applications, such as speech
recognition (e.g., Amazon Alexa, Apple Siri), image recog-
nition, vehicular safety, augmented reality/virtual reality
(AR/VR), etc. need low latency to satisfy the user’s quality of
experience (QoE) requirements. Frequently, these core services
also require accurate Inference and Machine learning (I&ML)
capabilities. These, I&ML applications often use compute inten-
sive Deep Neural Networks (DNNs) which require accelerators
such as GPUs for low latency inference and learning. These
services typically depend on cloud resources to offload compute
intensive tasks. Locating the cloud facilities close to users is
highly desirable to ensure low latency and to guarantee QoE.
In this regard, the Edge Cloud (such as at the end of the first
hop link from the user, whether wired or wireless) or the Edge
are often the most suitable to provide ’cloud’ services or act
as an intermediary to more centralized cloud services. Thus,

978-1-7281-9486-8/20/$31.00 ©2020 IEEE

Sameer G Kulkarni
Indian Institute of Technology, Gandhinagar
sameergk @iitgn.ac.in

K. K. Ramakrishnan
University of California, Riverside
kk@cs.ucr.edu

the usage of Edge for I&ML is also becoming more attractive.
However, unlike cloud environments that seek to provide
’almost infinite scalability’ of resources, edge resources are
likely to be constrained. Hence, the edge needs to judiciously
utilize resources by allowing multiplexing of multiple services.

Even in an Edge that includes systems with multiple GPUs
(e.g., NVIDIA’s Tesla T4 system), it is important to utilize
the GPUs efficiently and maximize throughput. Multiplexing
several applications on the GPU can help support a large
demand from I&ML applications. However, multiplexing
within the GPU is non-trivial and can be a major challenge,
especially to achieve low latency. Traditional approaches, such
as temporal multiplexing time-share the GPU among different
tasks, but in each time-slice they dedicate a complete GPU
(all of the compute engines or the Streaming Multiprocessors
(SMs)) to a single DNN task. Tasks with a lighter compute
requirement can result in under-utilization of the GPU
resources. Temporal multiplexing also has the consequence
of increasing inference delays. As an alternative, spatial
multiplexing shares a portion of GPU and run different tasks on
a GPU simultaneously. Controlled spatial multiplexing (CSM)
that carefully manages this sharing is able to control latency
for inference and improve throughput [1], [2]. Here, we further
complement CSM on a single GPU with techniques to scale to
larger number of I&ML applications running on an Edge with
the use of a cluster of GPUs as found in multi-GPU systems.

Managing such a multi-GPU cluster for handling I&ML tasks
at the Edge poses several challenges. Since an Edge may host
multiple I&ML applications concurrently, a lot of inference and
learning data would be streaming to the Edge. GPU runtime
environments, such as CUDA and OpenCL, require the CPU to
perform the major task of extracting the streamed data from the
network and transferring to the GPU i.e., the CPU has to copy
the payload from network packets to a contiguous buffer and
push the data to the GPU using runtime APIs. This is especially
concerning as we deploy multi-GPU systems, where the system
includes a multi-core CPU and several, up to 8, GPUs. This
can cause the CPU to become the bottleneck while performing
the data movement task. We seek to alleviate this overhead in
this work, building on our previous work on NetML [3]. We
use NetML’s cut-through approach to transfer data to the GPU
using the GPU’s DMA engines. This alleviates the overhead on
the CPU as it transfers data from network packets to the GPU
using the GPU’s DMA engine and its scatter-gather capability.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 16:51:31 UTC from IEEE Xplore. Restrictions apply.

Moreover, scheduling of the I&ML tasks across different
GPUs, and load-balancing them among the cluster of GPUs,
is critical to ensure timely completion of the jobs and proper
utilization of the Edge resources. For this, the key is to monitor
the task completion time and ensure that the application can be
scaled appropriately to meet the desired latency requirements.
Further, the GPU being a different subsystem, does not have
an effective task completion notification mechanism. Callback
methods in current GPU runtimes are limited in functionality
and stall the execution in the GPU until the callback is pro-
cessed. This can cause delay, and idle the GPU resources. We
develop a method, exploiting a lightweight CUDA event API,
to know immediately that the execution of certain application
has completed. The use of the event API avoids the issue of
stalling the GPU execution, and prevents GPU from being idle.

