2020 IEEE 9th International Conference on Cloud Networking (CloudNet) | 978-1-7281-9486-8/20/$31.00 ©2020 IEEE | DOI: 10.1109/CLOUDNET51028.2020.9335805

Supporting IoT Applications with Serverless Edge
Clouds

I. Wang, E. Liri and K. K. Ramakrishnan
University of California, Riverside, CA
(iwang024 @ucr.edu, eliri001 @ucr.edu, kk@cs.ucr.edu)

Abstract—Cloud computing has grown because of lowered
costs due to economies of scale and multiplexing. Serverless
computing exploits multiplexing in cloud computing however,
for low latency required by IoT applications, the cloud should
be moved nearer to the IoT device and the cold start problem
should be addressed. Using a real-world dataset, we showed
through implementation in an open-source cloud environment
based on Knative that a serverless approach to manage IoT
traffic is feasible, uses less resources than a serverfull approach
and traffic prediction with prefetching can mitigate the cold start
delay penalty. However applying the Knative framework directly
to IoT traffic without considering the execution context gives
unnecessary overhead.

I. INTRODUCTION

Advantages of IoT include universal connectivity and cheap
sensors that reduce the high costs of manual labour. Actuators
can respond to predefined sensor events while low power
IoT devices support data gathering and may be used in
multiple application scenarios. Serverless computing exploits
multiplexing in cloud computing, however for low latency,
the cloud should be moved nearer to the IoT device and the
cold start problem should be addressed [1]. Edge clouds move
the cloud closer to the device and fast, lightweight inference
helps serverless computing anticipate IoT requests by learning
from past IoT traffic patterns. This can help improve function
provisioning, thus avoiding the latency penalty of cold start.

This work we discusses the key serverless components
needed to support IoT traffic in the edge cloud and presents
several IoT application scenarios to illustrate how microser-
vices meet the needs of IoT traffic. With data from a real-
world dataset, we then study the impact of this IoT traffic
in an open-source cloud environment focusing on how the
number and type of microservices affect performance. Our
results show that a serverless approach uses less resources
than the traditional cloud computing approach and prediction
with prefetching reduces cold start delay penalty. However, the
Knative design introduces significant overhead from a sidecar
container called the queue-proxy, used for precise metrics
measurement and probing for pod readiness. To fully benefit
from a serverless implementation, it is important to understand
and implement the appropriate components for the IoT context.

978-1-7281-9486-8/20/$31.00 ©2020 IEEE

Filtering &
Add headers
Triggers Queue Proxy i
— ——————> Function 1 P (=2
User Function ; Database
Broker i 3
OKE Queue Proxy i Queue Proxy i| [Ememory

Database
Function 2
User Function

———> Function 3

User Function

Q oA
i : Metrics :
Ingress Ak istio Service Mesh

Gateway
@ Knative

Logging Stack

8 katka

64

Stack

Auto Scaler

AN

Kubernetes Deployement:--------- ‘ Resize
''''' > Control Flow
——> Request Data Flow
(Istio Component
Kubernetes Component
loT Devices Knative Component
Functions Pods
- CJ intemal Services
[| @ *)) 7 C User Container
Light Temp:valwe Moisture ~ Motion Humidity Video
Fig. 1. Serverless architecture for IoT Service

II. SERVERLESS FOR IOT

This section discusses the serverless components needed to
support IoT traffic and some IoT application scenarios where
serverless is a potential solution.

A. Serverless Computing

In serverless computing, the required components are dy-
namically instantiated to allow code execution when an event
occurs. Dynamically adjusting the number of instances to meet
demand is suitable for IoT traffic which can be highly variable.

Knative[2] is an open source serverless platform for dy-
namic container management built on top of Kubernetes, a
container orchestration framework that automates the deploy-
ment and management of containerized workloads (see Fig.
1). Based on the observed Request per second(RPS) within an
operator specified window, the autoscaler decides whether to
scale up or down even to zero in order to meet current require-
ments, using performance metrics retrieved from Kubernetes
or Knative sidecar containers such as the “queue-proxy”. If
a change in number of instances is required, Knative issues
commands to the master node in the Kubernetes cluster to
make the required adjustments.

