
Primitives Enhancing GPU Runtime Support for
Improved DNN Performance

Aditya Dhakal
University of California, Riverside

adhak001@ucr.edu

Sameer G Kulkarni
Indian Institute of Technology, Gandhinagar

sameergk@iitgn.ac.in

K. K. Ramakrishnan
University of California, Riverside

kk@cs.ucr.edu

Abstract—Deep neural networks (DNNs) are increasingly used
for real-time inference, requiring low latency, but require sig-
nificant computational power as they continue to increase in
complexity. Edge clouds promise to offer lower latency due to
their proximity to end users and having powerful accelerators
like GPUs to provide the computation power needed for DNNs.
But it is also important to ensure that the edge-cloud resources
are utilized well. For this, multiplexing several DNN models
through spatial sharing of the GPU can substantially improve
edge-cloud resource usage. Typical GPU runtime environments
have significant interactions with the CPU, to transfer data
to the GPU, for CPU-GPU synchronization on inference task
completions, etc. These result in overheads. We present a DNN
inference framework with a set of software primitives that reduce
the overhead for DNN inference, increase GPU utilization and
improve performance, with lower latency and higher throughput.

Our first primitive uses the GPU DMA effectively, reducing the
CPU cycles spent to transfer the data to the GPU. A second prim-
itive uses asynchronous ‘events‘ for faster task completion notifi-
cation. GPU runtimes typically preclude fine-grained user control
on GPU resources, causing long GPU downtimes when adjusting
resources. Our third primitive supports overlapping of model-
loading and execution, thus allowing GPU resource re-allocation
with very little GPU idle time. Our other primitives increase
inference throughput by improving scheduling and processing
more requests. Overall, our primitives decrease inference latency
by more than 35% and increase DNN throughput by 2-3×.

Index Terms—GPU, edge-cloud, DNN, inference

I. INTRODUCTION

Deep Neural Networks (DNNs) are the machine learning
(ML) algorithms of choice for image recognition, speech
recognition used in applications such as autonomous driving,
language translation etc. Accelerators such as GPUs, TPUs,
and FPGAs often provide an order of magnitude speedup of
DNN processing compared to multi-core CPUs, They are often
indispensable for real-time DNN inference. End-user devices
like smartphones, IoT devices, AR/VR headsets, etc. lack the
compute power to provide the desired low latency inference.
Compute-heavy DNN inference tasks are often offloaded to the
cloud to take advantage of powerful accelerators in the cloud [1].
Edge clouds with GPUs can host ML frameworks and achieve
the low latency suitable for real-time DNN inference [2]–[4].

GPUs are well-suited for the highly parallel computations
needed for DNNs. However, there are challenges using GPUs
for DNN processing, especially in resource constrained Edge
cloud servers. In a typical DNN execution, the application
transfers a large batch of streaming data (e.g., images) from the

network to the GPU memory. Then, DNN kernels (equivalent to
function code running in CPU) are launched with the maximum
number of GPU threads to infer on the batch of data. However,
we observe that transferring data to the GPU uses substantial
CPU cycles and results in a 40% increase in inference latency
for certain image recognition DNN models. Other inefficiencies
exist while utilizing GPUs for DNN processing. GPU runtimes
facilitate DNN kernels to run asynchronously with respect
to CPUs, allowing the CPUs to queue the tasks for the GPU.
Notification of task completion to the CPU is usually performed
by placing a synchronization barrier or a callback function.
Similarly, launching DNN kernels in the GPU, and notifications
of task completion require the CPU to interact with the GPU
using the GPU’s runtime APIs, adding to the inference latency.
Further, since an edge cloud is likely to be relatively resource-
constrained compared to a centrally-located large cloud site, it
needs its resources (especially the more expensive and power-
hungry components such as GPUs) to be efficiently utilized. We
have observed that many DNNs cannot fully utilize the power of
current GPUs. Multiplexing GPUs across several applications
can be an effective method to improve GPU utilization.
However, multiplexing the GPU can increase the latency of
DNN execution, causing the DNNs to miss their execution time
constraints. In this paper, we are motivated by the need to utilize
the GPU efficiently for low latency DNN execution. For this, we
have utilized a set of software primitives that reduces the over-
head (and thus latency) created by inefficiencies in GPU run-
times. We facilitate multiplexing of the GPU, while increasing
throughput and maintaining low latency for DNN executions.

The first primitive, GPU-DMA, utilizes the DMA engine on
the GPU to perform the primary task of efficiently transferring
the data to the GPU while freeing up the CPU from performing
a memory copy. Second, we use a primitive, Sync-lite that
utilizes event-based APIs and a lightweight query mechanism to
determine when a task in the GPU has completed, enabling us to
perform rapid, low-overhead synchronization between the CPU
and GPU. We utilize the concept Controlled Spatial Sharing
(CSS) of the GPU, based on our previous work GSLICE [5], to
multiplex GPU resources spatially among multiple concurrent
DNN applications. However, CSS is limited to providing static
allocation of GPU resources (Henceforth called percentage of
GPU resources i.e., GPU%). Therefore, we create a software
primitive, Overlapped-Execution, that facilitates re-
configuring GPU resources to multiplex several DNN models

without any downtime. We have observed that running multiple
instances of some DNN models with a smaller amount of GPU
resources, rather than one instance being allocated the entire
GPU, achieves higher inference throughput. We utilize this find-
ing to devise another software primitive, Multi-Model, that
dynamically changes the number of instances of a DNN model
running, to meet throughput and latency requirements of DNN
applications. To reduce GPU memory usage, thereby allowing
us to run more applications on the GPU, we use a software prim-
itive, Param-Share, that shares common data (e.g., DNN pa-
rameters) among multiple instances of the same model. Further,
batching is required for getting higher throughput during DNN
inference, however, batching also increases latency. Moreover,
the latency of batch size varies with variation in GPU resources
that comes with spatial-sharing of the GPU. Therefore, we
require a software primitive that can provide information on
the runtime of a DNN based on batch size and GPU%. We
name this primitive Batch-Latency.We briefly describe the
context and motivation for these software primitives next.

By exploiting the the Sync-lite primitive in our testbed
framework for DNN inference (as in a small edge cloud),
we see a 20-30% reduction in inference latency. Using our
two primitives GPU-DMA and Multi-Model, the overall
system throughput is doubled. We are able to fit 20-25%
more DNN models in the GPU through spatial sharing and
Param-Share. Moreover, we are able to increase system
throughput by 3× by supporting both spatial and temporal
scheduling of DNN inferences with deadlines. We evaluate
our complete framework with all the software primitives in
a testbed with a single NVIDIA V100 GPU and also a cluster
of 8 NVIDIA T4 GPUs and demonstrate that our framework
multiplexing multiple DNNs improves GPU utilization and
provides 3× higher throughput compared to state-of-the-art
inference platform such as NVIDIA Triton server [6]. In
summary, our contributions in this paper are:

• We describe our software primitives, which include en-
hancements to data movement, synchronization, improved
multiplexing through overlapped execution, parameter
sharing, and GPU resource management and scheduling.

• We evaluate each software primitive on a single NVIDIA
V100 GPU and a cluster of NVIDIA T4 GPUs.