In this paper, we first present the challenges associated with
the existing GPU multiplexing modes. We then make the case
for a framework that can manage multiple-GPUs and provide
controlled spatial sharing of the GPUs with proper resource
allocation, so as to provide DNN applications with the right
amount of GPU resources to meet their low latency requirement.
Our preliminary framework provides the foundation to support
more complex scheduling, load balancing and auto-scaling
mechanisms in the near future. Our framework can efficiently
utilize multiple GPUs of the cluster. At the time of initiation of
the I&ML function (IF), we check the number of GPUs in the
system and choose an available GPU to load the DNN model,
create the GPU contexts, and the necessary memory buffers.

Overall, our Edge inference framework reduces the CPU over-
head of transferring high volume of streaming data from net-
work to multiple GPU in a GPU cluster and multiplexes applica-
tions by spatially sharing GPUs in the cluster. Edge clouds can
facilitate low latency ML inference. However, due to resource
constraints, they do not offer the same economies of scale that a
centralized cloud may provide. Nonetheless, the proposed tech-
niques and optimizations of our framework can also improve
the utilization of centralized cloud. Multiplexing applications
across, and within individual resources can have much larger
impact in the utility and economics of relatively resource-scarce
edge clouds. Multiplexing within resources might not be as crit-
ical in a large centralized cloud due to its inherent economies of
scale. We demonstrate that our approach helps with getting over-
all higher throughput than providing single GPU to each DNN.
Moreover, our approach keeps latency low and predictable.

II. BACKGROUND AND RELATED WORK
A. NVIDIA CUDA Support for GPU Multiplexing

NVIDIA GPUs along with the CUDA runtime provide
support for sharing the GPU, both temporally and spatially.
The state-of-the-art CUDA MPS (multi-process service) [4]
allows to spatially share the GPU across multiple, different
processes. However, when GPU resources are insufficient,
multiple application contend with each other for the same
GPU resources, often resulting in interference with each
other’s kernel’s execution. This interference often results in
increased and unpredictable latency while performing inference

10000
CPU Latency t=ood
1000 £ GPU Latency e
KL

—_
o
T

1

Time to Infer (ms
=
o
T

ResNeXt-50 VGG-16

Fig. 1. Latency of inferring one image with CPU vs. a GPU
in conjunction with other inference or machine learning tasks.
By default, CUDA MPS does have the means to limit the
amount of GPU resources used by an application, but it needs
to be managed carefully, which we describe in this paper.

Densenet

B. Edge Cloud GPU Inference Platforms

Computing at edge clouds promises to provide more
responsive services requiring significant compute resources
for functions not convenient to be supported on hand-held
devices (e.g., smart phones) because of computation, power
or cost limitations. Moreover, services often require fusing of
multiple sources of data (e.g., sensory inputs) that require more
computation, but also low latency [5]. Edge clouds are often
used to offload processing from end-devices [6]-[8]. With
central offices of traditional communication providers having
space, power, and climate-conditioning, they are becoming
prime candidates for housing edge cloud services. This is also
true for wireless environments, such as cellular, with more
distributed deployments of the packet core. While the edge
clouds have more processing capacity and storage than a single
system, they are still likely to be resource constrained relative
to the aggregated demand from edge devices e.g., smart
phones, IoT devices, vehicles, efc). Hence, it is important to
judiciously manage edge cloud resources. Further, the edge
workload and traffic characteristics, akin to centralized clouds,
can vary drastically over time [9]. This makes it necessary
to adapt the I&ML support to better match current workload.

DNNs are compute heavy and performing inference with
them in devices with limited computational capability (and
limited battery power) such as a smartphone can take several
seconds for even a single inference [10]. Offloading the com-
putation to servers with more compute power can drastically
bring down the inference time. However, even with additional
computational resources of an edge server, the inference would
be an order of magnitude slower if the platform only uses
CPUs compared to one with even a small GPU [11]. DNN:s,
specially Convolutional Neural Network (CNNs) are often
composed of multiple matrix operations, which can benefit
from parallelization offered by the GPU. When compared to
CPUs, GPUs with a number of compute engines and cores
can accelerate DNN inference significantly (by 2-3 orders of
magnitude). We have computed the average latency to infer
one image with different models in Pytorch in one CPU core
and one NVIDIA V100 GPU. We present our results in Fig. 1.
We can see that a GPU can help infer the image 10x faster
than using a CPU. Therefore, it is necessary to use GPUs for
I&ML workloads with real-time response requirements.

