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Abstract This paper addresses issues that originate in the extension of the Loewner
framework to compute reduced order models (ROMs) of so-called quadratic-bilinear
systems. The latter arise in semi-discretizations of fluid flow problems, such as Burg-
ers’ equation or the Navier-Stokes equations. In the linear case, the Loewner frame-
work is data-driven and constructs a ROM from measurements of the transfer func-
tion; it does not explicitly require access to the system matrices, which is attractive in
many settings. Research on extending the Loewner framework to quadratic-bilinear
systems is ongoing. This paper presents one extension and provides details of its
implementation that allow application to large-scale problems. This extension is
applied to Burgers’ equation. Numerical results show the potential of the Loewner
framework, but also expose additional issues that need to be addressed to make it
fully applicable. Possible approaches to deal with some of these issues are outlined.
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1 Introduction

We study the extension of the Loewner framework to compute reduced order mod-
els (ROMs) of so-called quadratic-bilinear systems that arise in semi-discretizations
of fluid flow problems, such as Burgers’ equation or the Navier-Stokes equations.
The attractive feature of the Loewner framework is that it is data-driven and con-
structs a ROM from measurements of transfer functions related to the system. In the
linear case it does not explicitly require access to the matrices (such as E, A, etc.
defined below) of the system. While the Loewner framework for linear systems is
fairly developed, see e.g., the tutorial paper by Antoulas et al. [3], its extension to
quadratic-bilinear systems is ongoing. Recently, Antoulas et al. [2, 8] have extended
the Loewner framework to bilinear and quadratic-bilinear systems, but have not yet
addressed several issues that need to be dealt with when applying the Loewner frame-
work to fluid flow problems. This paper begins to address some of these issues. In
particular, we present the Loewner framework from [8] in a way that allows its effi-
cient implementation and scaling to large-scale problems. In addition, we present
more extensive numerical results of an initial version of the Loewner framework
to Burgers’ equation. These numerical results show the potential of the Loewner
framework, but also highlight open issues that need to be addressed. We will outline
possible paths on how to deal with these issues.
Given

EAcR™ beceR", deR N:R'xR—>R", G:R'xR" > R", (1)
we consider single input and single output (SISO) systems of the type

ELx(t) = Ax(t) + G(x(1), (1)) + Nx(),u@®) +bu@®), te0,T), (2a)
y(t) = " x(t) + du(t), te,T), (2b)
x(0) = 0. (20)

We will make additional assumptions on (2) in Sect.2. The system (2) is referred
to as the full order model (FOM). The semi-discretized viscous Burgers’ equations
and the Navier-Stokes equations fit into the setting (2). Burgers’ equation will be
discussed in Sect.4. We refer to, e.g., Elman et al. [6, Chap. 8], Layton [11] for
the semi-discretized Navier Stokes equations, where (2a) is a system of differential
algebraic equations for the velocity and pressure.

Our goal is to construct a small (r < n) dimensional model

E4%(t) = AX() + GR(), X(1)) + N&(1), u(®)) + bu(®), 1€ (0,T), (3a)
1) =) + duo), t€(0.T). (3b)
200) = 0, Ge)
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with E,A e R, b, €€ R, N:R" x R - R’, G:R" x R” — R’ such that the
input-to-output map u > y of the ROM (3) is a good approximation of the input-to-
output map u >y of the FOM (2).

The majority of ROM approaches use a Petrov-Galerkin projection. That is they
compute matrices V, W € R of rank r <« n, approximate the state of the FOM
(2) by x(y) &~ VX(1), insert this approximation into (2), and multiply the resulting
Eq. (2a) from the left by W . This results in a ROM (3) with

=W'EV, A=W’AV, b=W’b, ¢=V’c, A
G®7) = W/G(VE. VD), N&Euw=WNVR u. @
Examples of projection based ROM approaches include proper orthogonal decom-
position (POD), reduced basis (RB) methods, and Krylov subspace methods. These
and other ROM approaches are described, e.g., in the books by Antoulas [1], Hes-
thaven et al. [10], Quarteroni et al. [13], or the review paper by Rozza et al. [15].
Rowley and Dawson [14] review ROMs for flow problems. These methods have in
common that they compute V, W and then project the system. Thus these methods
need the matrices E, A, etc., to compute the ROM matrices E. A, etc. In contrast, for
linear systems, the Loewner framework computes the ROM system matrices E. A,
etc., directly from measurements of the transfer function, which in some cases can be
obtained from experiments. In the case where values of the transfer function can be
obtained from measurements, the Loewner framework does not require knowledge
of the FOM matrices E, A, etc. See the tutorial paper by Antoulas et al. [3] and
Sect.2. We study the extension of the Loewner framework to compute ROMs of (2).

