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Abstract—Measuring the Available Bandwidth (ABW) is an
important function for traffic engineering, and in software-
defined metro and wide-area network (SD-WAN) applications.
Because network speeds are increasing, it is timely to re-visit the
effectiveness of ABW measurement again. A significant challenge
arises because of Interrupt Coalescence (IC), that network
interface drivers use to mitigate the overhead when processing
packets at high speed, but introduce packet batching. IC distorts
receiver timing and decreases the ABW estimation. This effect
is further exacerbated with software-based forwarding platforms
that exploit network function virtualization (NFV) and the lower-
cost and flexibility that NFV offers, and with the increased use
of poll-mode packet processing popularized by the Data Plane
Development Kit (DPDK) library.

We examine the effectiveness of the ABW estimation with
the popular probe rate models (PRM) such as PathChirp and
PathCos++, and show that there is a need to improve upon
them. We propose a modular packet batching mitigation that
can be adopted to improve both the increasing PRM models like
PathChirp and decreasing models like PathCos++. Our mitigation
techniques improve the accuracy of ABW estimation substantially
when packet batching occurs either at the receiver due to IC,
DPDK based processing or intermediate NFV-based forwarding
nodes. We also show that our technique helps improve estimation
significantly in the presence of cross-traffic.

Keywords—Available Bandwidth Measurement, Interrupt Co-
alescence, Mitigation Technique, Network Congestion.

I. INTRODUCTION

The Available Bandwidth of an end-to-end path is the
minimum amount of its available capacity of all links at a
given time [1]. ABW measurement plays an important role in
traffic engineering applications such as admission control [2],
SD-WAN [3], congestion control [4], and network capacity
reconfiguration [5]. Bandwidth estimation [6] uses active
probing to measure ABW of a network path. This problem
has been studied extensively over many years. However, with
the increasing use of software-based forwarding (e.g., using
NFV [7]), and with link speeds going higher and higher, we
find it worthwhile to re-examine this well-established issue.

One of the main challenges for bandwidth estimation on
high speed network paths is Interrupt Coalescence (IC) [8].
IC is implemented in the NIC driver, it is needed to increase
performance and reduce the overhead when processing re-
ceived packets [9]. IC is also implemented in most software
forwarding devices, especially those based on DPDK [10] or
OpenNetVM(ONVM) [7]. IC adversly impacts TCP conges-
tion control [11] and increase bandwidth estimation error [8].

Different ABW estimation methods have been proposed
over the years [12]. In this work, we select a few of the most
efficient methods, which have relatively short chirp train and
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relatively good accuracy. PathChirp [13] is very popular and a
good representative of methods based on the Probe Rate Model
(PRM) with an increasing rate chirp train. PathCos++ [14]
and SLDRT [15] are part of a new class of methods based
on the PRM with an decreasing rate chirp train, and greatly
outperform older methods.

Some techniques have been proposed to mitigate the effect
of IC on estimation methods [8], [16], and as results, to
varying degrees of effectiveness. Those mitigation techniques
can also be used for other types of measurements [8] or
TCP congestion control [16]. The new class of decreasing
rate methods have not been tested in depth in the presence
of IC and on high speed links. Moreover, the benefit of the
IC mitigation techniques has not been studied in context of
this new class of methods. Finally, only effect of the IC in the
receiver has been studied, the effect of IC in nodes within the
network path has not been explored.

In this paper we evaluate the effectiveness of the PRM in-
creasing and decreasing methods with high speed (1 Gbps and
10 Gbps) links, especially with end-systems and intermediate
router hops performing IC. Based on our observation that they
are not effective, we describe our framework for mitigation
of the impact of IC for the PRM techniques, that include a
Batching Train Modifier at the sender that cooperatively works
with a Batching Detection component in the receiver to adjust
the size of the probe packet train. Additionally, our framework
includes a novel Packet Batching Filter technique at the
receiver called Max-IAT, this technique identify packet batches
based on maximums in Inter-arrival Time, before the PRM
methods is used to estimate the ABW. Our paper compares
different increasing and decreasing probe rate methods with
the mitigation technique to accurately estimate the ABW.