II. RELATED WORK

A. Related Work

Various studies [6]–[11] have used temporal multiplexing of a
GPU. However, works such as [12]–[14] have shown that spatial
sharing can further increase GPU utilization and provide higher
throughput compared to temporal sharing. Therefore, we also
take advantage of spatial sharing of the GPU in our platform
to multiplex applications. While spatial sharing of the GPU is
beneficial, several studies [5], [15], [16] report that changing
spatial resources (GPU%) is time-consuming due to the time it
takes to load the DNN model to GPU. In this paper, we consider
these challenges and create an inference framework with soft-
ware primitives that spatially share the GPU providing higher

throughput than temporal multiplexing solutions. Our primitives
also aid in changing GPU% with negligible downtime.

Data transfer from streaming network packets to GPU
adds significant delay for latency-critical systems [17],
[18]. Solutions to data transfer often include creating large
batches [19], which require a lot of CPU cycles or modification
of device drivers [17], [20]. In contrast to those approaches,
we utilize GPU-DMA software primitive to utilize GPU’s DMA
engine to do the primary task of data transfer from the network,
thus, reducing the CPU load and data transfer latency without
device driver modification or using the GPU runtime software.
Many studies have pointed to different factors contributing
to latency while multiplexing the GPU. Studies such as [21],
[22] highlight that synchronization between GPU-CPU also
adds significant latency to the processing. Other works, such
as [23]–[26], observed that multiple applications running
concurrently could interfere with each other’s processing,
resulting in higher latency for kernel execution. We learn
the lessons from those studies and present our Sync-lite
primitives to cut the synchronization time, and utilize CSS
supported with Overlapped-Execution for dynamic
allocation to isolate the applications’ GPU resources and avoid
interference that can increase processing latency.

Different approaches for scheduling applications in GPU
has been studied by Nexus [27], Gandiva [7] and others [9],
[28]–[30] present deadline aware tasks-scheduling in the GPU.
These work only focus on time-sharing the entire GPU,
which, might lead to underutilization of GPU. In contrast
to these work, our platform can schedule the DNN execution
spatially (with varying GPU%) and temporally with help of
Batch-Latency primitive which predicts the latency for
DNN inference at certain batch size and GPU%.

III. MOTIVATION & OVERVIEW OF PRIMITIVES

1) Spatial Multiplexing of the GPU: CUDA Streams and
CUDA Multi-Process service (MPS) are two default methods
of spatially sharing the GPU in NVIDIA GPUs. However,
we observed that the streams and default-MPS lead to some
DNN models interfering in each-other’s execution due to
applications vying for same GPU resources, resulting in
increased latency. Isolating the GPU resources for each model,
by truly virtualizing the GPU, can remove this interference.
MPS allows spatial sharing within a single GPU. However,
with MPS, the GPU% allocation is static for a process’s
lifetime. Changing it typically requires a long (2-5 seconds)
downtime, with the GPU necessarily being idle, if it is
done simplistically. Works such as GSLICE [5] demonstrate
that controlled spatial sharing (CSS), where GPU resources
are allocated and isolated while spatially sharing the GPU,
improves overall utilization and throughput of the GPU
subsystem. CSS uses MPS [13] with a fixed GPU%. To
meet the challenge of dynamically changing the GPU%,
our software primitive Overlapped-Execution helps to
continue to serve inference requests, while the model with
the new GPU% is prepared. Once the model with new GPU%
is ready, we switch to inferring with the newer model. We see

that our primitives cut the GPU downtime to just a few hundred
microseconds compared to seconds of downtime otherwise.

2) GPU Utilization of a DNN: Profiling DNN applications,
we observed that DNN models often cannot utilize all of the
GPU resources provided to them. Just increasing the GPU%
for a model does not reduce the inference latency. Similar
observations were made in [5], [12]. Therefore, providing
just the right GPU% to a DNN model can result in as good
inference latency and throughput as providing 100% GPU.
We name this right GPU%, after which we see diminishing
returns in the latency, as the ”Knee.” We can also increase
the throughput of a DNN model significantly by running
multiple instances of the same model, each with a share of
GPU% just around its knee. But, running additional instances
occupies more aggregate GPU memory. To balance this,
Multi-Model supports running multiple instances providing
the same service but at the same time meeting a tenant’s
performance (latency) requirements. We further demonstrate
that the parameter sharing technique, Param-Share, shares
the same set of DNN parameters across multiple instances of
the same model, thus reducing the total GPU memory demand.

3) Multiplexing of the GPU: Many DNN applications infer
data with more than one DNN model to get a final result. e.g.,
a model such as Faster-RCNN [31] and Masked-RCNN [32].
These constituent models have varying GPU% and can leave
the GPU under-utilized. Some other DNN models can be
run to utilize the unused GPU%. For this, an appropriate
scheduling mechanism that schedules based on time and
space (GPU%) needs to be considered. Moreover, ’Batching’
can also greatly help increase the throughput [9]. To meet
deadlines, the scheduler needs to know the runtime of a batch
of requests for each constituent DNN. This runtime can vary
greatly with different GPU%. This motivate use to design
the Batch-Latency primitive, that provides information
on the runtime of a DNN based on batch size and GPU%
to aid with scheduling. Together with Sync-lite, which
allows the scheduler to know when a DNN has finished its
tasks, Batch-Latency then helps to find which batch size
of a DNN model can fit in the available GPU% increasing
the overally system throughput and GPU utilization.

IV. MEASUREMENT-DRIVEN UNDERSTANDING OF DNNS

We now demonstrate utility of CSS in our testbed as well as
discuss DNN’s limitations in utilization of GPU’s parallelism.

A. Testbed Environment

Our single-GPU experimental testbed uses a Dell Poweredge
R740xd with Intel(R) Xeon(R) Gold 6148 CPU with 20 cores,
256 GB of system memory, and one NVIDIA V100 GPU, and
an Intel X710 10GbE quadport NIC. The V100 has 80 stream-
ing multiprocessors (SMs) and 16 GB of memory. Our multi-
GPU testbed consists of 8 NVIDIA Tesla T4 GPU. We use 4
quadport Intel XL710 10 GbE NICs (40Gb aggregate capacity).
Each Tesla T4 GPU has 16 GB of GPU memory and 40 SMs.

We use the ’GPU%’ terminology used in CUDA MPS to
indicate the amount of GPU resources is allocated. e.g., a model

getting 50% in Tesla T4 GPU means it can use at most 20 SMs
(out of a total of 40). This GPU% can be set as an environmen-
tal variable CUDA MPS ACTIVE THREAD PERCENTAGE
before the application performs the GPU initialization. It is pos-
sible to run multiple applications with their GPU%, adding up
to more than 100%. We call this over-subscription of the GPU.

We use the PyTorch [33] and TensorRT [34] platforms for
our evaluations. Our DNN workload consists of color images
of resolution 224×224 for object recognition DNNs. This is
the image size utilized widely by most object recognition
models, and most of the pre-trained models can only infer that
particular resolution; therefore, we use images of this resolution
exclusively. To evaluate the overheads of data transfer to the
GPU, we transmit each image through the network as 588
UDP packets, where each packet has a payload of 1 KB. We
use Moongen [35] and TCPreplay as traffic generators for
transmitting images. With a 10 GbE link between the traffic
generator and the receiving server, we can transmit 1920
images per second. For all our experiments, we mainly report
the execution time of inference and exclude the additional
network-related latencies contributed by network protocols,
including HTTP, TCP, and/or UDP. We use OpenNetVM [36], a
network function virtualization platform, to create our inference
framework where, we host machine learning models as VNFs
and infer on streaming workload from traffic generators.

