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Abstract— The paper proposes a model reduction algorithm
for linear hybrid systems, i.e., hybrid systems with externally
induced discrete events, with linear continuous subsystems, and
linear reset maps. The model reduction algorithm is based
on balanced truncation. Moreover, the paper also proves an
analytical error bound for the difference between the input-
output behaviors of the original and the reduced-order model.
This error bound is formulated in terms of singular values of
the Gramians used for model reduction.

I. INTRODUCTION

In this paper, we propose a model reduction method
for linear hybrid systems with external switching. A linear
hybrid system is a hybrid system with continuous states that
are governed by linear differential equations, the reset maps
are linear, and the discrete-events are external inputs. Linear
hybrid systems can be viewed as a generalization of linear
switched systems [1], [2]. In contrast to linear switched sys-
tems, state jumps are allowed, and additionally, the change of
discrete states is supposed to follow the transition structure of
a Moore automaton. Linear hybrid systems occur in several
applications; a well known class of piecewise-affine systems
is directly related to linear hybrid systems, as the former
can be viewed as a feedback interconnection of the latter
with a discrete-event generator. The model reduction method
we propose is based on balanced truncation, performed for
each linear subsystem. The corresponding Gramians have to
satisfy certain linear matrix inequalities (LMIs). In addition
to the novel algorithm, we propose an analytic error bound
for the difference between the input-output behaviors of the
original and of the reduced-order models. This error bound
is a direct counterpart of the well-known error bound for
balanced truncation of linear systems [3], and it involves the
singular values of the Gramians.

To the best of our knowledge, the contribution of the paper
is new. Indeed, the existing methods for model reduction of
hybrid systems can be grouped into the following categories.

LMI-based methods These methods compute the matri-
ces of the reduced-order model by solving a set of LMIs.
The disadvantage is that the proposed conditions are only
sufficient, and the trade-off between the dimension of the
reduced model and the error bound is not clear. Moreover,
the computational complexity of solving those LMIs might
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be too high. Without claiming completeness, we mention the
following papers [4], [5], [6], [7]. First of all, the cited papers
do not deal with linear reset maps. Moreover, in contrast
to the cited papers, the current paper proposes a method,
whose applicability depends on the existence of solution
for a few simple LMIs which are necessary to find the
observability/controllability Gramians. Once the existence of
these Gramians is assured, the model reduction method can
be applied. Moreover, there is an analytic error bound and the
trade-off between the approximation error and the dimension
of the reduced system is formalized in terms of the singular
values of those Gramians.

Methods based on local Gramians
The algorithms that belong to this class are based on

finding observability/controllability Gramians for each linear
subsystem. They are solutions of LMIs derived by relax-
ing the classical Lyapunov-like equations for observabil-
ity/controllability Gramians. The disadvantage of these meth-
ods is that often there are no error bounds or the reduced-
order model need not be well-posed. Examples of such
papers include [8], [9], [10], [11], [12], [13]. Note that, to
the best of our knowledge, the only algorithm which always
yields a well-posed linear switched system of the same type
as the original one and for which there exists an analytic
error bound is the one proposed in [13]. Nevertheless, this
algorithm provides an error bound only for sufficiently slow
switching signals, i.e., switching sequences with a suitable
minimal dwell time. The method proposed in this paper is an
extension of [13]. The main differences between the current
paper and those in [13] are stated below:
• In contrast to [13], the error bound of this paper no

longer uses the assumption of minimum dwell time.
However, this comes at price, as the LMIs involved are
more conservative.

• The discrete states are no longer assumed to be inputs,
but they are states of the system and they are assumed to
evolve according to a Moore-automaton. However, the
Moore-automaton is driven by discrete events which are
external inputs. That is, the system class considered in
this paper is more general than that in [13].

More recently, a balancing truncation method for lin-
ear switched systems that are characterized by constrained
switching scenarios was proposed in [14]. The technique is
based on defining generalized Gramians for each discrete
mode, specifically tailored to particular switching scenarios.

Methods based on common Gramians These meth-
ods rely on finding the same observability/controllability
Gramian for each linear subsystem. In most contributions,
the Gramians are derived as solutions of a suitable LMI. Such
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algorithms were described in [15], [16] and an analytic error
bound was derived in [17]. The results of this paper can also
be viewed as a direct extension of [17]. In particular, when
applied to a linear switched system of the type studied in
[17], the results of the present paper boil down to those of
[17]. With respect to [17], the main novelty of the present
paper is that it considers a system class which is much larger
than the one of [17]. Nevertheless, some methods that do not
rely on solving LMIs are also available. For example, in [18]
a balancing procedure based on recasting the original linear
switched system as an envelope linear time-invariant system
with no switching was proposed. Additionally, a balancing
procedure based on reformulating the original system as a
bilinear system with no switching was presented in [19].

