
Fast Function Instantiation with Alternate
Virtualization Approaches

Vivek Jain, Shixiong Qi, K. K. Ramakrishnan
University of California, Riverside

Abstract—This paper focuses on the need for emerging do-
mains such as serverless and in-network computing, where
applications are often hosted on virtualized compute instances
(e.g., containers and unikernels), to have applications startup as
quickly as possible. We provide a qualitative and quantitative
analysis of containers and unikernels with regard to the startup
time. We analyze these in-depth and identify the key components
and their impact under scale on the startup latency. We study how
startup time scales as we launch multiple instances concurrently.
We study the contribution of popular Container Networking
Interfaces (CNIs), to the startup time.

Index Terms—Unikernel, Container, cold start, NFV, startup

I. INTRODUCTION

On-demand services require agile compute and good scal-
ability to support a wide variety of applications with low
latency and efficient resource utilization. Early-stage cloud
deployments depended on Virtual Machines (VMs) as the
main virtualization framework for having monolithic appli-
cations running on bare-metal using the infrastructure-as-a-
service paradigm. VMs (Fig. 1(a)) rely on hardware-level
virtualization and contain a full-fledged Operating System
(OS) with a large memory footprint and may take multiple
seconds to initiate. We have evolved to container (Fig. 1(b))
technology for process-level virtualization, leveraging the host
OS. Due to it being lightweight with much smaller startup
times, containers are now the industry de-facto option for
running applications, often breaking them up into micro-
services. Unikernels (Fig. 1(c)) [1] are another virtualization
technology that uses the concept of Library OS [2], where
applications are built as a VM with minimal OS functionality.
Since most OS/Kernel functionalities are omitted, unikernels
are very lightweight, and their bootup time is significantly
shorter than traditional VMs.

An application’s startup time includes initializing the com-
puting platform. While containers and unikernels have a
lower startup time over traditional VMs, further improvements
are desirable. A number of areas need fast initialization of

(a) Virtual Machines (b) Containers (c) Unikernels

Fig. 1. Virtualization technologies

compute instances: ranging from deploying per-flow network
functions [3] for in-network compute and network function
virtualization (NFV) to support serverless computing [4], and
rapid application migration across edge cloud instances. For
example, when a user invokes an inactive serverless function,
the cloud orchestration system provisions a new compute
instance (e.g., container) to execute the function. The provi-
sioning of compute instances includes downloading the code,
setting up the container environment, and starting the con-
tainer. The time for provisioning a compute instance (referred
as coldstart time) depends on various factors such as code
size, memory size, program runtime. To mitigate this issue,
cloud providers usually keep the function container running for
some time, i.e., warm containers. In addition to these factors,
computing platforms like containers are also vulnerable due
to their dependency on shared underlying kernel capabilities
with the use of locks for resource access, impacting the startup
time when multiple containers concurrent instantiated.

Several works have investigated the fast startup of container
instances for emerging domains, e.g., NFV and serverless.
Zhang et al. [3] have demonstrated the ability to launch 80K
NFs instances during a second interval. Similarly, the authors
[5] have shown a reduction of up to 80% in execution time in
launching container instances. The fast function initialization
is the most sought-after compute requirement for supporting
modern applications. This paper analyzes the startup time
of different computing platforms and finds the bottleneck
components contributing most to the startup time. For instance,
our experiments show that network initialization and mounting
play a significant part in starting up multiple containers. These
insights will help us design a low startup latency computing
platform to fulfill the agile computing requirements. We make
the following contributions:

• We provide the qualitative analysis of computing platforms,
mainly containers and unikernel. We choose Linux con-
tainers, the Kubernetes orchestrator, along with the runc
container runtime. This will provide more detailed system-
level insights (e.g., setting namespaces) and cluster-level
factors (e.g., network setup overheads). For the unikernel,
we choose the OSv because it has been shown to have a
short startup time, as low as 5ms [6].

