
656 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Assessing Container Network Interface Plugins:
Functionality, Performance, and Scalability

Shixiong Qi, Sameer G. Kulkarni , and K. K. Ramakrishnan , Fellow, IEEE

Abstract—Kubernetes, an open-source container orchestration
platform, has been widely adopted by cloud service providers
(CSPs) for its advantages in simplifying container deployment,
scalability, and scheduling. Networking is one of the central com-
ponents of Kubernetes, providing connectivity between different
Pods (a group of containers) both within the same host and
across hosts. To bootstrap Kubernetes networking, the Container
Network Interface (CNI) provides a unified interface for the
interaction between container runtimes. There are several CNI
implementations, available as open-source ‘CNI plugins’. While
they differ in functionality and performance, it is a challenge for
a cloud provider to differentiate and choose the appropriate plu-
gin for their environment. In this article, we compare the various
open-source CNI plugins available from the community, qualita-
tively, and through detailed quantitative measurements. With our
experimental evaluation, we analyze the overheads and bottle-
necks for each CNI plugin, especially because of the interaction
with the datapath/iptables as well as the host network stack.
Overlay tunnel offload support in the network interface card
plays a significant role in achieving the good performance of
CNIs that use overlay tunnels for inter-host Pod-to-Pod commu-
nication. We also study scalability with an increasing number of
Pods, as well as with HTTP workloads, and briefly evaluate Pod
startup latency. Our measurement results inform the outline of
an ideal CNI environment for Kubernetes.

Index Terms—Containers, container networking interface,
Kubernetes, performance, scalability.

I. INTRODUCTION

KUBERNETES is the leading container orchestration plat-
form used by cloud service providers (CSPs) to improve

the utilization of their cloud resources [1]. Kubernetes pro-
vides the flexibility to run a variety of containerized cloud
applications, with the ability to deploy on both physical and
virtual cloud resources. In Kubernetes, a “Pod” is the atomic
unit of deployment, for scaling and management [2]. A Pod
may comprise one or more containers that share the same
resources including the networking context. Pods can be scaled

Manuscript received June 16, 2020; revised November 2, 2020 and
December 15, 2020; accepted December 15, 2020. Date of publication
December 25, 2020; date of current version March 11, 2021. This work was
supported by the U.S. NSF, through grant CNS-1763929. The associate editor
coordinating the review of this article and approving it for publication was
G. Schembra. (Corresponding author: K. K. Ramakrishnan.)

Shixiong Qi and K. K. Ramakrishnan are with the Department of Computer
Science and Engineering, University of California at Riverside, Riverside, CA
92508 USA (e-mail: kk@cs.ucr.edu).

Sameer G. Kulkarni is with the Department of Computer Science
and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar
382355, India.

Digital Object Identifier 10.1109/TNSM.2020.3047545

Fig. 1. Kubernetes Cluster and the Role of CNI.

to multiple instances to meet the workload characteristics and
also to provide failure resiliency.1

The proliferation of microservices [4] and function-as-a-
service [5] architectures for deploying cloud-based services
make it necessary to support large numbers of contain-
ers, and to provide efficient communication between them.
Hence, orchestration and networking are critical and need to
be automated, scalable, and secure to benefit large produc-
tion deployments. Kubernetes adopts the Container Network
Interface (CNI) specification as its core networking founda-
tion [6]. Each Pod in a Kubernetes cluster is given a unique
IP address for communication. A general architecture overview
of a Kubernetes cluster is shown in Fig. 1, with one control
plane host and two worker hosts. The control plane host is in
charge of maintaining the cluster state, and the worker host is
responsible for running cloud workloads in the execution unit
named Pod, while the CNI Plugin facilitates communication
among these execution units [7]. There are a number of dif-
ferent CNI implementations, and these CNI ‘plugins’ perform
the tasks for Pod networking in a Kubernetes cluster. With
thousands of Pods running in a cluster, the network’s status
can change rapidly, with frequent creation and/or termination
of Pods. When a new Pod is added, the CNI plugin coor-
dinates with the container runtime and connects the container

1This article provides significant additions on our previously published
IEEE LANMAN 2020 [3] conference paper.

1932-4537 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4727-6875
https://orcid.org/0000-0003-1849-5155

QI et al.: ASSESSING CONTAINER NETWORK INTERFACE PLUGINS: FUNCTIONALITY, PERFORMANCE, AND SCALABILITY 657

network namespace with the host network namespace (e.g., by
setting up the virtual ethernet (veth) pair), assigns a unique IP
address to the new Pod, applies the desired network policies
and distributes routing information to the rest of the cluster.

Several open-source CNI plugins are available for use in a
Kubernetes environment. Amongst them, Flannel [8], Weave
Net (or Weave) [9], Cilium [10], Calico [11], and Kube-
router [12] are popular and have been adopted by many
Kubernetes distributions [13]. While each finds their appli-
cation in different contexts due to their unique and distinct
networking characteristics, we believe there is an inadequate
understanding and a lack of a comprehensive characteriza-
tion of these different CNI plugins on both the qualitative
and performance aspects. To better understand the operations
of different CNI plugins, it is necessary to generalize the
working of the different CNI plugins based on the under-
lying network model and identify the key implementation
differences and their corresponding impact on the performance
and scalability aspects. While existing works [14]–[19] study
the overall performance of different CNI plugins at a pre-
liminary level, there is still a lack of in-depth understanding
on how the various design considerations affect performance.
Besides, there is also a lack of examination on the CNI plug-
ins’ performance under large scale deployments. With the help
of autoscaling feature, the number of Pods on a single host
can be easily scaled up to hundreds [20], [21], which results
in additional interference and impact on the performance
of the CNI plugins. Hence an analysis of the impact of
background communication for different CNIs is neces-
sary to understand scalability, and associated performance
impact.

In this article, we provide an insight into the overall
performance of Pod networking with different CNI plug-
ins, by examining throughput, latency, and fine-grained CPU
measurements of the various components of the networking
stack. First, we present a qualitative analysis of the pop-
ular CNI plugins, namely: Flannel, Weave, Cilium, Calico,
and Kube-router, to provide a high-level operational view of
the feature support of different CNIs. We also consider the
different variants of the Calico to demonstrate the effect of
tunneling and overheads with different encapsulation modes.
We omit the other less frequently used (and some outdated)
CNIs such as Romana [22], Canal [23], and Contiv-vpp [24]
from our study. Next, we provide a measurement-driven
quantitative analysis of their performance for various commu-
nication modes. To summarize, the contributions of our work
include:

1) We provide qualitative analysis for different CNI plug-
ins in terms of the subset of network or datalink layer
features they support (e.g., IPv6, encryption support),
and accordingly classify and generalize the CNI Plugin
networking model into four different classes.

2) We analyze the interactions with the host networking
stack including the network filter configurations (ipt-
ables rules) across different dimensions (e.g., iptables
chains, packet forwarding, overlay tunneling, extended
Berkeley Packet Filter (eBPF), etc.) to determine the
critical function calls that contribute to overhead.

Fig. 2. CNI Plugin: Interfacing w/Kubernetes & Namespaces.

3) Based on this qualitative analysis, we examine the
root cause for the performance differences across dif-
ferent CNI plugins for packet transmission throughout
including the entire network protocol stack with a
measurement-based quantitative evaluation.

4) We present extensive performance analysis by consider-
ing different real-world traffic patterns for varying scale
of deployment Pods and concurrent clients to help under-
stand the suitability of using different CNIs. We briefly
examine Pod startup latency.

A technical report [25], an extended version of this article
provides additional details, particularly on Pod startup time.

II. BACKGROUND

In Kubernetes, networking plays a pivotal role in enabling
the cluster-wide communication among the Pods. In this
section, we briefly present the details of the Kubernetes
networking and CNI plugin models.

A. Container Network Interface

The Container Network Interface (CNI) is a container
networking specification proposed by CoreOS [6] and has
been adopted by several open-source projects such as Cloud
Foundry, Kubernetes, Mesos, etc. and has also been accepted
by the Cloud Native Computing Foundation (CNCF) [26]
as an industry standard for container networking.2 Container
Network Model (CNM) is an alternative container networking
standard proposed by Docker [28]. Although, both CNI and
CNM are modular and provide plugin-based interfaces for
network drivers to create, configure, and manage networks,
the CNM is designed to support only the Docker runtime,
while CNI can be supported with any container runtime [29].

The CNI specification defines a simple set of interfaces
(e.g., CHECK, ADD, DELETE) for adding and removing
a container from the network. With the help of CNI plu-
gin, network interface, route, iptables, etc can be efficiently
set up in a Pod/host network namespace. A modular/driver-
based approach allows the integration with several 3rd party

2CNCF is backed by a large number of companies that currently support
CNI being the de facto standard for container networking [27].

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

658 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

TABLE I
QUALITATIVE COMPARISON ON THE FEATURES OF DIFFERENT CNI PLUGINS

implementations of the CNI specification, called the CNI plu-
gins. A CNI plugin is implemented as an executable and the
container runtime is responsible for invoking this plugin to
set up and destroy the container network stack as shown in
Fig. 2. The CNI plugin is then responsible for IP Address
Management (IPAM), to connect the Pod network namespace
with the host network, provide IP address allocation to the
container network interface, manage the IP address allocation
across different Pods in the cluster, configure the routes on
both the host and Pod network namespaces, etc.

“CNI plugins” comprise of two major components, namely
the CNI daemon and CNI binary files. The CNI daemon
is mainly used to do network management jobs, such as
updating the routing information of the hosts,3 maintain-
ing network policies,4 renewing the subnet leasing,5 Border
Gateway Protocol (BGP) updating,6 and maintaining some
self-defined resources (e.g., IP-Pool in Calico).7 The CNI
binary files are mainly used to create the network devices
(e.g., Linux bridge) and allocate IP address to Pods. Although
it is possible to concurrently support multiple CNIs for a Pod
(i.e., setup a Pod with multiple network interfaces, which are
managed by different CNIs), we focus on cases having only a
single CNI.

B. Linux Network Namespace and Kubernetes Namespace

Before we delve into the Kubernetes networking model, it
is necessary to understand the namespace model and distin-
guish between the Linux network namespace and Kubernetes
namespace and the associated impact on setting up of the CNI.