Moment matching The idea behind these algorithms is
to find a reduced-order switched system such that certain
coefficients of the series expansions of the input-output maps
of the original and the reduced-order system coincide. The
series expansion can be the Taylor series with respect to
switching times, in which case the so-called Markov param-
eters are matched. Alternatively, the series expansion can be a
Laurent-series expansion of a multivariate Laplace transform
of the input-output map around a certain frequency. The
former approach was pursued in [20], [21], [22] , the latter in
[23]. While those methods do not allow for analytical error
bounds, under suitable assumption it can be guaranteed that
the reduced model will have the same input-output behavior
for certain switching signals [20], [21], [22]. A somewhat
different approach is that of [24], which considers switched
systems with autonomous switching and it proposed a model
reduction procedure which guarantees that the reduced model
has the same steady-state output response to certain inputs
as the original model.

The results of the present paper are based on balanced
truncation. As a result, in contrast to the cited papers, we
are able to propose an analytic error bound. Moreover, the
class of systems considered in this paper is much larger than
that of the cited papers. In particular, we allow reset maps
and the evolution of the discrete states is governed by a
Moore-automaton.

The paper is structured as follows. In Section II-B we
introduce the notation and present the formal definition
of linear hybrid systems and of some related concepts.
In Section III we present a balanced truncation algorithm
for model reduction and an analytical error bound for this
algorithm. In Section IV we present a numerical example to
illustrate the proposed algorithm.

II. PRELIMINARIES

A. Notation

Let N denote the set of natural numbers including 0, and
R+ = [0,+∞) denote the positive real time-axis. We denote
by PC(A,B) the set of all piecewise-continuous maps A→ B,
and by L2(A,B) the set of all Lebesgue measurable maps
A→ B. The L2-norm and Euclidean 2-norm are denoted by
‖ · ‖L2 and ‖ · ‖2 respectively.

B. Linear hybrid systems: definition and basic concepts

Definition 1 (LHS ): A linear hybrid system H (abbrevi-
ated as LHS ) is a tuple

H =(Q,Γ,O,δ ,λ ,{nq,Aq,Bq,Cq}q∈Q,

{Mq1,γ,q2}q2∈Q,γ∈Γ,q1=δ (q2,γ),h0),
(1)

where
1) Q is a finite set, called the set of discrete states,
2) Γ is a finite set, called the set of discrete events,
3) O is a finite set, called the set of discrete outputs,
4) δ : Q×Γ→ Q is a function called the discrete state-

transition map,
5) λ : Q→ O is a function called the discrete readout

map,
6) Σq = (Aq,Bq,Cq), q ∈ Q is the linear system in the

discrete state q and Aq ∈ Rnq×nq ,Bq ∈ Rnq×m,Cq ∈
Rp×nq are the matrices of this linear system,

7) Mq1,γ,q2 ∈ Rnq1×nq2 are matrices for all q2 ∈ Q,γ ∈
Γ,q1 = δ (q2,γ), which are called reset maps,

8) h0 = (q0,x0) is the initial state, where q0 ∈Q and x0 ∈
Rnq0 .

The space Rnq , q ∈ Q, 0 < nq ∈ N, is called the continuous
state space associated with the discrete state q, Rm is called
the continuous input space, Rp is called the continuous
output space. The state space HH of H is the set HH =⋃

q∈Q{q}×Rnq .
Notation 1: An element x ∈HH comprises of a pair x =

(q,xq) with q ∈ Q and xq ∈ Rnq . In some places throughout
this article, we will suppress the notation and write instead
of xq, simply x (whenever it is clear from the content which
discrete mode is associated with x).

Note also that the linear control systems associated with
different discrete states may have different state-spaces, but
they have the same input and output space. The intuition
behind the definition of a linear hybrid system is provided
in what follows. We associate a linear system

Σq :

{
ẋ = Aqx+Bqu
y =Cqx

, (2)

with each discrete state q ∈ Q. As long as we are in the
discrete state q, the state x and the continuous output y
develops according to (2). The discrete state can change
only if a discrete event γ ∈ Γ takes place. If a discrete
event γ occurs at time t, then the new discrete state q+ is
determined by applying the discrete state-transition map δ

to q, i.e., q+ = δ (q,γ). The new continuous-state x+(t) ∈
Rnq+ is computed from the current continuous state x(t−) =
lims↑t x(s) by applying the reset map Mq+,γ,q to x(t−), i.e.,
x+(t) = Mq+,γ,qx(t−). After the transition, the continuous
state x and the continuous output y evolve according to
the linear system associated with the new discrete state q+,
started from the initial state x+(t). Finally, when in a discrete
state q ∈Q, the system produces a discrete output o = λ (q).

Note that the discrete events are external inputs. All the
continuous subsystems are defined with the same inputs and
outputs, but on possibly different state-spaces. Below we will
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formalize the intuition described above, by defining input-to-
state and input-output maps for LHS . To this end, we need
the following.

Definition 2 (Timed sequences): A timed sequence of dis-
crete events is an infinite sequence over the set (Γ×R+), i.e.,
a timed sequence w is a sequence of the form

w = (γ1, t1)(γ2, t2) · · ·(γk, tk) · · · , (3)

where γi ∈ Γ, k > 0 are discrete events, and ti ∈R+ are time
instances, and limk→∞ ∑

k
i=1 ti =∞. We denote the set of timed

sequences of discrete events by Γ∞
timed.