To focus our presentation we consider SISO systems (2). However, the Loewner
framework and the material in this paper can be extended to multiple input and
multiple output (MIMO) systems using so-called tangential interpolation, but this
extension is technical and beyond the scope of this paper. For the reduction of linear
MIMO systems using the Loewner framework see [3].

Since we have only one input, the bilinear map N in (1) can be written in terms
of a matrix N € R**",

N(x,u) = Nxu forallx € R”,u e R. (52)

Furthermore, given the bilinear map G in (1) there exists a matrix Q € R guch
that the bilinear map can be written using Q and the Kronecker product ® as follows

Gkx,z2)=Qx®z forallx,ze R". (5b)
Thus, the system (2) can be written as

ELx(t) = Ax(t) + Q x(1) ® x(1) + Nx()u(r) + bu(r), (6a)
y() = cI'x(t) + du(r). (6b)
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The representation (6) of quadratic bilinear systems is used in previous model reduc-
tion approaches. See, e.g., the papers by Benner and Breiten [4], Breiten and Damm
[5], Gosea and Antoulas [8], and Gu [9]. However, for some applications, incl. the
Burgers’ equation or the Navier-Stokes equations, the construction of Q is imprac-
tical and the use of (6) tends to be numerically inefficient. As mentioned before,
the Burgers’ equation or the Navier-Stokes equations are written in the form (2).
Therefore we use (6) only to introduce the ideas, but use (2) for computations.

We use the system representation (6) to review the Loewner framework in Sect. 2.
In Sect.3 we show how the Loewner framework for (6) can be efficiently applied
directly to (2). This makes the Loewner framework applicable to a number of flow
problems. In addition, the implementation details given in Sect. 3 can also be used for
other ROM approaches that are based on the representation (6), such as [4, 5], [9].
Section 4 illustrates the performance of the Loewner approach applied to Burgers’
equation. The Conclusion Sect.5 summarizes our findings and outlines some areas
of current and future research.

2 The Loewner Framework

We begin with a review of the Loewner framework for the linear case (Q = 0 and
N = 0) because it provides important insight into basic ideas and is the foundation
for its extension to the quadratic bilinear case, which will be discussed in the second
part of this section. The implementation of the Loewner framework in the context of
the system (2) will be discussed later in Sect. 3.

To simplify our presentation, we assume that E is nonsingular and that d = 0.
These assumptions can be relaxed, especially in the linear case, see [3].

2.1 Linear Systems

We consider linear systems (6) with Q = 0 and N = 0. The input-to-output map of
the linear system in frequency domain is given by the transfer function

H(s) = ¢ SE — A)~'b. (7)

The Loewner framework uses measurements of the transfer function (7) to con-
struct E, A € R™*" and b, € € R” such that the transfer function

H(s) =¢’E—-A)"'b (8)
of the corresponding ROM linear system matches or, depending on the amount of

data given, approximates the original transfer function (7) at the measurements.
Specifically, we want to construct a ROM so that its transfer function (8) matches or
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approximates the transfer function (7) at the left driving frequencies' ji1, ..., i €
C and at the right driving frequencies A, ..., \x € C. Given distinct frequencies
Wiy .-, i and Ap, ..., A, and corresponding transfer function (7) measurements
H(y), ..., H(u) and H(\)), ..., H()\;), we consider the Loewner matrix>

Hup)-HQX) . He)-HK\)
1= J11—Ak
L= . c (Ckxk (9a)
Hpo)-HAD) . He)-HOW
k= A1 e — Mk

and the shifted Loewner matrix

mHE)-HA) A pH@e) —HO) A
1=l =M
L, = : : e CH, (9b)
wH ) —HAD A peH ) —H ) A

Hk—=A1 Hk— Ak

The desired ROM is constructed from the Loewner and shifted Loewner matrices.
There are two cases: (1) The ‘right’ amount of data is available, and (2) a redundant
amount of data is provided. We focus on the second case, which is more relevant in
practice.