Linux network namespace is designed for network isolation.
Each Pod has its own network namespace, which is isolated
from the host network namespace and the network namespace
of other Pods. This enables the Pod to operate its own network
stack and interfaces without interference and collision with
other Pods. When a new Pod is created, the container runtime
interface (CRI) creates the network namespace for the new
Pod. Thereafter it invokes the CNI plugin, which allocates
the IP address for the Pod, attaches the virtual Ethernet pair
(veth-pair) to link up the Pod’s network namespace to the host
network namespace, and add the corresponding routing and
network policy rules.

On the other hand, the Kubernetes namespace is used to
divide the physical cluster into multiple virtual clusters. This

3https://docs.projectcalico.org/reference/architecture/data-path
4https://kubernetes.io/docs/concepts/services-networking/network-policies
5https://github.com/coreos/flannel/blob/master/Documentation/reservations.

md
6https://docs.projectcalico.org/networking/bgp
7https://docs.projectcalico.org/reference/resources/ippool

enables sharing the physical cluster resources among differ-
ent groups of users and makes the management of the cluster
more flexible. This also means that the Pods in different
Kubernetes namespaces are not strictly isolated. Kubernetes
starts with several system namespaces typically prefixed with
‘kube-’ (e.g., kube-system, kube-pubilc, kube-node-lease, and
default). Users are also allowed to create their own Kubernetes
namespaces to isolate their workloads from other users. When
creating the user namespaces, users can specify the resource
quota for the created namespace, such as the maximum num-
ber of running Pods, CPU, and memory limits to avoid the
threat of exorbitant resources requests. The Kubernetes names-
pace can be used as a selector in the network policy, to apply a
specific network policy to a group of Pods in that namespace,
which decouples the Pods from their static IP addresses and
improves the resource management efficiency in a large scale
cluster.

C. Kubernetes Networking Model

The Kubernetes networking model is proposed for deal-
ing with four different kinds of communication: i) intra-
Pod or Container-to-Container communication within a Pod,
ii) inter-Pod or Pod-to-Pod communication, iii) Service-to-
Pod communication and iv) External-to-Service communi-
cation [30]. To achieve these four communication services,
Kubernetes only provides the specification of the network
model, while the actual implementation is handed over to
the CNI plugins. The key requirements of the Kubernetes
network model include i) Pods are IP addressable and must
be able to communicate with all other Pods (on the same
or different host) without the need for network address
translation (NAT), and ii) all the agents on a host (e.g.,
Kubelet) are able to communicate with all the Pods on
that host. CNI plugins may differ in their architecture but
meet the above network rules. Thus, there is a range of
CNI plugins that adopt different approaches. Popular CNI
plugins are Flannel, Weave, Calico, Cilium, and Kube-
router [30].

D. Kubernetes Network Policy

Kubernetes Network Policy is the means to enforce rules
indicating which network traffic is allowed and which Pods
can communicate with each other. The policies applied to Pod
network traffic can be based on their applicability to ingress
traffic (entering the Pod) and egress traffic (outgoing traffic).
The control strategies include “allow” and “deny”. By default,
a Pod is in a non-isolated state. Once a network policy is
applied to a Pod, all traffic that is not explicitly allowed will

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

QI et al.: ASSESSING CONTAINER NETWORK INTERFACE PLUGINS: FUNCTIONALITY, PERFORMANCE, AND SCALABILITY 659

be rejected by the network policy. However, other Pods that do
not have network policies applied to them are not affected. CNI
plugins in Kubernetes can implement elaborate traffic control
and isolation mechanisms.

III. QUALITATIVE COMPARISON ON CNI PLUGINS

The different open source CNIs vary in their design and
approach towards facilitating intra-host and inter-host Pod
communication, and their support for Pod network policies.
We provide a careful qualitative analysis of different CNIs
based on the layer of operation, packet forwarding and routing
approach for Pods within the same host or across hosts. CNI
performance and scalability are influenced by the overheads in
the network protocol stack (typically in the kernel). We also
consider several other factors such as support for encryption,
IPv6, and multicast functionalities.

Network model: As Pods are uniquely identified by their
IP addresses, CNIs primarily operate at Layer-3 (Network)
to facilitate inter-Pod communication. However, CNIs can
also operate at Layer-2 (Link) for intra-host Pod communi-
cation, e.g., using the ‘Bridge’ or ‘MacVLAN’ capabilities.
Layer-2 CNIs take advantage of a software Linux bridge.
This greatly simplifies the configuration and management of
Pod networking, especially for the intra-host Pod-to-Pod com-
munication. However, they suffer from scale limitations and
also exhibit significant time to adapt to the network changes
because of MAC learning and forwarding updates. Layer-3
CNIs, based on IP routing and forwarding, are better for scal-
ability and to support cluster-wide communication. They often
depend on Border Gateway Protocol (BGP) support to cross
autonomous system (AS) boundaries, which could be a poten-
tial security concern in some cloud sites [31]. BGP suffers
from its security vulnerabilities, such as BGP hijack [32], route
leaks [33], etc. Alternatively, the ‘hybrid Layer-2/Layer-3
solutions’ (i.e., Layer-2 for intra-host and Layer-3 for inter-
host) may facilitate efficient intra-host, and scalable inter-host,
communication.

Packet Forwarding and Routing: Another aspect to consider
is the process for packet forwarding between hosts, which
has a significant impact on the performance (i.e., latency and
throughput). Based on how the packets are forwarded across
hosts, the CNI can be classified into two categories:

1) Overlay networking is a virtual network that is built
on top of an underlying physical infrastructure, which
not only provides new isolation or security benefits but
also gets around the dependency (e.g., IP address, rout-
ing, etc) on the underlying infrastructure support. All
the hosts in an overlay network communicate with each
other via the virtual links, which are also called overlay
tunnels. When packets go through the overlay tunnel,
they are encapsulated with an outer header based on
the adopted overlay protocol, such as Virtual Extensible
LAN (VxLAN), Generic Routing Encapsulation (GRE),
etc. Although using overlay technologies remove the
dependency on the underlying infrastructure, it increases
the difficulty to trace data packets when errors occur in
addition to the performance reduction.

Fig. 3. Network model for CNIs operating at Layer-3 in overlay mode (e.g.,
Calico, Cilium).

Fig. 4. Network model for CNIs operating in Layer-3 in underlay mode
(e.g., Calico, Cilium).

2) Underlay networking is just the datalink layer or Layer-3
(IP) infrastructure for packet forwarding. The under-
lay network provides the native routing connectivity
between different hosts in the cluster. This typically
requires BGP, where the hosts act as BGP peers
and share the routing information among them to
support inter-host routing without the need for any
encapsulation.

Based on the existing implementations of different CNI
Plugins, we classify the networking models and datapath
design into the following four broad classes: i) Layer-3 +
Overlay; ii) Layer-3 + Underlay; iii) Hybrid + Overlay;
iv) Hybrid + Underlay.

Layer-3 + Overlay uses an overlay tunnel endpoint (OTEP)
and multiple veth-pairs (Fig. 3). The OTEP is used to encap-
sulate/decapsulate the packets. The veth-pair enables data
exchange between the Pod network namespace and the host
network namespace. The intra-host data exchange is handled
by the host protocol stack in Layer-3. For inter-host case, the
outgoing data packet is delivered to the OTEP via IP forward-
ing, where the packets get encapsulated at the endpoint and
sent to its destination via the host’s physical interface.

Layer-3 + Underlay comprises of veth-pairs (Fig. 4). The
intra-host data exchange with IP routing works the same as
in the overlay-based design. The inter-host communication is
also processed in the host at Layer-3.

Hybrid + Overlay combines the hybrid Layer-2/Layer-3
design with overlays. It consists of a Linux bridge, an OTEP,
and multiple veth-pairs (Fig. 5). A Linux bridge in the host
network namespace connects with the Pods through veth-
pairs facilitating intra-host data exchange. For inter-host data
exchanges, the outgoing data packet first arrives at the bridge

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

660 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 5. Network model for CNIs operating in both Layer-2 & Layer-3 in
overlay mode (e.g., Flannel, Weave, Kube-router).

Fig. 6. Network model for CNIs operating in both Layer-2 & Layer-3 in
underlay mode (e.g., Flannel, Kube-router).

and is then handed over to the host protocol stack operating
at Layer-3. The host protocol stack forwards the packet to
OTEP via IP forwarding. At the OTEP, the packet is encap-
sulated (based on the overlay encapsulation type) and sent to
the destination via host eth0.

Hybrid + Underlay comprises multiple veth-pairs and a
Linux bridge (Fig. 6). The intra-host data exchange here works
the same as in the Hybrid+Overlay approach. For the inter-
host communication, the outgoing data packet first arrives at
the bridge, which is then handed over to the host protocol
stack operated in Layer-3. With the host’s IP forwarding turned
on, the data packets will be sent through the host’s physical
interface to the other hosts.

Kubernetes Network Policy: Before implementing network
policies in a Kubernetes cluster, a network policy controller
needs to be installed. This is provided by the CNI plugin.
The CNI plugins which support the network policy include
Weave, Calico, Cilium, and Kube-router. The CNI plugin dae-
mon works as a Network Policy Controller (a daemon ensures
that some or all hosts in a Kubernetes cluster run a copy of
a Pod). Users can provide the Network Policy annotations to
the daemon to enable various filtering rules.

A. Description of Each CNI Plugin

1) Flannel:
i) Layer of Operation: Flannel uses a combination of

Layer-2 and Layer-3 operation. Pods in the same host
can use the Linux bridge to communicate (Layer-2),
while Pods on different hosts use an overlay tunnel end-
point to encapsulate their traffic and use Layer-3 routing
and forwarding.

ii) Packet Forwarding across Hosts: With its default set-
tings, Flannel configures the Kubernetes cluster with
an overlay network. Flannel has several different types
of overlay backends (e.g., VxLAN, UDP) that can
be used for encapsulation and routing. The default
and recommended method is to use VxLAN because
of its better performance. The VxLAN backend is in
kernel space while the UDP backend works in the user
space, which has more context switches (up to 3) com-
pared to the VxLAN mode. Besides the overlay mode,
Flannel also has an optional underlay mode, which
transfers packets using IP routing (Layer-3). However,
this mode requires direct Layer-2 connectivity between
communicating containers from the underlying network
infrastructure. In both the VxLAN overlay and under-
lay modes, only one context switch (userspace to kernel
space) happens when the packets are delivered from the
Pods into the host network stack. However, when using
the UDP overlay mode, the packets need to be encapsu-
lated with a UDP header via the Flannel daemon in the
user space. After the packets are delivered from the Pod
into the host network stack, it will be delivered back to
the userspace to be processed by the Flannel daemon.
Then they will enter into the host network stack again
to be sent to its destination. Hence, in total three context
switches happen under the UDP mode resulting in more
CPU overhead and poor performance.

iii) Network Policy Support: Flannel does not implement
the network policy controller of its own hence lacks the
support to realize any network policies.

iv) Miscellaneous: In the overlay network, each host has its
own subnet (a fixed Classless Inter-Domain Routing),
which is used to allocate IP addresses internally. When
spinning up a new Pod, the Flannel daemon on each
host will assign an address to each new Pod from that
address pool.