• We provide an in-depth quantitative analysis of components
such as a hypervisor, network setup, and mounting tech-
niques that affect startup latency and highlight their effect
during scale. We evaluate pod network startup time of vari-978-1-6654-4579-5/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Lo

ca
l a

nd
 M

et
ro

po
lit

an
 A

re
a

N
et

w
or

ks
 (L

A
N

M
A

N
) |

 9
78

-1
-6

65
4-

45
79

-5
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
LA

N
M

A
N

52
10

5.
20

21
.9

47
88

08

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:16:24 UTC from IEEE Xplore. Restrictions apply.

ous Container Network Interface (CNI) plugins by analyzing
the latency breakdown associated with different networking
components affecting startup time. An extensive analysis of
CNI is presented by considering different pod deployment
patterns and scales to help understand the scalability in
terms of startup latency.

II. QUALITATIVE ANALYSIS OF VIRTUALIZATION
PLATFORMS

This section provides an overview of different virtualized
computing platforms, i.e., containers and unikernels. Given
the critical need for fast initialization (e.g., function as a
service, NFV), we focus on providing a detailed analysis of
components involved during startup and highlight their effects,
including when they have to be deployed on a large scale.

A cloud service provider (CSP) typically uses orchestration
software such as Kubernetes [7]. Most of these orchestration
engines have a similar two-stage pipeline: i) selecting a node
to run a compute instance; ii) starting the compute instance on
a selected node by setting up the required functionalities (e.g.,
network and storage). We believe the first stage is independent
of virtualized technology. The second stage is specific to
computing technology and is discussed next. Apart from this,
we also study few orchestration features, e.g., CNI plugins
used for setting up container networking. Understanding the
impact of these on the startup in detail will help in devising
strategies for their improvement.

A. Unikernels
Unikernels are specialized, single-address-space virtual ma-

chines that are based on Library OSs [2] that bundle re-
quired functionality. Unikernels are designed to run a single
application process, and the customization makes unikernels
lightweight with a faster startup than traditional VMs. The
overall application startup time for unikernels comprises three
phases: i) Hypervisor context setup time, ii) unikernel initial-
ization time, and iii) application initialization time. We discuss
the former two initialization phases (the third phase depends
on the application itself).

i) Hypervisor context setup time: Hypervisors have a signifi-
cant impact on the startup time of the unikernel. For example,
QEMU follows a 16-bit real mode boot model to start any
x86 VM, in which a bootloader code is executed first that
starts the kernel process. On the other hand, hypervisors like
Firecracker directly execute the kernel binary, reducing overall
OS boot time. Similarly, the initialization of the VM process
also depends on the hypervisor. For instance, QEMU’s startup
time is primarily spent in the dynamic linker, which grows
higher as the number of features increases.

ii) Unikernel startup time: The startup procedure for a
unikernel is similar to a traditional VM bootup process and
depends on the underlying hypervisor. We listed the break-
down of steps involved in the OSv kernel startup in Table I.
These involve initializing various console capabilities (serial
vs. VGA), mounting file system (read-only vs. write-enabled),
etc. In our experiments, we observe that these components
significantly influence the startup time, especially when a

TABLE I
STEPS INVOLVED IN OSV STARTUP

Task Description
Disk read (real mode) read compressed kernel and app image
Uncompress kernel image uncompress kernel and run it
Network initialization initialize network stack, setting IP address
Drivers loading loading device drivers e.g., block, network
File system mounting mounting image file system
Other thread initialization, .init functions, etc

number of unikernels are initiated. But these components are
not always required by an application. For instance, serverless
functions are often stateless, and some also do not involve
disk write operations. So the startup time can be improved by
using a read-only file system.

