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Abstract—Serverless computing is increasingly popular be-
cause of its lower cost and easier deployment. Several cloud
service providers (CSPs) offer serverless computing on their
public clouds, but it may bring the vendor lock-in risk. To avoid
this limitation, many open-source serverless platforms come out
to allow developers to freely deploy and manage functions on
self-hosted clouds. However, building effective functions requires
much expertise and thorough comprehension of platform frame-
works and features that affect performance. It is a challenge for
a service developer to differentiate and select the appropriate
serverless platform for different demands and scenarios. Thus,
we elaborate the frameworks and event processing models of
four popular open-source serverless platforms and identify their
salient idiosyncrasies. We analyze the root causes of performance
differences between different service exporting and auto-scaling
modes on those platforms. Further, we provide several insights
for future work, such as auto-scaling and metric collection.
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I. INTRODUCTION

Serverless computing has ushered in a new era in cloud
computing. Cloud computing seeks to provide computing and
storage services at large scale and low cost to end-users
through economies of scale and effective multiplexing [2].
Serverless computing puts multiplexing and scalability to the
next level by allowing providers to commit just the required
amount of resources to a particular application and utilize
the resources for just the time needed to execute an invoked
function. Resources are scaled dynamically to meet the de-
mand of user requests. Unlike traditional cloud deployment
models, where a number of computing instances are deployed
well in advance, serverless computing achieves nearly zero

In this paper, we significantly add the following work based on a previous
workshop version [1] published at WoSC’19: (1) We describe the salient
characteristics of four serverless platforms in more detail in §III, including
new figure illustration; (2) We elaborate resource/workload-based auto-scaling
frameworks in §III; (3) We evaluate four serverless frameworks with more
experiments in §IV; we also add detailed analysis about the root cause of
performance differences among these serverless frameworks in §IV; (4) We
provide insights and future work for serverless platforms in §V.
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resource cost when there is no demand, and scales to as
many instances as needed to meet the traffic demand. Thus,
serverless computing could be both scalable and cost effective.

In addition to scalability and multiplexing, serverless com-
puting allows developers to build, deploy and run the ap-
plication on demand without focusing on server manage-
ment, according to the Cloud Native Computing Foundation
(CNCF) [3]. When an event is triggered, a piece of in-
frastructure is allocated dynamically for function execution.
The underlying details of resource management, i.e., resource
allocation, data transmission and function execution, are de-
coupled from the user. Many cloud service providers (CSPs)
offer serverless computing platforms on their public clouds,
such as Amazon Web Services (AWS) Lambda, which is an
event-driven serverless platform that enables to implement and
deploy application in any supported languages and execute on-
demand as docker containers. Since public serverless platforms
may incur vendor lock-in risk, many open-source serverless
platforms spring up and allow developers to freely deploy and
manage functions on self-hosted clouds. However, building
effective functions requires much expertise and in-depth un-
derstanding of platform frameworks and characteristics that
affect performance. It is a challenge for a service developer
to differentiate and select the proper serverless platform in
different scenarios.

To help developers choose suitable open-source platforms
to deploy efficient services, we systematically identify and
analyze the salient characteristics of several popular open-
source serverless platforms (i.e., Knative!, Kubeless?, Nuclio®
and OpenFaaS*) and compare their performance. Our key
contributions include:

« We provide an understanding of the platform frameworks
and interaction between different components of four pop-
ular open-source serverless platforms.

« We analyze the salient features of each platform, such as
the built-in workload-based auto-scaling mechanism and the
event processing model inside the function pod.

« We evaluate the performance of different service exporting
and auto-scaling modes, and analyze the root cause of
performance gap among different serverless platforms.

e We give several insights for future work, such as auto-
scaling and metric collection.
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Feature ‘ ‘ Nuclio OpenFaaS Knative Kubeless
Queue inside Function Pod v v v X
Support for Multiple Workers v x v x
in Function Pod
Function Startup Policy Warm Start Cold/Warm Start Cold/Warm Start Cold Start

Service Export Method Ingress Gateway/NodePort

API Gateway/Ingress Gateway

Ingress Gateway Ingress Gateway

Runtime Metric Collection Metric Server

Metric Server/API Gateway

Metric Server/Queue-proxy Metric Server

Auto-scaling Mode CPU/Memory

CPU/Memory/RPS

CPU/Memory/Concurrency/RPS CPU/Memory

Scale-to-zero X

3 v X

TABLE I: Comparision of popular open-source serverless platforms

II. BACKGROUND

Many cloud service providers (CSPs) offer serverless com-
puting platforms on their public clouds, such as Amazon
Web Services (AWS) Lambda, Google Cloud Functions, Azure
Functions and Alibaba Cloud Function Compute. The develop-
ers are required to design and deploy their serverless functions
based on the supporting services provided by CSPs, such as
message queuing, storage and database. Thus it incurs the
risk of vendor lock-in. The deployed serverless functions rely
heavily on specific CSPs, and it is difficult to migrate existing
functions to either self-hosted clusters or other public clouds.