In the second case the pencil (Ly, IL) is singular and we use the singular value
decomposition (SVD) to reduce the data. Consider the (short) SVDs

L

] = Y, 5,X;, (10)

where X, € R¥*%* 3, € Rk Y| X, € C**k. A ROM is now computed as
follows. The matrices Y, X € C**" are obtained by selecting the first » columns of
the matrices Y; and X,. The ROM is

E=-YLX, A=-YLX, an
b=Y*"(H(u),....,H(y) , € = (HN\),...,HOW))X.
The transfer function (8) of the ROM (1) approximg}es the transfer function of the
FOM at the driving frequencies, H(y;) ~ H(p;), HO\ ) ~H\j), j=1,...,k
Expressions for the error |[H(s) — H(s)| are given in [3, p. 359]. The Loewner frame-
work provides a trade-off between accuracy and complexity of the ROM by means
of the singular values of the Loewner matrices I and L.

I'The reason for the terminology ‘left’ and ‘right’ driving frequencies only becomes clear in the
MIMO case and is adopted here for consistency with [3].

2We point out an important difference in notation between this paper and [3]. In [3], W =
(Wi, ..., w;) € CP** and VT = (v, ..., vy) € C"*4 are matrices (in the SISO casem = 1, p =
1 vectors) of transfer function (7) measurements, whereas in our paper V, W € R"*" are the Petrov-
Galerkin projection matrices in projection based ROMs (4).
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The ROM (11)is in general complex. However, ifdata iy, . . ., pg, A\q, - . ., A, and
consequently H(u), ..., H(ux) and H(\;), ..., H()\;), contain also the conjugate
complex data ({1 j}§:1 ={u j}’;zl, 5 j}§.=1 =\ }’;21), then the complex ROM (11)
can be transformed into a real ROM with the same transfer function, as shown in
[3, p. 360].

An alternative view of the above Loewner framework, which is important for the
extension of this framework, is obtained by considering the generalized controlla-
bility and observability matrices. Define

&(s) = E—A)"". (12)

Given the left and right driving frequencies 1, ..., t, A1, - .., Ak, the generalized
controllability matrix is

R=[®\)b, ®(\)b, ..., ®(\)b] e C™* (13a)

and the generalized observability matrix is
O =[@(u)"c, ®(wa)e, ..., D(uw) c] e CE. (13b)

The Loewner matrices can be factored in terms of the generalized controllabil-
ity/observability matrices as

L =-0ER, L;=-0AR. (14)
Note also that the following relations hold
T T
(HOW, ... HOw) =R, (H(u), ... H(w)) =0b.  (15)

If we define
V=RXecC"™, W=0OY eC", (16)

then (11), (14) and (15) show that the Loewner ROM (11) can also be written as
E=W'EV, A=W*AV, b=W', ©= V. (17
Thus while the Loewner ROM (11) can be obtained directly from data via the Loewner

and shifted Loewner matrices (9), it could also be obtained via Petrov-Galerkin
projection.

2.2 Quadratic Bilinear Systems

A starting point to extend the Loewner framework and other ROM approaches to
the quadratic bilinear case is an expansion of the original system (6) using Carleman
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linearization or the so-called variational equation approach. See, e.g., Rugh [16,
Chap. 3]. We use the latter approach. This expansion is justified for so-called linear-
analytic state equations [16, Theorem 3.1], which include (6).

Consider inputs of the form au(z), for a positive scalar a, and assume that the
solution of (6a) can be written as a power series X(7) = Zzil alx,(1). Inserting this
representation into (6a) and equating a® terms leads to

E4x(t) = Axi (1) + bu(?), =1, (18a)
Edx,(t) = A% (1) + Q x1(1) @ X1 (1) + Nx; (Hu(?), =2, (18b)

with homogeneous initial data. We temporarily assume that E = I is the identity to
simplify notation. Since E is nonsingular we can alway achieve this by multiply-
ing (18) by E~!. The solutions of (18) are x;(t) = fot eAbu(t — 1)dT, X2(1) =
fot A[Qx(f — ) @ X,(f —T2) + Nx,(f — m)u(t — 7)]dm, etc. The expression
for x; is inserted to obtain a representation of x, that depends only in u. Expressions
for other solution components can be obtained analogously.