B. Controlled Spatial Sharing (CSS) of GPU

We conducted an experiment to demonstrate the necessity
of controlled spatial sharing. We multiplexed 4 popular DNN
models, Alexnet [37], Mobilenet [38], ResNet-50 [39] and
VGG-19 [40] on a NVIDIA V100 GPU. We use temporal
sharing, spatial sharing with default MPS, and controlled
spatial sharing with resource isolation. Among these models,
Alexnet and Mobilenet are latency optimized, i.e., they have
relatively low compute requirement and complete quicker
compared to the accuracy optimized ResNet-50 and VGG-19
models. We enable adaptive batching which dynamically sets
the batch sizes to meet the deadline [5], [9] and set the SLO as
50 milliseconds to enable a robust and interactive system. We
present the cumulative distribution function (CDF) of latency
of different models in Fig. 1a to demonstrate the variation in
inference latency for each experiment. With temporal sharing
of the GPU, the accuracy optimized models exceed their SLO
frequently. Temporal sharing provides an equal timeshare of
the GPU irrespective of the DNN workload, which results in
penalizing models that require more computation time.

We repeated the experiment by multiplexing GPU using
default MPS, and the CDF is shown in Fig. 1b. VGG-19
meets the SLO, but latency for all other models increases
significantly. Furthermore, ResNet-50’s inference misses
the deadline many times. Default MPS spatially shares the
GPU but does not isolate resources. VGG-19 requires more
computation and thus interferes with the execution of other
models. This increases the latency for all the models.

Finally, we present the CDF of latency of controlled spatial
sharing (CSS) in Fig. 1c. We provided 15% GPU each to

0 25 50 75 100
Latency (ms)

0

0.25

0.5

0.75

1
F

(la
te

nc
y)

Alexnet
Mobilenet
ResNet-50
VGG-19
SLO = 50 ms

(a) Temporal Sharing

0 25 50 75 100
Latency (ms)

0

0.25

0.5

0.75

1

F
(la

te
nc

y)

Alexnet
Mobilenet
ResNet-50
VGG-19
SLO = 50 ms

(b) Default MPS

0 25 50 75 100
Latency (ms)

0

0.25

0.5

0.75

1

F
(la

te
nc

y)

Alexnet
Mobilenet
ResNet-50
VGG-19
SLO = 50 ms

(c) Controlled Spatial Sharing
Fig. 1: CDF of latency of multiple DNNs with different methods of multiplexing GPU

 0

 10

 20

 30

 40

 50

 60

 20 40 60 80 100

L
a
te
n
c
y
 (
m
s
)

GPU Percentage

ResNet-50
Alexnet

Mobilenet

(a) Latency vs. GPU%

 0
 1
 2
 3
 4
 5
 6
 7
 8

 20 40 60 80 100

E
n
e
rg
y
 (
J
o
u
le
s
)

GPU Percentage

ResNet-50
Alexnet

Mobilenet

(b) Energy per batch
Fig. 2: (a) Latency vs. GPU% for inferring batch of 8. (b)
Energy spent per batch. TensorRT with V100 GPU

Alexnet and Mobilenet and 30% and 40% GPU to ResNet-50
and VGG-19. We picked those GPU% values roughly based
on their computational complexity (floating-point operations)
of each model. With CSS, the latency of each model does not
vary as much as temporal sharing or default MPS. This is due
to the resource isolation provided by CSS. Moreover, all these
models do not violate their SLO of 50 ms, thus, allowing
them to run all of the models twice in the 100 ms time. Being
able to execute the DNN models more often than temporal
sharing or default MPS increases overall throughput.

C. GPU utilization during DNN inference

We profiled several DNN applications, giving them different
GPU% with CSS, and observed that inference latency does not
decrease much when provided more than a certain GPU%. We
show the inference latency of different DNN models in the Ten-
sorRT DNN platform in Fig. 2a. We see that for all the models,
latency is highest with a very low GPU% (10%) but decreases
rapidly as the GPU% is increased. However, after a certain knee
GPU%, further reduction in latency is slight or nonexistent.

We further investigated this by measuring the energy used
by the GPU to infer a batch of requests at different GPU per-
centages. We present the measurement results in Fig. 2b. One
noticeable feature is that the energy plot shows the same trend
as the latency plot. It takes more energy to infer a batch for the
more complex models (ResNet-50) than, the less computation-
ally complex models. Furthermore, it takes more energy to infer
the batch of requests when the inference task is provided a lower
GPU%. This is because, at a lower GPU%, the DNN model
takes longer to complete the inference task, drawing (albeit
lower) power throughout. At a higher GPU%, the inference is
faster and power is drawn for a shorter period. We can also see
that beyond a certain GPU%, the GPU spends the same amount
of energy to process a batch, meaning the DNN model is not
able to utilize more GPU resources beyond certain GPU%.

We profiled the Mobilenet model running on the PyTorch
platform using the NVIDIA NVPROF [41] profiler, shown in
Fig. 3. The first profile (Fig. 3a) shows Mobilenet running with
100% GPU, while the second profile (Fig. 3b) shows Mobilenet
inferring with only 15% GPU. We extracted one millisecond
time slice out of the whole profile to depict the CPU and GPU
behavior at a fine granularity. Having 100% of the GPU lets
the individual kernels run quickly, but the next kernel is not
yet ready to run and leads to gaps (idling the GPU). These idle
times are caused by the inefficient launching of DNN kernels
by the ML platform. The runtime API (3rd row in Fig.) also
shows gaps while submitting the tasks to GPU. In the profile
where Mobilenet runs with just 15% GPU, the runtime API’s
gaps remain, but we see that the GPU kernels run a little slower
(thus taking longer). However, the added latency completely
fits within the idle time between the kernels. Therefore, the
overall inference latency is virtually identical (1.023 ms with
100% GPU and 1.003 ms with 15% GPU). Therefore, we
can see that having a lower GPU% allows the model to use
the gaps between kernel execution and still get the inference
latency to be as good as with 100% GPU. Giving a lower
GPU% (knee%) to a model that cannot use a higher GPU%
then allows us to share the GPU across multiple other services
(e.g., in an edge cloud server.) We note that DNNs with
compute-heavy kernels that run longer do not show much of a
gap between consecutive GPU kernel executions. Therefore the
knee for compute-heavy DNN models is a much higher GPU%.

V. EVALUATION OF PRIMITIVES IN GPU RUNTIME
SOFTWARE FOR ENHANCED PERFORMANCE

We now describe each software primitive in detail. We imple-
ment these primitives in the DNN inference framework, as seen
in Fig. 4. We utilize the OpenNetVM shared memory buffer to
receive data from NIC. OpenNetVM can run multiple inference
applications (IAs) as virtual network functions (VNFs). They
load DNN models and a software primitives library that
facilitates spatial sharing of the GPUs improved data transfer
of the payload of network packets to the GPU, the notification
from GPU, and the GPU resource allocation module, which
facilitates dynamically changing the GPU resource allocation.
Each IA maintains a buffer in the GPU for DNN inference
data. IAs also load the DNN model to the GPU and start the
inference when the application data is ready. In a multi-GPU
cluster, each GPU is shared spatially across multiple IAs with
each IA receiving a certain fraction (GPU%) of the total GPU
resources, as seen in Fig. 4. GPU 1 is shared between model 1

(a) Mobilenet with 100% GPU (1 ms profile) (b) PyTorch Mobilenet (15% GPU)
Fig. 3: Inference profiles (from NVPROF tool, 1 millisecond for both (a) and (b)), Mobilenet on PyTorch.