DNN and other ML applications are typically modeled,
trained and deployed using one of a number of platforms,
such as PyTorch [12], Microsoft CNTK [13], NVIDIA Ten-

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 16:51:31 UTC from IEEE Xplore. Restrictions apply.

TABLE 1
DIFFERENT INFERENCE PLATFORMS AND THEIR CHARACTERISTICS.

ML Platform n‘:ﬁ; del(s) CUDA Streams | Batching ?ltlaerstlllls t.’g)m:m((siif))
CNTK [13] CUDA No Yes 22
Darknet [16] CUDA No No 57
MxNet [17] CUDA/OpenCL Yes Yes 5.53
PyTorch [12] CUDA/OpenCL Yes Yes 5.03
TensorFlow [15] | CUDA/OpenCL Yes Yes 9.2
TensorRT [14] CUDA Yes Yes 32

sorRT [14], Tensorflow [15] etc. Table I presents the key

characteristics of the some of the most popular ML platforms.

All of these platforms support CUDA programming to
interface with the GPU and are designed to support NVIDIA
GPUs. There are differences in terms of their characteristics
and support for different performance enhancing options,
e.g., CNTK and Darknet do not support CUDA streams;
Darknet does not support batching DNN requests, etc. Another
interesting aspect is that these frameworks have different model
loading times. We evaluated the time for a ResNet-50 model
to load in different platforms in our testbed with NVIDIA
V100 GPU. We present our results in Table I. We can see that

loading time of a model for the ResNet-50 model is in seconds.

A high startup time is a concern when rapid change in demand
for a certain application requires additional instances of the
DNN model. Our prior work GSLICE [1] facilitates adjustment
of ML platforms’ GPU resources as well as gracefully dealing
with the long start-up delays while adjusting resources.
Many ML platforms now offer a inference/learning serving
interface that can be deployed in the cloud. Tensorflow
serving [18], Torchserve [19] can host models in the cloud
for inference. However, these cloud based platforms generally
use the default CUDA runtime and are not suitable for edge
cloud with scares resources. There is work for improving edge
based systems [20], [21], focusing on improving the DNN
algorithms to achieve a better balance between accuracy and

inference latency. Our work is complementary to these efforts.

We seek to maximize CPU and GPU utilization and lower
latency, by improving the I&ML system instead.

III. SYSTEM DESIGN

We propose ECML, an I&ML framework for Edge clouds,
as shown in Fig. 2. The framework consists of applications
running on the OpenNetVM (ONVM) environment [22] which
aids in low latency high throughput packet processing. Each
I&ML application can load its DNN model into any GPU in the
cluster and specify the GPU% such that the GPU can be shared
with another I&ML’s model. Each I&ML application in the
environment will have access to shared memory where packets
are forwarded by the NIC and can use NetML [3] to transfer
application data, e.g., images, to the GPU for inference.

The ECML application environment consists of three main
modules: 1) An enhanced NetML module that helps move the
data from packet payloads to and from GPU memory, utilizing
the GPU’s DMA engine(s); 2) The host CPU ML module
that hosts ML platform libraries such as PyTorch, TensorRT,
and Tensorflow, and is able to run DNNs developed for such
platforms. 3) A Streams & Notification module that helps
the inference task running in the GPU and monitor the GPU,

such that the CPU-resident application is promptly informed
when the inference task completes.