The interpretation of a timed sequence w ∈ Γ∞
timed as above

will be stated in what follows. If w is of the form (3), then
w represents the scenario, when the event γi took place after
the event γi−1 and ti is the time which has passed between the
arrival of γi−1 and the arrival of γi, i.e., ti is the difference
of the arrival times of γi and γi−1. Hence, ti ≥ 0 but we allow
ti = 0, i.e., γi can arrive instantly after γi−1. If i = 1, then t1
is simply the time when the first event γ1 arrived.

Notation 2 (Inputs U): Denote by U = L2(R+,Rm) ×
Γ∞

timed the set of inputs of a LHS .
If (u,w)∈U, then u represents the continuous-valued input

to be fed to the system, where w is the timed-event sequence.
Below we define the notion of input-to-state and input-output
maps for LHSs . These functions map elements from U to
states and outputs, respectively.

In the rest of this section, H denotes a LHS of the form
introduced in (1).

Definition 3 (Input-to-state map): The input-to-state map
of H induced by a state h = (qI ,xI) ∈HH of H, where qI ∈
Q and xI ∈ RnqI , is the function ξH,h : U→ PC(R+,HH)×
PC(R+,Q)such that the following holds. For any (u,w)∈U,
where w is of the form (3), define T0 = 0,Ti = ∑

i
j=1 t j, i∈N.

Then ξH,h(u,w) = (x,q) such that
1) q(t) = qi, t ∈ [Ti,Ti+1), where q0 = qI and qi+1 =

δ (qi,γi+1) for all i ∈ N.
2) The restriction of x to [0,T1) is the unique solution

(in the sense of Carathéodory) of the differential
equation ż(t) = AqI z(t)+BqI u(t), z(0) = xI on [0,T1),
and the restriction of x to [Ti,Ti+1) for i > 0 is the
unique solution (in the sense of Carathéodory) of the
differential equation ż(s) = Aqiz(s)+Bqiu(s), z(Ti) =
Mqi+1,γi+1,qi limt↑Ti x(t).

Definition 4 (Input-output map): The input-output map of
the system H induced by a state h∈HH of H is the function
υH,h : U→ PC(R+,O)×PC(R+,Rp)defined as follows: for
all (u,w) ∈ U, υH,h(u,w) = (o,y), such that if (q,x) =
ξH,h(u,w), then

o(t) = λ (q(t)), y(t) =Cq(t)x(t).

The input-output map υH,h induced by the initial state h0 is
called the input-output map of H and it is denoted by υH .

III. BALANCED TRUNCATION

Consider an LHS H of the form (1) with initial condition
h0 = (q0,x0) such that x0 = 0.

Definition 5: A collection {Qq}q∈Q of positive definite
matrices is called a collection of generalized observability
Gramians of H, if for all q ∈ Q,

AT
q Qq +QqAq +CT

q Cq < 0,

∀γ ∈ Γ, q+ = δ (q,γ) : MT
q+,γ,qQq+Mq+,γ,q−Qq 6 0.

(4)

Definition 6: A collection {Pq}q∈Q of positive definite
matrices is called a collection of generalized reachability
Gramians of H, if for all q ∈ Q,

AqPq +PqAT
q +BqBT

q < 0,

∀γ ∈ Γ, q+ = δ (q,γ) : Mq+,γ,qPqMT
q+,γ,q−Pq+ 6 0.

(5)

Remark 1: The LMIs in (4) can be rewritten as follows

∀x ∈ Rnq : 2(Aqx)T Qqx≤−‖Cqx‖2
2,

xT MT
q+,γ,qQq+Mq+,γ,qx≤ xT Qqx.

(6)

The LMIs in (5) can be rewritten as follows

∀x ∈ Rnq ,u ∈ Rm : 2(Aqx+Bqu)T P−1
q x≤ ‖u‖2

2,

xT MT
q+,γ,qP

−1
q+ Mq+,γ,qx≤ xT P−1

q x.
(7)

Definition 7: We say that the LHS H is quadratically
stable, if there exists a collection collection {Pq}q∈Q of
positive definite matrices, such that

AT
q Pq +PqAq < 0,

∀γ ∈ Γ, q+ = δ (q,γ) : MT
q+,γ,qPq+Mq+,γ,q−Pq ≤ 0.

(8)

For completness we recall the following lemmas (see [25]
for proofs and further discussion).

Lemma 1 (Stability and Gramians): H is quadratically
stable iff there exist generalized observability Gramians iff
there exist generalized controllability Gramians.

Lemma 2: [Observability Gramian and output energy] If
{Qq}q∈Q are observability Gramians, h0 = (q0,x0), (q,x) =
ξH,h0(0,w), (o,y) = υH,h0(0,w), i.e., x,y are the continuous
state and output trajectories of H if started from the initial
state h0 and fed with the timed sequence w and zero
continuous input u = 0, then∫

∞

0
‖y(s)‖2

2ds≤ xT
0 Qq0x0.

Lemma 3: [Controllability Gramian and input energy] If
{Pq}q∈Q are reachability Gramians, h0 = (q0,0), (q,x) =
ξH,h0(u,w), i.e., x,q are the continuous and discrete state
trajectories of H if started from the initial state h0 and fed
with the timed sequence w and continuous input u, then

x(t)P−1
q(t)x(t)≤

∫ t

0
‖u(s)‖2

2.