II. BACKGROUND AND RELATED WORK
A. Interrupt Coalescence

Most operating systems use interrupts to initiate the pro-
cessing of received packets, motivated by the need to have
low latency. However, the performance of the system degrades
significantly at higher arrival rates due to overheads including
that for context switching. At 10 Gbps, minimum sized packets
arrive at 14.4 Mbps. Once the packet arrival rate gets above
the point where it saturates the system, the system goes into
receive livelock, as described in [17].

Modern operating systems (OSes) and NIC drivers imple-
ment IC or Poll Mode (PM), they process packets in a batch
to mitigate packet processing overheads, especially due to
interrupts [9]. Different OSes and NIC drivers use different
strategies to reduce interrupt overheads, and as a result will
batch packet differently [9]. Most often batching is based on
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time, so the number of packet batched depend on the rate
of packets, but some also terminate a batch based on packet
number. Network interfaces both at the end-systems as well as
in the intermediate hops (especially with the use of software
based routers and middleboxes) can implement IC. IC can
decrease TCP throughput, especially when implemented on
forwarding nodes [11]. IC distorts packet timing used by the
ABW measurement and causes estimation error [8].

B. Forwarding using DPDK and OpennetVM
The adoption of Software Defined Networking (SDN) and

NFV has led to an increase in software forwarding on network
paths [7]. Building efficient packet processing software relies
on careful management of system and network resources,
and an understanding of the interfaces between software and
hardware. I/O libraries such as the DPDK [10] achieve high
performance by bypassing the kernel’s networking stack to
deliver packets directly from the NIC into user space memory.
ONVM [7], [18] is an open source, BSD-licensed platform
built on top of DPDK, but offers higher level abstractions and
features such as naming, load balancing, and service chaining.
Network functions run in lightweight Docker containers that
can be dynamically combined to form complex chains.

One of the main principle of DPDK is to not use interrupts
to receive packet, but instead to use PM, and process received
packets as a batch at regular intervals [10]. As a result, any
processing built on top of DPDK or ONVM will likely batch
packets. The goal and effect of PM in DPDK are similar to
IC in a NIC driver, so for simplicity we call it IC.

C. Available Bandwidth estimation

The ABW of an individual link is its unused capacity, i.e.,
the difference between its capacity and the current amount of
traffic using it [5]. The ABW of a network path is the smallest
ABW across its links. Most ABW estimation methods using
active probing are in two categories: Probe Gap Model (PGM)
and PRM.

The PGM model uses packet pair [19] for its estimation.
When the packet pairs are sent, the PGM methods use the
relationship between the time gap at the sender and output
probe gap at receiver to estimate the available bandwidth.
Because of the difficulty of PGM techniques to effectively
measure the ABW when there are multiple congested links in
the network [20], we instead focus on the PRM methods.

The PRM is based on the concept of self induced conges-
tion. If the probe rate is below the path ABW, the probing
packets face no queuing delay, whereas if it exceeds the ABW,
congestion is created, probe packets are queued at the tightest
link and experience an increase in the one-way delay (OWD).
In PRM models, the unique inflection point can be found under
some idealized conditions, such as sending an infinite length of
probing packet trains. The well-known PRM-based estimation
methods are TOPP [21], PathLoad [22], PathChirp [13]. Both
TOPP and PathLoad use multiple rounds of constant bit
rate streams and change the probe rate incrementally, until
they find the probe rate separating the non-congested and
congested regime. Both require sending multiple probing trains
to produce a single estimate and are fairly intrusive and slow.

PathChirp uses a single chirp train to probe multiple rates,
reducing overhead. The chirp train of PathChirp consists of
a sequence of probe packets with increasing probe rates,
by decreasing the time between sending packets. PathChirp
measures the relative OWD of each received probe packet in
the train, and estimates the ABW by finding the inflection
point at which the OWD shows a consistent increasing trend.
Despite being one of the earlier works, PathChirp is still
considered one of the state-of-the-art methods for PRM [12],
and new measurement methods derived from PathChirp have
been proposed in recent years.