Note: We configure Flannel in VxLAN mode.
2) Weave:
i) Layer of Operation: Likewise to Flannel, Weave also

operates at both Layer-2 and Layer-3. Intra-host com-
munication is performed at Layer-2, where the packets
are forwarded to its destination via the Linux bridge and
Layer-3 for the inter-host communication.

ii) Packet Forwarding across Hosts: Weave only uses over-
lay links (VxLAN or UDP) for communication between
hosts. The VxLAN mode is running based on the
kernel’s native Open vSwitch datapath module, while
the UDP mode relies on the Weave CNI daemon to
implement encapsulation. Likewise to Flannel, Weave
incurs one context switch when running in VxLAN
mode, and three context switches when running in UDP
encapsulation mode.

iii) Network Policy Support: Weave provides network policy
support for Kubernetes clusters. When setting up Weave,
a network policy controller is automatically installed
and configured. Weave can only configure the standard
Kubernetes Network Policy, which implements network
policies on Layer-3 (Network) and Layer-4 (Transport)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

QI et al.: ASSESSING CONTAINER NETWORK INTERFACE PLUGINS: FUNCTIONALITY, PERFORMANCE, AND SCALABILITY 661

attributes. Weave implements its network policy based
on iptables. Weave uses state extension in iptables,
which is a subset of the connection tracking extension
(conntrack). Weave uses state extension to speed up the
processing of iptables. For an established connection,
only the first packet needs to be matched with the ipt-
ables, the remaining packets will be allowed to pass
directly. Moreover, Weave uses ‘ipset’ to speedup ipt-
ables processing. Ipset uses a hash table to map a rule
to a set of IP addresses, and a hash table lookup for a
packet to find the target rule.

iv) Miscellaneous: A feature unique to Weave, which is not
available in most of the existing CNI plugins, is simple
encryption of the traffic based on NaCl (a networking
and cryptography library),8 with a user API to sim-
plify the implementation of encryption in the networking
system.9 Multicast support is provided in Weave to
improve throughput and save bandwidth for applications
such as streaming video or the exchange of lots of data
across multiple containers.10

Note: We configure Weave in VxLAN mode.
3) Calico:
i) Layer of Operation: Unlike Flannel and Weave,

Calico operates at Layer-3 for both intra-/inter-host
communication.

ii) Packet Forwarding across Hosts: Calico allows for both
underlay/overlay packet forwarding across hosts. The
underlay mode uses native routing based on BGP. Calico
uses BGP to distribute and update routing information
providing better scalability and performance.11 Calico’s
overlay mode uses IP-in-IP or VxLAN encapsulation.
Calico only incurs one context switch for both the over-
lay modes using IP-in-IP or VxLAN and underlay mode
using BGP.

iii) Network Policy Support: Calico has very good features
for Kubernetes network policy customization. Users can
enable both the Kubernetes network policy as well as
Calico’s own network policy, covering the policy from
Layers 3 to 7. Calico can also be integrated with the ser-
vice mesh, Istio, to implement strategies for workloads
within the cluster at the service mesh layer.12 This means
that users can configure iptables rules that describe how
Pods should send and receive traffic, thus enhancing the
security of the network environment. Calico implements
its network policy based on iptables. It inserts user-
defined chains on top of the system default chain. Calico
uses conntrack to optimize its iptables chains just like
Weave. Once a connection has been established, the fol-
lowing packets will be allowed to pass directly instead
of being examined by the iptables. In addition, Calico
also uses ipset to provide better scale and performance
than default iptables.13

8http://nacl.cr.yp.to/
9https://www.weave.works/docs/net/latest/concepts/encryption/
10https://www.weave.works/use-cases/multicast-networking/
11https://www.projectcalico.org/why-bgp/
12https://www.projectcalico.org/category/istio/
13https://docs.projectcalico.org/about/about-network-policy

iv) Miscellaneous: Calico provides IPv6 support. However,
it is limited to underlay mode only and the overlay (with
IP in IP and VxLAN) can support only IPv4 addresses.
With IPv6 enabled, the larger address space allows for
scalability in the number of endpoints in the Kubernetes
cluster.

Note: Calico can be run in two intra-host modes: Calico-wp
(native routing with network policy) and Calico-np (native
routing without network policy). In ‘Calico-wp’, we consider
the ordering/priority, allow/deny rules, etc rules to be enabled.
For the inter-host scenario, Calico has two network models
(‘Layer-3 + overlay’ & ‘Layer-3 + underlay’). This in con-
junction with network policy support provides four different
modes namely Calico-wp-ipip, Calico-wp-xsub, Calico-np-
ipip, and Calico-np-xsub. “ipip” means the IP-in-IP overlay
mode and “xsub” means IP based underlay. Accordingly, we
evaluate each of these distinct configuration modes.

4) Cilium:
i) Layer of Operation: Cilium is also a Layer 3-only solu-

tion. For intra-host communication, Cilium relies on
eBPF programs attached at the veth-pairs to redirect
packets to their destination. Cilium builds its datapath
based on a set of eBPF hooks that run eBPF programs.
The eBPF hooks used in Cilium include XDP (eXpress
Data Path), Traffic Control ingress/egress (TC), Socket
operations, and Socket send/recv. TCs, attached to the
veth, are utilized to forward packets through eBPF func-
tion calls, e.g., bpf_lxc, bpf_netdev.14 Arriving packets
at the veth cause eBPF programs to be executed and
route traffic.

ii) Packet Forwarding across Hosts: Cilium allows for both
an underlay (IP) packet forwarding and an overlay
solution with VxLAN or Geneve as the encapsula-
tion options. Like Calico, Cilium’s underlay mode uses
native routing based on BGP. If Cilium uses the over-
lay solution, bpf_overlay will be executed to direct the
packet from veth to the OTEP. Like Calico, Cilium also
incurs one context switch for both overlay and underlay
mode of operation.

iii) Network Policy Support: Cilium supports both the stan-
dard Kubernetes network policy and its own network
policy customization based on the iptables. These
network policies can work in Layers 3-7. In addi-
tion, Cilium can use eBPF hooks (e.g., XDP, TC) to
define packet filters. Since this filtering occurs earlier
than the network protocol stack, it can achieve better
performance than iptables.

iv) Miscellaneous: Cilium supports packet encryption in
Layer-3, i.e., it provides encryption using the IPSec
tunnels. Cilium also provides support for IPv6.

Note: We configure Cilium in VxLAN mode.
5) Kube-Router:
i) Layer of Operation: Kube-router operates in both

Layer-2 and Layer-3. Kube-router uses Linux bridge to
forward packets intra-hosts (Layer-2). It uses Layer-3
operation to forward packets inter-hosts.

14https://docs.cilium.io/en/v1.7/architecture/

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

662 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 7. Iptables chain processing and hook points [34].

ii) Packet Forwarding across Hosts: Kube-router allows for
both an underlay (IP) packet forwarding across the hosts
based on BGP and an overlay solution using IP-in-IP
encapsulation. As with Calico and Cilium, packet for-
warding in Kube-router incurs just one context switch
for both overlay and underlay modes.

iii) Network Policy Support: Kube-router only supports the
standard Kubernetes Network Policy APIs to apply
at Layer-3 and Layer-4. Kube-router implements its
network policy based on iptables. Kube-router uses
conntrack to speed up the processing of iptables. Kube-
router also uses ipset to get around the overhead of a
large iptables.

iv) Miscellaneous: An important feature of Kube-router is
the usage of IPVS/LVS kernel features to improve ser-
vice load balancing performance.15 Kube-router applies
a Direct Server Return (DSR) feature to implement a
high-efficient ingress for load balancing, which is a
unique feature compared to other CNIs.16

Note: We configure Kube-router in IP-based underlay mode.

B. Iptables Comparison

In order to implement specific packet forwarding, routing,
and networking policies, the CNI Plugins leverage ‘ipta-
bles’ - a userspace interface to setup, maintain and inspect
the tables of IP packet filter (Netfilter) rules in the Linux
kernel (we use the terms iptables and Netfilter interchangeably
in this article). Netfilter registers five hook points (callback
function points) into the network stack to implement packet
filtering, NAT, and security-related policies. The five hook
points are: PREROUTING, INPUT, OUTPUT, FORWARD and
POSTROUTING. These are ‘chains’ of tables of iptable-related
processing of a packet, for the purpose of filtering and exe-
cution of security policies. Fig. 7 shows the iptable chain
processing. Each iptables chain comprises a number of tables,
each with a different purpose. There are four kinds of tables:
raw, mangle, nat, and filter. The raw table is used to split the
traffic without a need for the connection to be tracked. The
mangle table is used to change the QoS settings of packets.
The nat table is for network address translation and the filter
table is used for packet filtering.

15https://cloudnativelabs.github.io/post/2017-05-10-kube-network-service-
proxy/

16https://www.kube-router.io/docs/user-guide/

Based on the user-defined network policies for different
Pods (input as a Yet Another Markup Language file), the CNI’s
network policy controller configures the iptables on all the
Kubernetes worker hosts. When packets arrive at an iptables
chain, a nf_hook_slow() function call is executed to traverse
the list of tables in that chain and process the matching iptable
rules. This rule processing can be a major source of overhead
in iptables [34].

Moreover, when a host starts up, the kube-proxy installs
a set of default iptables rules on the worker hosts. These
default iptables rules contribute to the Netfilter process-
ing overhead for packet transmission. These rules are used
to redirect the traffic from the default iptables chains to
the Kubernetes’ user-defined iptables chains (e.g., kube-
services, kube-forward, etc). Kubernetes relies on these user-
defined chains along with the internal rules to support
different kinds of communication. For example, the kube-
proxy installs NAT rules to support ‘External-to-Service’
communication.

