
Supporting IoT Applications with Serverless Edge
Clouds

I. Wang, E. Liri and K. K. Ramakrishnan
University of California, Riverside, CA

(iwang024@ucr.edu, eliri001@ucr.edu, kk@cs.ucr.edu)

Abstract—Cloud computing has grown because of lowered
costs due to economies of scale and multiplexing. Serverless
computing exploits multiplexing in cloud computing however,
for low latency required by IoT applications, the cloud should
be moved nearer to the IoT device and the cold start problem
should be addressed. Using a real-world dataset, we showed
through implementation in an open-source cloud environment
based on Knative that a serverless approach to manage IoT
traffic is feasible, uses less resources than a serverfull approach
and traffic prediction with prefetching can mitigate the cold start
delay penalty. However applying the Knative framework directly
to IoT traffic without considering the execution context gives
unnecessary overhead.

I. INTRODUCTION

Advantages of IoT include universal connectivity and cheap

sensors that reduce the high costs of manual labour. Actuators

can respond to predefined sensor events while low power

IoT devices support data gathering and may be used in

multiple application scenarios. Serverless computing exploits

multiplexing in cloud computing, however for low latency,

the cloud should be moved nearer to the IoT device and the

cold start problem should be addressed [1]. Edge clouds move

the cloud closer to the device and fast, lightweight inference

helps serverless computing anticipate IoT requests by learning

from past IoT traffic patterns. This can help improve function

provisioning, thus avoiding the latency penalty of cold start.

This work we discusses the key serverless components

needed to support IoT traffic in the edge cloud and presents

several IoT application scenarios to illustrate how microser-

vices meet the needs of IoT traffic. With data from a real-

world dataset, we then study the impact of this IoT traffic

in an open-source cloud environment focusing on how the

number and type of microservices affect performance. Our

results show that a serverless approach uses less resources

than the traditional cloud computing approach and prediction

with prefetching reduces cold start delay penalty. However, the

Knative design introduces significant overhead from a sidecar

container called the queue-proxy, used for precise metrics

measurement and probing for pod readiness. To fully benefit

from a serverless implementation, it is important to understand

and implement the appropriate components for the IoT context.

Fig. 1. Serverless architecture for IoT Service

II. SERVERLESS FOR IOT

This section discusses the serverless components needed to

support IoT traffic and some IoT application scenarios where

serverless is a potential solution.

A. Serverless Computing

In serverless computing, the required components are dy-

namically instantiated to allow code execution when an event

occurs. Dynamically adjusting the number of instances to meet

demand is suitable for IoT traffic which can be highly variable.

Knative[2] is an open source serverless platform for dy-

namic container management built on top of Kubernetes, a

container orchestration framework that automates the deploy-

ment and management of containerized workloads (see Fig.

1). Based on the observed Request per second(RPS) within an

operator specified window, the autoscaler decides whether to

scale up or down even to zero in order to meet current require-

ments, using performance metrics retrieved from Kubernetes

or Knative sidecar containers such as the ”queue-proxy”. If

a change in number of instances is required, Knative issues

commands to the master node in the Kubernetes cluster to

make the required adjustments.

B. Application Scenarios

We discuss two IoT applications where serverless is useful.978-1-7281-9486-8/20/$31.00 ©2020 IEEE

20
20

 IE
EE

 9
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lo
ud

 N
et

w
or

ki
ng

 (C
lo

ud
N

et
) |

 9
78

-1
-7

28
1-

94
86

-8
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CL

O
U

DN
ET

51
02

8.
20

20
.9

33
58

05

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:29:07 UTC from IEEE Xplore. Restrictions apply.

1) Home monitoring: In home monitoring, we consider

entry/exit detection and environment monitoring. In this sce-

nario, for simplicity, we consider detecting entry/exit into/from

specific rooms in an apartment. We assumed each room has a

single entrance and single occupant either entering or exiting

the room. The nearest motion detectors to the door i.e. internal

sensors inside the room and external sensors outside the room,

send out events whenever a change of status occurs and these

are used to detect entry/exit.

For environment monitoring we consider maintaining a

preset room temperature. Temperature sensors periodically

send updates to a function which can trigger a start/stop of

the HVAC unit via an actuator.

2) Agriculture: In the agriculture scenario for simplicity
we consider multiple temperature sensors regularly and peri-

odically transmitting data to the cloud which is similar to how

many agriculture IoT devices operate.

C. Serverless Edge Cloud

This section discusses setup of the edge cloud to support the

experiments using CloudLab[3], Docker[4], Kubernetes and

Knative. Sensorfunctions receive data directly from sensors,
actuatorfunctions send data to actuators or end users to trig-
ger some action and request and response messages followed

the CloudEvent specification. The entry/exit detection function

chain has 2 layers (see Fig. 2). Internal motion detectors going

on (i.e. entry event detected) triggers the chain to turn on the

light. An exit event is detected if the following pattern occurs:

internal sensor goes on, external sensor goes on and then the

internal sensor goes off.When a motion sensor is triggered,

the updated sensor status is written to Redis and the status of

the door, lights and motion detector immediately on the other

side of the door is checked. If an action is required, a message

is sent to the actuator function to turn on/off the light. In the

environment monitoring scenario, sensor readings parsed by

the sensor function are sent to an actuator function to toggle

the thermostat where necessary (see Fig. 2). Similar function

chain design and logic applies to the agriculture scenario.