Given the expansion for x, the output (6b) (recalld = 0)isy (1) = Y -, c'x,(1).
We truncate after £ = 2 and insert the expressions for x; and x;, to obtain the approx-
imate output

' t pt—7
y(@) Z/ hi(mou(t — m)dm +/ / ha (11, R)u(t — 71 — m)u(t — 7)dnidm
0 o Jo
t 1—T3 1—T3
+/ / / h3 (1, T2, Ut — 11 — Ut — 72 — 13)dT1dT2d T3,
o Jo 0

where i (1) = ¢TeAb, hay (1, ) = ¢TeA2NeAb, and hs3 (1), 7, 73) = ¢! eA=Q
(eATZb ® eA™ b). Application of the multivariate Laplace transform leads to the gen-
eralized rational transfer functions, which correspond to the kernels 4, h;, hs. The
Loewner framework constructs ROMs that approximate these transfer functions at
certain frequencies. We sketch the approach and refer to [8] for details.

As in the linear case, the interpolation points are partitioned into two disjoint sets
of left and right interpolation points. Since the transfer functions corresponding to
(18) depend on multiple frequencies (with our truncation on up to three frequencies),
the interpolation points need to be arranged in a suitable way. To simplify the pre-
sentation, assume that we have k = 3k left and right interpolation points, which are
renamed as follows:

OO ® @ @ () M) (1) GENGCENG!
B s by s 3 s ey sl s By s AL A AT AT A AT (19)

Next, the left and right interpolation points are grouped in multi-tuples
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p? = (i), ) N Y =1k (20a)
AD = (A, AP, A, AP A A, =1,k (20b)

The generalized controllability matrix R € C"k associated with the right multi-
tuples AL )\(2), e, A g

R = [Rm’ RO, ..., R@], 1)

where the matrices RY) e C"*3, j=1,..., k, are associated with the Jj-th multi-
tuple A in (20) are given by

R = [(p(Aﬁ”) b, 2OINSO) b, #\)Q@M)b® cb(Aif’)b)] .
(22)
Similarly, the generalized observability matrix O € CF*" associated with the left
multi-tuples ™V, u®, ..., u® is given by

0= [(o<'>)T, (07, ...((9<’?>)T]T e Ckxn, (23)

where the matrices O e C3*", j=1,...,k, correspond to the j-th multi-tuple
1Y) in (20) and are given by

o)
oV = o INow) . (24)
¢ @) Q(B(N)b ® (1)

Now the Loewner matrix L and the shifted Loewner matrix LL; are defined using
the generalized controllability (21) and observability (23) matrices as

L=-0OER, Li=-0AR. (25)

The fact that the Loewner matrices are factorized in terms of the pairs of matrices
(E, A) and (O, R) is an inherent property of the Loewner framework which holds
true for both the bilinear and quadratic-bilinear extensions of the method.

Asin Sect. 2.1 we focus in the case where a redundant amount of data is provided.
We use the SVD to extract the relevant data. Consider the (short) SVDs (10) of the
Loewner matrices (25). The matrices Y, X € C**" are obtained by selecting the first
r columns of the matrices Y; and X,. We define

V=RXeC"™, W=0"YeC". (26)

The Loewner ROM is
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E = —-Y'LX = W'EV, A = —Y*L,X* = W*EV, (27a)
Q=WO(VaV), N = W'NV, (27b)
b=W+b, T=V'e. (27¢)

As in the linear case the projection matrices V, W and the ROM (17) are complex,
but we can obtain real projection matrices V, W and corresponding ROMs if the sets
of left and of right interpolation points contain also the conjugate complex data. See
[3, p. 360].

The definition of the Kronecker product and (5b) imply

Q(X®7) = WO(VeV)(X®7) = WO(VX® Vi) = W'G(VX, V2).

Since the nonlinearity is bilinear, the small » x 2 matrix 6 can be precomputed for
efficient evaluations of the ROM.