Next, formulate a balanced model reduction procedure.
Procedure 1: 1) Compute reachabilility and observ-

ability Gramians {Pq > 0}q∈Q and {Qq > 0}q∈Q
which satisfy (5), and, respectively (4).

2) Find square factor matrices Uq so that Pq = UqUT
q .

Additionally, compute the eigenvalue decomposition of
the symmetric matrix UT

q QqUq, as

UT
q QqUq = VqΛ

2
qVT

q ,

where
Λq = diag(σq,1, . . . ,σq,nq),
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is a diagonal matrix with the real entries sorted in
decreasing order, i.e., σq,1 ≥ σq,2 ≥ ·· · ≥ σq,nq .

3) Construct the transformation matrices Sq ∈ Rnq×nq as
follows

Sq = Λ
1/2
q VT

q U−1
q . (9)

Define the matrices (with q1 = δ (q2,γ), q2 ∈ Q)

Āq = SqAqS−1
q , B̄q = SqBq, C̄q =CqS−1

q ,

M̄q2,γ,q1 = Sq2Mq2,γ,q1S−1
q1
.

(10)

4) Choose the truncation orders 0 < rq ≤ nq and consider
the partitioning

Āq =

[
Ā11

q Ā12
q

Ā21
q Ā22

q

]
, B̄q =

[
B̄1

q
B̄2

q

]
,C̄q =

[
C̄1

q C̄2
q
]
, rq < nq,

M̄q1,γ,q2 =

[
M̄11

q1,γ,q2
M̄12

q1,γ,q2
,

M̄21
q1,γ,q2

M̄22
q1,γ,q2

]
if rq1 < nq1 ,rq2 < nq2 ,

M̄q1,γ,q2 =
[
M̄11

q1,γ,q2
M̄12

q1,γ,q2

]
if rq1 = nq1 ,rq2 < nq2 ,

M̄q1,γ,q2 =

[
M̄11

q1,γ,q2

M̄21
q1,γ,q2

]
if rq1 < nq1 ,rq2 = nq2 ,

(11)

where Ā11
q ∈ Rrq×rq , M̄11

q1,γ,q2
∈ Rrq1×rq2 , B̄1

q ∈
Rrq×m, and C̄1

q ∈ Rp×rq .
5) Define the reduced model

Ĥ = (Q,Γ,O,δ ,λ ,{rq, Âq, B̂q,Ĉq}q∈Q,

{M̂q1,γ,q2}q2∈Q,γ∈Γ,q1=δ (q2,γ),(q0,0)),

where
Âq = Ā11

q , B̂q = B̄1
q, Ĉq = C̄1

q , if rq ≤ nq,

M̂q1,γ,q2 = M̄11
q1,γ,q2

, if rq1 < nq1 or rq2 < nq2 ,

Âq = Āq, B̂q = B̄q, Ĉq = C̄q, if rq = nq,

M̂q1,γ,q2 = M̄q1,γ,q2 , if rq1 = nq1 and rq2 = nq2 .

(12)

The proofs of the next two lemmas can be found in [25].
Lemma 4 (Balanced realization): Consider the LHS

H̄ = (Q,Γ,O,δ ,λ ,{rq, Āq, B̄q,C̄q}q∈Q,

{M̄q1,γ,q2}q2∈Q,γ∈Γ,q1=δ (q2,γ),(q0,0)).

Then {Λq}q∈Q are both generalized reachability and observ-
ability Gramians of H̄.

In what follows, we will say that an LHS is balanced, if it
has generalized reachability Gramians {Pq}q∈Q, generalized
observability Gramians {Qq}q∈Q, and for all q ∈ Q, the
matrices Qq and Pq are equal and are diagonal. Lemma
4 says that H̄ is balanced. In fact, more is true.

Lemma 5 (Preservation of balancing and stability): The
reduced-order model Ĥ is balanced, and its generalized
observability and reachability Gramians are {Λ̂q}q∈Q,
Λ̂q = diag(σq,1, . . . ,σq,rq). In particular, Ĥ is quadratically
stable.

Theorem 1 (Error bound): For any (u,w) ∈ U, consider
the outputs (o,y) = υH(u,w) and (ô, ŷ) = υĤ(u,w) generated
by H and Ĥ, respectively under input u and timed sequence
w from the corresponding initial state. Then ô = o, and

‖y− ŷ‖L2 ≤ 2(∑
q∈Q

nq−rq

∑
i=1

σq,rq+i)‖u‖L2 .

Remark 2 (Relationship with the linear case): Note that
the proof of Theorem 1 does not boil down to applying
the classical error bound to each linear subsystem. In fact,
classical error bounds assume that the linear system in
question is started with zero initial state. However, when
a discrete state transition occurs, the initial state of the
active linear system is inherited from the final state of the
previously active linear system, and hence this initial state
is not zero in general. The proof of Theorem 1 is designed
to take care of this fact; it relies on showing that a certain
piecewise-quadratic form is a storage function with a certain
supply rate for the linear hybrid system which describes the
difference between the original and the reduced-order model.
The corresponding inequalities take into account the non-
zero initial state of each linear subsystem, in the same way
as it is done when defining Lyapunov functions for hybrid
systems [2].
First we prove Theorem 1 for the case when nq− rq ≤ 1
for all q ∈ Q. More precisely, for each q ∈ Q, consider the
decomposition

Λq =

[
Λ̂q 0
0 βq

]
, βq ∈ R. (13)

Define β = minq∈Q βq and for each q ∈ Q, define

rq =

{
nq−1 if βq = β ,

nq otherwise .

