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Abstract—Managing cache content at the edge is one of the
many use cases of 5G-and-beyond networks. However, increasing
the density of Edge Data Centers (EDCs) to service requests is
a crucial problem. To overcome this problem, recent research
has advanced mobile device architecture paradigms and the
content caching in a Mobile Device Cloud (MDC). These two
service locations (EDCs and MDC) are registered with the Mobile
Network Operator (MNO), enabling the MNO to control the
content placement for profit maximization. As the user demands
for content items are directly related to the QoS perceived by
the user, it is important to understand the future popularity of
the content items and to place them appropriately. Additionally,
privacy issues have increased over time because of sensitive user
information being divulged at the MDC. To preserve privacy, a
branch of machine learning called Federated Learning (FL) can
train machine learning models leaving the data in the end user
devices. The paper contributions are as follows: (1) We introduce
an FL algorithm called FedCo, that trains a deep-neural network
(DNN) to predict the user demand of a specific content, so as
to manage the content files placement at EDC and MDC sites.
(2) We then conduct a theoretical evaluation of user demand
behavior via prospect theory to justify revenue maximization for
an MNO. (3) We show numerically via a multimedia content
delivery use-case how the proposed model compares favorably
with two state-of-the-art designs.

Index Terms—Federated Learning (FL), Mobile Device Cloud
(MDC), Mobile Edge Computing (MEC), Edge Management.

I. INTRODUCTION

In order to de-congest the backhaul network, the manage-
ment of content caching has been closely investigated in the
last decade. Further, reducing the delay for the last-mile users
has been a major research focus. To this end, placing popular
contents closer to the user so that frequently requested files
can be retrieved faster, has been a key endeavour for many
engineering applications that have been developed post-2015.
There are two prevalent models studied in the edge caching
paradigm, namely the costly edge data center (EDC) model [1]
and the low cost 5g-D2D model [2]. Both of these models
deployments have their own pros and cons [2], [3], [4].
In general, there is broad agreement that MEC deployments
are costly, especially when they serve demand of multimedia
services in upcoming 5G networks [5].

Recent research has begun to involve the mobile equipment
(MEs) nodes in the multimedia delivery loop via Device-to-
Device (D2D) communications. In this paradigm, MEs lend
their own storage resources [6] [7] to serve each other via D2D
links, thereby flexibly enhancing the edge cloud capability
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and scalability. In such models, all mobile devices already
have a 5G subscription and MAC-IDs which are known
centrally by a base station (owned by an MNO). The client
requesting a service forms a D2D resource composition using
the idle resources of close-by devices. Note that MEs in-
creasingly feature acceleration modules for network-intensive
functions [8], [9]. Such a resource-rich environment of MEs
replacing the expensive MEC is called Mobile Device Cloud
(MDC) [10]. However, despite the MDC promises, privacy
issues are still prevalent. Further, users uploading contents
to a central data-center inherit the limitations of the existing
cloud infrastructure, such as single point of failure, latency,
redundancy, and security risks. Motivated by the need to
comprehensively address these issues, we propose a model
that carries the benefits of edge entities with an underlying
Federated Learning (FL) technique.

Recent efforts such as in [11], study the case of distributed
machine learning algorithm wherein parameters are distributed
across multiple edge nodes. In this model, raw data trans-
mission to a centralized location is not considered important
rather, the gradient descent results from each local node are
updated and averaged at a central place. The study [11] shows
that using such an environment results in close to optimal
results in terms of training time with a given resource budget.
Extrapolating this distributed FL to an MDC environment, we
show in our model that the users at the lowest layer may
request services from a 5G-D2D MDC (i.e registered with the
MNO) or an EDC collocated with the 5G-NR (New Radio)
base station. Having multiple content placement locations, not
only forms a convenient business model, but also empowers
the customers to select judiciously the QoS level that they
would like to pay for. As most of the QoS related metrics
depend on where the popular content items are placed, a close
examination of the content placement is needed. Further, as
both of these service locations (i.e., the EDC and the MDC)
are registered with the MNO, the question of where the content
with a high demand should be placed influences the MNO’s
profit margin.