[| o Y 3 2z ic 3
ResNext-50 Densenet VGG-19 |
NetML NetML """ NetML
PyTorch TensorRT TensorRT_)
Streams Streams
ONVM Strg?;ﬂs & & ONVM & ONVM
&ep--1 | Notification | 1) o GPY. App.-2 | | =~ GPU App. -3
_| —Notification { Notification
VM Shared Memo
| NIC Packet| [Packet| | Packet
ONVM Manager CPU
.\‘ ___________ === == m === -G Fﬁ.ls-
GPU (50%) GPU (50%) GPU (20%) GPU (80%)
Application 1| Application 2 Application 1 Application 2
cbu DNN GPU DNN GPU DNN GPU DNN
Memory | Kernels | Memory | Kernels | | Memory | Kernels | Memory | Kernels
GPU-1 GPU-N

Fig. 2. ECML framework for edge cloud
A. NetML: Data Transfer to GPU

Unlike a standalone node, edge I&ML platforms with
multiple GPUs and hosting multiple I&ML applications
will need to handle a large amount of streaming data. A
single GPU might easily get fully utilized by running 2 or
3 different I&ML applications. However, with a cluster of
8-16 GPUs in a server, a lot more I&ML applications can
be run concurrently, therefore, it involves moving a lot more
incoming data to the GPU to perform inference. We can see
from Fig. 2 that the streaming data arrives from the NIC and
is buffered in ONVM’s shared memory. Copying the payload
from each packet to a contiguous buffer and then to the GPU
is expensive in terms of CPU cycles and adds latency.

We developed NetML [3] to avoid the extra copy by running
a GPU kernel that uses the GPU’s DMA engine to perform
scatter-gather from host memory. This approach provides two
key benefits: i) it is efficient and timely; ii) more importantly,
it saves host CPU cycles. The original NetML design only
infers a single image and start transferring data from packet
payload to GPU as soon as first packet with image data arrives.
However, to get the throughput improvement that can be gained
from batching, we now modify the original NetML design to
support batching. In NetML, if we miss a portion of data for
an image due to network loss, we would have to wait for it
or choose to not infer the image depending on user settings.
However, to infer a batch of images, all of the batch’s image
data has to be present in contiguous memory buffer in the GPU.
If we start building the batch in GPU from the first received
data packet and subsequently miss some data for images in
middle of the batch due to network loss, we would have to
recreate a batch in GPU only with images that have all their
data available, by copying data within GPU. To avoid this,
we design a lightweight verification mechanism that verifies
that the data for an entire image is present in received packets
before transferring data to the GPU.

B. GPU Multiplexing

We describe 3 different methods of multiplexing 1&ML
applications in a GPU.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 16:51:31 UTC from IEEE Xplore. Restrictions apply.

80

— R — Y — Densenet (D) (25% GPU) —
- 60 60 - D—R—V 60 ResNeXt-50 (R) (15% GPU) —| — 70 Reasnsene!
£ VGG-16 (V) (60% GPU) — g 60 - VGG-16 mm
g L L ~ 50 -
= 40 40 40 =
o e 40
] o 30
s 20 20 [20 T Ll £
— [N L A 1 20 E = =
L L L L L L | L L | L L L L | L L | | L L | L 10 [| I | - | -
0 0 0

0 2 4 6 8 10 12 14
Timeline (sec)

0 2 4 6 8 10 12 14
Timeline (sec)

(a) Temporal Sharing (b) Default MPS

0
0 2 4 6 8 10 12 14
Timeline (sec)
(c) Fixed GPU%.

Temporal Default Controlled
Sharing MPS Sharing

(d) GPU sharing latency variation

Fig. 3. Latency of DNN models multiplexing GPU (a) temporally, (b) default MPS and (c) spatially with fixed GPU%.(d) box plot of inference latency

1) Temporal Sharing: Both CUDA and OpenCL support
scheduling GPU kernels from different processes with regular
time quanta, to temporally share the GPU. But, GPUs may be
underutilized, as a single process usually fails to fully utilize
all the GPU resources. We run an experiment with three
different models, DenseNet, ResNeXt-50 and VGG-16 (start
and finish in that order) concurrently on the PyTorch platform,
temporally sharing the GPU. We see from Fig. 3a that initially
the latency of Densenet is low, ~ 20 ms per inference. With
contention from the ResNeXt model, the latency of Densenet
increases more than 2x. VGG-16 then further increases the
latency of both the DenseNet and ResNeXt models.