B. Application Scenarios

We discuss two IoT applications where serverless is useful.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:29:07 UTC from IEEE Xplore. Restrictions apply.

1) Home monitoring: In home monitoring, we consider
entry/exit detection and environment monitoring. In this sce-
nario, for simplicity, we consider detecting entry/exit into/from
specific rooms in an apartment. We assumed each room has a
single entrance and single occupant either entering or exiting
the room. The nearest motion detectors to the door i.e. internal
sensors inside the room and external sensors outside the room,
send out events whenever a change of status occurs and these
are used to detect entry/exit.

For environment monitoring we consider maintaining a
preset room temperature. Temperature sensors periodically
send updates to a function which can trigger a start/stop of
the HVAC unit via an actuator.

2) Agriculture: In the agriculture scenario for simplicity
we consider multiple temperature sensors regularly and peri-
odically transmitting data to the cloud which is similar to how
many agriculture IoT devices operate.

C. Serverless Edge Cloud

This section discusses setup of the edge cloud to support the
experiments using CloudLab[3], Docker[4], Kubernetes and
Knative. Sensor functions receive data directly from sensors,
actuator functions send data to actuators or end users to trig-
ger some action and request and response messages followed
the CloudEvent specification. The entry/exit detection function
chain has 2 layers (see Fig. 2). Internal motion detectors going
on (i.e. entry event detected) triggers the chain to turn on the
light. An exit event is detected if the following pattern occurs:
internal sensor goes on, external sensor goes on and then the
internal sensor goes off. When a motion sensor is triggered,
the updated sensor status is written to Redis and the status of
the door, lights and motion detector immediately on the other
side of the door is checked. If an action is required, a message
is sent to the actuator function to turn on/off the light. In the
environment monitoring scenario, sensor readings parsed by
the sensor function are sent to an actuator function to toggle
the thermostat where necessary (see Fig. 2). Similar function
chain design and logic applies to the agriculture scenario.

III. EXPERIMENT DESIGN AND SETUP

We categorized sensors as High-Frequency Aperiodic (HFA)
(motion), Low-Frequency Aperiodic (LFA) (temperature) and
Periodic (agriculture) based on their reporting frequency. We
used the CASAS dataset[5] to perform 10, 30 and 50 house-
hold experiments and examined cold start time and compared
actual and predicted resource usage. Data for a single day(24
hours) in the dataset represented data from 1 household.

Linear regression using a single layer perceptron was used
to predict the arrival time of the next packet from each
sensor thus we can proactively start the sensor function before
the traffic actually arrives. A customized autoscaler scaled
the number of pods based on the predicted or actual total
RPS. If no prediction is available or the difference between
the predicted and actual RPS is larger than a threshold, the
default policy is used. Response and CPU times measured
responsiveness and performance while instant pod count and

TABLE I
SERVERFULL AND SERVERLESS CPU USAGE FOR 1 HOUSEHOLD
Experiment CPU time (s)
Serverless Cumulative CPU time 1.422747
Serverless:cumulative user container CPU time 0.012039
Serverless:cumulative queue proxy CPU time 1.410708
Serverfull (cumulative CPU time) 0.039711

pod-minutes measured model accuracy and time averaged
number of pods used.

IV. RESULTS AND ANALYSIS

Fig. 3 compares the predicted and actual packet arrival
intervals for periodic and aperiodic temperature data. The
initial large difference between actual and predicted values
for periodic data, causes under-provisioning of functions. One
solution is to switch to the prediction mechanism only upon
reaching a given prediction accuracy.

In the 10-household experiments, the temperature RPS is
low, varies little (1-4 RPS) and needs only 1 pod while
the motion RPS is generally higher, highly variable (0.3-171
RPS) and needs 1-4 pods since max RPS per pod is 50
(see Fig. 4 and 5). The serverfull (no multiplexing) case
has a dedicated function pod per household while in the
serverfull (with multiplexing) all households share function
pods but provisioning is done based on the estimated peak
pod requirement i.e., 1 pod for temperature and 4 pods for the
motion sensors so most times there is over-provisioning.