We have introduced the Loewner ROM (27) as a Petrov-Galerkin projection. This
obviously requires access to the original system (6) matrices E, A, etc. Just as in
the linear case, it is possible to generate the same Loewner ROM directly from
measurements of the generalized transfer functions. See [8, Sect. 3.4] for details.

3 Implementation of the Loewner Framework

So far we have used the Kronecker product representation (5b) of the quadratic term.
As we have mentioned before, the Kronecker product is always possible but not
convenient from a practical point of view. In this section we show how computations
involving expressions of the form Q x ® z can actually be implemented using G. We
focus on computations that arise in the Loewner framework, but similar operations
also arise in other ROM approaches, see, e.g., [4, 9]. Thus the following discussions
are also relevant for those ROM approaches.

The partial Jacobians of the bilinear map (x, z) — G(x, z) are G| (z) = DxG(x, z)
€ R and G, (x) = D,G(x, z) € R"*". Because G is bilinear

Gx,2) =G (z)x=G,(x)z Vx,zeR". (28)
Recall the definition (12) of @ (s) = (sE — A)~! and thatb, ¢ € R". Given scalars
AL A2, A3, 1, 2, p3 € C, the Loewner framework requires evaluation of quantities

like

®(\) Q (2(\)b® D (\3)b) € C", (29a)
" @(111) Q (@ (12)b® D (113)) € C™, (29b)
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see (22) and (23). Next we discuss how to express these quantities in terms of G.
We consider general scalars \j, Az, A3, 1, ft2, 3. In (22) and (23) some of them
are related which can be exploited to reduce some of the computations below in a
straight forward way.

The vector (29a) is

2(\1) Q (2(A\)b ® @(\3)b) = @(\1) G(2(A\2)b, (A\3)b)

and is evaluated as follows.

1. Solve (ME — A)z; =bto getz; = @(\)b e C".
2. Solve (\E — A)z; = bto getz; = @(\3)b € C".
3. Evaluate y = G(z,, z3) € C".
4. Solve (\E —A)x =ytogetx = ®()\)) G(¢()\2)b, ¢()\3)b).
The vector (29b) can be expressed in terms of G using (28). If e; denotes the j-th
unit vector, the j-th entry of the vector (29b) is

" D (1) Q (P(12)b ® P (p3))e; =’ D (1) Q (P(12)b ® P (13)e;)
= ¢’ @ (1) G(P(u2)b, P(u3)e;) =’ (1) Go(P (A1) S (13)e;

so that

" D) Q (P(2)b ® P (13)) =" D (1)) Go(P(12)b) P (13).  (30)

Computationally, (30) is evaluated as follows.

1. Solve (1 E —A)'z=ctogetz’ =c’ & () € C".

2. Solve (1sE — A)w =b to get w = @ (u)b € C™1.

3. Evaluate y' =z G,(w) e C'*,

4. Solve (13E — A)Tx =y to get x” = ¢ @ (111) G2(® (112)b) @ (113) € C.

4 Application to Burgers’ Equation
4.1 Burgers’ Equation
As an example we consider Burgers’ equation with Robin boundary conditions.
Given viscosity v > 0 and parameters oy < 0, o; > 0, consider
2

0 0 0
av(x, t) — Z/WU(X, t) + v(x, t)av(x, t)y=0, x€(,1),re(0,T), (31a)
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Vagv(x, 0) + oov(0, 1) = up(t), te (0,7T), (31b)

X

Va%v(x, )4+ ov(l, 1) =u(t), te,T), (31c)
v(x,00)=0, xe€(,1). (31d)

The functions ug, u; are the inputs. Since we have restricted our presentation to the
case of one input, we will later set #; = 0 and consider u, as the only input. Our
output is

1
y(t) = / v(x,t)dx.
0
We seek weak solutions of (31) in the function space
2 1 a 2 1 4
W(O,T)={pe L*0,T: H'(0,1)) : E(b € L*(0,T; (H'(0, D))},

where (H'(0, 1))’ is the dual of H'(0, 1). The function v € W(0, T) with v(x, 0) =
0 a.e. is a weak solution of (31) if

—/ v(x, t)(p(x)dx—i—V/ —v(x t) <p(x)dx

—oov(0,1)0) + ov(l, He() + / av(x, Hu(x, Hpx)dx
0

=up(®)e0) —u1(t)p(1), forall p € HI(O, l)anda.a.r € (0, 7). (32)

An existence and uniqueness proof for (31) is given, e.g., by Volkwein [17]. In
particular, [17, Theorem 2.3] proves that for every ug, u; € L*(0, T) there exists a
unique solution v € W(0, T) N L*°((0, 1) x (0, T)) that obeys

Ivllwo,ry + lvll~ < C(1+ lluoll2,7) + luillzzo,r)) (33)

for a constant C > 0 that depends on T, v > 0, but not on ug, u;.