A controller which is situated at the edge, e.g., within
a backhaul architecture [12], [13], makes the key decisions
of content placement. As shown in Figure 1, when each
user processes the FL from the controller for training the
model with the local data, the main goal of the end user
is to upload only the necessary model parameters’ updates.
After updating the parameters, the recommendation for the
content is registered in the controller. This recommendation
is then used to place the content in an appropriate resource



( y ™
o FedCo
E@E Mobility Q Placement Federated
Manager Identifier o —— Average Engine
Cache /

Decision

“.-
MDCdb
VDo

e

MDC_statedb

Fig. 1: When each user downloads the FL framework from the
controller for training the model with the local data marked
as red arrow, the main goal of the end user is to upload only
the necessary parameter updates.

block (i.e. a device cloud or an EDC). The edge controller
is responsible for aggregating the information from the users
and the choice of the most popular content. This translates into
understanding the QoS levels of the user, thereby resulting in
the maximization of the MNO’s revenues. Additionally, by
keeping the locally trained data with the end-user, security
risks are minimized. In line with these two objectives, the
contributions of this paper are:

o We design a hierarchical architecture for multimedia con-
tent delivery and caching management where the MNO
places the 5G-D2D compositions in different strategic
areas along with other edge computing entities, allowing
users to select their offloading points.

o We formulate a business model for the MNO to maximize
its revenues with the key constraint of satisfying the user’s
QoS. The management is supported by a FL algorithm
that predicts the users’ demands for specific content in
order to provide the exact location for its placement.

« Extensive simulations were conducted to show the effec-
tiveness of the proposed model compared to two state of
the art models, namely Random Caching [14] and Edge-
Boost [2].

The rest of the paper is organized as follows. Section II
delineates the novelty of the proposed solution with a brief
discussion of the most recent related work. Section III presents
the system design and the associated problem formulation.
Section IV presents the performance evaluation and Section V
provides concluding remarks.

II. RELATED WORK
A. Software Defined Network (SDN) Paradigm

It is challenging to address the difficulties in a network
whose mobility characters are not known. In [15] Wang et al.
capture the ubiquity of operations at the edge that encompasses
state of the art models. Authors discuss the key notions behind
the merger of software defined networks, artificial intelligence
and Deep Learning implementation at the edge. An SDN usage
in wireless network is proposed in [16]. In this architecture, a

cluster head is chosen that acts as a controller. Similar to these
models, our control plane logic utilizes the OpenFlow protocol
to feed control information via the south bound interface to
the data plane. Figure 2 shows how the collocation of the BS-
controller assists in reliably placing content.

B. Edge Caching Models and Federated Learning

Extensive studies have recently been conducted for replac-
ing the edge caching capacity by device storage resources via
D2D links [10] [17]. For instance, the authors in [18] have
utilized mobile vehicles as smart caching agents to offload the
caching tasks from the BS using a vehicular edge structure.
However, the random vehicular movements had not been
considered. Neglecting the vehicular movements significantly
impairs the caching demand estimation, which in turn nega-
tively affects the caching performance. Similarly, studies [19]
[20] proposes a distributed caching framework based on the
D2D assisted caching paradigm. The main difference between
the two is that in [20] a delay-aware caching algorithm over
D2D links is proposed that locates the best carrier. The key
idea is to minimize the transmission delay and improve the
throughput. These solutions regulate the caching capacity but
ignore the demand variations.

In [21], an overlay structure is employed to effectively
search for content providers in D2D networks without having
a reliable content popularity estimate. This would in turn
result in a sub-optimal revenue generation for the operator. In
[22], Deng et al. discuss a roadmap for how edge computing
and the interdisciplinary fields of Al and Machine Learning
together brought about change in various communications and
computations aspects at the edge. The main insights relate to
how devices resource constraints can be overcome training
machine learning models at the edge. However, this work
ignores some key aspects of revenue generation that is directed
towards the MNO who is deploying such a service.