PathCos++ [14] was the first proposed method using a
chirp train with decreasing probe rates, by increasing the time
between packets. The goal of such a chirp train is to first
congest and then decongest the path, creating a congestion
peak. The additional intuition is that two packets with similar
OWD usually experience similar congestion, and therefore
the probe traffic between those packets should be congestion
neutral and equal to the ABW. PathCos++ tries to find the
widest spaced pair of packets that are on both sides of the
congestion bump and with similar OWD, and then computes
the received rate of probe packets between those two packets
as the ABW estimate. SLDRT [15] also uses a chirp train
with a decreasing rate. It searches the point at which the path
becomes decongested, by picking the first packet for which
the OWD returns to its minimum, and then uses the rate of
the chirp train up to that point as the ABW estimate.

Voyager-D [23] is a new method derived from PathCos++.
Voyager-D introduces a noise threshold based on the measured
OWD noise, and modifies the pair selection to prefer probe
pairs which are above the noise threshold. Voyager-D also
adjusts the leading and trailing probes to find a pair with less
difference in OWD. The chirp train of Voyager-D is designed
for systems with rate adaptation, with reduced density at the
edge of the rate window, and has an exponential decrease,
rather than the linear decrease of PathCos++.

D. Interrupt Coalescence Mitigation

Most high-speed network interfaces (1Gbps and higher) use
IC or PM to reduce the frequency of context switch and CPU
load [8]. The driver processes the NIC receive queue less
frequently, and incoming packets wait in the receiver NIC and
are delivered to the OS as a batch. This extra queuing in the
NIC distorts the received times, directly impacting the OWD
used for ABW estimation, and decreasing estimation accuracy.

Pathload [8] was one of the first methods to include a
technique to mitigate IC. It detects IC when the Inter Arrival
Time (IAT) between two packets is equal to the latency of
a packet processing at the bottleneck rate. It filters received
packets and keeps only packets at the end of a batch. The
PathChirp tool [24] implements a similar technique, where
it sends multiple packets for each rate probed and keep one
packet per rate probed, which is the end of a batch.

A goal of those IC mitigation techniques is to improve the
accuracy of ABW estimation. The techniques can apply to
other network measurements (e.g., PathRate uses it for path
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Fig. 1: Batching effect from interrupt coalescence. IDT is the inter-departure time at the traffic source. Fig. (a)-(c) use a single
idle 1Gb/s link. Fig. (d) uses four idle 1Gbps links.
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Fig. 2: Batching effect from with and without interrupt coalescence using PathChirp method on IOGbps link.

capacity measurement [8]) and for TCP congestion control
(e.g., TCP-Rapid uses BASS [16]).
III. EXPERIMENTS TO MOTIVATE BATCHING MITIGATION
The IAT measured at the receiver between packets within
a batch is primarily limited by the network protocol stack
processing rate, and is therefore very small. However, the IAT
between batches is dictated by the frequency of polling, and is
much higher than average, as shown in Fig. 1a. Thus, the re-
ceive timing (IAT) is distorted compared to the inter-departure
time (IDT) at the traffic source. These distorted received time
values directly impact the OWD used for ABW estimation
(Fig. 1b), and reduces the accuracy of the estimation of ABW.
Figure 1 is the results with IC from two experiments, with-
out router and 3 routers on 1Gbps link. We use a longer chirp
train (120 packets) so the effect of IC is clearer. The variability
we observe in both the IAT (Fig.1a) and OWD (Fig.1b) due
to IC causes the increasing-methods, such as PathChirp, to
overestimate the ABW when no mitigation techniques are
used, to overcome the noise in OWD. In the Fig. 1b, the bottom
red point, the inflection point that is detected by Excursion
Detection Algorithms, indicates the start of congestion. It
happens around packet index 105 in the chirp train. The top
red point along with probe rate is 1.7x of the actual ABW
from PathChirp. PathChirp significantly overestimates ABW.
This strongly motivates the need to improve the estimation of
increasing methods like PathChirp, when there is IC.
PathCos++ uses the Bump Detection Algorithm where two
anchor points before and after the bump with similar OWD
are selected to measure ABW. In Fig. 1c, the two red dots
on the blue OWD curve at packet index 18 and 100 indicate
the selected packets. In this case, the rate of probes between
these packet is 878 Mb/s and underestimates the ABW. (Note:
A red dot on the train rate is indicative, but it does not use
the full PathCos++ for this approximate estimate.)
With multiple hops, if these include software routers (or
middleboxes) that use IC to help achieve higher forwarding

throughput, the impact of the IC on the OWD is exacerbated.
For example, when we have a network with three intermediate
routers as shown in Fig. 1d, IC happens at multiple points
and the accumulated variability of the OWD is more complex,
as the OWD trend starts to increase very early, well before
the expected inflection point. The ABW estimate much less
accurate (Fig. 1d).