2) Spatial Multiplexing of the GPU: MPS allows spatially
sharing of the GPU among multiple processes. We ran a similar
experiment with default MPS (i.e., spatial sharing of GPU).
Fig. 3b shows that the latency of all three models are lower
compared to temporal sharing. This is because MPS allows
applications to use the spare GPU resources, if another con-
currently running model is not fully utilizing the GPU. When
ResNeXt comes up, the latency of Densenet does not increase
as there are enough GPU resources to allow both to execute
concurrently. But, when the third, VGG-16, model comes up,
the latency of Densenet increases significantly, while ResNeXt’s
latency also increases by a small amount. But more importantly,
the inference latency for each of the models is highly variable.
While default MPS may improve GPU utilization, it leads to
unpredictable latency for the concurrently running models.

3) MPS with resource usage limits: The recent NVIDIA
CUDA architectures (i.e., Volta) provides resource provisioning
limits in MPS, setting a fixed maximum proportion (GPU%)
of the available threads (in units of # SMs) for individual
clients. We leverage our work in [1] in ECML to provide
controlled spatial sharing of the GPU. Our approach achieves
good performance isolation through proper GPU resource
separation among the different GPU applications.

To demonstrate the resource isolation and essentially elimi-
nating interference, we run the 3 DNN models concurrently in
the GPU with fixed GPU% for each. For this experiment, we
provided Densenet with 25% GPU, ResNeXt-50 with 15% GPU
and VGG-16 with 60% GPU. We see from Fig. 3¢ and Fig. 3d
that the latency of the models remain about same for the entire
experiment, with low variance (see boxplot), indicating almost
no interference between concurrently running models. Since the
latency of Densenet is the same throughout, we conclude that
only 25% GPU is necessary for Densenet to run and still achieve

the lowest latency across the different multiplexing options.
C. Inference deadline and adaptive batching

Batching multiple requests together helps amortize the cost
of launching DNN functions and transferring data to GPU,
thus, increasing inference throughput. However, larger batch
sizes also increase the inference latency as bigger batch takes
a longer time time to form, as well as take longer to complete
inference in the GPU. Many tasks in the edge cloud can be
latency sensitive and come with a deadline, or a service level
objective (SLO). We have used self-learning adaptive batching
(SLAB) as described in GSLICE [1] to benefit from both higher
throughput from higher batch size, as well as to complete
inference before the deadline. SLAB increases the batch size
till total inference latency does not exceed the deadline.

D. Inference using multiple GPUs: Notification and Scheduling

Utilizing multiple GPUs in an I&ML inference platform
requires coordination between applications and the GPUs to
perform inference efficiently. Depending on demand, a DNN
may be running in a single GPU or can have multiple instances
within the GPU cluster. Moreover, with spatial sharing within
a GPU, multiple different DNNs may be concurrently using
the GPU. Load balancing across multiple instances of the
same DNN service and coordinating between multiple services
within a GPU are necessary.

Managing multiple inference tasks on the CPU & GPU is
especially challenging as the GPU computation is asynchronous
with respect to the CPU. The asynchronous execution helps to
free up the CPU after it submits the job to GPU and allows
a single CPU thread to submit multiple tasks to the GPU
without waiting for the tasks to be completed. However, there
is no simple way for the CPU task to know when a submitted
task has completed on the GPU. The CUDA API offers a
“callback’ function cudaLaunchHostFunction() to notify the
end of processing in the GPU by running a callback function on
the CPU. Although the callback provides a notification of the
end of a task, the current implementation of the callback does
not help achieve effective GPU multiplexing. First, multiple
concurrent callbacks are serialized, which halts the subsequent
execution on the GPUs until the completion of the execution
of the callback routine on the CPU. This results in the GPU
idling. Second, the callback functions generated by the GPU
prevent the CPU thread from running any CUDA API functions.
Thus, this limitation demands an additional CPU context and
signalling scheme to perform GPU related operation.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 16:51:31 UTC from IEEE Xplore. Restrictions apply.

To overcome these limitations, we devise a lightweight
method to check the GPU task completion status. We leverage
CUDA’s event-based API to record an ’event’ (can be per GPU
stream) when the DNN is executed. The CUDA event acts as a
flag. When it is executed by the GPU, it records the time of the
execution. The CUDA API function cudaEventRecord() allows
us to put an event marker at the end of the DNN’s execution.
We then use another API function cudaEventQuery() to check
if the event that we placed has completed execution or not.