For the 10 household motion experiment, measurements
were taken every 15s and the pod min values for serverfull
(no multiplexing), serverfull (with multiplexing) and serverless
were 165, 66 and 42.75 respectively. Both serverfull cases
are wasteful due to over-provisioning however the serverless
solution uses less resources (1-4 pods) and approximately
64.8% of the resources used in the serverfull with multiplexing
case. The serverless solution with dynamic autoscaling more
closely follows the load requirements while meeting the SLA
and confirming that a variable traffic pattern benefits from
autoscaling. Larger scale aperiodic traffic experiments i.e., 30
and 50 household experiments also confirm this trend.

In the 10 household temperature experiment the pod min
values for serverfull (no multiplexing), serverfull (with mul-
tiplexing) and serverless were 162.5, 16.25 and 16.25 re-
spectively. To determine why serverfull (with multiplexing)
and serverless have the same value we compared the CPU
time which is the fraction of CPU used for a given time,
as measured by Prometheus[6]. In a new experiment using
5 temperature sensors, we varied the frequency of sensor
transmissions with a 5 minute maximum interval between
transmissions allowing the function to idle periodically. The
experiments ran for 720 mins and while the serverfull sensor
function was active for the entire experiment, the serverless
function was active only for 166 mins due to zero scaling.

Results show the serverless CPU time is much higher
than the serverfull i.e. 1.422747s vs 0.039177s (see Table I).
This is due to the serverless queue proxy sidecar container
which runs when the user function pod is active. Considering

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:29:07 UTC from IEEE Xplore. Restrictions apply.

Entry/ExitDetection

— Aperiodic actual interval 4
- -Aperiodic predicted interval

|mmmmmmmmmmm -
1 [—Serverless temp pods
1 |=-Serverfull temp pods
| |—Serverless motion pods|

light actuator 0

actuator fungtion HVAG

Fig. 2. Function chains for experiments

—Serverless temp RPS
—Serverless motion RPS

200

150
2 100
=

50

0 10 20 30 40 50 60 70
Experiment epoch

Fig. 5. RPS for 10 household experiment

20

—Case 1: Actual pods
- -Case 1: Predicted pods
—Case 2: Actual pods
- -Case 2: Predicted pods

w

1
1
1
1
1
1
n-
n

Pod count
S

g |
1
1
1
||
‘\ Vi
\
\

rers

I
\ Gae

oAl ¢ \

A j,lk W ,f,\(,\ﬂ I r\,‘\/

0 I’/ . _\é‘

r
‘I_\\:

0 10 20 30 40 50
Experiment epoch

Fig. 6. Comparing predicted and actual pods used for periodic data

only user container CPU time, the serverless case uses 30%
of the total CPU time compared to the serverfull case i.e.
0.012039s vs 0.039711s, which is reasonable due to serverless
zero scaling. Instead of using the node Kubelet to probe
readiness and collect function pod metrics, Knative instantiates
separate queue-proxies for each function pod. This increases
the overhead so for low IoT traffic it is highly desirable not
to use a queue-proxy to avoid wasting CPU time. With higher
IoT traffic that needs more function pods, instead of a queue-
proxy, a more streamlined method using less CPU resources
may be needed.

From the agriculture experiment we consider the impact
of prediction and function prefetching with synthetic periodic
data generated from 10 sensors with an interval of 300 & 5s
in Case 1 and 300 £ 15s in Case 2. In Fig. 6 the predicted is
higher than the actual pod count so function prefetching (using
the prediction) ensures more pods than required are available
and so incoming requests do not experience a cold start.

Compared with case 1, case 2 has a larger variance in inter-
arrival times, so the function is active longer and only 105
requests experience code start (i.e. response time >1s) (see
Table II. More than a 10x reduction in packet count is seen in
both cases when prediction and function prefetching is used.

Packet number

Fig. 3. Prediction (periodic & aperiodic data)

motion sensor . ‘g | |- -Serverfull motion pods
actuator function 0 5 10 15 20 3) f
2]

() sensor function 2 H

= 400 2

Temperature Monitoring -\—;300 [I 1 :

2200r .7 —Periodic actual interval
temperature i'é 100 »//, - -Periodic prcdlclcd interval 0
sensars %‘\ 3 =0 : 0 10 20 30 40 50 60 70

sensor function 0 20 40 60 80 100

Experiment epoch

Fig. 4. Pod count for 10 household experiment

TABLE 11
CASES 1 AND 2 COLD START PACKET COUNT WITH/WITHOUT PREDICTION

Experiment Cold start | No cold start | Average response time
Case 1: without prediction 1771 229 14.7356
Case 1: with prediction 10 1990 0.0309203
Case 2: without prediction 105 1895 0.763625
Case 2: with prediction 10 1990 0.0313907