We repeat the experiment with 10 Gbps links both for
just the single hop, sender-receiver being connected back-
to-back, and a configuration with 2 routers in-between the
source and destination. We examine what happens when we
do not have IC (Fig.2a, 2b) and when there is IC (Fig.2c,
2d). With the PathChirp increasing method, the results show
that IC at the receiver impacts the ABW measurement. In
the OWD plot without IC, the PathChirp methods are able
to find the correct ABW almost exactly at 10 Gbps (the ’red
dot’ in Fig.2a. However, by enabling IC at the receiver, the
results of OWD plot become more complex, and the PathChirp
method overestimates the actual ABW Fig.2c. Hence, with the
increasing methods, IC impacts ABW across the entire range
of low to high bandwidth links. The problem continues to
remain the same with the 3-hop case (2 software routers with
IC in-between), as in Fig.2d.

IV. PACKET BATCHING MITIGATION FRAMEWORK

To combat the effect of IC and to compare the performance
of the different mitigatiton techniques, we implemented a
modular Packet Batching Framework. This framework aims
to address Packet Batching, regardless of its source, such
as IC, PM or Frame Aggregation. This framework is an
evolution of the solution implemented in PathChirp [24] and
is comprised of 3 parts that are added to the bandwidth
estimation tool (Fig. 3a). The Batching Train Modifier resides
in the sender and modifies the chirp train to make it more
robust to packet batching. The Packet Batching Filter processes
the received packets and modifies the chirp train so that
the bandwidth estimation can have better accuracy. Finally,
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the Packet Batching Detector is a component we added to
the framework, which measures the strength of the packet
batching, and this information is used in the sender in the
Batching Train Modifier. Our framework is modular, so that
different techniques can be selected in each of these boxes,
although not all techniques are compatible with each other.
In particular, for most bandwidth estimation methods, the
received chirp train processed by a given estimation method
must have its original structure. Therefore most of the changes
done by the Batching Train Modifier, such as adding packets,
must be hidden by the Packet Batching Filter.

The default Batching Train Modifier is Multiple Packet per
Probe Modifier (MPPM), and was adapted from PathChirp
[24]. A chirp train is composed of a number of probes, each
probe represents a rate that need to be tested. A normal
chirp train has one packet for each probe. With MPPM, each
probe is composed of multiple packets sent at the same rate,
the number of packet for each probe is mpp (Fig. 3b). The
ideal configuration of mpp is to have each probe longer than
the batching introduced by the network path, including the
receiver, so that each rate can be tested. If mpp is larger than
the batch size, each probe will likely include a packet that
is at the end of a batch. This multiplicative factor of MPPM
makes the chirp train longer and increases overhead. Another
option for the Batching Train Modifier is to create a longer
chirp train, by multiplying the number of probes by mpp.

The first Packet Batching Filter is PathChirp Filter (PCF),
which was adapted from PathChirp [24]. PCF assume a
chirp train using MPPM, to restore the original chirp train
it selects one packet in each probe (Fig. 3b). It uses a fixed
10 ws threshold to identified batched packets: if a particular
packet is followed by an IAT smaller than 10 us, this packet
is considered batched. In each probe, PCF selects the last
unbatched packet. If no unbatched packet is found in a probe,
the chirp train is truncated before that probe. The second
Packet Batching Filter uses the concepts of Buffering-Aware
Spike Smoothing (BASS) [16] which was used to eliminate
spikes in the IAT. Our estimation methods use OWD, and
we adapted BASS to apply the same correction to the OWD.
Min-OWD is a third, very simple Packet Batching Filter we
created. It requires the use of MPPM. For each probe it selects
the packet with the smallest OWD.