B. Containers
In Kubernetes, a pod is an atomic unit that comprises one

or more containers. We follow the “one-container-per-pod”
model [7], using the terms container and pod interchangeably.
Containers encapsulate an application and all of its dependen-
cies into one bundle, utilizing underlying kernel capabilities
for features like namespaces and cgroups. Namespaces provide
an abstraction to the process of owning an isolated instance
of the global kernel resources (e.g., network ports). There
are different types of namespaces available in the Linux
kernel: mount, process ID, network, IPC, User, UTS. Cgroup
functionality limits the use of resources such as the number of
CPU cores and memory. The container engine is responsible
for creating namespaces and setting up cgroup policies for
a container. Container startup involves two phases: container
process creation & network setup discussed next.
i) Container process creation: Fig. 2 shows the sequence of
operations involved in creating a container sandbox. i) First,
the downloaded container image is extracted. ii) The low-
level container runtime creates a new container process using
a fork() system call. iii) The container process sets the
extracted images as its root file system using chroot() system
call. iv) It also creates new namespaces using unshare() and
setns() system calls. v) The next step is to perform the mount
operation. vi) The CPU and memory limits are configured
using a control group utility. vii) Finally, security level and
root capabilities are set.

The implementation of these system calls is often optimized
(e.g., fork() leverages copy-on-write strategy to avoid a
copy operation). But they still suffer the penalty of a mode
and context switch, which can take several microseconds [8].
Accumulating all the system call penalties can grow to the
order of 100s of microseconds for single container creation.
When multiple containers are created in parallel, the penalty
increases due to frequent context switches, causing frequent
cache and TLB flushes. Moreover, the creation of a network

(1)	Extract	
container	image

(2)	Create	new	
container	process (3)	Change	root	FS

(7)	Set	container	
security

(6)	Set	CPU	and	
memory	limits (5)	Mount	volume

(4)	Create	new	
namespace

Fig. 2. Steps for container process creation

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:16:24 UTC from IEEE Xplore. Restrictions apply.

namespace does not set up virtual interfaces and assign IP
addresses, which requires additional steps discussed next and
are often done with external tools.
ii) Network setup: After a container sandbox is created, the
network configuration is performed to enable communication
between pods. As containers leverage the virtual Ethernet
interface (veth) for networking, the network setup is started
by creating a veth-pair in the default network namespace.
One veth is moved to the container’s network namespace.
The veths are both then brought up and the veth in the
container’s network namespace is assigned with an IP address.
Routes are configured in the default network namespace to
ensure connectivity. Each of these operations involves updating
the network namespace context inside the kernel. Network
namespaces are organized in the form of a linked list inside
the Linux kernel. Any update operation (e.g., attaching veth)
needs to acquire a global lock first and then perform a linear
lookup for the namespace to be updated. Two issues arise:
i) As the number of namespaces grows, the search time also
increases. ii) In case of multiple network creation requests, the
parallel update operation will be ordered due to the need to
acquire a global lock, allowing one update at a time [9]. This
serialized access significantly affects the startup time.

Furthermore, orchestration engines like Kubernetes rely on
CNIs to automate network setup operations. A variety of avail-
able CNIs uses different approaches (e.g., eBPF vs. iptables) to
set up the pod network [10]. These CNIs introduce additional
overhead based on the functionality they provide. For instance,
Cilium leverages eBPF for packet forwarding/filtering, which
requires an eBPF program to be loaded into and then attached
to the kernel hooks inside the network devices (e.g., veth). This
process can take time and impacts the overall setup time.

III. EVALUATION AND ANALYSIS

A. Experimental Setup
We evaluate the startup time of unikernels and containers

on CloudLab [11]. The CloudLab node has an Intel Xeon
CPU E5-2640v4@2.4GHz with 20 Cores, 64 GB of RAM,
and running Ubuntu 18.04.1 LTS (kernel 4.15.0-137-generic).
All the experiments are repeated more than ten times.

B. Unikernels
We selected the OSv unikernel because of its known fast

startup times (as low as 5ms excluding hypervisor initialization
time). In our experiments, each unikernel instance needs 1
CPU, 1 GB of memory, and contains one virtual NIC with a
static IP assignment as part of OSv unikernel initialization.