The open-source serverless platforms bring more flexibility
and allow developers to freely deploy and manage functions
on self-hosted clouds. However, there are still some challenges
for open-source serverless platforms: (1) it requires a deep
understanding of platform features to build effective functions;
(2) the developers should manage and maintain serverless
platforms by themselves, which requires much expertise of
platform frameworks and infrastructures; (3) the performance
of open-source serverless platforms may vary in different
scenarios, and it is difficult to choose the proper platforms for
a specific usage scenario. Therefore, it is necessary to analyze
the salient characteristics of popular open-source serverless
platforms and compare their performance to help developers
choose suitable platforms to deploy efficient services.

III. PLATFORM CHARACTERISTICS

Based on recent popularity, community vibrancy and feature
richness, we specifically select four open-source serverless
frameworks, i.e., Knative, Kubeless, Nuclio and OpenFaaS,
to analyze their characteristics.

A. Dependency on Kubernetes

Kubernetes [4] is a portable and extensible open-source
system that facilitates declarative configuration, automating
deployment and management for containerized workloads.
Most of open-source serverless platforms rely on Kubernetes
for orchestration and management of function pods, which are
the atomic deployable units in Kubernetes. Fig. 1 shows the
pivotal Kubernetes services that serverless platforms depend
on. These Kubernetes services are used for: (1) configuration
management, (2) service discovery, (3) auto-scaling, (4) pod

! https://github.com/knative 2 https://kubeless.io 3 https://nuclio.io

4 https://www.openfaas.com

scheduling, (5) traffic load balancing, (6) network routing and
(7) service roll-out and roll-back.
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Fig. 1: Serverless platforms and underlying Kubernetes ser-
vices.

Thanks to the horizontal pod auto-scaler (HPA) feature
from Kubernetes, the Kubernetes-based serverless platforms
support resource-based auto-scaling. The framework of HPA
is shown in Fig. 2. The Kubelet on each node collects the
resource metrics of each pod. HPA gets these metrics from
the API server. The auto-scaling threshold could be a raw
value or a percentage of the pod requested amount for that
resource. When the CPU or memory usage of a given function
pod exceeds the threshold, HPA automatically triggers the
Development controller to scale the pod number.
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Fig. 2: Horizontal pod auto-scaling framework.

B. Salient Features of Serverless Platforms

Table I summarizes salient features of four widely-known
open-source serverless platforms.

1) Nuclio: The main components of Nuclio are shown
in Fig. 3. In each function pod, there is one event listener
and multiple worker processes. The event listener receives
new events and redirect them to worker processes. Multiple
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worker processes could work in parallel and improve the
performance significantly on a multi-core worker node. The
worker process number is set to be static and specified by the
configuration file. The open-source version does not have a
built-in workload-based auto-scaling feature, but the resource-
based auto-scaling is supported by Kubernetes HPA.

Nuclio supports two ways to trigger functions: (1) invoking
the function by name through ingress controller, which can
distribute the traffic to different back-end pods according to
the pre-set load balancing rule (e.g., round-robin, random
and least connection first) and (2) sending requests directly
to function pods by NodePort, which is a unique allocated
cluster-wide port for the function. In the NodePort method,
incoming requests are load balanced at random by Netfilter.
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Fig. 3: Nuclio framework.

2) OpenFaaS: The key components of OpenFaaS are
shown in Fig. 4. The API gateway provides access to the
functions and collects traffic metrics. Faas-netes is the con-
troller for managing OpenFaaS function pods. Prometheus’
and AlertManager® are used for auto-scaling.
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Fig. 4: OpenFaaS framework.

Each function pod contains a single container running two
type of processes, namely of-watchdog and function process.
Of-watchdog is a tiny server that works as the entry-point for
incoming requests and forwards them to the function process.
Of-watchdog can operate in three modes, i.e., HTTP, streaming
and serializing. In HTTP mode, the function process is forked
only once at the beginning and kept warm for the entire life
cycle of the function pod. In both the streaming and serializing
mode, a new function process is forked for every request,
resulting in significant cold-start latency and adverse impact on
performance. Our evaluation results show that the throughput
of the streaming or serializing mode is about 10x lower than
that of HTTP mode.