C. Related Federated Learning (FL) Research

FL is a branch of machine learning that enables decentral-
ization of the training model by letting the end users be part of
the training and prediction loop. An over-the-air computation
model that exploit the super-position property of wireless
channels to aggregate data has been proposed in [23]. This is
one of the preliminary models that provides a close observation
of applying FL in wireless networks. The study [24] targets a
unique FL problem in challenged networks, where an LSTM
model is in place to take the inputs. The output obtained here
is the routes that are feasible in disaster management scenarios
or challenged scenarios as the authors define it. However, this
model cannot be reused in cases where we need to search
for computation sites to determine satisfactory QoS levels for
users. The study [25] proposed a FL based proactive content
caching (FPCC), which is a hierarchical architecture where
users upload only the requisite updates to the edge server
and keep all the remaining sensitive data on their devices.
However, due to the complex nature of the model, a scalable
deployment might not be possible. In contrast, our model is



purely based on the probability of outcomes that is judged via
a predictive user-behaviour model.

In [26], Chen et al. study FL training models in wireless
networks. In this work, the authors study the various network
parameters that come into play while the local FL. models
are transmitted to the Base Station (BS) that aggregates
them and maintains the global FL. model. They formulate an
optimization problem capturing wireless network parameters
and users choices. We take inspiration from this work for
the MDC scenario where there are network factors that come
into play while uploading the local FL models to the central
controller situated at the base station. The key difference from
that work is that our interest is towards producing a seamless
content placement/retrieval environment for cloud users which
not only benefits the MNO but also provides a better Quality
of Experience (QoE) to the user. To that end, while training,
we ensure that our algorithm produces optimal results while
minimizing losses.

Zhao et al. in [27], elaborate on the use of Federated Radio
Access Networks where the combination of edge computing
and Al is explained. Fundamentally, authors study the use of
loss functions at the time of training and the commensurate
reduction in prediction accuracy over a period of time with
learning enabled Radio Access Networks. Similar to this
Vu et al. [28] proposes a FL supported MIMO framework
that optimizes the local accuracy, transmit power, processing
frequency and data-rate. The key idea behind this paper is to
study the complex non-convex behavior of the training time,
computation and transmission of the computed values. The
two FL models cited above have similarity in training time and
accuracy predictions but differ in the overall complexity. On
the other hand, although we evaluate a similar scenario with a
central controller collocated with the base station, our interest
is driven by multiple hierarchical controllers. The training time
reduction caused by the presence of these controllers is much
better compared to the other models.

Park et al. in [29] show theoretically and via simulations the
different blocks of an ML based network edge, discussing how
training and inference occurs when devices share their local
training models with the base station in wireless networks.
Similar to the above two models, a distributed, low-latency
and reliable ML model is proposed that incorporates different
neural network architectural splits. While our work focuses on
training and accuracy, at the same time we ensure acceptable
placements of the content for the other devices to retrieve
from. This not only reduces the latency but also reduces cost
for the users, due to the decentralized nature of the system.

In [30] Chang et al. propose an adaptive content delivery
framework that is built on a Q learning technique for video
streaming at the edge. The authors prove how quality of
experience and fairness improves with such a design. Further,
this work considers HTTP Adaptive Streaming (HAS) video
chunks for its use cases, which enables the various adaptation
schemes (such as Buffer-based adaptation, Rate- Based Adap-
tation and DASH based adaption) implemented in the paper.

In [31] Li et al. propose a deep neural network framework
called Edgent that adaptively partitions a job among differ-
ent computation entities. Authors make use of a predictive

TABLE I: Summary of key notations.

Notat. Meaning
R Set of resource points (locations)
i Content item (e.g., a video segm.) to be placed
0 Amount of space in storage units consumed by a content item j
A% Vector of content popularities
u User
dy Deadline specified by a user u
Tu,rj Total time spent for serving a request
P(ew) | Price fet., ie., price paid by the user depending on the QoS
L() Weighting function
m(-) Probability of attaining the highest QoS that is
achievable for r resource units
X() Prospect pairs

strategy that enables low latency communication with the
edge that works seamlessly in static and dynamic scenarios.
Specifically, they propose an online point detection algorithm
that accommodates changing bandwidth conditions in the last
mile networks. However, the execution plan proposed for the
MNO is costly as the edge intelligence is distributed across
devices that is outside the control of the operator. Further,
job partitioning might not always result in proper resource
retrieval as there are many false positives which occur in the
very beginning of the training period.