Consider the reduced-order model Ĥ from Procedure 1 for
this choice of rq.

Theorem 2 (One step error bound): For any (u,w) ∈ U,
consider the outputs (o,y) = υH(u,w) and (ô, ŷ) = υĤ(u,w)
generated by H and Ĥ respectively under the input u and
timed event sequence w from the corresponding initial state.
Then ô = o, and

‖y− ŷ‖L2 ≤ 2β‖u‖L2 .

Theorem 1 follows by repeated application of Theorem 2.
The proof of Theorem 2 is done via a sequence of lemmas.
In order to state these lemmas, we introduce the following
notation. Consider the balanced LHS H̄ from Lemma 4. Note
that the LHSs H̄ and H are isomorphic, and hence they
have the same input-output map. Consider now the state
trajectory (q, x̄) = ξH̄,h0

(u,w) of H̄ and the state trajectory
(q̂, x̂) = ξĤ,ĥ0

(u,w), where ĥ0 = (q0,0) is the initial state of
Ĥ. It is easy to see that q = q̂.

For any t ∈ R+ such that rq(t) = nq(t) − 1, consider the
partitioning

x̄(t) =
[

x̄1(t)
x̄2(t)

]
,

with x̄1(t) ∈ Rrqi , x̄2(t) ∈ R. Define the functions

xo(t) =


[

x̄1(t)− x̂(t)
x̄2(t)

]
, rq(t) = nq(t)−1

x̄(t)− x̂(t) otherwise
,

xc(t) =


[

x̄1(t)+ x̂(t)
x̄2(t)

]
, rq(t) = nq(t)−1

x̄(t)+ x̂(t) otherwise
.

(14)
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Note that the following holds:

y(t)− ŷ(t) =Cq(t)xo(t).

Define the function

V (xo(t),xc(t)) = xo(t)T
Λq(t)xo(t)+β

2xc(t)T
Λ
−1
q(t)xc(t). (15)

It can then be shown that (see [25] for proofs)
Lemma 6: The temporal derivative of the function V, as

defined in (15), satisfies

∂V (xo(t),xc(t))
∂ t

6 4β
2‖u(t)‖2

2−‖y(t)− ŷ(t)‖2
2, (16)

for all t ∈ [Ti−1,Ti).
Lemma 7: For all i ∈ N,

V (x(Ti+1), x̂(Ti+1))≤V (x(T−i+1), x̂(T
−

i+1)), (17)

where x(T−i+1) = limt↑Ti+1 x(t), and x̂(T−i+1) = limt↑Ti+1 x̂(t).
Proof: [Proof of Lemma 7] Note that qi = q(t) for all

t ∈ [Ti,Ti+1) and that δ (qi,γi+1) = qi+1. Moreover, by virtue
of {Λq}q∈Q being generalized observability and reachability
Gramians for H̄, and Remark 1, the following holds

M̄T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qi < Λ
−1
qi
, (18)

M̄T
qi+1,γi+1,qi

Λqi+1M̄qi+1,γi+1,qi < Λqi . (19)

In order to prove (17), the following cases have to be
distinguished.

Assume that rqi+1 = nqi+1, i.e., no truncation takes place
in mode qi+1. In this case, x(Ti+1) = M̄qi+1,γi+1,qix(T

−
i+1), and

x̂(Ti+1) = M̄11
qi+1,γi+1,qi

x̂(T−i+1) = M̄qi+1,γi+1,qi

[
x̂(T−i+1)

0

]
, (20)

if rqi = nqi −1, and

x̂(Ti+1) = M̄qi+1,γi+1,qi x̂(T
−

i+1), (21)

if rqi = nqi . It then follows that

xc(Ti+1) = M̄qi+1,γi+1,qixc(T−i+1),

xo(Ti+1) = M̄qi+1,γi+1,qixo(T−i+1).
(22)

From (22) it then follows that

V (x(Ti+1), x̂(Ti+1))= xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1 M̄qi+1,γi+1,qi xo(T−i+1)

+β
2xT

c (T
−

i+1)M̄
T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qi xc(T−i+1). (23)

From (19)-(18) it follows that

xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1 M̄qi+1,γi+1,qi xo(T−i+1)≤ xT
o (T

−
i+1)Λqi xo(T−i+1),

xT
c (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qi xc(T−i+1)≤ xT
c (T

−
i+1)Λ

−1
qi

xc(T−i+1).