We designed Max-IAT to overcome some of the issues we
discovered with PCF and Min-OWD. It requires the use of
MPPM. For each probe, it identifies the maximum and min-
imum IATs following packets of the probe. If the maximum
is at least four time higher than the minimum, batching is

assumed and the packet before the maximum IAT is selected,
otherwise the last packet of the probe is selected.

The main parameter of the Packet Batching Framework is
mpp, the number of packets per probe. When the NIC on
the receiver batches the processing of packets using polling,
then the batch duration is determined mostly by the polling
interval, with the number of packets in each batch depending
on the received rate, which varies based on the chirp train and
network conditions. If the value of mpp is too low, we may
not find a end of batch in each probe, and mitigation will be
less effective. But, a larger value of mpp increases the chirp
train length and increases overhead (which we seek to avoid).

V. EXPERIMENTS AND EVALUATION

A. Experimental Testbed

To measure the effectiveness of our IC mitigation tech-
niques, we used a testbed of nodes interconnected using 10
Gbps links. The routers and sender node were Intel Xeon
CPU E5-2640v4@2.4GHz with 20 Cores, 64 GB of RAM,
and running Ubuntu 18.04.1 LTS (kernel4.15.0-137-generic),
using Intel® 82599ES 10 Gigabit Ethernet NICs. The receiver
node was using Intel® Ethernet Controller X710 NICs.

Our simplest configuration is just two nodes, a sender and
receiver. We also used a slightly more complex topology with
two intermediate routers. These routers were software-based
nodes running OpenNetVM, with a simple forwarding NF.
OpenNetVM uses poll mode drivers and batches packets to
be processed and therefore we expect to see considerable dis-
tortion. We then measure the effectiveness of IC mitigation. A
final configuration uses an separate node running OpenNetVM
for cross traffic. All the links in our testbed were 10Gbps, and
all the experiments used jumbo packets.

B. Evaluation of batching mitigation techniques
Because of the modular nature of our framework, we are

able to apply max-IAT packet batching filtering to all the
methods. Max-IAT provides some improvement in accuracy
beyond those associated with making the chirp train longer.
Before we explain our results, let us describe the graph
briefly. Each plot shows the relationship between number of
packets per probe (horizontal axis) and ABW Mbps (vertical
axis). Each point on the graph (the ABW estimate vs. the
number of packets per probe) also shows a ‘violin plot’ for
each data point to show the distribution of the values measured
for that point. The center is the average, and the thickness is
the extent of the probability density. At each x-axis point, the
height of the violin represents the distribution for each ABW
values in the experiment’s data using a particular number of
packets per probe. The green line (and violin) represents the
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case when there is the only mitigation technique used it to
make the chirp train longer, and the purple line (and violin) is
for the case where the max-IAT filtering is used, in conjunction
with MPPM on the sender. For instance, let us take a look at
the VG-Max-IAT in the Fig. 4a where the number of packets
per probe is 17. The center point is around 12 Gbps, the
median, which shows the ABW estimate of this with the max-
IAT filtering (batch mitigation method) in place. Moreover,
more of the area of the purple is above 10Gbps, which results
in an over-estimate of the PathChirp technique.

Figure 4 shows the performance of the increasing and
decreasing methods on high-speed links (10Gbps) using the
max-IAT mitigation technique. We use PathChirp and Path-
Cos++ as the base methods. We have both the 1 hop case and
one with 2 routers between source and destination.

Performance of Increasing method: Fig. 4a, 4b first shows
the performance of PathChirp without any mitigation tech-
niques (green line). The ABW estimate is consistently higher
around 14 Gbps or higher. With the mitigation technique, VG-
Max-IAT, the performance is somewhat better for both cases,
with the ABW being closer to the nominal 10 Gbps when the
mpp increases above 20 as seen in both Fig. 4a, 4b. With the
2 routers in the path, the VG-Max-IAT mitigation allows the
ABW estimate to be slightlly better for higher mpp.
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techniques, for the single hop and the network with 2 routers
in-between. PatchCos++ by itself without the mitigation tech-
nique (none) actually performs better than when VG-Max-IAT
filtering is used, in the single hop case as seen in Fig. 4c. The
first cause of underestimation is that the number of intervals
is too small, this increases the risk of PathCos++ selecting a
pair of points that is too high and that fails the height filter
of PathCos++ (Fig. 6a), in that case PathCos++ declares the
path uncongested. The second cause is that Max-IAT flattens
the noise of the OWD curve, in some cases the tail is so flat
that PathCos++ overshoots the end of bump and include in
it’s measurement some idle time (Fig. 6b). However, once we
go to the multi-hop (2 routers) case, (see Fig. 4d), PathCos++
with mitigation is much closer to the case with no mitigation
(‘none’) when there are at least 20 packets per probe.