III. FEbCo MODEL
A. Design

The proposed model is depicted in Figure 2. At the control
plane, we have four important modules namely, the Mobility
Manager, the Placement Identifier, the Cache Decision making
module, and the Federated Averaging module. The mobility
manager plays the role of maintaining seamless sessions
between the devices forming the MDCs. The state of a device
is stored in the Mdc_statedb. Every time a device moves
out of a location, a state variable associated with the device
is updated. The placement identifier keeps a log of where a
particular content is placed, i.e., MDC or the EDC. It makes
use of the on-going procedural calls to the MDCdb and the
DCdb to understand the popularity of a content and manages
the placement. The Cache decision is made based on the inputs
received from the Federated Averaging module, that holds and
computes the two important quantities namely the L(-) and m
in our FL. framework. In the data-plane, the users compute
the results via a Recurrent/Deep Neural Network (DNN)
(popularly called RNN) algorithm that will be uploaded to the
control plane once computation is complete. We do not discuss
the DNN algorithm (i.e. LSTM) implementation in depth due
to space limitations.

B. System Model

We consider a typical 5G scenario where the end-users
specify their demands to the controller. The content is stored
in a set of virtual resources in the EDC or it can be split among
the 5G-D2D MDC composition [2]. The concern is that the
users request content delivery and the MNO is responsible for
placing the content and providing the requisite service to the
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Fig. 2: FedCo Federated Learning Controller Framework: The
edge computing units (including the idle device resources (R,
Rs, R3) and data-center servers) are the service locations for
content placement which the users request.

user. More specifically, the user u requests a content file j
which could be placed either in an edge server or across an
MDC composition. The MNO, which is housed along side the
central controller, is responsible for placing the content across
these resource points. The request from the end user u is for
one such content file. We define three popularity classes ¢ € C
for these content files:

1) High demand, High popularity, (¢ = 3)

2) Average demand, Average popularity, (¢ = 2)

3) Low demand, Low Popularity, (¢ = 1).

We assume that the MNO has some (external to our model)
prediction that gives the popularity level c¢; for each content
file 7, represented by a vector of content popularities V.

We form a resource pool with the set of available resource
points. We refer to the set of resource points (locations) as
‘R and each resource point r € R corresponds to a virtual
resource which has some content items (files) in storage (see
Table I for a summary of notations). Resource point r € R
has a storage capacity s,, S, < Smax in terms of number of
storage units. Placing a content item (object) j in any of these
resource points requires (consumes) o; storage units.

C. MNO Revenue Optimization Model

Now, we are considering this problem from an MNO’s
perspective: content placement and the resource allocation has
associated costs, such as speed of computation and storage
on a specific resource unit. To satisfy a customer’s request,
the MNO has to satisfy the end users QoS requirements. As
each of these requests has a strict deadline to be met, the
MNO has to complete the computation prior to a deadline.
Specifically, each user u is mapped to a deadline d,. Once a
content file j is retrieved, the user u may use it for a time 7,
during which o; units are dedicated for this transaction on the
resource pool. Denoting by ¢, . ; the queuing time of the user
u at the resource location r, the total time spent serving user

wis Ty rj = Tu,r + qu,r,; In scenarios where requests for two
contents of the same class occur, then the choice is dependent
on the resource point r which can retrieve the content with
the lowest queuing time. A key element here is that once
the content delivery is complete, we map the task completion
time to the request’s deadline. The QoS satisfaction makes the
customer pay more to the MNO for a future service.

In order to map this price division we define four main QoS
classes for the user with x; being the best QoS to x4 being
the worst QoS. For each user u, the experienced QoS level e,,
is defined based on the difference between the given deadline
requirement d,, and the total service time T, , ;.

If d, — T > 2d, then e, € ry. If 22 < d, — T < 2d,,
then e, € ko. If % <d,—-T< %, then e, € k3. Finally,
ifd, —T <d,/2, then e, € Ky.

These different QoS levels are mapped to different price
levels v; to vy as per the service satisfaction. More specifically,
the price function P(e,,) represents the price paid by the user
based on the service satisfaction level. We define this price
function as

vy, if e, € K1
Pley) =1 (D

vy, if e, € Kyg.