1) Detailed Startup breakdown: single instance: Fig. 3(a)
shows the effect of different components used in a unikernel,
and the alternatives for each, e.g., type of console drivers, file
system type, and the hypervisor. We present the contribution
of the hypervisor initialization, file system mounting, drivers
loading, etc, on the overall unikernel startup latency. We
evaluated the startup time of OSv on two hypervisors (QEMU
and Firecracker both using KVM acceleration). Similarly, we
explored different file systems (read-only FS vs. ZFS), and
console drivers (serial vs. VGA). However, we only evaluate

(a) Unikernel boot time breakdown with 1 instance

minimal
default full

qemu build variants
(# of features)

0

30

60

90 Latency (m
s)

(b) QEMU init. time

Fig. 3. Unikernel boot time breakdown & QEMU init. time with different
QEMU builds

performance with serial devices on Firecracker because of its
limited support for emulated devices.

a) Effect of hypervisor: The hypervisor initialization time is
the time between when the hypervisor process is forked, and
when the guest kernel begins its initialization. Fig. 3(a) shows
that the hypervisor initialization, which depends on the type
of hypervisor, heavily influences the overall unikernel startup
time. The hypervisor initialization time is independent of the
other OSv components installed. Further, the hypervisors’ boot
method has a direct impact on the startup time of a unikernel.
QEMU uses the real mode booting model that requires a BIOS
to load and boot a unikernel. This process increases the startup
time because it has to read and uncompress the kernel image
file. On the other hand, Firecracker follows the 64-bit Linux
Boot Protocol Standard, which avoids the additional penalty
incurred by the BIOS and bootloader and instead directly
executes the unikernel binary.

The number of features supported by hypervisor also affects
its initialization time. For example, QEMU’s startup time is
spent in detecting shared libraries and dynamically linking
them. As shown in Fig. 3(b), the overall QEMU initiation
time further increases with the number of features. The x-axis
represents three different variants of the QEMU build. The
rest of our experiments use minimal QEMU features required
to run OSv, so as to get a fair estimate of the startup time.

b) Effect of device drivers: Fig. 4 shows the detailed
breakdown of time spent during the driver loading phase.
To simulate the realistic application requirement, our OSv
instance uses a console device, a block device for disk access,
a single NIC for performing network communication, and
a random number generation device (rng-device). With our
experiments, we found that the driver for the console device
heavily dominates the driver loading phase. As shown in
Fig. 4, the overall driver loading time is ∼ 157ms when the

console driver virtio blk virtio net virtio rng VMXNET3

1 10 20 30 40 50
of unikernel instances

0

100

200

La
te

nc
y

(m
s)

(a) latency with VGA driver

1 10 20 30 40 50
of unikernel instances

0

2

4

6

8 Latency (m
s)

(b) latency with serial driver

Fig. 4. Driver loading latency with VGA and serial driver

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:16:24 UTC from IEEE Xplore. Restrictions apply.

a b c d
1

a b c d
10

a b c d
20

a b c d
30

a b c d
40

a b c d
50

of unikernel instances

0

200

400

600

800

1000

1200
La

te
nc

y
(m

s)
hypervisor init
disk read (real mode)
uncompress lzloader
pci enumeration
drivers loading
fs mounting
other

a: Qemu-ROFS-Serial
b: Qemu-ROFS-VGA
c: Qemu-ZFS-Serial
d: Qemu-ZFS-VGA

Fig. 5. Unikernel startup latency, multiple instances launched simultaneously.
VGA driver is used, but can be reduced to just ∼ 6ms by only
using a serial console. The penalty of the VGA initialization
comes from the library that copies the current screen during
the initialization phase, resulting in frequent write operations,
causing KVM to perform memory-mapped IO (MMIO). Fur-
thermore, some features such as PCI enumeration (used for
detecting devices on PCI Bus) and rng-device can be disabled
to reduce the startup time further, as needed.

c) Effect of file systems: The file system has a drastic impact
on the startup time. OSv supports an efficient read-write file
system, ZFS, that takes ∼ 175ms for mounting (Fig. 3(a)). This
order of startup penalty is not desirable for latency-sensitive
stateless applications. To mitigate this issue, a read-only file
system can be used, and that takes only ∼ 0.7ms for mounting.