Iptables’ Routing Management: Based on the network
model, different paths will be exercised through the iptable
chains. For intra-host communication (Layer-3 IP routing and
Layer-2 bridge forwarding), we have the packet processed
through the PREROUTING, FORWARD, and POSTROUTING
chain. When a source Pod sends out a packet, the packet will
be checked first by the PREROUTING chain. It will look up
three tables (raw, mangle, nat) in the PREROUTING chain
and match with the rules in these tables. So, if there are
any matched rules, the corresponding actions specified will be
taken on the packet (e.g., NAT, change ToS (Type of Service)
field, etc). The packet will then be checked by FORWARD and
POSTROUTING chain before it arrives at the veth interface of
destination Pod. The intra-host routing works for both bridge
forwarding and IP forwarding network models, following the
same processing. The exception is for the eBPF approach, as
the eBPF integrates the packet filtering functions in the eBPF
program and bypasses the iptables processing by leveraging
the XDP or TC hooks.

In the case of inter-host communication, the traffic can
be classified into two different cases: ingress traffic (i.e.,
inbound traffic originating from an external network and
destined towards the internal host network) and egress traffic
(outbound traffic originating in the internal network). For
ingress traffic in overlay solution, first the packets follow
the PREROUTING → INPUT path, to be routed from
the host Ethernet interface to the OTEP. Then, after the
packet is decapsulated by the OTEP, the packets follow the
PREROUTING → FORWARD → POSTROUTING path,
to be routed from the OTEP to the destination Pod. For
egress traffic in overlay solution, the packets follow the
PREROUTING → FORWARD → POSTROUTING chain
first, when routed from the Source Pod to the OTEP.
Next, the packets follow the OUTPUT → POSTOUTING
route, to be routed from the OTEP to the host
Ethernet interface. The configuration for the under-
lay solution has the PREROUTING → FORWARD →
POSTOUTING route applied for both egress/ingress
traffic.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

QI et al.: ASSESSING CONTAINER NETWORK INTERFACE PLUGINS: FUNCTIONALITY, PERFORMANCE, AND SCALABILITY 663

C. Summary of Qualitative Comparison

Overall, the CNIs are plug-and-play components in
Kubernetes. They provide an off-the-shelf network paradigm
for the users to easily set up the networking environment.
Based on Table I, we can observe that none of the existing
CNIs cover all the qualitative features, e.g., Flannel’s primary
drawback in lack of network policy support. Each CNI has its
unique feature with the comparison to others. Users can choose
the best-suited CNI in regard to their qualitative needs, e.g.,
network model, tunneling option, etc.

As shown in Table I, Calico and Cilium use a Layer-3 based
network model. Both of them support either an overlay or
underlay solution. For the encapsulation options in overlay
mode, Calico offers IP-in-IP and VxLAN while Cilium offers
VxLAN and Geneve. Flannel, Weave, and Kube-router use
a hybrid based datapath. Flannel and Kube-router support an
overlay or underlay solution. Weave only supports an overlay.
Flannel provides a simple network model, and users can eas-
ily set up an environment, while Weave and Cilium provide
encryption support and also provide rich support for network
policy and in addition Cilium and Calico are also able to sup-
port 3rdparty network policies and enable IPV6 support. And,
Kube-router offers a unique DSR feature to enhance the load
balancing in the Service-to-Pod mode of communication.

D. Additional Feature Considerations

Multi-interface CNIs Multi-interface CNIs are required in
a number of cloud scenarios (e.g., Virtual Private Network
(VPN) connectivity, multi-tenant networks), where network
isolation is needed [35]. By enabling multiple network devices
and multiple subnets for a single Pod, Multi-interface CNI
is able to provide a better separation of the control and
user planes. A typical Multi-interface CNI is Multus [35].
Multus works as an orchestrator instead of configuring the
Pod networking itself. It calls the Single-interface CNIs
(e.g., Flannel, Weave, etc.) to configure the underlying Pod
networks, including routes, iptables, etc. With Multus, multiple
Single-interface CNIs can coexist on the same host, and each
Single-interface CNI has its own subnet, which is separated
from each other. With the orchestration from Multus, we can
choose the right subnet to use for each Pod based on its
networking needs.

Hardware Acceleration: Tunnel Offload Most modern
network interface cards (NICs) support the tunnel offload
for a number of tunneling protocols, e.g., IP-in-IP, GRE,
VxLAN, GENEVE, etc. Tunnel offload includes the following
components: TCP segmentation offload (TSO, which is also
performed for normal IP), checksum processing, Receive Side
Scaling (RSS) selection (for multiplexing/demultiplexing), etc.
This can accelerate packet processing and reduce the load on
the CPU. However, some NICs may only support a limited set
of tunneling protocols to offload. This can severely impact the
performance of the CNI plugin. For example, Flannel can be
configured to use IP-in-IP or VxLAN tunneling for inter-host
communication. Hence, it is necessary to make the appropriate
choice of the CNIs overlay networking based on the hardware
supported tunneling options. We demonstrate the performance

benefits achieved by the CNIs utilizing the tunnel offload capa-
bilities in Section IV-C. We find that it is necessary for the
individual container framework to leverage the NICs offload
capabilities and match it with the appropriate CNI to leverage
that hardware acceleration to maximize performance.

IV. QUANTITATIVE EVALUATION AND ANALYSIS

In this section, we first compare the performance of differ-
ent CNI plugins with a single connection between the Pods.
Based on the performance results on the single connection,
we breakdown the packet transmission overhead into differ-
ent components and study the principal factors that influence
the performance. Subsequently, we evaluate the performance
with the increasing number of connections across Pods. Then,
we examine the performance of different CNIs by applying a
typical HTTP workload. We also assess the impact of netfilter
rules and iptables chain configurations.

A. Experimental Setup

All the CNI plugins are evaluated on the Cloudlab
testbed [36]. We build the Kubernetes cluster on two phys-
ical hosts. Each host machine has a Ten-core Intel E5-2640v4
at 2.4 GHz and 64GB memory, and 2 Dual-port Mellanox
ConnectX-4 25 Gb NIC. We use Ubuntu 18.04 with kernel ver-
sion 4.15.0-88-generic. Kubernetes is directly running on the
physical machine, so there is no extra virtualization overhead
introduced. All the Kubernetes related packages are installed
with their current, latest version. We primarily use Netperf for
throughput and latency measurement, with each test lasting
30 seconds and being repeated 50 times. To fully utilize the
bandwidth in both intra-host and inter-host communication,
the application data size17 in Netperf is set to 4MB for the
TCP throughput test, which is the TCP socket buffer limit in
the OS. For latency measurement, we use Netperf’s request-
response (RR) mode to get the round-trip time (RTT) for TCP
traffic. The packet size used in the latency measurement is
1 Byte as a default. To examine the effect of Tunnel offload
support, we choose another host machine with Tunnel offload
supported on its NIC. This kind of host has two Intel Xeon
Silver 4114 10-core CPUs at 2.20 GHz and 192GB Memory,
and one Dual-port Intel X520-DA2 10Gb NIC.

B. Intra-Host Performance

We study intra-host performance (communication within a
single server host) when communicating among a number of
Pods deployed within the host. This enables us to better under-
stand and distinguish the communication overheads that arise
due to the usage of the Linux bridge, iptables rules, eBPF,
and the interaction with the host network stack. We evalu-
ate Flannel, Weave, Cilium, Kube-router, and Calico variants
(Calico-wp and Calico-np). ‘Calico-np’ helps to isolate the
overheads of network policies (additional Netfilter rules).

17Application data size in Netperf is the “Send Message Size”, the total
data bytes to be transferred in a given connection, regardless of the socket
buffer size, MSS or MTU settings.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

664 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 8. Intra-Host Throughput and Latency.

Fig. 9. Overhead Breakdown for Intra-host scenario.

1) Overall Performance: The overall throughput compari-
son across CNIs is shown in Fig. 8(a). For TCP throughput,
Cilium with its native solution based on eBPF outperforms the
other alternatives. Layer-3 routing based solutions (Calico-wp
and Calico-np) perform worse than the Layer-2 based solu-
tions. Accordingly, we also observe that Cilium achieves the
lowest latency and Calico-wp has the worst round-trip latency
as shown in Fig. 8(b). This is primarily due to the overheads
involved in processing the Netfilter rules and Layer-3 routing,
which is avoided with the eBPF based CNIs.

In order to understand how the datapath and iptables affect
overall performance, we further break down the packet pro-
cessing time into different components of the network stack
and measure the CPU cycles as a packet goes through each
component. We identify the following distinct components of
the network stack: Forwarding Information Base (FIB), eBPF,
Netfilter, Veth, and IP forwarding. By analyzing CPU cycles
spent per packet in each component of the network stack, we
establish the relationship between the achieved performance
and the specific network activity involved in routing a packet
with that specific CNI.

Methodology: In order to measure the CPU cycles per
packet (CPP) spent in each network stack component, we first
use the Linux perf tool [37] to count the total CPU cycles con-
sumed in a 60-second packet transmission (Cycletotal), which
is repeated 5 times. We also use perf to trace the function
calls and measure the percentage of the overall CPU cycles
spent in the corresponding function (Cyclepercentage). With
the total number of packets sent in a 60-second packet trans-
mission (Npacket), we can calculate the CPP of a specific
function call as follows:

CPP = Cycletotal/Npacket × Cyclepercentage . (1)

2) Overhead Breakdown for Intra-Host Comm: The total
CPP with the corresponding break down for intra-host com-
munication is shown in Fig. 9. For the overall overhead of the

complete network stack, Calico-wp (with Netfilter being the
major contributor) has the highest CPP and Cilium the lowest.

Bridge: Flannel, Weave, and Kube-router use bridge-based
solutions to forward packets in this intra-host scenario. When
packets pass through the Linux bridge, the bridge-related func-
tion calls (e.g., br_forward()) are executed. Fig. 9 shows that
the bridge overhead of Flannel, Weave, and Kube-router to be
similar, at ∼ 45 CPP.