III. EXPERIMENT DESIGN AND SETUP

We categorized sensors as High-Frequency Aperiodic (HFA)

(motion), Low-Frequency Aperiodic (LFA) (temperature) and

Periodic (agriculture) based on their reporting frequency. We

used the CASAS dataset[5] to perform 10, 30 and 50 house-

hold experiments and examined cold start time and compared

actual and predicted resource usage. Data for a single day(24

hours) in the dataset represented data from 1 household.

Linear regression using a single layer perceptron was used

to predict the arrival time of the next packet from each

sensor thus we can proactively start the sensor function before

the traffic actually arrives. A customized autoscaler scaled

the number of pods based on the predicted or actual total

RPS. If no prediction is available or the difference between

the predicted and actual RPS is larger than a threshold, the

default policy is used. Response and CPU times measured

responsiveness and performance while instant pod count and

TABLE I
SERVERFULL AND SERVERLESS CPU USAGE FOR 1 HOUSEHOLD

Experiment CPU time (s)
Serverless Cumulative CPU time 1.422747

Serverless:cumulative user container CPU time 0.012039
Serverless:cumulative queue proxy CPU time 1.410708

Serverfull (cumulative CPU time) 0.039711

pod-minutes measured model accuracy and time averaged

number of pods used.

IV. RESULTS AND ANALYSIS

Fig. 3 compares the predicted and actual packet arrival

intervals for periodic and aperiodic temperature data. The

initial large difference between actual and predicted values

for periodic data, causes under-provisioning of functions. One

solution is to switch to the prediction mechanism only upon

reaching a given prediction accuracy.

In the 10-household experiments, the temperature RPS is

low, varies little (1-4 RPS) and needs only 1 pod while

the motion RPS is generally higher, highly variable (0.3-171

RPS) and needs 1-4 pods since max RPS per pod is 50

(see Fig. 4 and 5). The serverfull (no multiplexing) case

has a dedicated function pod per household while in the

serverfull (with multiplexing) all households share function

pods but provisioning is done based on the estimated peak

pod requirement i.e., 1 pod for temperature and 4 pods for the

motion sensors so most times there is over-provisioning.

For the 10 household motion experiment, measurements

were taken every 15s and the pod min values for serverfull

(no multiplexing), serverfull (with multiplexing) and serverless

were 165, 66 and 42.75 respectively. Both serverfull cases

are wasteful due to over-provisioning however the serverless

solution uses less resources (1-4 pods) and approximately

64.8% of the resources used in the serverfull with multiplexing

case. The serverless solution with dynamic autoscaling more

closely follows the load requirements while meeting the SLA

and confirming that a variable traffic pattern benefits from

autoscaling. Larger scale aperiodic traffic experiments i.e., 30

and 50 household experiments also confirm this trend.

In the 10 household temperature experiment the pod min

values for serverfull (no multiplexing), serverfull (with mul-

tiplexing) and serverless were 162.5, 16.25 and 16.25 re-

spectively. To determine why serverfull (with multiplexing)

and serverless have the same value we compared the CPU

time which is the fraction of CPU used for a given time,

as measured by Prometheus[6]. In a new experiment using

5 temperature sensors, we varied the frequency of sensor

transmissions with a 5 minute maximum interval between

transmissions allowing the function to idle periodically. The

experiments ran for 720 mins and while the serverfull sensor

function was active for the entire experiment, the serverless

function was active only for 166 mins due to zero scaling.

Results show the serverless CPU time is much higher

than the serverfull i.e. 1.422747s vs 0.039177s (see Table I).

This is due to the serverless queue proxy sidecar container

which runs when the user function pod is active. Considering

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:29:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Function chains for experiments Fig. 3. Prediction (periodic & aperiodic data)
Fig. 4. Pod count for 10 household experiment

Fig. 5. RPS for 10 household experiment

Fig. 6. Comparing predicted and actual pods used for periodic data

only user container CPU time, the serverless case uses 30%

of the total CPU time compared to the serverfull case i.e.

0.012039s vs 0.039711s, which is reasonable due to serverless

zero scaling. Instead of using the node Kubelet to probe

readiness and collect function pod metrics, Knative instantiates

separate queue-proxies for each function pod. This increases

the overhead so for low IoT traffic it is highly desirable not

to use a queue-proxy to avoid wasting CPU time. With higher

IoT traffic that needs more function pods, instead of a queue-

proxy, a more streamlined method using less CPU resources

may be needed.