Since the Loewner framework depends only on transfer function information, it
can in theory be applied directly in a function space setting. However, transfer func-
tion information is only analytically available for special linear examples. Therefore,
we use a fixed finite element semi-discretization to generate transfer function infor-
mation numerically. Dependence of the Loewner ROM on the mesh size is part of
future research.

We discretize (32) in space using linear finite elements on a uniform grid x; =
ih,i=0,...,n—1,h=1/(n —1). The weak solution of Burgers’ equation (32)
is approximated by v, (x, t) = Z;';(l) vi(H)p;(x), where ¢; € H'0,1),i=0,...,
n — 1, are the usual piecewise linear ‘hat’ functions. We set u; = 0 and consider
up as the only input to arrive at a system (2) with N =0, and D = 0. For given
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vectors v = (Vg, ..., Vy—1)7,Z = (20, . .., Zu—1)" , the i-th component of the bilinear
map G is

n—1

1 d n—1
G =-[ (5 3 wen) (L aento) it d.

4.2 Numerical Results

We use the problem data v = 0.01, gyp =0, o; =0.1. The FOM is the linear
finite element semi-discretization with n = 257. The semi-discretized system (2)
is approximately solved using backward Euler over varying time intervals [0, T']
specified below with time step size Ar = 1/128. In all simulations we use the input
ug(t) = 0.1sin(4nt) and u; = 0.

The interpolation points to construct the Loewner ROM are chosen as follows.
First we create 300 logarithmically spaced points §;, j =1, ..., 300, between 1
and 10? (in Matlab 1ogspace (0,3, 300)), and then we select the left interpola-
tion points poj_ = &j—1i, poj = —&2j-11, j = 1, ..., 150, and the right interpola-
tion points Ay = &ji, Aoj = —&51, j =1, ..., 150. The choice of interpolation
points clearly has an impact on the quality of the ROM approximation and how to
choose ‘good’ interpolation points is still an open question. Thus, the above choice
is somewhat arbitrary.

The singular values of the matrices in (25) are shown in Fig. 1. Let o; denote the
singular values of [IL L;]. The size r of the ROM is chosen to the smallest » with
o,/o1 > 107!, This leads to a Loewner ROM of size r = 22.

The outputs of the FOM and of the Loewner ROM are shown in Fig.2. For
approximately ¢ < 1.5 the agreement between the FOM and the Loewner ROM out-
put is good, but there are larger differences between both outputs for approximately
t > 1.5. Moreover, the Loewner ROM exhibits instabilities starting around ¢ = 1.5,

Fig.1 The normalized 10%
singular values of the oL L]
Loewner matrices (25). The el L]
size r = 22 of the ROM is 5 E
chosen to the smallest » with 10
o /o > 10711

1070

w2 &

50 100 150 200 250 300
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Fig.2 Left plot: output of the FOM (solid blue line) and of the Loewner ROM with Petrov-Galerkin
projection matrices V # W (dashed red line). Right plot: error between outputs of the FOM and
the Loewner ROM

Fig. 3 Solution of the FOM (left) and of the Loewner ROM with Petrov-Galerkin projection
matrices V # W (right). The Loewner ROM exhibits instabilities

as can be seen from the states x generated by the FOM and the state VX generated
by the Loewner ROM, which are shown in Fig. 3.

Stability results for the Burgers’ equation like (33) are based on the weak form
(32) and can be carried over to Galerkin approximations of (32), such as the finite ele-
ment discretization or Galerkin projection based ROMs with V = W. In the standard
Loewner approach the projection matrices V #= W, and it is not clear in the general
case how to construct a Loewner ROM with V = W. We merge the Loewner projec-
tion matrices V, W € R"*" into one larger matrix [V, W] € R"*?" (we actually com-
pute an orthonormal basis of the columns of [V, W] to ensue that the resulting matrix
is full rank), and we use a Galerkin projection with this matrix [V, W] € R We
refer to the resulting ROM as a Loewner Galerkin ROM.