As the value of e, shows the exact user demands that need
to be satisfied and its price, the FL prediction of e, is our
goal.

The model represents the multi-factorial dependence
on the type of content placed, the deadlines met, and
the QoS that the end user perceives. Let, 7y,

1, if u retrieves content of pop. class ¢ from res. r

0, otherwise.

A reasonable operator revenue model is:

H=Y Y Y neldPe) —ve) @

ueU reR ceC

where the binary variable d, € {0,1} is set to 1 when the
deadline time associated with a user w is met, i.e., d., is set
to 1 when the deadline d,, associated with user w is satisfied.
The cost .. ; represents the MNO cost price in deploying and
provisioning a content caching resource unit at resource point
r for popularity class c.

The accurate prediction of the user demand plays an impor-
tant role in the MNO revenue maximization. It is important to
note that the mobile end users who register for these services
have a highly variable behaviour. It is therefore hard to predict
a user’s level of desired QoS.

In order to maximize the profit earned by the MNO, the
goal is to place the content appropriately for maximizing the
user’s QoS which is dependent on producing the profit. Since
higher levels of QoS can be achieved if the content placed is
retrieved and processed faster within the completion times, to
achieve the goal we need to accurately predict the demands of
the users for the content. To realize this prediction, we make



use of the FL framework. Therefore, the revenue maximization
can be expressed as:

max H 3
Nu,re ¥V U,T,C

St D iea 0 <8, VreR “4)

T, <d., Yuel; c, €C. (@)

The set A, represents the contents j that are already
allocated in resource location r. The first constraint ensures
that all content items j that are on location r fit with their
sizes o; into the available space s,.. Thus, the first constraint
enforces compliance with the resource capacities of the various
nodes of the different resource pool types (EDC and 5G-D2D
MDC), i.e., the content is placed based on the knowledge of
the resource point capacities. The second constraint ensures
that for a user v who requests a content file j belonging to
popularity class c,, the time T, , ; spent to serve a request
from user u should be less than or equal to the deadline d.,
specified by the user for the class c.

D. FL Model

As the problem is hard, mainly due to the presence of the
last constraint, we use the FL framework to provide a heuristic
solution. The FL technique performs machine learning based
training on the end users and the output is then aggregated in
a central location. The local controller is the first aggregation
location. Each user u that requests a content file j belonging
to popularity class ¢ maintains historical data in the vector
B,... This vector stores the information of the content that
was recently requested. Each user is passed this vector in order
to predict the next content it will request. The end user is now
responsible for solving the ML model having a loss function
that needs to be minimized. As noted in [23], if we have a
function f;(x), where [ is a data sample, the output of f;(z)
represents the error in data while training the model. If the
users in U, have requested a content belonging to class c, the
loss function can be re-written from [32] as

1
u,c EBu..

The objective reduces to finding z*. It is given as the
argmin F(z) which we solve with gradient descent. The
presence of a hierarchical FL. model enables training at the
users locally with the aim of aggregation at the edge controller.
The key here is the communication between the user’s training
model and the aggregation at the controller within a specific
number of iterations. We design the following Algorithm 1
using the steps in gradient decent to update the quantity
zi.c(«), where « is the number of iterations. We have,

Zu7c(a) = 2u7c(a - 1) - ﬁvac('gu,c(a - 1))7 (7)

where [ is the learning rate and Z, (o — 1) represent the
global aggregation. Once this information is passed to the edge
controller we have the weighted average calculated as

2 ueu [Buclzu.c
S S e
ueU u,c

®)

Algorithm 1: FedCo

Input: Users U, requesting a service of class ¢
Output: Weighted Average z(«)
1 Calculate the zy, (a);
Zue(@) = Zyc(a —1) = BVEFy o(Zu,c(a — 1))
2 Calculate the weighted average z(«);
S wew |Busclzu.c
2ueu Bucl
3 Placement Strategy:

Input: Content Popularity Vector V, QoS levels e,
Output: Content Placement Location
4 Calculate : L(vy, ¢ j,r)
s Update: m(xy,c,r ;)
6 Repeat Calculation of L(-) until all content items have
been placed.