FIB & IP forwarding: We put the FIB overhead and IP for-
warding overhead together as ‘IP forwarding’ related function
calls (e.g., ip_forward()) are coupled with FIB function calls
(e.g., fib_table_lookup()). When using the host IP protocol
stack to forward packets, first the FIB table lookup deter-
mines the next hop. Then, the packet forwarding operation
is performed. As Calico relies on the host IP protocol stack to
forward packets, it incurs both FIB and IP forwarding over-
heads. The FIB overhead of Calico (∼ 30 CPP) is slightly
lower than the overhead using the Linux bridge (∼ 45 CPP).
But, the IP forwarding processing in Calico consumes an extra
108 CPP. This overhead of both FIB and IP forwarding is
higher than the overhead of the bridging approaches.

eBPF: Cilium relies heavily on eBPF. Instead of bridge/IP
forwarding and Linux Netfilter, it utilizes a set of eBPF hooks
in the network stack to run eBPF programs to support the
intra-host packet forwarding and filtering functions. Cilium
attaches the eBPF programs at each veth resulting in each
packet forwarding operation to incur the eBPF processing
overhead. Fig. 9 shows that Cilium has the eBPF overhead
of ∼ 189 CPP.

Veth: All CNI plugins spend almost the same ∼ 10 CPP
(for send, receive) on veth, a small percentage of the over-
all overhead, with little impact on the CNIs’ performance
differences.

Netfilter: Calico-wp, with calico policy fully installed, con-
sumes 324 CPP on Netfilter, which is 1.35 × higher than the
others. Although Calico-wp suffers a significant performance
penalty due to the overhead from Netfilter, it allows better
network policy customization and packet filtering due to fine-
grained iptables chains. Calico-wp adds user-defined chains to
construct its iptables, which introduces more iptables rules as
well as more iptables overhead. Note: Cilium does not have
any Netfilter overhead as it uses eBPF instead of iptables.

Summary: For intra-host communication, a native routing
datapath based on eBPF is much cheaper than a bridge-based
datapath or native routing datapath based on IP forward-
ing. eBPF combines packet forwarding and filtering together,
which reduces the packet forwarding overhead. Thus, Cilium
achieves the highest throughput and lowest latency. Further, a
fine-grained iptables chain as in Calico-wp unfortunately hurts
packet transmission performance. As shown in Fig. 8, Calico-
wp has lower throughput and higher latency than the others,
because of the penalty from the iptables chain processing.

C. Inter-Host Performance

We use the same set of CNI plugins to communicate
between two Pods on different hosts. For all inter-host exper-
iments, Flannel, Weave, and Cilium use the VxLAN overlay

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

QI et al.: ASSESSING CONTAINER NETWORK INTERFACE PLUGINS: FUNCTIONALITY, PERFORMANCE, AND SCALABILITY 665

Fig. 10. Inter-Host Throughput and Latency. (a) and (b) are with Mellanox
ConnectX-4 25Gb NIC. (c) and (d) are with Intel X520-DA2 10Gb NIC.

mode. Kube-router uses native IP routing (underlay), while
Calico (wp or np options) can support either native IP rout-
ing (underlay) or IP-in-IP overlay. Accordingly for Calico, we
study all four modes: Calico-np-ipip, Calico-wp-ipip, Calico-
np-xsub and Calico-wp-xsub. We noted that the offloading of
IP-in-IP tunnel is not supported by the Mellanox ConnectX-4
25 Gbps NIC used in our testbed. Hence, to study the impact
of tunnel offload in the NIC, we additionally experimented
with Flannel by explicitly disabling the tunnel offload fea-
ture for VxLAN tunneling (‘flannel-off’ mode). We also
study the inter-host communication performance on another
Intel X520-DA2 10Gb NIC where IP-in-IP tunnel offload is
supported.

1) Overall Performance: TCP throughput and latency
results are shown in Fig. 10. The native routing solutions
(Kube-router, Calico-wp-xsub and Calico-np-xsub) perform
better than the overlay solutions (Flannel, Flannel-off, Weave,
Cilium, Calico-wp-ipip and Calico-np-ipip). However, without
the tunnel offload in the Mellanox ConnectX-4 25Gb NIC,
Flannel-off and Calico in IP-in-IP overlays perform poorly,
with much lower throughput than Cilium and Calico with
native routing (xsub) options. Moreover, for the same data-
path, solutions with network policy disabled (Calico-np-xsub
and Calico-np-ipip) perform 0.5 ∼ 1.5 Gbps better than when
network policy enabled (Calico-wp-xsub and Calico-wp-ipip).
Also, TCP round-trip latencies show a corresponding increase
for those CNIs that see lower throughput. For comparison
purposes, we also show the results with Pods on two hosts
communicating across a 10 Gbps link, using Intel X520-DA2
10Gb NICs that support both VxLAN and IP-in-IP tunnel
offload. We see that the performance of Flannel and Calico

Fig. 11. Overhead Breakdown for Inter-host Scenario: CPU overhead from
both sender and receiver hosts.

IP-in-IP CNIs are comparable. In fact, because the CPU uti-
lization is reduced due to the tunnel offload, the Calico CNI
performance ‘with policies’ and ‘no policy’ see comparable
throughput (however the latency is higher with policies). To
summarize, i) Tunnel offload is necessary to improve the CNI
performance, and where the CNIs can support multiple overlay
solutions (UDP, VxLAN, IP-in-IP), it is desirable to choose the
overlay mode that can be supported via tunnel offload. ii) the
underlay-based CNIs (Calico xsub and Kube-router) perform
better than the overlay options, despite the NIC’s offloading
of the tunnel-related operations.

2) Overhead Breakdown for Inter-Host Comm.: For the
overhead analysis, we include the VxLAN tunnel, IP-in-IP
tunnel, OVS-datapath, and in-kernel tunnel offload processing
components. Again, we use the same methodology to calcu-
late the CPP of each function call on both the sender and
receiver host. The total CPP, along with the breakdown is
shown in Fig. 11. The native routing solutions (Kube-router,
Calico-wp-xsub and Calico-np-xsub) have lower CPP com-
pared to the overlay solutions (Flannel, Flannel-off, Weave,
Cilium, Calico-wp-ipip and Calico-np-ipip). Also, the solu-
tions with simple iptables have lower CPP than the complex
iptables chains.

Layer-2 Bridging: Flannel, Weave, and Kube-router use
the Linux bridge to forward packets between different vir-
tual ethernet interfaces (veths) via Layer-2 bridging and incur
similar overheads as in the intra-host scenario. However, as
Weave uses an extra veth-pair to connect the Linux-bridge
with overlay tunnel, it incurs 2 × more CPP than Flannel
and Kube-router. With Weave, when the packets are forwarded
from the veth to the overlay tunnel (sender side), they do
not go through the host IP protocol stack but instead rely
on the bridge-related function calls (i.e., br_forward()). These
bridge-related function calls are invoked again when packets
are forwarded from the overlay tunnel to the veth (receiver
side). In contrast, Flannel and Kube-router use the host IP
protocol stack to forward packets from the veth to the over-
lay tunnel, thus avoiding any bridge forwarding overhead on
the sender side. On the receiving side, when forwarding pack-
ets from the overlay tunnel to the veth, they rely on Layer-2
bridge forwarding. Thus, the total bridge overhead of Flannel
and Kube-router is half of that of Weave.

IP forwarding: Weave and Cilium traverse the host
IP stack once per packet transmission and have similar
(100 ∼ 110 CPP) overhead. The IP protocol stack operations

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

666 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

of Weave and Cilium are performed between the VxLAN
tunnel and host Ethernet interface. However, with Flannel,
the host IP stack operations are performed twice per packet
transmission. First between Linux bridge and VxLAN tun-
nel, and then again between the VxLAN tunnel and host
Ethernet interface. Thus, we correspondingly incur about
197 CPP. Calico-*-ipip (Note: “*” means both Calico-wp-
ipip and Calico-np-ipip) also performs host IP stack operations
twice per packet transmission. First between veth and IP-in-IP
tunnel, and then again between the IP-in-IP tunnel and host
Ethernet interface. However, in this case, additional IP proto-
col stack processing overhead in the CPU occurs due to the
lack of the IP-in-IP tunnel offload support in the NIC we used.
This in-kernel tunnel processing (e.g., ip_send_check() func-
tion call) expends more CPU cycles. Calico-*-ipip consumes
∼ 290 CPP in the IP protocol stack. The underlay solutions
(i.e., Kube-router and Calico-*-xsub) consume ∼ 150 CPP in
IP protocol stack.

Netfilter: CNI’s Network Policy is a useful feature that
leverages Netfilter rules to enhance network security. However,
Netfilter is a major source of overhead as shown in Fig. 11,
requiring a larger amount of CPP than the other components.
Large and complex iptables chains incur higher processing
overheads. Fig. 11 shows that Cali-wp-ipip has the highest
Netfilter overhead compared to the other solutions due to its
large iptables size, while the Kube-router and Cali-np-xsub
have the lowest. Cilium has the least Netfilter overhead com-
pared to the other overlay-based solutions, as it bypasses the
PREROUTING → FORWARD → POSTROUTING route of
Fig. 7 and uses eBPF instead.

eBPF: In the case of Cilium, we observe that the eBPF over-
head for the inter-host packet forwarding is relatively higher
(236 CPP) than the intra-host packet forwarding (189 CPP).
This is due to an additional hook point at the host to support
overlay mode and process the VxLAN tunneling.

Veth: As with the intra-host case, the veth processing over-
head is the least compared to the other components and is
similar for most of the CNIs (∼ 6 CPP). As Weave has 4
veth-pairs on the inter-host datapath as opposed to 2 for the
other CNIs, it incurs twice the overhead (∼ 12 CPP).

Overlay: Using an overlay incurs packet encapsulation and
decapsulation overheads. Flannel, Weave, and Cilium use
VxLAN overlay and Calico-*-ipip use an IP-in-IP overlay.
Overhead from the VxLAN overlay is ∼ 114 CPP, while IP-
in-IP incurs somewhat lower overhead (∼ 30 CPP). Weave
uses the OVS-datapath to implement the overlay processing
and incurs some extra overhead (∼ 40 CPP) on OVS-
related function calls (Fig. 11). Thus, the overlay accounts for
3% ∼ 11% of the total overhead, depending on the packet
encapsulation, potentially having a significant performance
impact.