Hence, from (23), it follows that (17) holds.
Consider now the case when rqi+1 = nqi+1 − 1, i.e., in

mode qi+1 truncation takes place. In this case, x(Ti+1) =
M̄qi+1,γi+1,qix(T

−
i+1), and

x̂(Ti+1) = M̄11
qi+1,γi+1,qi

x̂(T−i+1)

= M̄qi+1,γi+1,qi

[
x̂(T−i+1)

0

]
−
[

0
M̄21

qi+1,γi+1,qi

]
x̂(T−i+1),

(24)

if rqi = nqi −1, and

x̂(Ti+1) = M̄11
qi+1,γi+1,qi

x̂(T−i+1)

= M̄qi+1,γi+1,qi x̂(T
−

i+1)−
[

0
M̄21

qi+1,γi+1,qi

]
x̂(T−i+1),

(25)

if rq = nq. It then follows that

xc(Ti+1) = M̄qi+1,γi+1,qixc(T−i+1)−
[

0
M̄21

qi+1,γi+1,qi

]
x̂(T−i+1),

xo(Ti+1) = M̄qi+1,γi+1,qixo(T−i+1)+

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1).

(26)

From (26) it then follows that

xT
o (Ti+1)Λqi+1xo(Ti+1) =

xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1M̄qi+1,γi+1,qixo(T−i+1)+

2xT
o (T

−1
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

+

([
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

)T

Λqi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1).

(27)

Since Λqi+1 =

[
Λ̂qi+1 0

0 βqi+1

]
, it follows that

([
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

)T

Λqi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

= βqi+1‖M̄
21
qi+1,γi+1,qi

x̂(T−i+1)‖
2
2.

Moreover,

2xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1) =

γo−2βqi+1‖M̄
21
qi+1,γi+1,qi

x̂(T−i+1)‖
2
2,

where

γo =


2βqi+1

(
M̄21

qi+1,γi+1,qi
x1(T−i+1)+ M̄22

qi+1,γi+1,qi
x2(T−i+1)

)T

×M̄21
qi+1,γi+1,qi

x̂(T−i+1) if rqi = nqi −1

2βqi+1

(
M̄21

qi+1,γi+1,qi
x(T−i+1)

)T

×M̄21
qi+1,γi+1,qi

x̂(T−i+1) if rqi = nqi

.

Hence, it follows that

xT
o (Ti+1)Λqi+1xo(Ti+1)

= xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1M̄qi+1,γi+1,qixo(T−i+1)

+ γo−βqi+1‖M̄
21
qi+1,γi+1,qi

x̂(T−i+1)‖
2
2.

(28)

With a similar reasoning,

xT
c (Ti+1)Λ

−1
qi+1

xc(Ti+1)

= xT
c (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qixc(T−i+1)

−2xT
c (T

−1
i+1)M̄

T
qi+1,γi+1,qi

Λ
−1
qi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

+(

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1))

T
Λ
−1
qi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1).

(29)
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Since Λ−1
qi+1

=

[
Λ̂−1

qi+1
0

0 β−1
qi+1

]
, we can again write that

([
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

)T

Λ
−1
qi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

= β
−1
qi+1
‖M̄21

qi+1,γi+1,qi
x̂(T−i+1)‖

2
2,

and

2xT
c (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λ
−1
qi+1

[
0

M̄21
qi+1,γi+1,qi

]
x̂(T−i+1)

= γc +2β
−1
qi+1
‖M̄21

qi+1,γi+1,qi
x̂(T−i+1)‖

2
2,

where

γc =


2β−1

qi+1

(
M̄21

qi+1,γi+1,qi
x1(T−i+1)+ M̄22

qi+1,γi+1,qi
x2(T−i+1)

)T

×M̄21
qi+1,γi+1,qi

x̂(T−i+1) if rqi = nqi −1

2β−1
qi+1

(
M̄21

qi+1,γi+1,qi
x(T−i+1)

)T

×M̄21
qi+1,γi+1,qi

x̂(T−i+1) if rqi = nqi

,

and hence

xT
c (Ti+1)Λ

−1
qi+1

xc(Ti+1)

= xT
c (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qixc(T−i+1)

− γc−β
−1
qi+1
‖M̄21

qi+1,γi+1,qi
x̂(T−i+1)‖

2
2.

(30)

Note that β = βqi+1 since it was assumed that rqi+1 = nqi+1−
1. Moreover, notice that β 2

qi+1
γc = γo, hence by using (28),

(30), (19) and (18) it follows

V (x(Ti+1), x̂(Ti+1))

= xT
o (T

−
i+1)M̄

T
qi+1,γi+1,qi

Λqi+1M̄qi+1,γi+1,qixo(T−i+1)

+β
2xT

c (T
−

i+1)M̄
T
qi+1,γi+1,qi

Λ
−1
qi+1

M̄qi+1,γi+1,qixc(T−i+1)

−2β‖M̄21
qi+1,γi+1,qi

x̂(T−i+1)‖
2
2

≤ xT
o (T

−
i+1)Λqixo(T−i+1)+β

2xT
c (T

−
i+1)Λ

−1
qi

xc(T−i+1)

=V (x(T−i+1), x̂(T
−

i+1)).

From (19) and (18), it then follows that (17) holds.
Proof: [Proof of Theorem 2] From Lemma 6 it follows

that

V (x(s), x̂(s))−V (x(Ti), x̂(Ti)) =
∫ s

Ti

∂V (xo(t),xc(t))
∂ t

dt

6 4β
2
∫ s

Ti

‖u(t)‖2
2dt−

∫ s

Ti

‖y(t)− ŷ(t)‖2
2dt,

and hence

V (x(T−i+1), x̂(T
−

i+1))−V (x(Ti), x̂(Ti))

6 4β
2
∫ Ti+1

Ti

‖u(t)‖2
2dt−

∫ Ti+1

Ti

‖y(t)− ŷ(t)‖2
2dt.