Overall, we see that the design of decreasing-chirp-train
method is more resilient to the noise introduced by IC in
estimating ABW. In fact, all the decreasing methods offer
superior performance with IC across a range of conditions
and work well on high-speed links. The increasing-chirp-train
methods are not robust enough to accommodate the noise
introduced by IC, especially on multiple links, even with
max-IAT filtering. With a longer chirp train, PathCos++ with
batching mitigation estimates ABW reasonably.
C. Cross Traffic

We now generate cross traffic to compete with the flow
whose ABW is being measured. We show the effect of
cross traffic on the ABW estimate of existing techniques and
to demonstrate the effectiveness of our batching mitigation
technique. We have 3 nodes (sender, receiver, and cross-traffic
generator) connected to interfaces at a single router running
ONVM-based forwarding. Iperf is used to generate the cross-
traffic (using 5 UDP flows) flowing from the generator to
the receiver, at rates from 0 to 9500 Mbps, in steps of 500
Mbps, with jumbo packets. Fig. 5 shows the results with
the cross traffic using both the increasing method (PathChirp)
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and decreasing methods (PathCos++, Voyager-D), as the cross
traffic varies. We use a fixed mpp of 8.

Increasing methods: In Fig. 5a PathChirp without us-
ing any mitigation technique (PathChirp-none) is compared
to PathChirp using Max-IAT (PathChirp-Max-IAT), and in
Fig. 5b PathChirp with a longer chirp train (PathChirp-longer)
is compared to using Max-IAT again. The performance of
PathChirp-none and PathChirp-longer is poor, they overesti-
mate the ABW, they do not track the actual residual bandwidth
beyond the cross-traffic and the errors increase with increasing
cross-traffic. The average difference between PathChirp-none
with actual ABW is 175% with the error increasing when the
cross traffic is greater than 3Gbps. Overall, Pathchirp-longer
does more worse than PathChirp-none (Figs. 5a,5b) and does
not improve the accuracy of ABW. The mitigation does help -
PathChirp-Max-IAT has only a 21% average error difference,
its curve follows the actual ABW, and the result is even better
when the amount of cross traffic is higher than 6.5Gbps.

Decreasing methods: In Fig. 5c and 5d, not using the
mitigation techniques, PathCos++ and Voyager-D (the two rep-
resentative decreasing methods we study) substantially under-
estimate the ABW for the most part (except when the cross
traffic is very high, and the residual available bandwidth is
just less than 3 Gbps.)

Errors with varying ABW: The average error with just
PathCos++ is about 37%. However, using the mitigation
techniques with the decreasing methods provides excellent
results, with the estimated ABW tracking reasonably closely
to the actual ABW, especially with Voyager-D (Fig. 5d) and
the error is a modest 4%. With decreasing methods, such as
PathCos++ and Voyager-D, the distribution of ABW is quite
tight throughout the range (seen by the range (max.- min.)
of the estimate). The distribution (width of the violin) is also
close to the actual ABW (Fig. 5c, 5d). On the other hand, with
the increasing methods (Fig. 5a, 5b) the range is much larger
and the distribution is widespread throughout.

VI. CONCLUSIONS
Interrupt Coalescence used by NIC drivers to mitigate

packet processing overheads for high speed networks distort
the receiver timing and impacts ABW estimation. We showed
that existing techniques such as PathChirp and PathCos++
produce inaccurate ABW estimates in higher speed networks
(e.g., at 1 Gbps or more), and these inaccuracies increase with
software-based forwarding engines using DPDK.

We proposed a packet batching mitigation technique, Max-
IAT, and show that it reduces the errors for both classes of
probe rate models, increasing and decreasing methods. We
further showed that, generally the decreasing methods perform
better, and the mitigation technique is particularly useful for
them in the presence of cross-traffic.
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