NIC Packet

App. 1
GPU Buffer

Model 1 Kernels
(60% GPU)

Model 2
Kernels

(40% GPU)

App. 2
GPU Buffer

App. M
GPU Buffer

Model M
Kernels

(30% GPU)

Model N Kernels
(70% GPU)

App. N
GPU Buffer

CPU
GPU

Packet Packet Packet

OpenNetVM Shared Memory

ONVM Application 1

Primitives
Library

DNN
Model 1

ONVM Application N

Shadow App. 1

DNN
Model N

Primitives
Library

Shadow App. N

GPU 1 GPU N

Fig. 4: DNN Inference Platform Architecture

Fig. 5: ResNet-18: CPU wait time

(60%) and model 2 (40%). Similarly, GPU N may be shared
between two models with a 30% and 70% split. For a multi-
GPU cluster, our framework maintains a data structure keeping
track of the application running in each GPU and uses packet
metadata to transfer the application data to appropriate GPU.

A. Task Completion Notification

GPUs maintain a queue, where the GPU’s runtime API
calls and kernel launches are en-queued for subsequent GPU
processing. A single CPU thread can en-queue an entire DNN
model, composed of multiple kernels processing an input. Then
the CPU can switch to other tasks. However, this asynchronous
execution in the GPU implies that there can be difficulty in
knowing when the submitted task has completed execution.

An alternative to notification of task completion is to
use CUDA Graphs [42]. CUDA Graphs uses a predefined
execution graph for GPU kernels with their dependencies
and lets the GPU runtime handle launching of tasks in the
right order. However, we do not use CUDA graphs as it does
not support running DNN models in different processes, a
requirement for resource isolation.

Another commonly used method for notification of task
completion in a GPU is to put explicit synchronization
barriers between the CPU and GPU and wait for the GPU
to finish a given task. Fig. 5 shows the profile of infer-
ence with ResNet-18, which shows a large amount of CPU
time being spent on running (actually being blocked on)
an API function cudaDeviceSynchronize(). Explicit
synchronization idles the CPU for prolonged intervals waiting
for the GPU kernel to complete and return the result. Yet
another method is to use a callBack API to notify the end
of execution of a kernel by invoking a callback. However,
the current implementation of callbacks poses challenges for
GPU multiplexing. First, the callback routine blocks all the
subsequent execution on the GPU until the callback is resolved,
resulting in the idling of the GPU. Second, the callback context
on the CPU is forbidden from invoking any of the CUDA APIs.
Thus, the callback can only function as a signal that some task
ended in GPU but cannot launch another pending GPU-related
task. This limitation requires an additional CPU context and
signaling scheme to perform any GPU-related operations. To
overcome this, we devise a lightweight method for the CPU
to obtain the GPU task completion status, Sync-lite.

1 void* Sync-lite(DNN-Model, Input-Batch,
cudaEvent, Timer)

Our primitive takes as input, the DNN model, an input batch
for inference, a cudaEvent object and a timer. The CUDA
API function cudaEventRecord() allows us to put an
event marker (cudaEvent) at the end of the DNN’s execution.
Sync-lite infers the Input-Batch with the DNN-model and
subsequently records the completion of inference in cudaEvent
object. The timer checks at an interval of 100 micro-seconds if
the cudaEvent has been recorded by using another API function,
cudaEventQuery(). Our event checking is lightweight,
taking about 2 µseconds in our system. If the cudaEvent has
been recorded, meaning the inference has been completed, our
function returns the memory address of the inference result.

 0

 2

 4

 6

 8

 10

 12
L
a
te
n
c
y
 (
m
s
)

CUDA Sync.
Callback

Sync-lite (ours)

ResNet-50Alexnet

(a) Latency of inference (ms)

 0

 1

 2

 3

 4

 5

G
P
U

 i
d
le

 t
im
e

 (
m
s
)

CUDA Sync.
Callback

Sync-lite (ours)

ResNet-50Alexnet

(b) GPU idle time (ms)
Fig. 6: (a) inference latency and (b) GPU idle time during
inference; 1 image w/ different synchronization primitives.

To evaluate the improvement, we inferred (Alexnet and
ResNet-50 on TensorRT) with synchronization, callback, and
our event-based Sync-lite notification approaches. We
placed 1 instance of a model (e.g., Alexnet) in each of 4 differ-
ent GPUs (1 model per GPU), and each model inferred images
with a batch size of 1. Our intent on running 4 models in 4 GPU
is to simulate realistic conditions when multiple models are
running and finishing their job in different GPUs. We computed
the 99th percentile tail latency for inference with each method
and present the results in Fig. 6a. For the Alexnet model,
Sync-lite is the fastest, with one inference taking 3.2 ms.
The Callback approach added ∼600µs idle time on GPU, result-
ing in a 3.8 ms average inference latency. The synchronization
approach is the slowest, taking 4.17 ms. Our event-based
approach Sync-lite is (18% and 30% faster) than the
callback and synchronization approach, respectively. Similarly,
for ResNet-50, Sync-lite was (10.5% and 16.7% faster)
respectively. For compute-heavy models such as VGG-19, the
notification approach makes a relatively small difference as the
model inference time is large. We also computed the time GPU
is idle and present in Fig. 6b. The time spent by GPU to infer an
image is the same for all three notification methods; therefore,
looking at the GPU idle time shows how much CPU time each
method uses. We observe that Sync-lite reduces idle time
of GPU by more than 40% and 30% for Alexnet and ResNet-50,
respectively. Therefore, effective task completion notification
reduces inference latency and increases GPU utilization by
reducing GPU idle time, especially with lighter models.

B. GPU-DMA for Network Data

Transferring streaming data arriving from the network to the
GPU is expensive in terms of CPU cycles. The usual technique
is to have the CPU copy the data from the packet payload and
then again transfer the data using GPU runtime APIs such as cu-
daMemcpy. Hereafter called CUDA-Copy. We utilize the GPU-
resident DMA engine rather than CUDA API functions running
in the CPU to transfer data. Our GPU-DMA primitive is:

1 int GPU-DMA(network-pkts-addr, numPkts,
gpu-buffer, gpu-id)

GPU-DMA takes the address of all the received packets, the
number of packets, GPU buffer, and GPU id of the GPU where
the data should be stored as arguments. GPU-DMA launches
GPU kernels with the threads that use NVIDIA’s unified virtual
address (UVA) [43] mechanism to trigger the GPU DMA to
scatter-gather the data from system (CPU) memory. As the

DMA has the ability to scatter-gather, removing the need to ac-
cumulate packet payload into a contiguous buffer. Once the data
is fetched, GPU threads read the metadata in the packet payload
and place the data in the right place in the GPU buffer. After the
data is transferred, the primitive returns the number of requests
ready to be inferred in the GPU and launches the DNN kernels
to infer the data in the GPU buffer. To accommodate batching,
we only initiate the DMA transfer to GPU once we are sure
enough data for a batch has already arrived through the network.
This is to ensure that batch in GPU buffer is in contiguous mem-
ory as required by DNN kernels. To support DNNs running on
multiple GPUs, the primitive checks where the data is destined
to, by checking the packet five tuple, then activates the GPU-
DMA in the target GPU. Our GPU-DMA implements a similar
design as in [44]. However, we are different in that we support
batching and DMA transfers across multiple GPUs in a cluster.