OpenFaaS has a built-in requests-per-second (RPS) based
auto-scaling feature. Prometheus scrapes the traffic metrics
from API gateway. AlertManager reads the RPS metric from
Prometheus and fires an alert to the API gateway according to
the auto-scaling rule defined in the configuration file. Then the

5 https://prometheus.io/ © https:/github.com/prometheus/alertmanager

API gateway handles the alert and invokes the Faas-netes to
scale up or scale down function replicas. Note that the open-
source version does not support scale-to-zero feature, which is
only available in the commercial version, i.e., OpenFaaS Pro.
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Fig. 5: Knative framework.
3) Knative: Fig. 5 shows the Knative framework. Each

function pod consists of two containers, namely queue-proxy
container and function container. The queue-proxy is a sidecar
container to queue incoming requests and forward them to
the function container. The queue-proxy provides a buffer to
handle traffic burst in spite of incurring queuing latency. In
addition, the queue-proxy collects metrics and expose them
via a simple HTTP server, i.e., internal metric server. Multiple
workers reside in the user container to process requests in
parallel. The communication overhead between queue-proxy
container and function container is higher than the process
model of Nuclio and OpenFaaS, and thus results in lower
performance.

The Knative built-in auto-scaling, i.e., Knative pod au-
toscaler (KPA), supports both RPS mode and concurrency
mode. The auto-scaler scrapes metrics from function pods
and computes the replica number based on the auto-scaling
algorithm. The deployment controller gets the auto-scaling de-
cision and adjusts the pod number. Knative supports scale-to-
zero functionality which recycles all pods of inactive functions.
When a new request arrives for an idle function, the ingress
controller redirects the request to the activator to buffer it.
Then the activator triggers the autoscaler which could scale up
the idle function from zero. Once the function is running again,
the activator sends the buffered request to the pod. Although
scale-to-zero reduces resource usage, it leads to extra cold start
latency.

4) Kubeless: Kubeless is another open-source platform
built on top of Kubernetes. Fig. 6 describes the key compo-
nents and the working model of Kubeless. There are several
options for ingress controllers. We experiment with Nginx
ingress controller’ and Traefik ingress controller®, and opt
for Traefik due to better performance. Kubeless leverages
Kubernetes HPA for auto-scaling and does not support scale-
to-zero.

C. Service Exporting and Network Routing

1) Service Exporting: The function pods are dynamic en-
tities that can be created and destroyed at any time due to
auto-scaling, failures, efc. Hence, Kubernetes provides service

7 https://kubernetes.github.io/ingress-nginx 8 https:/traefik.io
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Fig. 6: Kubeless framework.

as an abstraction to access the pods of the same function.
There are several ways to export services: (1) the service
could be assigned a NodePort, which is used to route the
incoming traffic to the entry node and let kernel stack control
load-balancing of the traffic across active pods; (2) the API
gateway/ingress controller works as the entry point and the
services are exported with specific URLs. The API gate-
way/ingress controller component of the serverless platform
can be accessed from outside the cluster by a external public
IP address. Once the API gateway/ingress controller receives
an incoming request, it determines the service for the request
according to the URL, and then load-balances and routes the
packet to a back-end active pod instance.
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Fig. 7: Network routing (Flannel mode) to export the services.

2) Network Routing: Fig. 7 describes Flannel — a sim-
ple Kubernetes overlay networking framework to route the
traffic to function pods. The Kube-Proxy pod is responsible
for setting up the routing and load-balancing rules, i.e., the
netfilter destination network address translation (DNAT) rules
to change the destination IP of incoming request packets [5].
The Kube-Flannel pod is responsible for intercepting the
packets and performing UDP encapsulation/decapsulation for
the traffic exiting/entering the physical network interface.

IV. PERFORMANCE EVALUATION

We first compare the overall performance of different open-
source serverless platforms. Based on the performance results
of multiple service exporting modes and auto-scaling modes,
we analyze the root cause of performance gap among different
serverless platforms.

A. Experimental Setup and Workload Description

We evaluate the serverless platforms on the CloudLab
testbed [6] consisting of one master and two worker nodes,

each of them equipped with Intel CPU E5-2640v4@2.4GHz
(10 physical cores), running Ubuntu 16.04.1 LTS (kernel
4.4.0-154-generic). We build all four serverless platforms on
Kubernetes (v1.20.0), using the latest version available at the
time of writing’. Several serverless functions of Python 3.6
runtime are implemented. We use wrk!'® to generate HTTP
workloads for invoking serverless functions.