Tunnel Offload: The Mellanox ConnectX-4 NIC in our
testbed machines support TSO and VxLAN offload, but not
IP-in-IP tunneling.18 Thus, all the IP-in-IP tunnel offload

18We verified using “ethtool” for the supported offload tunnel functions on
the NIC. Also, refer to: (https://community.mellanox.com/s/article/mellanox-
adapters—comparison-table).

processing needs to be performed in the kernel, thus increas-
ing the CPU burden. The in-kernel tunnel processing costs
∼ 170 CPP (“TUN” in Fig. 11) for Flannel-off and Calico-*-
ipip. As shown in Fig. 10, the Calico-wp-ipip and Calico-np-
ipip only achieve 11.1 Gbps and 12.5 Gbps TCP throughput
for inter-host Pod communication respectively, which is much
slower than the VxLAN overlay (14 ∼ 15.5 Gbps) and Layer-3
routing (18 ∼ 19.7 Gbps). Flannel-off also shows the same
significant performance reduction when tunnel offload is dis-
abled on the NIC, confirming the extra processing overhead
introduced in the kernel stack when the VxLAN processing
is done in the CPU. In Netperf’s request-response mode, the
size of the payload is only one byte. The tunnel offload pro-
cessing becomes important only when the size of the packet
(including the tunnel header length) exceeds the Maximum
Segment Size (MSS). So, with the small payload size, we
see equivalent packet forwarding performance with/without
hardware tunnel offload support. As shown in Fig. 10 (b),
the Calico-wp-ipip has a similar RTT latency compared to
some of the VxLAN overlay CNIs (e.g., Weave, Cilium), while
Calico-np-ipip achieves lower latency than the VxLAN overlay
CNIs. Moreover, the Flannel and Flannel-off have similar RTT
latency, indicating that the effect of hardware tunnel offload
support for small packets is not significant.

Summary: Connecting the overlay tunnel and bridge via
an extra veth-pair (as in Weave) may reduce the FIB and
IP forwarding overhead, but increases the bridge and veth
overhead. A powerful network policy mechanism can provide
fine-grained packet filtering, allowing for improved security
for packet transmission. However, more Netfilter calls result
in lower packet forwarding performance. Users should care-
fully consider their needs for additional packet filtering rules
and seek to manage the growth of iptables size as much as
possible while meeting security requirements. Generally, a
native routing datapath is cheaper than an overlay-based dat-
apath. Removing unnecessary iptables chains and rules can
help reduce Netfilter overhead. When used with the under-
lay network model, the Netfilter overhead of calico-wp-xsub
can be kept around 507 CPP, which is lower than with the
other overlay network models. Enabling a CNI’s network pol-
icy support with native IP routing can achieve a good balance
between the overhead and network security support. A NIC’s
offload capability is another important aspect that needs to be
seriously considered when choosing CNI. Having the kernel
and CPU perform the tunneling tasks can have a measurable
impact on performance.

D. Performance for Larger-Scale Configurations

1) Experimental Setup: As the amount of communications
between Pods increases, the individual conversation through-
put will reduce, not only because of sharing resources among
contending connections, but also interference and increasing
overhead due to contention. To evaluate the performance varia-
tion with the scaling of the number of concurrent connections
across Pods, we set up an increasing number of TCP con-
nections between Pods as background traffic. The bandwidth
of each of the background TCP connections was limited to

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

QI et al.: ASSESSING CONTAINER NETWORK INTERFACE PLUGINS: FUNCTIONALITY, PERFORMANCE, AND SCALABILITY 667

Fig. 12. Intra-Host Performance with increasing # connections.

10Mbps for the inter-host case. As the intra-host has much
higher achievable bandwidth, we set the bandwidth of each of
the background TCP connections as 50Mbps for the intra-host
case. We use iperf3 to generate the background TCP connec-
tion traffic [38]. The test connection that we monitor generates
traffic using Netperf in a distinct Pod communicating with a
peer. Kubernetes has a maximum of 100 Pods per host [21].
We have different levels on the number of background TCP
connections in our experiments. For the intra-host case, we
deploy 49 iperf3 Pods each as the server and the client end on
a single host. For the inter-host traffic, we deploy 99 iperf3
Pods as servers on one host and deploy 99 iperf3 Pods as
clients on another host, each with 1 TCP connection. Two
Pods are deployed for Netperf test for both scenarios. To gen-
erate background connections more than the number of iperf3
Pods, we leverage the “simultaneous connections” option in
iperf3.

2) Intra-Host Performance With Background Traffic:
Fig. 12 shows the intra-host performance comparison with dif-
ferent amounts of background traffic. The total background
traffic with all 1.5K TCP connections (generating 50 Mbps
each) is less than 75 Gbps. Cilium outperforms the other CNI
plugins because of its low overhead in the datapath and in
Netfilter. Calico-wp has the worst performance throughout,
due to its large overhead from Netfilter rules. The TCP round-
trip time is also better for Cilium. Further, we observe that
even with just one active background connection, the test con-
nection suffers about a ∼ 2 Gbps throughput reduction. This
drop is consistent across all the CNIs and happens as soon as
two processes are involved in sending and receiving the pack-
ets on the same host. We speculate it to be likely a result of
resource contention especially the locks.

3) Inter-Host Performance With Background Traffic:
Fig. 13 shows the inter-host communication performance
(throughput and latency for a test connection) of different CNI
plugins with varying amounts of background traffic, gener-
ated by an increasing number of background connections. The
background connections not only consume bandwidth of the
NIC and link, but also use up the host’s CPU. However, the
throughput reduction is more in line with the amount of added
traffic from the background connections, except for the cases
when the tunnel offloading is disabled, at higher loads. The
difference among CNIs is noticeable in that the native routing
solutions (Kube-router and Calico-xsub) outperform the over-
lay based solutions, because of less overhead on the datapath

Fig. 13. Inter-Host Performance with increasing # background connections;
CPU and memory overheads.

and Netfilter. In contrast, Calico in IP-in-IP mode performs
worse than the others, because of the additional overhead
since the NIC does not offload this function. This degraded
performance is also observed with Flannel, when the tunnel-
offload is turned off (Flannel-off). All of these see a precipitous
drop in throughput beyond 400 background connections (each
generating 10 Mbps) because the CPU is overloaded and the
latency is correspondingly higher.

4) CPU Utilization and Memory Footprint: We also ana-
lyze the CPU utilization and memory footprint with different
CNIs corresponding to these inter-host communication traf-
fic experiments. Fig. 13(c), shows the CPU usage with the
increasing workload. Native routing (‘Calico-*-xsub’, ’Kube-
router’) incurs relatively low CPU overhead, while the overlay
mode CNIs (e.g., Flannel, Weave, etc.) have a much higher
CPU load. Further, CNIs with tunnel offload disabled are over-
loaded with fewer background connections, due to the extra
offload processing in the kernel, which inevitably increases the
CPU overhead. We also assess the memory footprint incurred
by different CNIs in Fig 13(d). We observe that Flannel and
Kube-router have a low memory footprint (40 ∼ 50 MB),
while Weave, Cilium, and Calico have a very high memory
footprint (160 ∼ 200 MB). We profiled the memory usage
of CNIs ‘daemonset’ and ‘binaries’ from the kernel’s pseudo-
filesystem (procfs). We find the memory usage is independent
of the number of Pods/connections. The ‘daemonset’ is a run-
ning process with fixed memory size. And the CNI ‘binary’
file is an executable file, also with a fixed size.

Summary: In general, increasing the amount of background
connections impacts performance as they consume both the
CPU resource and bandwidth. CNIs using native routing can
achieve better performance compared to those using an over-
lay. Moreover, overlay CNIs without tunnel offload support

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

668 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 14. HTTP Performance for inter-host communication.

TABLE II
HTTP PERFORMANCE OF CNIS FOR 1 & 400 CLIENTS

in the NIC are impacted more, due to the increased in-kernel
processing overhead.

E. Impact of CNI on Typical HTTP Workload

1) Experimental Setup: We use the Apache HTTP server
benchmarking tool (ab [39]) to generate the HTTP work-
load. We emulate multiple concurrent clients and choose the
nginx [40] as the HTTP server. We primarily study the CNI
behavior in the inter-host scenario, deploying an HTTP server
Pod and an ‘ab’ client Pod on two different worker hosts. To
get statistically reasonable results, we generate a total of 500K
requests for each HTTP test. The size of the response payload
for each request is fixed, at 5 MBytes. For each CNI, we also
vary the level of concurrency (i.e., number of clients sending
HTTP requests simultaneously from 1, 50, 75, up to 500) to
generate increasing amounts of HTTP traffic.

2) HTTP Performance Results: Table II shows the
performance with different CNIs. We can observe that Calico
(both overlay and underlay modes) outperform the rest of the
CNIs in a single connection case. However, with increasing
numbers of connections (c = 400), Calico-*-xsub (underlay
mode) works the best, while the Calico-*-ipip (overlay mode)
turns to be the worst. This degradation in HTTP throughput
is primarily due to the lack of tunnel offload support at the
NIC, which results in high CPU overhead and thus adversely
impacts the HTTP throughput and latency. Fig. 14 (a) shows
the impact on RPS with different CNIs for the increasing
number of concurrent connections and Fig. 14 (b) shows
the latency profile with 400 concurrent connections. We
can clearly observe that with the increasing number of
concurrent connections (from 100 to 400) the performance

TABLE III
NUMBER OF IPTABLES CHAINS AND RULES WITH DEFAULT CNI
CONFIGURATIONS. INTER-HOST CASE COLLECTS FROM BOTH

THE SOURCE HOST AND DESTINATION HOST

of Calico-wp-ipip and Calico-np-ipip starts to degrade. We
observed this to be due to additional CPU overhead generated
by the IP-in-IP tunnel processing in the kernel. In fact, we
noticed that the HTTP server often times out on the Calico-wp-
ipip and Calico-np-ipip at a concurrency level of 500 (hence
the numbers are not reported). The results indicate the over-
load behavior may be the cause of the poor performance for
the Calico overlay CNIs [41]. From Table II and Fig. 14(b),
we also observe that Calico-wp-ipip and Calico-np-ipip exhibit
much higher average and tail latency than the other CNIs, for
the case of 400 clients, suggesting much higher resource uti-
lization on the server Pods. Apart from Calico-*-xsub, we also
observe that the underlay mode (Kube-router) performs some-
what better across all the cases when compared to the overlay
modes (Flannel, Weave, and Cilium).

Summary: Our realistic HTTP workload tests indicate there
is a measurable impact of the choice of the CNI. In gen-
eral, a ‘Layer-3 + Underlay’ CNI (e.g., Calico, native routing)
appears better suited for most HTTP traffic, especially at large
scale (higher concurrency) traffic patterns.