The outputs of the FOM and of the Loewner Galerkin ROM are shown in Fig. 4.
We can now simulate the Loewner Galerkin ROM at least until 7 = 6 and there
is good agreement between the outputs of the FOM and of the Loewner Galerkin
ROM. The states x and VX generated by the FOM and the Loewner Galerkin ROM
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Fig. 4 Left plot: output of the FOM (solid blue line) and of the Loewner ROM with Galerkin
projection matrix [V, W] (dashed red line). Right plot: error between outputs of the FOM and the
Loewner ROM
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Fig.5 Solution of the FOM (left) and of the Loewner ROM with Galerkin projection matrix [V, W]
(right)

are shown in Fig.5. The FOM solution in Fig. 5 restricted to the time interval [0, 2]
is identical to the FOM solution shown in Fig. 3.

Of course, since our Loewner Galerkin ROM is twice the size of the standard
Loewner Petrov-Galerkin ROM, it is not entirely clear whether this improvement
in results is due to the increased ROM size, or the switch from a Petrov-Galerkin
projection to a Galerkin projection. We did change the accuracy and corresponding
ROM size r of the standard Loewner Petrov-Galerkin ROM slightly and still observed
instabilities in the resulting ROMs. Thus it seems more accurate Loewner Petrov-
Galerkin ROMs alone do not restore stability, but this issue is still under investigation.

In our current implementation of the Loewner approach, we generate V, W €
R™" and compute the ROM explicitly as a Petrov-Galerkin projection ROM (27). As
mentioned at the end of Sect. 2.2, the same Loewner ROM can be computed directly
from measurements of the generalized transfer functions. In this case our approach
to enforce stability via the use of Loewner Galerkin ROM with [V, W] € R"*%
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is no longer possible. Extension of the Loewner approach to generate ROM that
correspond to a Galerkin projection ROM is an interesting research question.

5 Conclusions and Future Work

We have presented an extension of the Loewner framework to compute ROMs of
quadratic-bilinear systems. Specifically, we have used the Kronecker product repre-
sentation of quadratic-bilinear systems to present the algorithm, but then used the
bilinear maps that naturally arise in semi-discretizations of fluid flow problems, such
as Burgers’ equation or the Navier-Stokes equations to express the actual computa-
tions. This makes it possible to apply the Loewner framework to large-scale problems.
In this paper we have applied to the viscous Burgers’ equation. Application to the
Navier-Stokes equations is ongoing work.

The application to Burgers’ equation showed the potential of the Loewner frame-
work, but also raises some questions that still need to be addressed. Generally, the
selection of interpolation points (the y;’s and A;’s) is an issue. Current numerical
experiments indicate that the more interpolation points can be used, the better given
a constant ROM size r. Recall that the data gets assembled in the Loewner and
shifted Loewner matrices and then is compressed via the SVD. Thus more data does
not necessarily mean larger ROMs. We consider SISO systems. The extension to
multiple input and multiple output systems is possible, using so-called tangential
interpolation. For linear systems this is described in the tutorial paper [3].

An important issue is stability. Our numerics have shown that the standard
Loewner ROM may not be stable. Currently, our Loewner ROM is equivalent to
a Petrov-Galerkin projection, W # V. At the same time, stability results like (33)
for Burgers’ equation are based on the week form and Galerkin projection. Thus if
we can modify the Loewner framework to enforce W =V, then the resulting ROM
inherits the stability properties of the underlying original system. In the linear case
stability issues can be treated by postprocessing, see, e.g., Gosea and Antoulas [7]. If
we explicitly compute V, W € R"*” we can enforce stability via the use of Loewner
Galerkin ROM with [V, W] € R"*? as demonstrated in Sect.4.2. However, this is
not possible if the Loewner ROM is computed directly from data.

Finally, the Loewner framework starts from system representations in frequency
domain and is based on measurements in frequency domain. This is inconvenient for
many applications where only time domain measurements or simulations are acces-
sible. Initial work towards time-domain Loewner ROMs is presented by Peherstorfer
etal. [12].
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