V. RELATED WORK

The performance of microservices varies up to 15x de-
pending on the serverless infrastructure state[7]. The perfor-
mance of open source serverless platforms is evaluated in [8]
considering response time and ratio of successfully received
responses to understand the design choices. [9] proposes a
home/office monitoring system using IoT devices and multiple
classifiers to determine when a home intrusion occurs. An
activity aware approach was used to enhance security and
detect threats in smart homes using machine learning and data
from the CASAS home monitoring framework([10], [11], [5]).

Serverless is suitable for IoT however understanding traffic
patterns is key for resource management and [12] compared
the performance of four models when forecasting the traffic
generation patterns of individual IoT devices.

VI. CONCLUSION

Serverless computing with autoscaling for IoT traffic allows
better management of resources compared to a serverfull
approach. We demonstrated this using serverless function
chains based on Knative for home monitoring and agricultural
applications. Zero scaling however introduces latency due to
cold start but simple prediction and function prefetching can
mitigate this for both low and high frequency request work-
loads. Despite the potential benefits with serverless computing,
the Knative design introduces significant overhead from the
queue-proxy sidecar container. We suggest that the queue-
proxy may not be necessary for some IoT applications and
believe the principles and results of our work are applicable
to a broader class of IoT applications. Future work includes
determining when a queue proxy is required and running a
Knative solution without or with a light-weight queue proxy.

VII. ACKNOWLEDGMENT

We thank all the anonymous reviewers for their valuable
feedback and the US NSF for their generous support of this
work through grant CNS 1619441 and CNS-1763929.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:29:07 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[11 M. Shahrad, R. Fonseca, 1. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” arXiv preprint arXiv:2003.03423, 2020.

[2] Knative, “Knative.” [Online]. Available: https://knative.dev

[3] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The design and operation of cloudlab,” in Proceedings of
the USENIX Annual Technical Conference (ATC), Jul 2019, pp. 1-14.
[Online]. Available: https://www.flux.utah.edu/paper/duplyakin-atc19

[4] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[5]1 W. S. University, “Center of advanced studies in adaptive system.”
[Online]. Available: http://casas.wsu.edu/datasets/

[6] Siebenmann, Chris, “Getting a cpu utilization breakdown
in prometheus’s query language, promql.” [Online]. Available:
https://utcc.utoronto.ca/ cks/space/blog/sysadmin/PrometheusCPUStats

[71 W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless computing: An investigation of factors influencing microser-
vice performance,” in 2018 IEEE International Conference on Cloud
Engineering (IC2E), 2018, pp. 159-169.

[8] S.Mohanty, G. Premsankar, and M. diFrancesco, “An evaluation of open
source serverless computing frameworks,” in 2018 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
2018, p. 115-120.

[9] A. Dhakal and K. K. Ramakrishnan, “Machine learning at the network
edge for automated home intrusion monitoring,” in Proc. of Workshop
on Machine Learning and Artificial Intelligence in Computer Networks,
25th IEEE International Conference on Network Protocols (ICNP),
2017, pp. 1-6.

[10] J. Dahmen, B. L. Thomasand D. J. Cook, and X. Wang, “Activity
learning as a foundation for security monitoring in smart homes,”
in Sensors, vol. 17, no. 4, 2017, p. 737. [Online]. Available:
https://doi.org/10.3390/s17040737

[11] D. Cook and M. Schmitter-Edgecombe, “Assessing the quality of activ-
ities in a smart environment,” in Methods of Information in Medicine,
2009.

[12] M. Nakip, B. C. Giil, V. Rodoplu, and C. Giizelis, “Comparative
study of forecasting schemes for iot device traffic in machine-
to-machine communication,” in Proceedings of the 2019 4th
International Conference on Cloud Computing and Internet of
Things, ser. CCIOT 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 102-109. [Online]. Available:
https://doi.org/10.1145/3361821.3361833

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:29:07 UTC from IEEE Xplore. Restrictions apply.