z(a) =

The main benefit of FL is inheriting the advantages in
securing the privacy of the end user. To that end, we have the
user updating the quantity z,. Further, using gradient enables
optimal resource consumption, hence would mitigate negative
impacts on the battery usage

E. Decision Making

An important step above is the decision making process. To
this end, a real-life decision making process via the theoretical
design called Prospect Theory has been defined in [33]. In
strongly uncertain scenarios, where the customer demands
for a particular content may fluctuate, prospect theory helps
to model the customer behavior in a reasonable manner.
According to this theory, we have a set of possible prospects
which are the outcomes and the probabilities related to these
outcomes. In association with our model, these outcomes are
the request completion times T, - ; and each resource point
r implies the presence of a prospect. If a user u requests a
content item j of popularity class c in resource point r € R,
the number of prospects is computed as the total available
resource points. Hence, the prospects can be written as a
combination of the following pairs:

Xu,c,l (m(xu,c,l,j)vL(Unl,c,j,l)) (9)
Xu,c,Q = (m(xu,c,Q,j)yL(Uﬁ,l,c,jﬂ)) (10)
Xu,c,R = (m(xu,c,|7€\,j)aL(Um,c,j,\R\))- (11)

Note that we use k1 to establish the probability of having
the highest QoS for a specific area for a set of requests;
specifically, x; stands for the highest QoS level, while k4
stands for the worst QoS.

The quantity m(zy ¢ ;) = Ju,c,r,jim,c,j,r is the probability
of attaining the highest QoS on resource computation point
r for a content request c. It is easy to observe the intuition
behind the ratio of the number of users allocated to a resource
requesting a content ¢ experiencing the highest QoS and the
total users in accessing the same resource queued for the
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content ¢. The L(-) function is the weighting function defined
as in [33]:

,
L(vnyon) = k1,0, .12
Gy J5T Y Y 1
Upyegr L =00 o 50)

Note that prospect theory is based on evaluating a prospect.
For our problem setting, the outcomes of evaluation are
represented by the completion times of a request, and the
service areas (MDC, EDC) are the prospects.

The definition of the value function can be written as
Tiergo i Tuerg 20 with 0 <
—C(_xz,c,r,j)V if Loe,rj < 0, -
w,f <1 and ¢ > 1. Thus, the final objective can be written

M(Tue,r,j) =

Controllers

Fig. 10: FedCo controller message inter- Fig.
actions for different mobility speeds

Number of MEs

11: As more users register with
the FedCo controllers, more samples are
trained which reduces convergence time

as argmax, (m(zy,c.rj), L(Viy,c.jr)) Yu € U. The next step
after the FL framework is executed to define the content
popularity V vector. Each content ¢ that belongs to the vector
V requiring o; amount of resources where it is executed.
Each of the requests arriving at this resource point accepts
the content such that it minimizes the cost of the operator.
Further, the perceived QoS levels play a key role in mapping
the user to the content.

As observed before, each user u that requests a content
is allocated to a resource point 7. If there are multiple
requests arriving at the resource point, we evaluate the time-
lines/deadlines of completion. Only the highest QoS levels that
are guaranteed for a particular u are accepted and others are
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rejected. If there are more resources available on the resource
r, then we allocate the content on that resource. The choice
of the placement that guarantees the highest QoS level is
chosen. However, if the QoS levels are the same, we iterate
over the value functions L(-) for breaking the ties. After each
allocation, the queues are updated for each resource point
whether the choice is an EDC or 5G-D2D MDC. The user
does not know the exact location of the content as only a set
of resource points R is visible to the user.

IV. PERFORMANCE EVALUATION

This section first presents the performance evaluation set-up
of our experiments and the data-sets generated for carrying out
the simulations. We then compare our model with two state-
of-the-art models, namely Random Caching by Xu et al. [14]
and Edge Boost by Balasubramanian et al. [2].