By Lemma 7, V (x(Ti+1), x̂(Ti+1)) ≤ V (x(T−i+1), x̂(T
−

i+1)) and
hence

V (x(Ti+1), x̂(Ti+1))−V (x(Ti), x̂(Ti))

6 4β
2
∫ Ti+1

Ti

‖u(t)‖2
2dt−

∫ Ti+1

Ti

‖y(t)− ŷ(t)‖2
2dt.

By summing up the inequalities above,

V (x(Tk), x̂(Tk))−V (x(T0), x̂(T0))

=
k−1

∑
i=0

V (x(Ti+1), x̂(Ti+1))−V (x(Ti), x̂(Ti))

≤
k−1

∑
i=0

4β
2
∫ Ti+1

Ti

‖u(t)‖2
2dt

−
∫ Ti+1

Ti

‖y(t)− ŷ(t)‖2
2dt

= 4β
2
∫ Tk

T0

‖u(t)‖2
2dt−

∫ Tk

T0

‖y(t)− ŷ(t)‖2
2dt.

Using that T0 = 0, x(0) = 0, x̂(0) = 0, and V (0,0) = 0 and
V (x(Tk), x̂(Tk))≥ 0, it follows that

0≤ 4β
2
∫ Tk

0
‖u(t)‖2

2dt−
∫ Tk

T0

‖y(t)dt− ŷ(t)‖2
2dt⇔∫ Tk

T0

‖y(t)dt− ŷ(t)‖2
2dt ≤ 4β

2
∫ Tk

0
‖u(t)‖2

2dt.

Since limk→∞ Tk = ∞, the statement of the theorem follows

IV. NUMERICAL EXAMPLES

In this section, we analyze the practical applicability of the
proposed MOR procedure. We consider a low-order artificial
example represented by a linear hybrid systems with four
subsystems.

First, we characterize the discrete dynamics. The discrete
state-transition map δ : Q×Γ→ Q can be described in two
ways, explicitly, i.e.,

Mode q1 : δ (q1,0) = q4, δ (q1,1) = q2,

Mode q2 : δ (q2,0) = q3, δ (q2,1) = q4,

Mode q3 : δ (q3,0) = q4, δ (q3,1) = q1,

Mode q4 : δ (q4,0) = q2, δ (q4,1) = q3.

or using a directed graph, i.e., as in Fig. 1.

Fig. 1. Directed graph representation of the state transition map.

Next, we explicitly introduce the chosen discrete event
signal γ : R+ → Γ and also the discrete state trajectory q :
R+→ Q

γ(t) =



1, t ∈ [0,T1),

0, t ∈ [T1,T2),

1, t ∈ [T2,T3),

. . .

1, t ∈ [T10,T11).

q(t) =



q2, t ∈ [0,T1),

q3, t ∈ [T1,T2),

q1, t ∈ [T2,T3),

. . .

q4, t ∈ [T10,T11),

(31)

with given T1, . . . ,T11 (see Fig. 2). Additionally, in Fig. 2, we
depict the two signals introduced in (31), i.e., γ(t) and q(t)
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Fig. 2. The discrete event signal γ(t) (up) and the discrete state trajectory
q(t) (down).

as a function of time (the time interval for this application
was chosen to be [0,15] seconds).

Finally, we proceed to the description of the continuous
dynamics. Hence, the system matrices (Aq,Bq,Cq),1≤ q≤ 4
corresponding to the linear hybrid system under considera-
tion are written as follows:

A1 =

 −1 0 0
0 −3 0
0 0 −4

 , A2 =

[
−2 0
0 −1

]
,

A3 =

 −3 0 0
0 −1 0
0 0 −2

 , A4 =

[
1 0
0 1

2

]
,

B1 =

 1
−1
1

 , B2 =

[
1
1

]
, B3 =

 1
1
3

 ,

B4 =

[
2
−1

]
, C1 =

[
1 −1 1

]
, C2 =

[
1 3

2

]
,

C3 =
[

1 1 1
]
, C4 =

[
2 1

]
.

Additionally, the reset maps are given by the following matrices

M4,0,1 =
1
τ

[
0 0 −1
0 1

2 0

]
, M2,1,1 =

1
τ

[
0 1 0
1 0 0

]
,

M3,0,2 =
1
τ

 0 1
1 0
0 0

 , M4,1,2 =
1
τ

[
−1 1
0 1

]
,

M4,0,3 =
1
τ

[
0 0 1
0 0 0

]
, M1,1,3 =

1
τ

 1 −1 0
0 0 1
0 −1 0

 ,
M2,0,4 =

1
τ

[
−1 0
0 − 1

2

]
, M3,1,4 =

1
τ

 −1 0
1 0
0 1

2

 .
Note that the parameter τ > 0 was used in scaling the reset
maps shown above. More precisely, in what follows, the
value τ = 3 was chosen for numerical computations.

We perform a time-domain simulation by using as con-
tinuous control input, the function u(t) = 5sin(20t)e−t/5 +
0.5e−t/2. In Fig. 3, we depict both the control input u(t)
and the observed output y(t) (as introduced in (2)) The
next step is to find appropriate Gramians to be used in the
balanced truncation procedure. We start by first computing
the observability Gramians.