B. Performance

1) HTTP Workload: To evaluate the baseline performance
of different serverless platforms, we implement a HTTP work-
load function that could fetch a four-byte static webpage from
a local HTTP server on the master node. For a fair comparison,
we limit to a single instance of the function pod, disable
auto-scaling and configure the same queue size and timeout
parameters (50K requests, and 10s timeout) at the ingress
gateway and function pod components across all the platforms.
For Nuclio and Knative, we further restrict it to a single
worker in one pod. Every experiment lasts for two minutes
and we measure for one minute after one-minute warm-up.
The experiment is repeated for 20 times. Fig. 8 shows the
throughput for varying number of concurrent connections and
the latency profile for concurrency level of 100. Nuclio has
the least 99%ile latency within 500ms, as it allows queuing
only within the function pod, while OpenFaaS and Knative
can queue requests at ingress/gateway components. OpenFaaS
shows heavy tail due to queuing at both the gateway and of-
watchdog components. Kubeless drops the connections at the
ingress, resulting in additional retries from the client and hence
lower throughput. The latency with Kubeless is lower because
there is no queue inside the Kubeless function pod.
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Fig. 8: Performance of HTTP workload function. Error bars
indicate standard deviation over 20 runs.

2) Latency Breakdown of Single Request: We analyze the
delay overheads incurred in processing serverless functions
for different platforms. We breakdown the processing delays
within the function pod. For this experiment, we use curl to
send one request for hello-world function'! and use t cpdump
to capture the packets on the worker node of the function
pod. We record four timestamps, i.e., (1) when the request
reaches the function pod; (2) start of the function runtime; (3)

9 Nuclio (v1.6.1); OpenFaaS (v0.20.11) with HTTP mode of-watchdog;
Knative (v0.21) with Istio ingress controller (v1.8.4); Kubeless (v1.0.8) with
Traefik ingress controller (v2.4). 'O https:/github.com/wg/wrk ! Tt is a
no operation function that returns four bytes of static text in the response.
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end of the function runtime; (4) when the response is sent
out of function pod. The experiment is repeated for 20 times
and the average time intervals between these timestamps are
shown in Fig. 9. In all frameworks, the actual run-time of
the function (0.001ms) is the same. However, the function
initiation time (time taken for request to be forwarded to the
function instance) and function response delay (time taken for
the response of the function to be sent out of the pod) vary.
This depends on how the data is packaged and shared with
the function instance. Due to forking-per-request, Kubeless
incurs very high delay in forwarding the packet to the function
instance.

Process 12 253 34

Binsiten Beg Nuclio 0.63 0.001 0.54
OpenFaaS | 1.32 0.001 0.93

Function Knative 1.30 0.001 0.62
Runtime Kubeless | 4.96 0.001 2.63

Fig. 9: Latency breakdown of function execution (ms).

C. Auto-scaling

To study the auto-scaling capabilities provided by different
serverless platforms, we compare the features of both the
workload-based and resource-based auto-scaling under differ-
ent workload characteristics. We use the same HTTP workload
function as in §IV-B1.

1) Workload-based Auto-scaling: Both Knative and
OpenFaaS support workload-based auto-scaling. While the
workload-based auto-scaling metric of OpenFaaS is RPS, the
metric in Knative is concurrency, i.e., the concurrent request
number. For a fair comparison, we set equivalent auto-scaling
configuration parameters for these platforms'>. We use wrk
to send a steady flow of requests (with concurrency of 100
and RPS of 100) and run the experiment for 60s. Periodically
every 2s, we monitor the number of pod instances, CPU and
memory usage, and throughput. From Fig. 10, we observe
that Knative scales multiple instances at a time to reach 10
instances quickly (in 12s), while OpenFaaS just scales up
one instance at a time, taking 26s to scale up to 10 instances.
Due to the longer process chain of auto-scaling in OpenFaaS
(i.e., API gateway — Prometheus — AlertManager — API
gateway — Faas-netes), the scaling latency of OpenFaaS is
higher than that of Knative. Although the CPU usage for
the scaled instances looks identical, the memory pressure of
Knative is higher. This stems from the differences in python
runtimes and proxies (i.e., the queue-proxy in Knative and
of-watchdog in OpenFaaS).