From the agriculture experiment we consider the impact

of prediction and function prefetching with synthetic periodic

data generated from 10 sensors with an interval of 300 ± 5s
in Case 1 and 300± 15s in Case 2. In Fig. 6 the predicted is
higher than the actual pod count so function prefetching (using

the prediction) ensures more pods than required are available

and so incoming requests do not experience a cold start.

Compared with case 1, case 2 has a larger variance in inter-

arrival times, so the function is active longer and only 105

requests experience code start (i.e. response time >1s) (see
Table II. More than a 10x reduction in packet count is seen in

both cases when prediction and function prefetching is used.

TABLE II
CASES 1 AND 2 COLD START PACKET COUNT WITH/WITHOUT PREDICTION

Experiment Cold start No cold start Average response time
Case 1: without prediction 1771 229 14.7356
Case 1: with prediction 10 1990 0.0309203
Case 2: without prediction 105 1895 0.763625
Case 2: with prediction 10 1990 0.0313907

V. RELATED WORK

The performance of microservices varies up to 15x de-

pending on the serverless infrastructure state[7]. The perfor-

mance of open source serverless platforms is evaluated in [8]

considering response time and ratio of successfully received

responses to understand the design choices. [9] proposes a

home/office monitoring system using IoT devices and multiple

classifiers to determine when a home intrusion occurs. An

activity aware approach was used to enhance security and

detect threats in smart homes using machine learning and data

from the CASAS home monitoring framework([10], [11], [5]).

Serverless is suitable for IoT however understanding traffic

patterns is key for resource management and [12] compared

the performance of four models when forecasting the traffic

generation patterns of individual IoT devices.

VI. CONCLUSION

Serverless computing with autoscaling for IoT traffic allows

better management of resources compared to a serverfull

approach. We demonstrated this using serverless function

chains based on Knative for home monitoring and agricultural

applications. Zero scaling however introduces latency due to

cold start but simple prediction and function prefetching can

mitigate this for both low and high frequency request work-

loads. Despite the potential benefits with serverless computing,

the Knative design introduces significant overhead from the

queue-proxy sidecar container. We suggest that the queue-

proxy may not be necessary for some IoT applications and

believe the principles and results of our work are applicable

to a broader class of IoT applications. Future work includes

determining when a queue proxy is required and running a

Knative solution without or with a light-weight queue proxy.

VII. ACKNOWLEDGMENT

We thank all the anonymous reviewers for their valuable

feedback and the US NSF for their generous support of this

work through grant CNS 1619441 and CNS-1763929.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:29:07 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” arXiv preprint arXiv:2003.03423, 2020.

[2] Knative, “Knative.” [Online]. Available: https://knative.dev
[3] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,

L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The design and operation of cloudlab,” in Proceedings of
the USENIX Annual Technical Conference (ATC), Jul 2019, pp. 1–14.
[Online]. Available: https://www.flux.utah.edu/paper/duplyakin-atc19

[4] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[5] W. S. University, “Center of advanced studies in adaptive system.”
[Online]. Available: http://casas.wsu.edu/datasets/

[6] Siebenmann, Chris, “Getting a cpu utilization breakdown
in prometheus’s query language, promql.” [Online]. Available:
https://utcc.utoronto.ca/ cks/space/blog/sysadmin/PrometheusCPUStats

[7] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless computing: An investigation of factors influencing microser-
vice performance,” in 2018 IEEE International Conference on Cloud
Engineering (IC2E), 2018, pp. 159–169.

[8] S. Mohanty, G. Premsankar, and M. diFrancesco, “An evaluation of open
source serverless computing frameworks,” in 2018 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
2018, p. 115–120.

[9] A. Dhakal and K. K. Ramakrishnan, “Machine learning at the network
edge for automated home intrusion monitoring,” in Proc. of Workshop
on Machine Learning and Artificial Intelligence in Computer Networks,
25th IEEE International Conference on Network Protocols (ICNP),
2017, pp. 1–6.

[10] J. Dahmen, B. L. Thomasand D. J. Cook, and X. Wang, “Activity
learning as a foundation for security monitoring in smart homes,”
in Sensors, vol. 17, no. 4, 2017, p. 737. [Online]. Available:
https://doi.org/10.3390/s17040737

[11] D. Cook and M. Schmitter-Edgecombe, “Assessing the quality of activ-
ities in a smart environment,” in Methods of Information in Medicine,
2009.

[12] M. Nakip, B. C. Gül, V. Rodoplu, and C. Güzeliş, “Comparative
study of forecasting schemes for iot device traffic in machine-
to-machine communication,” in Proceedings of the 2019 4th
International Conference on Cloud Computing and Internet of
Things, ser. CCIOT 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 102–109. [Online]. Available:
https://doi.org/10.1145/3361821.3361833

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 17,2021 at 17:29:07 UTC from IEEE Xplore. Restrictions apply.