Together with the lightweight notification scheme, we utilize
a lightweight data structure to keep track of all active I&ML
applications and utilization information of each GPU. With
every task completion notification for an I&ML application,
we compute the throughput and latency for inference. With the
completion of every inference, we also change the status of
I&ML application to becoming available for another inference.
In contrast to running inference in a single GPU, where, a
particular DNN, e.g., ResNet-50, might only be served by 1
I&ML application, a multiple GPU cluster can host multiple
ResNet-50 services. Therefore, it is necessary to maintain the
availability state of each I&ML application.

With the throughput and latency statistics and the information
about the arrival rate of DNN requests, we can autoscale, i.e.,
start a new DNN instance, or scale down the DNN instance
based on the request arrival rate. These statistics help us
increase or decrease GPU resources for a particular I&ML
application and load balance among multiple existing I&ML
applications. Similarly, these statistics help design a scheduler
for I&ML applications based on the demand. Enhancing our
ECML framework with detailed auto-scaling, load-balancing
and scheduler algorithms is part of our future work.

IV. EVALUATION

A. Evaluation Testbed

Our experimental testbed uses a Dell Poweredge R740xd
with Intel(R) Xeon(R) Gold 6148 CPU with 20 cores, 256 GB
of system memory and one NVIDIA Tesla V100 GPU and an
Intel X710 10GbE quadport NIC. The V100 GPU has 80 stream-
ing multiprocessors (SMs) and 16 GB of memory. Our multi-
GPU test bed consists of 8 NVIDIA Tesla T4 GPU. We use 4
quadport Intel XL'710 10 GbE NICs (40Gb aggregate capacity).
Each Tesla T4 GPU has 16 GB of GPU memory and 40 SMs.

We use PyTorch and TensorRT platform for our evaluations.
Our DNN workload consists of color images of resolution
224 x224. For the experiments using NetML and data transfer
we transmit each image through network as 588 UDP packets
where each packet has a payload of 1 kilobytes. We use Moon-
gen and TCPreplay as traffic generator for transmitting images.
With 10 GbE connection between traffic generator and the re-
ceiving server, we can transmit 1920 images per second. For all
our experiments we only report the execution time of inference
and eliminate the additional network-related latency contributed
by network protocols, including HTTP, TCP or UDP.
B. Data Transfer To GPU

We measured the CPU utilization of CPU-Copy and NetML
by measuring percentage of CPU cycles spent in transferring

TABLE 11
CPU USAGE IN DIFFERENT MODES FOR DATA TRANSFER TO GPU
Batch Size | Data Size (MB) | CPU-Copy (%) | NetML (%)
1 0.57 10.6 0.12
4 2.29 29.2 0.15
8 4.59 35.99 0.16
16 9.19 43.8 0.20
32 18.37 45.73 0.21

image data of different batch sizes to GPU out of all the CPU
cycles used in one inference task. We present the utilization of
CPU in Table. II. We observe that, the amount of CPU cycles
as well as proportion of CPU cycles increases for CPU-Copy
as the batch size increases. This is because the operations
other than data copying i.e., calling GPU kernels for inference,
CUDA API calls, etc. are amortized across a batch of images.
But the data copy overhead itself sees no such amortization.
But, NetML barely uses any CPU cycles for data transfer, with
the maximum being 0.21% used to transfer batch of 32 images
as NetML offloads the data transfer to GPU’s DMA engine.

We evaluate NetML using (i) single V100 GPU and (ii)
cluster of 8 Tesla T4 GPUs. We use a fixed batch size of 8 for
inferring incoming requests in both experiments. In Fig. 4a we
show the throughput achieved by Alexnet in a single V100 GPU
with increasing requests. Inference with NetML provides higher
throughput than CPU-Copy as the request rate exceeds 2000 im-
ages per second. We also see the inference with NetML peaks at
about 4000 images per second. This is when the GPU utilization
is maximized and becomes the bottleneck. Inference with CPU-
Copy remains lower, as the CPU becomes the bottleneck due to
the data transfer overhead. In Fig. 4b we evaluate the inference
with NetML and CPU-Copy in a 8 GPU cluster. Here, we see
that with NetML we can infer virtually all requests coming in
from 40GbE bandwidth (7680 images per second). However,
CPU-Copy hits the peak inference at about 3500 images per
second due to CPU data transfer being the bottleneck.
C. Inference in Multiple GPU