2) Detailed Startup Breakdown: multiple instances: In
this experiment, we analyze the behavior of multiple uniker-
nels launched in parallel. Fig. 5 shows the breakdown of
time spent during startup in the different components, for this
scaling scenario where we increase the number of unikernels
launched together by varying the OSv configuration. The
latency in milliseconds is the P95% for last instance to finish
its startup operation. We breakdown this startup time across
the distinct components as before, for four different file
system/driver combinations.

These results are based on the QEMU hypervisor with the
minimum number of QEMU features. As we can observe
from Fig. 5, the hypervisor initialization time increases as the
number of unikernel instances increase because of contention
in process scheduling and KVM performing frequent MMIO
operation. Similarly, Fig. 4 shows the driver loading time as
the number of instances increases. The left y-axis represents
the time taken by the driver loading phase with VGA console
device. The right y-axis is the driver initialization time with
a serial console device. The time taken by the VGA driver is
much higher and increases with the number of OSv instances
due to multiple write operations handled by KVM. On the
other hand, the driver loading time with only the serial device
driver is a lot less and is impacted much less as the number
of instances scales up. In contrast, the other components (e.g.,
network initialization, block device loading) do not see a
significant impact as the number of unikernels scale up.

C. Containers
We evaluate Linux containers by using the runc container

runtime engine due to its broad adoption. Similar to unikernel,
each container instance requires 1 CPU and 1 GB of memory.
The container process does not set up veths and networking

1 10 20 30 40 50
of containers

0
40
80

120

La
te

nc
y

(m
s) process creation (fork)

network namespace
mounting
other namespaces
(user, time, ipc)
cgroup
security
runc operation

Fig. 6. Container process creation time

rules while creating the network namespace and depends on
tools like ip and CNI plugins. We used perf tool and added
trace functionality in runc to measure the latency caused by
each component.

1) Container Process Creation: Fig. 6 shows the break-
down for container process creation. The y-axis represents the
latency of different components such as creating a new process
(fork), creating a different namespace, setting cgroup rules.
As observed in Fig. 6, setting the cgroup and security rules
take considerable time while creating a new container process.
They do not see a significant impact as the number of contain-
ers scales up in parallel. It also shows latency contributed by
different operations performed by runc, such as verification
of config file. We separate network and mount namespace
from other namespace creation to highlight their contribution.
Like cgroup and security components, mounting contributes
to startup time significantly, but it does not scale with the
number of instances. While network namespace creation takes
a comparatively shorter time for a single instance, the latency
increases unusually with the number of parallel creation.

2) Container Network Setup: To understand the perfor-
mance impact and evaluate the scalability of container network
setup, we use the ip command to perform a ‘network setup
request’, which represents a set of network setup operations as
illustrated in §II-B. We measure the latency of each operation
with increasing number of requests. The operations in a single
request are executed in order and multiple requests can be
handled in parallel to amortize latency. However, the global
lock in the network setup operation will limit the parallelism of
multiple requests and affect the amortization. To evaluate the
impact of global lock in the case of multiple network creation
requests, we set up a comparison experiment, in which all the
requests are processed in sequence and no amortization can
be achieved to reduce the latency.