F. Iptables Evaluation

In order to study the impact of iptable rules (e.g., number
of rules, etc) by different CNIs, we use the ‘iptables-save’
command to profile the iptable configurations set up by the
CNIs. We track the chains and rules that a packet will traverse
going from the source to destination Pod. Table III presents
the number of iptables chains and rules for different CNIs for
the intra-/inter-host communication patterns respectively.

In the intra-host case, Cilium use eBPF for packet forward-
ing, which bypasses the iptables processing. Flannel, Weave,
Kube-router, and Calico-np (both ‘Calico-np-ipip’ and ‘Calico-
np-xsub’ in the intra-host case, as they are equivalent) have
the same number of iptables chains and rules, and they all
exhibit similar netfiler overhead (∼ 245 CPP) for the intra-host
case. Calico-wp (both ‘Calico-wp-ipip’ and ‘Calico-wp-xsub’)
is configured with 17 iptables rules by default. This adds to a
higher netfilter overhead (324 CPP) compared to the others.

In the inter-host case, Calico with network policy enabled
(e.g., ‘Calico-wp-ipip’) has more iptables rules configured
resulting in higher overhead (749 CPP). Moreover, with a sim-
ilar number of rules, a CNI with fewer iptables chains applied
(e.g., Cilium) has much less overhead (450 CPP) than the
CNIs with more iptables chains applied (e.g., Flannel, Weave).

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

QI et al.: ASSESSING CONTAINER NETWORK INTERFACE PLUGINS: FUNCTIONALITY, PERFORMANCE, AND SCALABILITY 669

Fig. 15. Pod Creation Latency with different CNIs.

We observed that CNIs using the underlay model have fewer
iptables rules than the CNIs using the overlay model, as the
overlay requires additional mangle/NAT rules to perform the
necessary encapsulation/decapsulation. We also observed that
the number of iptables chains and rules per packet does not
increase with more background connections enabled.

Summary: Based on the iptables evaluation, we conclude
that CNIs with fewer iptables chains and rules will have rela-
tively less Netfilter overhead. However, to assure Pod network
security, users needs to use the CNI’s Network Policy API to
install iptables rules, which could increase Netfilter overhead
and lead to performance loss.

G. Pod Creation Time Analysis

Starting a Pod from scratch can take considerable time, and
significantly impacts cloud-based microservices and Function
as a Service offerings. The Pod creation latency is the time for
starting a Pod from scratch until all the containers in the Pod
have been created, comprising multiple steps [42], including
network startup. We launch a single Pod each time and mea-
sure the network startup latency breakdown with different CNI
plugins. We also measure the latency as we deploy an increas-
ing number of Pods on a single host, with 10 repetitions. The
container image used in our experiment is the ‘pause con-
tainer’ [43], which just sleeps after being successfully started.
The size of the pause container is 600KB.

The individual Pod creation latency is in the range of
1.48 ∼ 1.63s and the networking component contributes about
60 ∼ 195 ms (Fig. 15 (a)). Please refer to [25] for more
details on Pod startup, and a definition and breakdown of
the individual steps. Flannel and Kube-router have a smaller
network startup latency (∼ 60 ms) compared to the other alter-
natives. Weave consumes about 165ms in the Pod-host Link Up
step, due to the work of appending multicast rule in iptables.
Calico spends ∼ 80 ms in the IP Allocation step, which is
primarily due to the interaction with the etcd store. The time
spent by Cilium in the Endpoint Creation step accounts for
∼ 90 ms. During this step, Cilium generates the eBPF code
and links it into the kernel, which contributes to this high
latency. Fig. 15 (b) shows the Pod creation latency for simul-
taneously starting a number of distinct Pods on the same host.
Flannel and Kube-router have the smallest amount of increase
in the creation latency as more Pods deployed together, while
the latency with Cilium increases much more rapidly, which
shows poor scalability.

V. CHARACTERISTICS FOR AN IDEAL CNI

Based on our qualitative and quantitative analysis, we
outline a design for an ideal CNI plugin and its charac-
teristics. Our design choice for ideal CNI is motivated by
the need to have very low overhead, low latency, and high
throughput intra-host and inter-host container communication
while also able to facilitate rich security and network policy
support.

1) Based on our evaluation results in Section IV-B, we
propose that an ideal CNI should seek to utilize the
eBPF approach for intra-host communication. This is
primarily because it generates the least amount of CPU
overhead compared to the other solutions. We attach
eBPF programs (with packet forwarding functionality)
at the veth of Pods, so the intra-host packet forwarding
can achieve better performance.

2) For packet forwarding across hosts, we propose the
ideal CNI use native (IP) routing (based on the results
in Section IV-C). This helps avoid packet encapsula-
tion/decapsulation overheads, avoids unnecessary frag-
mentation due to large MTUs, and results in fewer
iptable-chains to process. This can achieve the highest
packet forwarding performance when crossing the host
boundary. The daemon of the ideal CNI needs to be able
to configure BGP between nodes to distribute routing
information, which is necessary to support native rout-
ing across hosts. Moreover, the host’s physical interface
needs to be attached with an eBPF program, so that
we can leverage the benefits brought by eBPF, just
as in the intra-host case. Multicast support can be
built by leveraging eBPF’s TC hooks, which can be
a good match with the ideal CNI’s intra-/inter-host
datapath.

3) When the underlying networking infrastructure does not
provide support for native routing (such as BGP) or
the users have a strong demand for network isolation,
the ideal CNI should be able to offer sufficient over-
lay tunneling options to users (e.g., IP-in-IP, VXLAN,
GRE, etc.). Support for several overlay modes is desir-
able, especially if different NICs in the cluster lack
the support for offloading certain specific overlay tun-
neling modes. A practical design should be able to
auto-configure and suggest the right overlay option for
the user, i.e., the CNI daemon should be able to detect
the tunnel offload support information provided by NIC
for all the nodes in the Kubernetes cluster (interact
with ‘ethtool’), and help users to make the right deci-
sion on choosing the overlay tunnel that can exploit
the offloading capabilities, so as to achieve maximum
performance.

4) The ideal CNI should support the network policies that
can be applied across all layers, i.e., Layer 3 – Layer 7.
This will provide a rich set of network policy attributes
to provide needed network security. It is also desirable
to have an eBPF-based iptables implementation [34],
which could cooperate with the eBPF-based datapath
design and achieve better packet filtering/forwarding
performance.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

670 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

VI. RELATED WORK

There are a number of blog articles, as well as notes on
Github repositories, that provide a good description of differ-
ent CNIs [13], [44]–[46]. Moreover, several works [14]–[19]
have compared and evaluated the performance of differ-
ent CNI plugins. Suo et al. [14] study different container
network models and evaluate them across different aspects,
such as the TCP/UDP throughput, latency, scalability, vir-
tualization overhead, CPU utilization, and launch time of
container networks. While the work attributes the performance
differences observed across different CNIs to their different
datapaths, it fails to identify the root causes behind these dif-
ferences, as we have done here. As we observe, the main
overhead is from how the CNI plugins interact with the
network stack, which heretofore has not been adequately
examined.

Kapočius [15] evaluates the performance of Kubernetes
CNI plugins on both the virtual machines and bare metal.
Kapočius [18] also evaluates several popular CNIs with differ-
ent factors considered, e.g., MTU, the number of aggregated
network interfaces, and NIC offloading conditions. Their
results present the performance variation (at a high level)
with different aggregated interfaces and NIC offloading con-
figurations. However, both the papers do not analyze the
performance differences, or provide an in-depth analysis of
the kernel and namespace overheads observed for different
CNIs. Bankston and Guo [16] compare the performance of
CNI provided by different public cloud providers (e.g., AWS,
Azure, and GCP) with different instances. They also evalu-
ate the impact of encryption and MTU on performance. Their
work provides limited insight into the different open-source
CNIs. Park et al. [17] specifically compare the performance
of Flannel network, OVS-based network, and native-VLAN
network, but again, only at a high level. Ducastel [13] evalu-
ates the most popular CNI plugins using several benchmarks. It
also provides a qualitative comparison on security and resource
consumption, but is limited to the inter-host case, providing
a high-level, throughput-only comparison. Zeng et al. [19]
study three container network solutions (Calico, Flannel,
and Docker Swarm Overlay) and compare their performance
based on TCP/UDP throughput and ping delay. However, the
performance difference between different solutions are not
explained in detail.

Generally, all these existing works fail to provide a kernel-
level analysis and comparison for CNI plugins. This article
offers an objective comparison across all of the CNIs, from
both a qualitative and quantitative perspective, which is impor-
tant for guiding users as well as the future development of a
scalable, high-performance CNI.

VII. CONCLUSION

Through qualitative analysis and a careful measurement-
driven evaluation, we provide an in-depth understanding of
the different CNI plugins, identify their key design considera-
tions and associated performance. Our evaluation results show
the interactions between the different datapath (organization

of iptables), usage of the host network stack contribute to the
overall performance.

While there is no single universally ‘best’ CNI plugin, there
is a clear choice depending on the need for intra-host or
inter-host Pod-to-Pod communication. For the intra-host case,
Cilium appears best, with eBPF optimized for routing within
a host. For the inter-host case, Kube-router and Calico are
better due to the lighter-weight IP routing mode compared to
their overlay counterparts. Although Netfilter rules incur over-
head, their rich, fine-grained network policy and customization
can enhance cluster security. Tunnel offload is another aspect
to be considered, which can help to achieve the maximum
performance when working with a CNI’s overlay mode. This
may be very desirable for Cloud Service Providers.

Our work sheds light on the benefits and overheads of the
different aspects of CNIs, thus informing us of the design
of an ideal CNI for Kubernetes cluster environments. The
ideal CNI supports several desirable features including the
eBPF-based intra-host datapath, native routing for inter-host
packet forwarding, support for sufficient overlay tunneling
options, automatic tunnel offload support detection, feature-
rich network policy support coupled with an eBPF-based
iptables implementation.

ACKNOWLEDGMENT

The authors thank all the anonymous reviewers for their
valuable feedback.

REFERENCES

[1] D. Bernstein, “Containers and cloud: From LXC to docker to kuber-
netes,” IEEE Cloud Comput., vol. 1, no. 3, pp. 81–84, Sep. 2014.

[2] PODS. Accessed: Oct. 20, 2020. [Online]. Available: https://kubernetes.
io/docs/concepts/workloads/pods/

[3] S. Qi, S. G. Kulkarni, and K. K. Ramakrishnan, “Understanding
container network interface plugins: Design considerations and
performance,” in Proc. IEEE Int. Symp. Local Metropolitan Area Netw.
(LANMAN), Orlando, FL, USA, 2020, pp. 1–6.