A. Set-up

We use the Python simulator Mininet-Wifi for our simu-
lations. A custom POX controller is used for control plane
decision making of the OpenFlow switches (learning and
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Fig. 14: FedCo accuracy outperforms traditional approaches

forwarding). We use a pre-processed LSTM model with 4
layers and 128 neurons. We will provide the accuracy analysis
for this choice Section IV-D. As multimedia caching is an
important use-case of 5G, we generate video samples of
varying sizes following the DASH standards [34]. We set the
base-station user communication range to 500 m. We simulate
a total of 250 users, each user has a 5G-D2D communication
module for MDC communication with the physical parameters
communication range of 150 m and bandwidth of 30 Mbps.
Each video segment is divided such that the chunks are 2 s
long with a bit-rate of 4000 kbps, resulting in a chunk size of
1 MB. The arrival rate of each video request follows a Pois-
son distribution over [2, 20]. When the requested content is
determined, the corresponding segments will be consequently
accessed by the ME. The simulation time is set to 1000 s and
95% confidence intervals are evaluated.

B. Evaluation

In this section, we compare the proposed FedCo model
with Random Caching [14] and Edge-Boost [2]. Initially, we
consider a static (non-mobile) scenario in this subsection to
get a basic understanding of the performance, and then bring
in mobility in Subsection IV-C. In the random caching model,
the placement strategy is based on random content selection. In
the Edge-Boost model, content placements are deployed with
MDCs as the primary resource. In the FedCo model, however,
the choice of placement is based on a pool of resources with
high computation resource points of the EDC as well as the
MDC. In Figure 3, the overall revenue is higher while using
the FedCo module mainly because of the prediction technique
applied on the content. More specifically, Figure 4 shows
the accrued revenue by FedCo with varying communication
rounds. Due to the learning model of FedCo, the requests
that are learnt over a period of time enable the MNO to
properly place the contents in appropriate locations, thereby
producing adequate QoS for the end users. It is very clear that
accurate predictions have led to accruing more profit for the
MNO, and when the FedCo learning is removed, intuitively
profits go down. In Figure 5 we can observe the Cache Hit
Ratio (CHR), which is defined as the total number of requests



generated to the total number of requests satisfied from caches.
The caching space of each resource unit ranges from 1%—-5%,
arbitrarily containing MDC compositions and EDC resource
points. We can observe that the CHR is higher for FedCo than
for the benchmarks. Further, a larger caching size increases
the CHR. However, Edge-Boost and Random Caching lack
the prediction of the cached content; therefore, their accuracy
is lower by a margin of over 10% compared to FedCo.

The Average Access Latency (AAL) performance is also
better for FedCo as shown in Figure 6. AAL is defined as
the time interval between the request generated by the user
to the first packet received for the requested content. AAL
is relatively low for FedCo due to the exact content retrieval
which means the extra time required to search the content
is saved. Further, the FedCo module empowers the user by
allowing exact mapping via the prospect theory value function.
The outcome of this AAL evaluation also suggests a better
QoS for the users as low access latency means better QoS.

In Figure 7, content placement failure is observed. This
is the dropping probability of the requests which cannot be
completed within the deadline due to placement errors. FedCo
has the least percentage error in placement; although, Edge-
Boost was expected to perform better in this case because
of the stricter assignments with the MDC. The users who
are already using the MDC for content retrieval can do so
without any service disruption. This outage probability is
minimal for the FL controller due to the current knowledge
of the state of the devices. Thus, the controller consistently
places content between the two main resource blocks from
the resource pool R. Figures 4 and 8 show the need for a
large number of communication rounds for having a close
to optimal CHR. The CHR becomes around 0.5 after 30
rounds for 100% of users participating while its over 0.3 and
0.4 for 60% and 20% participating users. In Figure 4, the
revenue relationship with the communication rounds is clear.
This variability indicates that higher information exchanged
during the learning process shows that the model has a higher
effectiveness. The appropriate information learnt is actually
establishing the fact that the content has been placed suitably
which directly translates into MNO profit. Thus, we see over
40% gain in all cases within the prescribed resource limits of
R.

In Figure 9, we calculate the time required to train our
RNN/D-RNN model. We use an LSTM and consider a case
where we have just one FedCo controller that takes over 70%
more time compared to using 30 controllers. The main reason
for this reduction with multiple FedCo controllers is that the
traffic load is spread across more FedCo agents which perform
training on smaller parts of the data.