Fig. 7(a) and 7(b) show the latency of each network setup
operation under different number of network creation requests.
With multiple network creation requests processed in parallel,
the dominant factor in the network setup latency is the
veth movement across network namespaces, which accounts
for more than 90% of overall latency. Compared to handle
multiple network setup requests in order, having multiple
requests processed in parallel can reduce significant latency.
For instance, with 50 requests, processing requests in sequence
requires 6.5s but processing requests in parallel requires only
1.95s. The latency is amortized by the operations except veth
movement. When handling multiple veth movement operations
in parallel, the latency increases linearly with the number of
network setup requests, which keeps the same with the case
that handling multiple veth movement operations in sequence.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:16:24 UTC from IEEE Xplore. Restrictions apply.

veth-pair creation
veth movement

set container's veth IP
bring container's veth UP

bring host veth UP

1 10 20 30 40 50
of network setup requests

0.0

0.5

1.0

1.5

2.0
La

te
nc

y
(s

)

(a) requests processed in parallel

1 10 20 30 40 50
of network setup requests

0

2

4

6

8

Latency (s)

(b) requests processed in sequence

Fig. 7. Container network startup latency breakdown

The observation in veth movement operation demonstrates the
impact of the global lock, which only allows one operation at
a time and significantly affects the latency.

3) Comparison between different CNIs: Flannel, Weave,
Calico, Cilium, and Kube-router are popular open-source CNI
plugins and have been widely adopted in the Kubernetes eco-
system to setup pod networking [10]. These CNIs follow the
general paradigm in §II-B to start up the network of a pod.
However, the CNIs have different design considerations (e.g.,
eBPF datapath) which results in differences in their network
startup latency. To examine the dominant factors in the pod
network setup latency, we break up the steps that CNIs follow
to setup the pod network and measure the latencies generated
by different steps accordingly (see Fig. 8).

The network startup latency of Flannel and Kube-router
(∼ 70ms in total) is the lowest among all the CNIs. Their
latencies are dominated by setting up the veth-pair and a
gratuitous ARP operation. The gratuitous ARP operation has to
be triggered in the pod network namespace, which introduces
an extra network namespace switch and ∼ 35ms latency.
Weave suffers from a higher latency (∼ 200ms in total) due to
more network namespace switches involved in the pod network
creation. Except the network namespace switch in veth-pair
setup, extra switches are introduced by serveral operations in
the pod network namespace: gratuitous ARP, renaming the
veth, and appending new iptables rules to support multicast
communication. When Calico starts the pod network creation,
it utilizes the REST API to inspect the readiness of the
backend data store (i.e., kubernetes api server or etcd), which
introduces extra latency. Calico relies on backend data store
to maintain the network configurations, e.g., IP pool, network
policies. Significant latency (∼ 80ms) is introduced by the IP
assignment operation, as Calico needs to interact with the
backend data store to query for available IP resources and
returns the assigned IP addresses through REST API. Cilium
consumes totally ∼ 150ms for setting up the network. An
extra network namespace switch is introduced due to rename
the pod’s veth. In addition, Cilium heavily relies on eBPF to
construct the dataplane. During the pod network startup, it
generates the eBPF code and links it into the kernel, which
leads to the high latency.

4) Network startup latency with different deployment pat-
terns: To examine the network startup latency with a large
amount of pods deployed, we measure the network startup
latency with two deployment patterns: (A) starting up one
pod for measurement on a single node, with different numbers

flannel weave calico cilium kube-rtr
0

100

200

La
te

nc
y

(m
s)

veth-pair setup

extra namespace
switch

rest api operation

eBPF attachement

other

Fig. 8. Latency breakdown for a single pod network startup

of background pods already up on that node; (B) starting up
multiple pods for measurement on a single node, with no
background pods up on that node. With pattern A applied
(Fig. 9 (a)), the network startup latency of the measurement
pods does not have a significant increase even with the increas-
ing number of background pods, which means the background
pods have almost no effect on the network startup latency of
newly deployed pods. With pattern B applied (Fig. 9 (b)),
the network startup latency of Cilium increases rapidly as the
number of new pods grows, which indicates worse scalability
in terms of network startup latency. Cilium has conflicts in
loading and attaching the eBPF programs to designated kernel
hooks, which incurs more delays for a large scale deployment.
Flannel and Kube-router incur lowest startup latency amongst
all CNIs, which are the ideal options when users demand fast
container startup. However, there does not seem to be a ‘best’
CNI plugin that is universally applicable. The choice on the
CNI depends on a number of different factors, e.g., datapath
performance, network policy support [12], etc.