We experimented by comparing the GPU-DMA with the
alternative CUDA-copy We noted the time taken to infer a
batch of images by Alexnet, ResNet50, and VGG-19. We
see from Table I, that GPU-DMA cuts overall inference time.
Moreover, in our system, the CPU cycles spent to transfer 8
images to GPU is on average 2506216 for CUDA-Copy while
86263 for GPU-DMA, two orders of magnitude lower. We
evaluate GPU-DMA further in an 8 GPU cluster in § VI-A.
TABLE I: Inference latency with batch of 8 in 1 V100 GPU

DNN Model CUDA-Copy
Inference Latency (ms)

GPU-DMA
Inference Latency (ms)

Alexnet 4.01 3.67
ResNet-50 10.53 9.76
VGG-19 30.95 30.49

C. Dynamic adaptation of GPU resources

The GPU resources provided to an application might
require reconfiguration due to the variations in the workload,
i.e., the change in the arrival rate of the tasks (especially
with streaming data) or the variations in the number of
concurrently executing applications. We need a system that
can dynamically adjust the GPU resource partition of all the
active applications. A typical technique would be to start a
new process with a new required GPU%. However, doing
so has a drawback; it takes a few seconds to get a DNN
ready to infer as it takes time to load the model onto the
GPU. We present an Overlapped-Execution primitive
to overcome these drawbacks. We explain the two main
functions of the Overlapped-Execution primitive next.
Monitoring and Detection: Our primitive facilitates tracking
the arrival rate and service rate of inference tasks and the
achieved SLO for each application using simple counters and
a lightweight DPDK [45] timer interface and determine if the
application is overloaded or under-utilizing GPU resources,
and correspondingly triggers reconfiguration of the GPU%.
Resource readjustment: We create application replicas
(multiple processes on the CPU in active(1):shadow(n) mode)
and employ a deferred GPU initialization for the replica
(shadow/standby). Also, we incorporate a switchover scheme
such that the active application processing the inference
continues to make progress until the new shadow instance,

Active DNN
application
[30% GPU]

OpenNetVM
Shared Memory

Packet Packet

GPU
DNN
Buffer

DNN
Kernels

Shadow DNN
application

No GPU init

(a) Active and Shadow’s access

Orchestrator

Active DNN
application

Shadow
DNN

application

< 1,NewGPU% >

< 2,Finish >

< 3,Ended >

< 3,Ended >

(b) Messages exchanged for Overlap

Fig. 7: Overlap Execution Process

with its updated resource allocation, is ready to take over. As
seen in Fig. 7a, the active DNN application has access to
the OpenNetVM shared memory for accessing packets and
GPU memory and kernels for DNN inference processing.
Meanwhile, the shadow DNN application only accesses
the CPU side entities such as shared memory and avoids
interaction with GPU, so that it waits to initialize the GPU.

This orchestration framework uses the event-action control
loop and asynchronous message notification to the active and
shadow processes, as seen in Fig. 7b. We use the following soft-
ware primitive in the orchestrator to trigger the GPU% change.

1 int ChangeGPU%(NewGPU%, shadowDNN)

The primitive sends the notification to the shadow DNN to
start loading a DNN model with the desired NewGPU% (1 to
100). The function returns a positive integer if the message was
successful. The shadow DNN can now start initializing the GPU
and configure the GPU resources with the input NewGPU%.
Once the shadow DNN application completes the initialization
phase, the shadow application next notifies the Active DNN
(original process) to complete its current set of inference tasks
and stop processing any further inference operations with
message <2, Finish>. After the active instance completes pro-
cessing all the remaining tasks, it sends a message to the shadow
DNN application and the orchestrator <3, Ended> indicating it
has completed all its tasks and indicates that the shadow DNN
instance can now start performing the inference operations. The
shadow is transitioned to be the new active GPU task, while the
earlier active process is terminated. A new shadow is created
subsequently. This mode switching ensures that active DNN is
running while the shadow is readied; thus, it provides a loss-free
and interruption-free inference processing for the DNN model.

We demonstrate the overlapped execution while changing
GPU% in Fig. 8. We use a ResNet-50 model in our V100 GPU
testbed. In this experiment, we show the baseline (Top plot)
where the GPU% does not change. We show the GPU% change
without overlap in the middle plot and GPU% adjustment with
overlap at the bottom plot. In the timeline, we change the re-
quest rate from 520 to 680 at the 3-second mark. As the request
rate becomes higher, our system determines the GPU% should
be changed from 40% to 50% to meet the requirement as well
as meet the SLO for higher rate of request . The baseline plot
does not change and continues at the lower throughput. In the

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 3 4 5 8 10 0

 10

 20

 30

 40

 50

 60

 70
100 50 32 25 20 12 10

T
h
ro
u
g
h
p
u
t
(i
p
s
.)

L
a
te
n
c
y
 (
m
s
)

Number of Concurrent DNN Instances

GPU% Per Instance

Thpt. (b = 1)
Lat. (b = 1)
Thpt. (b = 8)
Lat. (b = 8)

Fig. 9: Total throughput and 99 percentile latency of multiple
concurrent instances of ResNet-50 (batch size 1 and 8) in a GPU

middle plot without overlap, the DNN process has to be killed,
and a new one started. In this case, ResNet-50 takes 3 seconds
to load and get ready with a higher GPU%. During those 3
seconds, none of the requests are processed as the service is not
active. With overlapped execution (bottom plot), the ResNet-50
active process with 40% continues processing requests until the
shadow ResNet-50 application with the 50% GPU allocation
is ready. Then it nearly seamlessly switches the inference
to the new application and gets higher throughput to meet
the incoming rate. Our actual downtime is only about 200µs,
continuing to provide service almost throughout the switchover.

 0
 200
 400
 600

No GPU% Change
ResNet-50 Throughput

 0

 200

 400

 600

GPU% Change
w/o overlap

Model downtime

T
h
ro
u
g
h
p
u
t
(i
p
s
.)

 0

 200

 400

 600

 0 1 2 3 4 5 6 7 8

Overlapped
Execution

DNN model load
in background

Time (s)

GPU:40%
GPU:50%

Fig. 8: ResNet-50 Overlapped execution while adjusting GPU

D. Creating Multiple DNN Instances for Higher Throughput

Fig. 2a shows that for a batch of 8, a DNN model with
lower GPU% can still infer DNN requests with latency not
too large compared to inferring requests with 100% GPU.
Therefore, running four instances of the DNN model, say
Alexnet at 25% GPU each, will provide 4× the throughput
compared to running 1 Alexnet model with 100% GPU,
without sacrificing the latency for inference. Similarly, running
two instances of ResNet-50 model at 50% GPU will provide
higher throughput than running one at 100%.

We conducted an experiment with ResNet-50 model inferring
batch sizes of 1 and 8 to evaluate how running multiple
instances will affect the throughput and latency of a model.
We increased the number of instances of the model while
proportionally reducing the GPU% of each request. e.g., when

two instances are running, each will get 50% GPU, with 4
instances, each will get 25% each, and so on. We present
throughput and latency of such setup in Fig. 9. With a batch
size of 1, the throughput more than doubles going from 1
instance with 100% to 4 instances with 25% each, while latency
only increases by about 25%. A similar trend is seen with a
batch size of 8. The throughput increases by 1.5× going from
1 instance with 100% GPU to 5 instance of 20% GPU each.
We however, see the latency increase is steeper when inferring
batch of 8. Inference with a larger batch size is able to utilize
more GPU resources. But, with this lower GPU% there is
an increase in latency. Nonetheless, the latency remains well
below 50 ms and continues to be useful for an interactive
system. We should note after a certain number of instances;
there is no further increase in throughput but a rapid increase
in latency. The resulting low GPU% is insufficient for this
model and results in a drastic increase in latency.

We use the following primitive that takes the DNN-model
profiling data, such as Fig. 2a and Fig. 9, to determine the
appropriate number of instances of the same model to be used.