C. MDC Management with Mobility

We consider a case of mobility in Figure 10 for moving
speeds between [1, 5] m/s. We observe from Figure 10
that using multiple controllers results in a constant exchange
of messages between the controllers. We observe that for
lower mobility scenarios there are fewer messages exchanged,
mainly because the devices which are registered with one con-
troller have already been passed to the nearby controller even

before the movement occurs. Further, we see that the FedCo
convergence time changes with the increase in the number of
ME:s. In Figure 11, we observe that as the number of MEs
increases, more data is used to train the LSTM model. This
means that more training data samples are available and the
time taken by FedCo to converge decreases. On the contrary,
in state-of-the-art models, such as EdgeBoost and Random
Caching, we do not observe this reduction, mainly because
the control is distributed among the data-plane devices, which
in turn results in a longer time to convergence.

D. Loss Function Evaluation

Figures 12 and 13 show how the loss function values,
specifically, the values of the general linear regression loss
function used for prediction of FL algorithms [26] values
vary with the number of MEs and progressing iterations. We
note that unlike FedCo, the EdgeBoost and Random Caching
benchmarks, do not have prediction capability. In order to
enable the loss function comparison, we generalized the loss
function for EdgeBoost and Random Caching as follows. The
loss function normally determines the classification errors.
However, EdgeBoost and Random Caching models do not
conduct classifications, they only select devices based purely
on a search mechanism and provide a decision based on
this search. This search for devices and placing the content
implicitly follows the result of the search, which is essentially
a “general” way to place content. Thus, there is going to be a
loss associated with the search (depending on the input data
and output data); similar to FedCo, where the loss function
assesses the correctness of the prediction.

Firstly, in Figure 12 we see that as the number of users reg-
istering with the FedCo controller increases, the loss function
values show a commensurate reduction, with FedCo achieving
lower loss function values than the EdgeBoost and Random
Caching models. This is mainly attributed to the fact that as
the number of generated data samples increases, LSTM can
use more data for training itself. This leads to lower training
loss. As the number of MEs reaches 15, the training loss
reduces faster, which shows that the initial increase in the MEs
registering causes most of the reduction in the training loss,
with FedCo achieving lower loss function values than the state-
of-the-art EdgeBoost and Random Caching models. Similarly,
in Figure 13, we see that as the iterations continue increasing,
the loss function reduces by a substantial margin. This is
because, as time progresses, there are enough data samples
to approximate the loss function gradient. Another reason for
this reduction is that there are more MEs contributing to
the global FedCo controller. This enables a more extensive
training, resulting in lower training loss. Overall, FedCo per-
forms better, i.e., achieves lower loss function values, mainly
because Edgeboost and Random Caching primarily search for
devices to optimize the QoS, irrespective of the cost/revenue
maximization objective. This comparison shows the balance
between meeting user QoS and MNO revenue maximization
that FedCo strives to achieve.

Finally, Figure 14 shows the prediction accuracy of all three
considered controllers. The prediction accuracy is defined as



the ratio of the number of correct predictions to the total
number of predictions made. We observe that FedCo achieves
a better prediction compared to the state-of-the-art models.
This shows how a future device is chosen for placing a content
in the MDC scenario. We observe a noticeable increase in
prediction for FedCo mainly because of its federated averaging
algorithm that creates an aggregation of the local MEs’ models
which is later useful for prediction.

V. CONCLUSION

A Federated Learning (FL) framework named FedCo to
predict the user demands of a particular edge content has
been proposed. FedCo provides suitable content management
across different placement sites. In doing so, we show how
revenue maximization can be achieved for a Mobile Network
Operator (MNO) that enables 5G services, such as 5G-D2D
Mobile Device Cloud (MDC) and 5G-Edge Data Center (EDC)
access for content caching. The paper also provides theoretical
evaluation of user demand behavior modelling via prospect
theory to justify how revenue maximization can be achieved
by closely investigating user behavior. Finally, we show via
performance comparisons how FedCo outperforms two state-
of-the-art designs while considering multimedia content de-
livery use-case. Over 40% profit margin is accrued while the
FedCo framework is deployed for 5G mobile edge content
caching scenarios.
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