IV. DESIGNING AN AGILE COMPUTE

Our experiments highlight the components that hinder com-
pute technologies from achieving fast startup. These com-
ponents can be managed by the application developer and
CSPs. This section summarizes latency introduced by such
components and highlights the design choice to help achieve
fast compute instantiation.

A. Unikernels
Unikernels’ startup performance is obstructed by the un-

derlying hypervisor and driver. Different features can help
improve the startup performance of unikernels.

1) Hypervisors: Using generic hypervisors, e.g., QEMU,
that are built to host generic VMs, they often do not yield the
performance expected for latency-critical compute instances.
The booting protocol plays a vital role in contributing to
latency. QEMU introduces significant latency because of the
need to load an OSv image and decompress it. The image
size directly influences disk read operation and is inversely
proportional to compression speed. This trade-off leads to

Flannel Weave Calico Cilium Kube-router

1 20 40 60 80 100
of pods

0

60

120

180

240

La
te

nc
y

(m
s)

(a) Pattern A

1 20 40 60 80 100
of pods

0

10

20

30

40

La
te

nc
y

(s
)

(b) Pattern B

Fig. 9. Network startup latency with different deployment patterns

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:16:24 UTC from IEEE Xplore. Restrictions apply.

similar overhead and does not mitigate the core issue. This
issue is resolved in hypervisors like firecracker that use the
latest booting protocol that directly executes the kernel binary.

2) Device Driver: Device drivers also introduce delays
in startup time. An unawareness of underlying devices can
degrade the overall startup performance of the unikernel. An
example is highlighted in our experiment where the VGA
driver is used for console output, resulting in a high penalty.
Short-lived serverless applications are expected to incoming
requests and do not log information on the console. These
applications do not fully require the VGA driver, making the
serial console a good candidate for such scenarios.

B. Containers
The network setup phase significantly affects containers’

startup performance. The problem persists among different
CNIs and further increases with scaling-up due to their com-
plex offerings. The network setup latency can be relieved by
maintaining the pool of prepared network namespaces and
attach to a container rather than reactively creating it when
the container is requested.

V. RELATED WORK

Several works have investigated the startup performance of
unikernels and containers across different parameters such as
application throughput, memory footprint, TCP throughput,
overall latency. Goethals et al. [13] compares the application-
layer performance of OSv unikernel and containers for mi-
croservices applications on parameters such as response la-
tency, request processing rate, and memory footprint. Xavier et
al. [14] assessed the performance of containers and unikernels
in terms of startup latency. Kurek [15] also compared the
performance of Docker with IncludeOS unikernel on attributes
such as TCP throughput and ping latency. However, none
of them focused on the detailed breakdown of startup time
which is crucial for further optimization. Oakes et al., Thomas
et al., and Mohan et al. [4], [5], [9] identified network
setup as a critical bottleneck in containers but they do not
take into account CNI plugins which are often coupled with
container orchestration software and introduce additional over-
heads. Gadepalli et al. [16] have studied WebAssembly-based
serverless functions which have a more lightweight runtime
compared to containers, highly desirable at the edge. They
optimize the Wasm-based function instantiation by avoiding
heavyweight linking and loading during startup, which can
achieve µ-second level startup latency. They are currently
limited to single serverless function worker nodes.