1 int[] Multi-Model(DNN-model, available-
GPU%, deadline)

This software primitive takes DNN-model profiling data, such
as Fig. 2a, the available unused GPU%, and the inference
deadline the DNN model has to meet. With this information,
the primitive returns two integers, specifying the number of
instances of the DNN-model to be run and at what GPU%.

Placing multiple instances of a DNN model in a GPU has two
advantages. First, more requests for the model can be directed
to the same GPU buffer, simplifying the data transfer to GPU.
Second, we can utilize parameter sharing, i.e., the new instance
of the model can use the same DNN weights and parameters
already existing in the GPU buffer of the existing model.

E. Parameter sharing of DNN models

DNN models have learned weights and parameters necessary
for inference. Often these weights occupy a significant amount
of GPU memory when the model is loaded to GPU. However,
these weights and parameters are invariant as the inference
process does not change these weights. Therefore, many
instances of the same model can share the same sets of weights
i.e., they can share the parameters without needing to upload
their own weights to the GPU. We utilize this parameter
sharing in two scenarios. First, when adjusting the GPU
resources, the replica (shadow) instance has to load its model
into GPU with an updated GPU% specified, while the active
process infers for incoming requests. We have observed that
the loading of another model does indeed consume additional
memory temporarily, but parameter sharing substantially
mitigates the increase in the total memory footprint. Second,
when we are starting another instance of the same model to
increase inference throughput, as described above, the new
model can just link to the weights of an already running
model. This reduces the burden on GPU memory. We use the
following primitive to share the weights among the models.

Object
Detection

(Mobilenet)

Input
Image

Face
Detection

(VGG-Face)

 Car Model
Detection
(Resnet)

Human

Vehicle

M-net
25%

ResNet-Car
50%

VGG-Face
40%

Scheduled Models
10 ms 20 ms 30 ms

Unscheduled
Models

YOLO
60%

ResNext
50%

Fig. 10: Scheduling Multiple DNN Applications

1 int share-parameter(cudaIPC GPUParamAddr,
newDNNModel)

We create CUDA Inter-Process Communication (IPC)
pointers for all of the parameters of a DNN model loaded in
the GPU. We then share these IPC addresses to every new
instance of the same model. These models can link to the
existing GPU buffer rather than loading their own weights.
We now show how parameters sharing can fit more models in
the GPU. We show 3 different models in Table II. Each of the
model’s parameter takes some space in GPU, while the model
also occupies other private GPU buffer space necessary for
its inference. With parameter sharing, each new model sharing
the parameter will occupy less space in the GPU, allowing us
to add more instances of the model. As we see from Table II,
parameter sharing allows 1 more ResNet-50 instance and 2
more VGG-19 and ResNext-50 instances in one NVIDIA T4
GPU (16 GB memory). In a multi-GPU cluster, these memory
savings can allow even more models to fit and run concurrently.

TABLE II: No. of models hosted with parameter sharing (P.S.)

Model Weights
(MB)

Other GPU
buffer (MB)

No. of models
Without P.S. With P.S.

ResNet-50 100 1400 10 11
VGG-19 549 1475 8 10

ResNext-50 248 1252 10 12

F. Primitive to support scheduling of DNN models

We now present a scenario where spatial and temporal
scheduling of DNN applications can improve utilization of the
GPU and get higher overall system throughput. Fig. 10 (left)
shows an example DNN service (hereafter called DNN-Recog),
which first infers input images with Mobilenet to find if it
includes humans or vehicles. The application processes human
images with a face detection DNN (VGG-Face [46]) and vehicle
images with a car model detection DNN (ResNet-Car [47]).
We present a schedule of these DNNs in Fig. 10 (right). We
show the schedule of the 3 models (Mobilenet, VGG-Face,
and ResNet-Car) with solid boxes in Fig. 10. As VGG-Face
utilizes 40% and ResNet-Car uses 50% GPU, they can run
simultaneously. However, two other models, ResNext [48]
(50% GPU) and Yolo [49] (60% GPU), cannot be fit into the
schedule. At the beginning of the schedule, Mobilenet infers
images using 25% GPU. Here, the scheduler has an opportunity
to run Yolo (60% GPU demand) with the remaining GPU.
But, to avoid interfering with ResNet-Car, the scheduler needs
to estimate how long Mobilenet will run. Using that, our
primitives help find the right batch size for Yolo, so it completes

TABLE III: DNN applications latency with different scheduling
App. Latency (ms) Batch-Size Throughput (rps)

Temporal
(Triton [6])

Batch-
Lat. Temp. Batch-

Lat. Temp. Batch-
Lat.

DNN-Recog 24.8 28.7 2 8 67 266
Yolo 5.1 6.1 0.5 2 15 60

ResNext 4.9 6.3 0.5 1 15 30

inference before (brown shaded region) VGG-Face and ResNet-
Car begin inference. Since a model’s runtime may vary (e.g.,
VGG-Face ends execution earlier than ResNet-Car). Then, our
scheduler accommodates the ResNext model with a batch size
provided by our primitive. We present our primitive next.

1 int Batch-Latency(DNN-Models[], GPU%,
interval)

Batch-Latency takes as input the profiles of the
different DNN models currently loaded to GPU, the currently
available GPU%, and the time interval until an apriori
scheduled model will run. We compare the scheduling utilized
by our primitive to pure temporal scheduling, where models
get exclusive GPU access on a round-robin basis. We fix
the deadline of 30 ms to simulate object detection at 30
frames/sec. rate. We set the scheduling round time to be 30ms.
We observe the average throughput and latency obtained by
the models and present it in Table III for temporal (using
NVIDIA Triton) and spatio-temporal scheduling. Also shown
is the batch size provided by Batch-Latency. DNN-Recog
gets 4× the throughput with spatial-sharing because two of
its compute-heavy components, VGG-Face and ResNet-Car,
can run concurrently. This is not possible with just temporal
sharing of the GPU. Moreover, the other two applications,
Yolo and ResNext, only get scheduled in alternate round-robin
rounds with temporal sharing due to their high latency (with a
batch size of 1 in alternate scheduling rounds). However, with
the case of spatio-temporal sharing, Batch-Latency helps
schedule them concurrently, as seen in Fig. 10. We achieve
higher throughput without violating the deadline of 30 ms.
Overall, spatial-temporal scheduling with Batch-Latency
increases the throughput of the system by 3×.

VI. EVALUATION OF OVERALL INFERENCE FRAMEWORK

A. GPU-DMA in Multi-GPU cluster:

First, we evaluated the benefit of GPU-DMA in a multi-GPU
high bandwidth scenario. We utilized our 8 GPU cluster to
host different models and evaluated the throughput obtained
while inferring with a maximum batch size of 32. We compare
GPU-DMA with CUDA-Copy method. We also present the base-
line throughput, which we name Default MPS, where we infer
without batching (i.e., batch size of 1). Default MPS is identical
to CUDA-Copy method, except it only infers 1 image at a time.
We present the results in Fig. 11. With the relatively lower com-
plexity models (Alexnet and Mobilenet), GPU-DMA increases
the throughput by 2× compared to the CUDA-Copy method
and 3× compared to the Default MPS method. The CUDA-
copy method uses more CPU cycles to gather the payload data
from packets into a contiguous buffer. The CPU becomes the
bottleneck and therefore achieves lower throughput. Throughput

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

T
h
ro
u
g
h
p
u
t
(r
p
s
.) Default MPS

CUDA-Copy Method
GPU-DMA

VGG-19ResNet-50MobilenetAlexnet

Fig. 11: Use of GPU-DMA in 8 NVIDIA T4 GPU cluster.

obtained with Default MPS also suffers because of both a small
batch size as well as the overhead of copying the data to GPU
Even in a compute-heavy model, GPU-DMA produces 1.5 ×
throughput in ResNet-50 and 1.2× the throughput of VGG-19
compared to the CUDA-copy method. Since these compute-
heavy models spend more time inferring each batch, the relative
impact of GPU-DMA is lower than with models such as Alexnet
that run for a shorter time. Nonetheless, GPU-DMA shows
significant improvement in throughput across all the models.