Figure 4c (left) shows the performance running 3 different
type of IFs (Alexnet, ResNet-50 and VGG-19) in each of
the 4 GPUs concurrently (total of 12 IF instances). Fig. 4c
(right) shows the performance of running 4 different type of
IFs (Alexnet, Mobilenet, ResNet-50 and VGG-19) concurrently
in each of 4 GPUs (16 IF instances). We set the SLO to
50 ms. We compare the throughput of MPS+SLAB and
ECML for both setups. We should note that SLAB provides
batching but no NetML, while ECML provides both. For the
aggregate throughput of all models, ECML provides more than
2x that of MPS+SLAB. ECML eliminates the interference
caused by the model with high computational requirement
(VGG-19), thus allowing lighter models (computationally) to
achieve higher throughput. However, ECML only marginally
reduces the throughput of the heavy model (for VGG-19,
84 inferences/sec with MPS+SLAB vs. 79 with ECML). We
recognize that a cloud provider may choose to have a GPU
cluster to provide additional spatial multiplexing across GPUs,
given the limitations of CUDA-MPS. But, with ECML, multiple
DNN models can run concurrently on each GPU in a multiple
GPU system, thus further improving multiplexing capability.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 16:51:31 UTC from IEEE Xplore. Restrictions apply.

% 4599 CPU-Copy % 3888 CPU-Copy A %ggg : Alexnet B ResNet-50

o 4000 "0 =) ' £ [Mobilenet VGG-19 toosd

g 3500 |- NetML &0 'g 2888 L NetML mzzza :—5/ 1;88 i

= | = r & 1250

5 3000 5 4000 - S 1000 |-

< 2500 - < L Y 3 750 7

S o)) 3000 / g <] 500 F Y

2 2000 3 2000 % . g £ 250 2=

2 1500 R 1 2 foo0 - 0

= 1920 2880 3840 4800 5760 = 1920 2880 3840 4800 5760 6720 7680 MPS SLAB ECML MPS SLAB ECML
Request Rate (images/sec) Request Rate (images/sec) Cc1 c2

(a) Inference throughput with Single GPU

(b) Inference throughput of Alexnet with 8 GPUs (c) Throughput with 8 GPU cluster, C1 = Alexnet,

ResNet-50 and VGG-19. C2 = C1 + Mobilenet

Fig. 4. (a)(b) Inference throughput of Alexnet (TensorRT) with CPU-Copy and NetML. (c) Throughput of ECML and alternatives in 8 GPU cluster

TABLE IIT
LATENCY AND THPT. OF DNNS WITH ENTIRE GPU VvS. SHARING GPUs
Mobilenet ResNet-50
Throughput Latency | Throughput | Latency
1 DNN per GPU 1720 (images/s) | 18.3 ms 480 66
DNNs Sharing GPU 1720 18.3 680 45

D. Benefits of Multiplexing models across multiple GPU

We evaluated scenarios where each individual model has an
entire GPU, versus one where GPU is shared between models.
We shared 2 Tesla T4 GPUs with Mobilenet and ResNet-50,
where Mobilenet DNN gets 35%, and ResNet-50 gets 65%
of each GPU. The request rate is 1920 images/sec and the
maximum batch size is 32. We do not set an SLO to allow
unconstrained batch formation. Average throughput shown in
Table III. Controlled spatial sharing of the GPU increases
ResNet-50 throughput by 40% and reduces inference latency,
while keeping throughput for Mobilenet same as with dedicated
GPU. In essence, ResNet-50 gets 130% of a GPU’s capacity
by sharing, while Mobilenet uses 70% GPU across 2 GPUs,
and gets same throughput as dedicating a GPU for it.