2) Resource-based Auto-scaling: All these Kubernetes-
based platforms support resource-based auto-scaling. In this
experiment, we use CPU usage as the metric of HPA and
the CPU threshold is set to be 50%. The other experiment
configurations are the same as those in §IV-C1. As Fig. 11

12 In Knative, we set the minScale and maxScale instances as 1 and 10,
target to 10, max-scale-up-rate to 100, tick interval to 2s, and stable window
to 10s. Likewise, for OpenFaaS, we set scale-factor to 10 and configure the
alert-notification window to 2s, and RPS threshold to 10.
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Fig. 10: Workload-based auto-scaling.

shows, except for Kubeless, the auto-scaling behavior is simi-
lar across all the platforms i.e., auto-scaling tries to double the
instances at each step until it reaches the maximum. However,
the duration of each step depends on the CPU utilization factor,
which in turn depends on the serverless platform specific
components, such as event-listener, of-watchdog and queue-
proxy. Nuclio, being relatively more CPU hungry, is able to
scale more rapidly (in 40s) than Knative and OpenFaaS. For
Kubeless, the fork-per-request and no queuing of function pods
result in high latency and packet loss, which in turn contributes
to lower throughput and lower CPU utilization [7]. Thus it
leads to poor auto-scaling performance.
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Fig. 11: Resource-based auto-scaling.
V. INSIGHTS AND FUTURE WORK

1) Promising Platform: In spite of the moderate perfor-
mance compared with other open-source platforms, Knative
has many useful features, such as scale-to-zero and multiple
auto-scaling modes, and active community that can provide
lots of help for users and developers. Thus Knative is a suitable
platform for further development and innovation in serverless
computing.

2) Auto-scaling: For current auto-scaling mechanisms, such
as workload/resource-based auto-scaling, the auto-scaling met-
ric and threshold are set by tenants. Because the tenants



may not really know the runtime characteristics of their
functions (i.e., resource usage and execution time), they easily
mis-configure the auto-scaling settings. In addition, it is not
always easy to predict the correct indicators that could show
whether the current function pods are under-resourced or
under-utilized. Thus a more smart auto-scaling algorithm is
needed to be designed to both properly meet the workload
demand and save the resources in different scenarios.

3) Function Startup Policy: There are two options for
function startup policy, i.e., cold start and warm start. For
the functions with low invocation rates, cold start policy
could help reduce resource usage in the case of no incoming
requests, but it leads to extra cold start latency. Therefore, the
cold start is not appropriate for time-sensitive functions [8].
We should carefully choose the function startup policy in
accordance with the scenarios and user demands.

4) Metric Collection: The on-demand provisioning feature
of serverless computing depends on several mechanisms, such
as auto-scaling, scheduling and load balancing. All these
mechanisms leverage metrics to make the decision. Many plat-
forms, such as Knative and OpenFaaS, use scraping method to
fetch metrics from pods. In our experiments, we find that the
scraping method may leads to large traffic overhead when there
are a large number of pods. Using sampling to only scrape a
section of pods can partly decrease the overhead. However,
sampling may miss out the abnormal pods and reduce the
accuracy of metrics. Hence, a more efficient metric collection
mechanism is worth studying further.

5) Service Export and Network Routing: There are many
ways to export services and route incoming requests to back-
end function pods, such as cluster IP, NodePort, function
name/URL. All of them have both strengths and weaknesses,
and should be chosen with caution.

6) Function Chain: 1t is useful to chain multiple functions
for stateful workflows and complex services. How to make
function chain more efficient and powerful needs to be ex-
plored in future work.

VI. RELATED WORK

In work [9]-[11], the authors conducted several measure-
ments on different cloud serverless platforms (AWS Lambda,
Microsoft Azure, Google Cloud), and found the AWS to be
better in terms of throughput, scalability, cold-start latency.
The work [12], [13] investigates the different factors that
influence the performance of AWS Lambda, namely the impact
of the choice of language of the function, memory footprint
of the function, efc. Work [14] evaluates the performance of
Fission, Kubeless and OpenFaaS serverless frameworks and
characterizes the response time and the ratio of successfully
completed requests for different loads. However the work fails
to characterize the throughput of these platforms and accounts
for the mean latency (response time) and successful responses
at different load characteristics, which is debatable, without
the proper consideration and configuration of the serverless
platform specific configuration parameters, resulting in in-
accurate results. Work [15] quantitatively evaluates Apache

OpenWhisk, OpenFaaS, Kubeless, and Knative platforms. The
results for Kubeless are similar, but for the other platforms,
we feel the presented results are inaccurate. This could be due
to the usage of Kubernetes. In contrast, our work focuses on
discerning the architectural blocks that impact the performance
of Kubernetes-based open-source serverless platforms.

VII. CONCLUSION

We elaborate the working models of different popular open-
source serverless platforms and identify their key characteris-
tics. In addition, we analyze the root causes of performance
gap of different service exporting and auto-scaling modes on
those platforms. Further, several insights are proposed for
future work, such as auto-scaling, service export and metric
collection.
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