B. Effectiveness of Creating Multiple DNN Instances

We evaluated a scenario where we see the throughput and
latency when multiplexing several instances of DNN models on
the GPU compared to running only one DNN model per GPU.
We ran four different models, Alexnet, Mobilenet, ResNet-50,
and VGG-19, in our multi-GPU (NVIDIA T4 GPU) cluster.
For the baseline, we only ran one model per GPU and sent
a request rate of 3800 images per second (Max. possible with
20 Gbps in our system). We set a tight deadline (SLO) of 20
milliseconds for Mobilenet, which is optimized for low latency
inference. We set a deadline of 30 milliseconds for ResNet-50,
which is optimized for higher accuracy than Mobilenet but
also incurs higher latency. We use an SLO of 50 milliseconds
for VGG-19, which is optimized for very high accuracy
without regard for latency. We utilize our Multi-Model
primitive to determine the number of instances of each DNN
that can run in a GPU. This enables getting higher throughput
while still meeting the deadline. Multi-Model suggested
running 4 instances of Mobilenet and Alexnet with 25% GPU,
2 instances of ResNet-50 with 50% GPU each and 2 instances
of VGG-19 with 50% GPU each. We compared the latency
and throughput with an option of running a single instance
with 100% of GPU. We utilize GPU-DMA to transfer images
for both cases. We present the results in Table. IV.

We observe that running multiple DNN instances increases
the throughput of all models by nearly 2×. Moreover, using the
GPU% suggested by our primitive allows us to fulfill the SLOs
set for each model. Giving the entire GPU to a single model
may allow for bigger batch sizes. But, the DNN model is also
limited by how much GPU it can use. Having multiple models
with a smaller portion of the GPU for each allows the GPU to be
utilized more efficiently, thereby achieving higher throughput.

C. Effect of Oversubscribing the GPU

We conduct an experiment to determine the effect of oversub-
scribing the GPU, i.e., running multiple models concurrently

 0

 300

 600

 900

 1200

 1500

50 100 150 200 250
 0

 2

 4

 6

 8

 10

 12

 14
T
h
ro
u
g
h
p
u
t
(i
p
s
)

L
a
te
n
c
y
 (
m
s
)

Total GPU% Subscribed

Throughput
Latency

(a) Alexnet

 0

 200

 400

 600

 800

 1000

40 80 120 160 200
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45

T
h
ro
u
g
h
p
u
t
(i
p
s
)

L
a
te
n
c
y
 (
m
s
)

Total GPU% Subscribed

Throughput
Latency

(b) ResNet-50

 0

 200

 400

 600

 800

 1000

1 2 3 4 5

Conv.
Kernel

G
lo
b
a
l
L
o
a
d

 T
h
p
t.
 (
G
B
/S
)

Number of Concurrent Processes

1
2

3
4

5
6

7
8

9
10

(c) VGG-19 Kernels’ memory thoroughput

Fig. 12: GPU over-subscription (a) Alexnet (batch = 8) and (b) ResNet-50 (batch = 8) (c) memory throughput

TABLE IV: Throughput & Latency with NVIDIA T4 GPUs

Model One Model
Per GPU

Multiple DNN
Instances in one GPU

Latency
(ms)

Thrpt.
(Ips) # inst. Latency

(ms) Thrpt.

Mobilenet 18.8 1218 4 19.77 2310
Alexnet 16.9 1656 4 18.9 2539

ResNet-50 25.7 155 2 29.1 274
VGG-19 45.1 88 2 49.1 162

with the aggregate GPU% exceeding 100%, on the inference
throughput and latency. These are shown for multiple instances
of Alexnet (each with 25% GPU) and ResNet-50 (each with
40% GPU), with the total exceeding 100% GPU, in Fig. 12a
and Fig 12b, respectively. Both show that the throughput does
not increase when the GPU allocation goes beyond 100%, but
the latency climbs rapidly. We see similar trends with other
models, i.e., providing beyond 100% of GPU does not improve
throughput but only increases latency. Therefore, we do not
oversubscribe the GPU while multiplexing with CSS.

D. Memory Impact of GPU Multiplexing with CSS

We profiled several DNNs when they are multiplexed in the
GPU using CSS to check if the DNN models were memory-
bound, i.e., if concurrently running multiple DNN models has
a secondary effect (e.g., memory contention) that can impact
model inference latency. In this experiment, we increase the
number of concurrently running instances of the VGG-19 model
from 1 to 5, while simultaneously reducing the GPU% propor-
tionally, i.e., from 100% to 20% for each instance. We measured
the memory throughput attained by 10 different convolution
kernels of each instance of VGG-19. We present the average
memory throughput in Fig. 12c. The global memory throughput
is for reading from the GPU main memory (GPU RAM).

As the number of concurrently multiplexed DNN kernels
increases, the reduction in global (GPU main memory/GPU
RAM) memory loading throughput is marginal for most kernels
(less than 5%). The exception is kernel 5, which sees a more
significant reduction, a little more than 20%, when the number
of DNNs increases from 1 to 5. While we do observe this brief
memory contention, most DNN models we have studied do not
appear to have a significant reduction in inference throughput.
Overall, the benefit from CSS for DNNs outweighs any con-
cerns regarding memory bandwidth contention within the GPU.

VII. CONCLUSION

With the growing use of compute-heavy DNN applications
for real-time inference, offloading their execution to edge-cloud
platforms can achieve lower latency. Hardware accelerators in
the edge cloud, such as GPUs, are helpful but are expensive
and power-hungry. Thus, they may be available only in limited
numbers, and it is desirable to multiplex several concurrent
DNN applications to effectively utilize the limited GPU
resources at the edge cloud. The large amount of CPU-GPU
interactions for transferring and inferring requests received
over the network introduces considerable inefficiency. We
propose and evaluate several software primitives to achieve
low latency and high throughput for inference. Our GPU-DMA
primitive significantly reduces the CPU load and increases
the inference throughput up to 2× in an 8 GPU cluster. Our
Sync-lite primitive provides lightweight and low latency
synchronization. Sync-lite reduces the inference latency
by up to 30% and reduces GPU idle time by up to 40% during
inference compared to other notification approaches. Our other
software primitive, Overlapped-Execution, facilitates
spatial sharing of the GPU by enabling the GPU allocation
(GPU%) to be changed with minimal (100µs) downtime
compared to 2-5 seconds without our primitive.

DNNs often do not utilize entire GPU compute resources.
Our Multi-Model primitive better utilizes a GPU by giving
just enough GPU% to run a DNN model, so to meet the
inference SLO. With Multi-Model, we see the DNN model’s
throughput doubles compared to exclusively providing the
GPU for a DNN model. To support running multiple models in
GPU, our Param-Share primitive shares model parameters
across model instances, thus fitting 20-30% more models
in GPU memory. Finally, our primitive Batch-Latency
aids spatial and temporal scheduling by providing the right
batch size to execute when the GPU is available within a
schedule. This primitive aids in increasing the number of
models that can run in GPU concurrently, thus increasing the
overall system throughput 300% while scheduling 5 DNNs
compared to temporal sharing of GPU. Overall, our primitives
enable support of more services in an edge cloud and increase
inference throughput while also reducing inference latency.