V. SUMMARY AND FUTURE WORK

With the growing need for ML for latency-sensitive applica-
tions, executing them at an edge cloud is desirable. Because of
limited compute capacity at an edge cloud (compared to central-
ized clouds), we need to better utilize CPU and GPU resources.
To more effectively use multi-GPU machines, we seek to better
utilize each of the GPUs by controlled spatial multiplexing
of the GPU. Compared to pure temporal sharing or even the
uncontrolled spatial sharing offered by CUDA MPS, controlled
spatial multiplexing gives much lower, predictable, inference
latency and higher inference throughput. We also need a timely
notification of GPU task completions to the CPU to effectively
use the GPUs and reduce latency. Having a small kernel thread
in the GPU subsystem to fully take advantage of the GPU-
resident DMA (as in NetML) substantially improves movement
of streaming data to the GPU, relieving CPU load, a critical
factor in multi-GPU systems to improve inference throughput.
Our current work is to develop a framework to support a richer
scheduling, load-balancing auto-scaling algorithms to support
a variety of ML frameworks with limited or no modifications
to their existing algorithms in multi-GPU systems.

VI. ACKNOWLEDGEMENT

We thank all the anonymous reviewers for their valuable
feedback and the US NSF for their generous support of this
work through grant CNS-1763929.

[1]

[2]

[4]
[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]
[18]

[19]
[20]

[21]

[22]

REFERENCES

A. Dhakal et al., “Gslice: controlled spatial sharing of gpus for a scalable
inference platform,” in Proceedings of the 11th ACM Symposium on
Cloud Computing, 2020, pp. 492-506.

A. Dhakal et al., “Machine learning at the edge: Efficient utilization of
limited cpu/gpu resources by multiplexing,” in Al towards Mission-
Critical Communications and Computing at the Edge (AIMCOM?2)
workshop at ICNP 2020, 2020.

A. Dhakal and K. K. Ramakrishnan, “Netml: An nfv platform with
efficient support for machine learning applications,” in 2019 IEEE
Conference on Network Softwarization (NetSoft). 1EEE, 2019.
NVIDIA, Tesla, “Multi-process service,” NVIDIA. May, p. 108, 2019.
M. Satyanarayanan, “Edge computing for situational awareness,” in Local
and Metropolitan Area Networks (LANMAN), 2017 IEEE International
Symposium on. 1EEE, 2017, pp. 1-6.

J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655-1674, 2019.

L. Liu et al., “Edge assisted real-time object detection for mobile
augmented reality,” in The 25th Annual International Conference on
Mobile Computing and Networking, 2019, pp. 1-16.

X. Ran et al., “Deepdecision: A mobile deep learning framework for
edge video analytics,” in JEEE INFOCOM 2018-1EEE Conference on
Computer Communications. 1EEE, 2018, pp. 1421-1429.

H. Chang et al., “Bringing the cloud to the edge,” in 2014 IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS). 1EEE, 2014, pp. 346-351.

A. Ignatov et al., “Ai benchmark: Running deep neural networks on
android smartphones,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 0-0.

X. Zhang et al., “pcamp: Performance comparison of machine learning
packages on the edges,” in {USENIX} Workshop on Hot Topics in Edge
Computing (HotEdge 18), 2018.

R. Collobert et al., “Torch7: A matlab-like environment for machine
learning,” in BigLearn, NIPS Workshop, 2011.

F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning
toolkit,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016.
NVIDIA, “Tensorrt developer guide,” https://docs.nvidia.com/
deeplearning/sdk/tensorrt-developer- guide/index.html, 2019, [ONLINE].
M. Abadi et al., “Tensorflow: A system for large-scale machine learning,”
in 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), 2016, pp. 265-283.

J. Redmon, “Darknet: Open source neural networks in c,” http:/
pjreddie.com/darknet/, 2013-2016.

T. Chen et al., “Mxnet: A flexible and efficient machine learning library
for heterogeneous distributed systems,” arXiv preprint arXiv:1512.01274.
“Tensorflow serving,” https://www.tensorflow.org/tfx/guide/serving.
“Torchserve,” https://pytorch.org/serve, 2020.

C.-J. Wu et al., “Machine learning at facebook: Understanding inference
at the edge,” in 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 1EEE, 2019, pp. 331-344.

S. Wang et al., “High-throughput cnn inference on embedded arm big.
little multi-core processors,” [EEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2019.

W. Zhang et al., “OpenNetVM: A Platform for High Performance
Network Service Chains,” in Proceedings of the 2016 ACM SIGCOMM
Workshop on Hot Topics in Middleboxes and Network Function Virtual-
ization. ACM, Aug. 2016.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 16:51:31 UTC from IEEE Xplore. Restrictions apply.