VI. CONCLUSIONS
This paper provides a qualitative and quantitative analy-

sis between containers and unikernels. A unikernel’s startup
time is strongly influenced by the underlying hypervisor, file
system, and drivers. With a careful choice of components,
especially device drivers, a significant part of that latency can
be reduced. On the other hand, a container’s startup time is
significantly affected by file system mounting. Further, the
CNI plugins introduce additional latency. Additionally, we
find that network initialization drastically increases startup

latency when the number of containers initiated increases.
In contrast, scaling up the number of unikernels initiated is
better, as long as the devices are carefully selected. Based
on our experimental observations, unikernels that utilize a
suitable hypervisor (e.g., one that directly executes the kernel
binary) with carefully selected support for device drivers, or
containers that can mitigate the network setup latency through
pre-configured network namespace pools may be ideal for
building an agile computing platform with fast startup.

ACKNOWLEDGMENT

We thank the US NSF for their generous support of this
work through grant CNS-1763929. This research was also
sponsored by the OUSD(R&E)/RT&L and was accomplished
under Cooperative Agreement Number W911NF-20-2-0267.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the ARL and OUSD(R&E)/RT&L or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation herein. We also thank the anonymous reviewers
for their valuable feedback.

REFERENCES

[1] Madhavapeddy et. al., “Unikernels: Library operating systems for the
cloud,” ACM SIGARCH Computer Architecture News, vol. 41, pp. 461–
472, 2013.

[2] Engler et. al, “Exokernel: An operating system architecture for
application-level resource management,” ACM SIGOPS Operating Sys-
tems Review, vol. 29, pp. 251–266, 1995.

[3] Zhang et. al., “Flurries: Countless fine-grained nfs for flexible per-flow
customization,” in Proceedings of the 12th International on Conference
on emerging Networking EXperiments and Technologies, 2016, pp. 3–17.

[4] Oakes et. al, “SOCK: Rapid task provisioning with serverless-optimized
containers,” in 2018 USENIX Annual Technical Conference (USENIX
ATC 18), 2018, pp. 57–70.

[5] Mohan et. al., “Agile cold starts for scalable serverless,” in 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19), 2019.

[6] Kivity et. al., “OSv—optimizing the operating system for virtual ma-
chines,” in USENIX Annual Technical Conference, 2014.

[7] “Kubernetes.” [Online]. Available: https://kubernetes.io/
[8] Baumann et. al., “A fork () in the road,” in Proceedings of the Workshop

on Hot Topics in Operating Systems, 2019, pp. 14–22.
[9] T. et. al., “Particle: ephemeral endpoints for serverless networking,” in

Proceedings of the 11th ACM Symposium on Cloud Computing, 2020.
[10] Qi et. al., “Understanding container network interface plugins: design

considerations and performance,” in IEEE International Symposium on
Local and Metropolitan Area Networks (LANMAN). IEEE, 2020.

[11] Ricci et. al, “Introducing cloudlab: Scientific infrastructure for advancing
cloud architectures and applications,” the magazine of USENIX & SAGE,
vol. 39, no. 6, pp. 36–38, 2014.

[12] Q. et. al., “Assessing container network interface plugins: Functional-
ity, performance, and scalability,” IEEE Transactions on Network and
Service Management, 2020.

[13] Goethals et. al., “Unikernels vs containers: An in-depth benchmarking
study in the context of microservice applications,” in IEEE 8th Inter-
national Symposium on Cloud and Service Computing (SC2). IEEE,
2018.

[14] Xavier et. al., “Time provisioning evaluation of kvm, docker and uniker-
nels in a cloud platform,” in 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid). IEEE, 2016.

[15] T. Kurek, “Unikernel network functions: A journey beyond the contain-
ers,” IEEE Communications Magazine, vol. 57, pp. 15–19, 2019.

[16] G. et. al., “Sledge: a serverless-first, light-weight wasm runtime for the
edge,” in Proceedings of the 21st International Middleware Conference,
2020, pp. 265–279.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:16:24 UTC from IEEE Xplore. Restrictions apply.

		2021-07-09T16:00:33-0400
	Preflight Ticket Signature