VIII. ACKNOWLEDGEMENT

We thank all the anonymous reviewers for their valuable
feedback and the US NSF for their generous support of this
work through grant CNS-1763929.

REFERENCES

[1] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “Ionn: Incremental
offloading of neural network computations from mobile devices to edge
servers,” in Proceedings of the ACM Symposium on Cloud Computing,
2018, pp. 401–411.

[2] NVIDIA, “Dgx pod,” https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/resources/dell/h18597-dell-emc-powerscale-
and-nvidia-dgx-a100-systems-for-deep-learning.pdf, online,accessed 15
Auguster 2020.

[3] “Amazon machine learning developer guide,” 2021, [ONLINE].
[4] “Automl vision edge,” 2021, [ONLINE].
[5] A. Dhakal, S. G. Kulkarni, and K. K. Ramakrishnan, “Gslice: Controlled

spatial sharing of gpus for a scalable inference platform,” in Proceedings
of the 11th ACM Symposium on Cloud Computing, ser. SoCC ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 492–506.

[6] NVIDIA, “Nvidia triton inference server,”
https://developer.nvidia.com/nvidia-triton-inference-server, 2021.

[7] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang et al., “Gandiva: Introspective
cluster scheduling for deep learning,” in 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18), 2018, pp.
595–610.

[8] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishna-
murthy, and R. Sundaram, “Nexus: a gpu cluster engine for accelerating
dnn-based video analysis,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, 2019, pp. 322–337.

[9] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: A low-latency online prediction serving system,”
in 14th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 17), 2017, pp. 613–627.

[10] T.-A. Yeh, H.-H. Chen, and J. Chou, “Kubeshare: A framework to
manage gpus as first-class and shared resources in container cloud,” in
Proceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 173–184.

[11] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson,
and J. Mace, “Serving dnns like clockwork: Performance predictability
from the bottom up,” in 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20), 2020, pp. 443–462.

[12] W. Zhang, W. Cui, K. Fu, Q. Chen, D. E. Mawhirter, B. Wu, C. Li, and
M. Guo, “Laius: Towards latency awareness and improved utilization of
spatial multitasking accelerators in datacenters,” in Proceedings of the
ACM International Conference on Supercomputing, 2019, pp. 58–68.

[13] NVIDIA, Tesla, “Multi-process service,” NVIDIA. May, p. 108, 2019.
[14] A. Dhakal, S. G. Kulkarni, and K. Ramakrishnan, “Machine learning

at the edge: Efficient utilization of limited cpu/gpu resources by
multiplexing,” in 2020 IEEE 28th International Conference on Network
Protocols (ICNP). IEEE, 2020, pp. 1–6.

[15] ——, “Ecml: Improving efficiency of machine learning in edge clouds,”
2020.

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[17] Y. Fujii, T. Azumi, N. Nishio, S. Kato, and M. Edahiro, “Data transfer
matters for gpu computing,” in 2013 International Conference on Parallel
and Distributed Systems, 2013, pp. 275–282.

[18] T. C. Carroll and P. W. Wong, “An improved abstract gpu model with data
transfer,” in 2017 46th International Conference on Parallel Processing
Workshops (ICPPW), 2017, pp. 113–120.

[19] K. Zhang, B. He, J. Hu, Z. Wang, B. Hua, J. Meng, and L. Yang, “G-
net: Effective {GPU} sharing in {NFV} systems,” in 15th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
18), 2018, pp. 187–200.

[20] A. Nguyen, Y. Fujii, Y. Iida, T. Azumi, N. Nishio, and S. Kato,
“Reducing data copies between gpus and nics,” in 2014 IEEE International

Conference on Cyber-Physical Systems, Networks, and Applications.
IEEE, 2014, pp. 37–42.

[21] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar, “A server-based approach
for predictable gpu access control,” in 2017 IEEE 23rd International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2017, pp. 1–10.

[22] J. Choi, D. F. Richards, and L. V. Kale, “Achieving computation-
communication overlap with overdecomposition on gpu systems,” in 2020
IEEE/ACM Fifth International Workshop on Extreme Scale Programming
Models and Middleware (ESPM2), 2020, pp. 1–10.

[23] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee, S. W.
Keckler, M. T. Kandemir, and C. R. Das, “Anatomy of gpu memory
system for multi-application execution,” in Proceedings of the 2015
International Symposium on Memory Systems, 2015, pp. 223–234.

[24] X. Mei and X. Chu, “Dissecting gpu memory hierarchy through
microbenchmarking,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 1, pp. 72–86, 2017.

[25] P. Jain, X. Mo, A. Jain, H. Subbaraj, R. S. Durrani, A. Tumanov,
J. Gonzalez, and I. Stoica, “Dynamic space-time scheduling for gpu
inference,” arXiv preprint arXiv:1901.00041, 2018.

[26] P. Jain, X. Mo, A. Jain, A. Tumanov, J. E. Gonzalez, and I. Stoica, “The
ooo vliw jit compiler for gpu inference,” arXiv preprint arXiv:1901.10008,
2019.

[27] H. Shen, L. Chen et al., “Nexus: a gpu cluster engine for accelerating
dnn-based video analysis,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, 2019, pp. 322–337.

[28] T. T. Yeh, M. D. Sinclair, B. M. Beckmann, and T. G. Rogers, “Deadline-
aware offloading for high-throughput accelerators,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2021, pp. 479–492.

[29] W. Zhang, Q. Chen, K. Fu, N. Zheng, Z. Huang, J. Leng, C. Li,
W. Zheng, and M. Guo, “Towards qos-aware and resource-efficient gpu
microservices based on spatial multitasking gpus in datacenters,” 2020.

[30] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness and
increased utilization for non-preemptive accelerators in warehouse scale
computers,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 681–696, 2016.

[31] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[32] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask
R-CNN,” CoRR, vol. abs/1703.06870, 2017. [Online]. Available:
http://arxiv.org/abs/1703.06870

[33] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[34] NVIDIA, “Tensorrt developer guide,”
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-
guide/index.html, 2019, [ONLINE].

[35] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” in Internet
Measurement Conference 2015 (IMC’15), Tokyo, Japan, Oct. 2015.

[36] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. K. Ramakrishnan, and T. Wood, “OpenNetVM: A Platform for High
Performance Network Service Chains,” in Proceedings of the 2016
ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization. ACM, Aug. 2016.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[38] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[40] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[41] “Nvidia visual profiler user guide,”
https://docs.nvidia.com/pdf/CUDA Profiler Users Guide.pdf,
accessed:2018-12-01.

[42] NVIDIA, “Getting started with cuda graphs,”
https://developer.nvidia.com/blog/cuda-graphs, 2019.

[43] T. C. Schroeder, “Peer-to-peer and unified virtual addressing,” in GPU
Technology Conference, NVIDIA, 2011.

[44] A. Dhakal and K. K. Ramakrishnan, “Netml: An nfv platform with
efficient support for machine learning applications,” in 2019 IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2019, pp.
396–404.

[45] D. Intel, “Data plane development kit,” https://dpdk.org/, 2014, accessed:
2020-06-12.

[46] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
2015.

[47] H. Jung, M.-K. Choi, J. Jung, J.-H. Lee, S. Kwon, and W. Y. Jung,
“Resnet-based vehicle classification and localization in traffic surveillance
systems,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2017, pp. 934–940.

[48] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1492–
1500.

[49] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