We are looking for positive definite matrices that satisfy
the conditions in (4). Hence, for each mode, we explicitly
state the corresponding LMIs:

• Mode 1:


AT

1 Q1 +Q1A1 +CT
1 C1 < 0,

MT
4,0,1Q4M4,0,1−Q1 6 0,

MT
2,1,1Q2M2,1,1−Q1 6 0.

0 5 10 15
-10

0

10
Input signal

0 5 10 15
Time(t)

-2

0

2
Output signal

Fig. 3. The control input u(t) (up) and the observed output y(t) (down).

• Mode 2:


AT

2 Q2 +Q2A2 +CT
2 C2 < 0,

MT
3,0,2Q3M3,0,2−Q2 6 0,

MT
4,1,2Q4M4,1,2−Q2 6 0.

• Mode 3:


AT

3 Q3 +Q3A3 +CT
3 C3 < 0,

MT
4,0,3Q4M4,0,3−Q3 6 0,

MT
1,1,3Q1M1,1,3−Q3 6 0.

• Mode 4:


AT

4 Q4 +Q4A4 +CT
4 C4 < 0,

MT
2,0,4Q2M2,0,4−Q4 6 0,

MT
3,1,4Q3M3,1,4−Q4 6 0.

Note that, for the choice of parameter τ = 1, the above
systems of LMIs could not be solved (by means of the
optimization software provided in [26] and [27]).

Nevertheless, when choosing τ = 3, we were able to find
a valid solution, i.e., a collection of positive definite matrices
{Q1,Q2,Q3,Q4}. More precisely, we could find:

Q1 =

 3.2662 −0.1118 0.0733
−0.1118 1.7564 −0.0693
0.0733 −0.0693 1.4755

 ,
Q3 =

 1.7873 −0.0041 0.0752
−0.0041 3.4766 0.1468
0.0752 0.1468 2.4182

 ,
Q2 =

[
2.4546 −0.0023
−0.0023 4.0827

]
, Q4 =

[
3.9745 0.6789
0.6789 4.6925

]
.

Next, we need to find positive definite matrices Pi that
satisfy the conditions in (5). For each mode, we will state
the corresponding LMIs:

• Mode 1:

{
A1P1 +P1AT

1 +B1BT
1 < 0,

M1,1,3P3MT
1,1,3−P1 6 0,

• Mode 2:


A2P2 +P2AT

2 +B2BT
2 < 0,

M2,0,4P4MT
2,0,4−P2 6 0,

M2,1,1P1MT
2,1,1−P2 6 0.

• Mode 3:


A3P3 +P3AT

3 +B3BT
3 < 0,

M3,0,2P2MT
3,0,2−P3 6 0,

M3,1,4P4MT
3,1,4−P3 6 0.

• Mode 4:


A4P4 +P4AT

4 +B4BT
4 < 0,

M4,0,1P1MT
4,0,1−P4 6 0,

M4,0,3P3MT
4,0,3−P4 6 0,

M4,1,2P2MT
4,1,2−P4 6 0.

Again, for τ = 3, we could find the following matrices

P1 =

 5.3173 −0.1332 0.3859
−0.1332 2.3055 −0.0914
0.3859 −0.0914 1.9288

 ,
P3 =

 3.1234 −0.0344 0.3250
−0.0344 5.2759 0.5661
0.3250 0.5661 4.5523

 ,
P2 =

[
3.8471 0.1453
0.1453 5.3503

]
, P4 =

[
6.2062 −0.3344
−0.3344 7.4608

]
.
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Fig. 4. The observed outputs for the original and reduced systems and the
deviation between them (for the first choice of rk’s).
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Fig. 5. The observed outputs for the original and reduced systems and the
deviation between them (for the second choice of rk’s).

Next, we present the Gramians in balanced representation,
i.e., the diagonal matrices Λq from step 2 of Procedure 1.

Λ1 = diag(4.1894,2.0184,1.6542), Λ2 = diag(4.6754,3.0703),
Λ3 = diag(4.3741,3.2543,2.3291), Λ4 = diag(5.9718,4.8538).

By choosing the reduction orders to be r1 = 2,r2 = 2,r3 = 2
and r4 = 2 (a dimension reduction is performed only for
the first and third mode), we put together a reduced-order
linear hybrid system. The time-domain simulation results are
depicted in Fig. 4.

Next, we reduce the dimension of the systems correspond-
ing to the second and forth modes as well. Hence, choose
reduction orders r1 = 2,r2 = 1,r3 = 2 and r4 = 1. The time-
domain simulations results are depicted in Fig. 5.

V. CONCLUSION

In this paper, we have proposed a balanced truncation
procedure for reducing linear hybrid systems. For each linear
subsystem, specific Gramian matrices were computed by
solving particular LMIs. An analytical error bound in terms
of singular values of the Gramians was also provided.

We demonstrated the effectiveness of the procedure
through a numerical example. Extensions that could be
further developed include adapting the proposed method to
the case of hybrid systems with mild nonlinearities, e.g.,
systems with bilinear or stochastic behavior.
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