[4] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Deploying
microservice based applications with kubernetes: Experiments and
lessons learned,” in Proc. IEEE 11th Int. Conf. Cloud Comput.
(CLOUD), San Francisco, CA, USA, 2018, pp. 970–973.

[5] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “Serverless pro-
gramming (function as a service),” in Proc. IEEE 37th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Atlanta, GA, USA, 2017, pp. 2658–2659.

[6] CNI—The Container Network Interface. Accessed: Jun. 1, 2020.
[Online]. Available: https://github.com/containernetworking/cni

[7] (2020). Kubernetes Components. Accessed: Oct. 20, 2020. [Online].
Available: https://kubernetes.io/docs/concepts/overview/components/

[8] Flannel. Accessed: Oct. 20, 2020. [Online]. Available: https://github.
com/coreos/flannel/

[9] Weave. Accessed: Oct. 20, 2020. [Online]. Available: https://github.com/
weaveworks/weave

[10] Cilium. Accessed: Oct. 20, 2020. [Online]. Available: https://cilium.io/
[11] Calico. Accessed: Oct. 20, 2020. [Online]. Available: https://github.

com/projectcalico/calico
[12] Kube-Router. Accessed: Oct. 20, 2020. [Online]. Available: https://www.

kube-router.io/
[13] A. Ducastel. (2019). Benchmark Results of Kubernetes Network Plugins

(CNI) Over 10Gbit/s Network. Accessed: Oct. 20, 2020. [Online].
Available: https://itnext.io/benchmark-results-of-kubernetes-network-
plugins-cni-over-10gbit-s-network-updated-april-2019-4a9886efe9c4

[14] K. Suo, Y. Zhao, W. Chen, and J. Rao, “An analysis and empirical
study of container networks,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., Honolulu, HI, USA, 2018, pp. 189–197.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

QI et al.: ASSESSING CONTAINER NETWORK INTERFACE PLUGINS: FUNCTIONALITY, PERFORMANCE, AND SCALABILITY 671

[15] N. Kapočius, “Overview of kubernetes CNI plugins performance,”
Mokslas Lietuvos Ateitis Sci. Future Lithuania, vol. 12, Feb. 2020.
[Online]. Available: https://doi.org/10.3846/mla.2020.11454

[16] R. Bankston and J. Guo, “Performance of container network tech-
nologies in cloud environments,” in Proc. IEEE Int. Conf. Electro/Inf.
Technol. (EIT), Rochester, MI, USA, 2018, pp. 0277–0283.

[17] Y. Park, H. Yang, and Y. Kim, “Performance analysis of CNI (con-
tainer networking interface) based container network,” in Proc. Int.
Conf. Inf. Commun. Technol. Converg. (ICTC), Jeju, South Korea, 2018,
pp. 248–250.

[18] N. Kapočius, “Performance studies of kubernetes network solutions,”
in Proc. IEEE Open Conf. Elect. Electron. Inf. Sci. (eStream), Vilnius,
Lithuania, 2020, pp. 1–6.

[19] H. Zeng, B. Wang, W. Deng, and W. Zhang, “Measurement and
evaluation for docker container networking,” in Proc. Int. Conf. Cyber-
Enabled Distrib. Comput. Knowl. Discov. (CyberC), Nanjing, China,
2017, pp. 105–108.

[20] (2016). Autoscaling in Kubernetes. Accessed: May 20, 2020. [Online].
Available: https://kubernetes.io/blog/2016/07/autoscaling-in-kubernetes/

[21] (2020). Building Large Clusters. Accessed: May 20, 2020. [Online].
Available: https://kubernetes.io/docs/setup/best-practices/cluster-large/

[22] Romana. Accessed: May 20, 2020. [Online]. Available: https://github.
com/romana/romana

[23] Canal. Accessed: May 20, 2020. [Online]. Available: https://github.com/
projectcalico/canal

[24] Contiv-VPP. Accessed: May 20, 2020. [Online]. Available: https://
github.com/contiv/vpp

[25] S. Qi, S. G. Kulkarni, and K. Ramakrishnan, “Assessing container
network interface plugins: Functionality, performance, and scalability,”
Dept. Comput. Sci. Eng., UC Riverside, Riverside, CA, USA, UCR
CSE Networking Group Rep. Net-2020-1221, 2020. [Online]. Available:
https://www.cs.ucr.edu/ sqi009/Net-2020-1221.pdf

[26] (2020). Building Sustainable Ecosystems for Cloud Native Software.
Accessed: May 20, 2020. [Online]. Available: https://www.cncf.io/

[27] H. Sahni. (2017). The Container Networking Landscape: CNI From
CoreOS and CNM from Docker. Accessed: Jun. 4, 2020. [Online].
Available: https://www.nuagenetworks.net/blog/container-networking-
standards/

[28] The Container Network Model. Accessed: Jun. 4, 2020. [Online].
Available: https://github.com/moby/libnetwork/

[29] L. Calcote. (2016). The Container Networking Landscape: CNI From
CoreOS and CNM from Docker. Accessed: Oct. 20, 2020. [Online].
Available: https://thenewstack.io/container-networking-landscape-cni-
coreos-cnm-docker/

[30] Cluster Networking. Accessed: May 29, 2020. [Online]. Available:
https://kubernetes.io/docs/concepts/cluster-administration/networking/

[31] K. Butler, T. R. Farley, P. McDaniel, and J. Rexford, “A survey of bgp
security issues and solutions,” Proc. IEEE, vol. 98, no. 1, pp. 100–122,
Jan. 2010.

[32] P. Sermpezis et al., “ARTEMIS: Neutralizing BGP hijacking within
a minute,” IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2471–2486,
Dec. 2018.

[33] K. Sriram, D. Montgomery, B. Dickson, K. Patel, and A. Robachevsky,
“Methods for detection and mitigation of BGP route leaks, draft-ietf-
idr-route-leak-detection-mitigation-06,” IETF, Internet-Draft, 2017.

[34] M. Bertrone, S. Miano, F. Risso, and M. Tumolo, “Accelerating linux
security with eBPF iptables,” in Proc. ACM SIGCOMM Conf. Posters
Demos, 2018, pp. 108–110.

[35] multus-CNI, Intel, Santa Clara, CA, USA. Accessed: Oct. 20, 2020.
[Online]. Available: https://github.com/intel/multus-cni/

[36] R. Ricci, E. Eide, and C. Team, “Introducing CloudLab: Scientific infras-
tructure for advancing cloud architectures and applications,” Login Mag.
USENIX SAGE, vol. 39, no. 6, pp. 36–38, 2014.

[37] A. C. De Melo, “The new linux ‘perf’ tools,” in Proc. Slides Linux
Kongress, vol. 18, 2010, pp. 1–42.

[38] S. Qi. iperf3 Container. Accessed: May 26, 2020. [Online]. Available:
https://hub.docker.com/repository/docker/shixiongqi/iperf3

[39] AB—Apache HTTP Server Benchmarking Tool. Accessed: May 29, 2020.
[Online]. Available: https://httpd.apache.org/docs/2.4/programs/ab.html

[40] Nginx. Accessed: May 29, 2020. [Online]. Available: https://nginx.org/
[41] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in

an interrupt-driven kernel,” ACM Trans. Comput. Syst., vol. 15, no. 3,
pp. 217–252, 1997.

[42] H. Shah. (2017). Kubernetes: Lifecycle of a Pod. Accessed: May 29,
2020. [Online]. Available: https://dzone.com/articles/kubernetes-
lifecycle-of-a-pod

[43] Pause Container, Google Inc., Mountain View, CA, USA. Accessed:
Oct. 20, 2020. [Online]. Available: https://hub.docker.com/r/google/
pause/

[44] J. Ellingwood. (2019). Comparing Kubernetes CNI Providers: Flannel,
Calico, Canal, and Weav. Accessed: May 29, 2020. [Online]. Available:
https://rancher.com/blog/2019/2019-03-21-comparing-kubernetes-cni-
providers-flannel-calico-canal-and-weave/

[45] G. Tobais. (2018). How Kubernetes Networking Works—Under the
Hood. Accessed: Jun. 1, 2020. [Online]. Available: https://neuvector.
com/network-security/advanced-kubernetes-networking/

[46] (2017). Choosing a CNI Network Provider for Kubernetes. Accessed:
Jun. 5, 2020. [Online]. Available: https://chrislovecnm.com/kubernetes/
cni/choosing-a-cni-provider/

Shixiong Qi received the B.Sc. degree in elec-
tronic and information engineering from the Nanjing
University of Posts and Telecommunications, China,
in 2015, and the M.Sc. degree in communication
and information systems from Xidian University,
China, in 2018. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Engineering, University of California at
Riverside, Riverside. His current research interests
focus on cloud computing and network function
virtualization.

Sameer G. Kulkarni received the Ph.D. degree
from the University of Göttingen, Germany. He
worked as a Postdoctoral Researcher with the
University of California at Riverside, Riverside.
He is an Assistant Professor with the Department
of Computer Science and Engineering, Indian
Institute of Technology Gandhinagar, Gandhinagar.
His current research interests include parallel and
distributed computing, software defined networks,
network function virtualization, and cloud comput-
ing. His Ph.D. thesis received the IEEE Technical

Committee on Scalable Computing Outstanding Dissertation Award in 2019.

K. K. Ramakrishnan (Fellow, IEEE) received the
M.Tech. degree from the Indian Institute of Science
in 1978, and the M.S. and Ph.D. degrees in com-
puter science from the University of Maryland,
College Park, MD, USA, in 1981 and 1983, respec-
tively. He was a Distinguished Member of Technical
Staff with AT&T Labs-Research. He is a Professor
of Computer Science and Engineering with the
University of California at Riverside, Riverside.
Prior to 1994, he was a Technical Director and
a Consulting Engineer of Networking with Digital

Equipment Corporation. From 2000 to 2002, he was with TeraOptic Networks,
Inc., as a Founder and a Vice President. He has published nearly 300 papers
and has 183 patents issued in his name. He is a Fellow of ACM and AT&T,
recognized for his fundamental contributions on communication networks,
including his work on congestion control, traffic management, and VPN
services.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:26:18 UTC from IEEE Xplore. Restrictions apply.

