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Abstract—The ubiquitous nature of Internet of Things (loT) devices
has posited many challenges that need innovative solutions in the 5G
era. Software Defined Networks (SDNs) are becoming indispensable
in managing several aspects of next-generation loT networking that
arise from the need of controlling highly heterogeneous, geographi-
cally dispersed and mobile loT devices. One such aspect is cache
management at the edge. Recently multiple forms of edge resources,
including Mobile Device Clouds (MDCs) and Micro-Edge Data Centers
(EDCs) have emerged to provide scalable cache placement locations
that reduce the costs for the mobile network operator (MNO). As all of
these service locations are registered with the MNO (or links established
after registration with the 5G base station), content should be placed
according to the user’s demand and the cost the user is willing to pay to
receive the desired level of QoS. To this end it is important to understand
the future popularity of the content for its optimal placement considering
the highly dynamic user mobility. In this article, we address two key
aspects of a mobile 10T network, namely: (i) security, and (ii) seamless
connectivity for data delivery. We rely on the so-called Federated Learn-
ing (FL) architecture, that enables harnessing data and computational
capabilities at the end-user devices to train machine learning models.
We study FL concepts in the domain of edge-computing for loT use
cases, such as caching. We draw conclusions from various state-of-the-
art models and posit several challenges which can be overcome via a
novel proposed control algorithm.

Index Terms—5G, Caching, Distributed Computing, Federated Learn-
ing, Resource Management, Scalable Network Management, Ubiqui-
tous loT.

1 INTRODUCTION

1.1 Motivation for Mobile Device Cloud (MDC) for Ubiqg-
uitous loT

The drastic increase in QoS requirements at the edge de-
mands a practical ubiquitous system that can cover large
geographical areas. In essence, the new solutions have to
not only provide a seamless communication framework,
but also need to provide a system design that can cater
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to the computation needs at the last mile, particularly in
heterogeneous ubiquitous Internet of Things (IoT) networks.
One such design is the caching of content at the edge for
fast content accessibility. De-congesting the core network
and reducing the delay for the last mile users have been
the aims of many industrial development efforts towards
high-quality network services. In particular, caching infras-
tructures at the edge primarily consider placing popular
contents closest to the users such that frequently requested
files can be retrieved faster. While considering the edge
caching paradigms, there were two models that were stud-
ied, namely the edge-data center model, known as Mobile
Edge Cloud (MEC) [1] and the low cost 5G-D2D model [2],
known as Mobile Device Cloud (MDC or mobile device
edge cloud, MDEC). Both of these models have their own
pros and cons while deploying services [3], [2]; however,
MEC deployments are typically considered to be costly.

Due to the heterogeneous nature of ubiquitous IoT in-
frastructures, an integrative framework that efficiently man-
ages communication and caching resources is essential for
scalability especially in densely crowded environments [4].
A wide variety of opportunities and innovative solutions
arise when faced with the challenges from integrating mul-
tiple heterogeneous networks, such as aerial networks (e.g.,
UAV networks) and ground networks, such as terrestrial
MDC networks. Such an integrative framework would also
facilitate scalable overall coordination between heteroge-
neous infrastructures. In this article, we focus primarily
on MDC based applications, where mobile end devices
(equipment nodes, MEs) provide scalable caching resources
and end users require prescribed levels of QoE.

Studies such as [2] have made MEs an integral part
of caching schemes. In device-involved models, all mobile
devices already have a 5G subscription and MAC-IDs which
are known centrally by a base station (owned by a Mobile
Network Operator (MNO)). A client that requests service
forms a Device-to-Device (D2D) resource composition us-
ing the idle device-resources which are close-by. Such a
resource-rich environment of MEs provides substitutes for
the expensive edge data center, forming an MDC.
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Fig. 1. Overview of system model: The controller is collocated with the
base station. When a user requests a content, the available options are
based on the price the user is willing to pay: either a mobile device cloud
(MDC, formed via D2D communication by edge devices) or an edge data
center (EDC). All the individual learning models of the edge devices
are gathered (via the FL exchanges illustrated with red dashed arrows)
at the control plane (central Federated Learning controller). The solid
orange arrows represent the device-to-device (D2D) communication
between the MDC users. The blue dotted arrows represent the content
placement on the data-plane entities.

1.2 Proposal for Federated Learning (FL) Based MDC
Management

However, despite the MDC promises, privacy issues are
still prevalent. Further, users uploading contents to an edge
data-center results in inheriting the limitations of the exist-
ing cloud infrastructure, including the risk of the EDC being
a single point of failure and security risks due to uploading
sensitive information.

Hence, recent research has been driven towards explor-
ing solutions that address the problem of privacy along with
the allocation and redistribution of computation across mul-
tiple levels. The Federated Learning (FL) architecture can be
a key ingredient to simultaneously overcome the challenges
of privacy and manage distributed computing resources in
a scalable manner. In conjunction with the FL modules, as
most of the distribution of content over an MDC is not
completely controllable due to the device movements, the
software defined networking (SDN) paradigm can enable a
higher level of control over the data plane. Hence, an SDN-
assisted FL. model may not only provide better control, but
also enable seamless communication to maintain QoS.

Through this SDN based Federated Learning model,
users at the lower-most layer may request services from
a 5G-D2D MDC (i.e., registered with the Mobile Network
Operator) or an EDC collocated with a 5G-NR (New Radio)
base station. Either of these locations can host the on-
demand content. Having multiple content placement loca-
tions, not only forms a convenient business model, but also
empowers the customers to responsibly choose the level of
QoS that they would like to pay for. As most of the QoS
metrics are related to where the popular content with a high
demand frequency is placed, we need to closely examine the
content placement. Further, as both of these service locations
(i.e., EDC and MDC) are registered with the MNO, the
question of where the content with a higher demand should
be placed is directly tied to the MNO’s profit margin. A
controller situated at the edge could make the key decisions
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of content placement with the objective of maximizing the
MNO’s profit.

When each user downloads the FL framework from the
controller for training the model with the local data, the
main goal of the end user is to upload only the necessary
parameter updates. The controller will then cohesively as-
semble the parameters received from the users via averaging
algorithms and chooses the popular files. To that end, the
contributions of this paper are:

1) An SDN-controlled FL framework that provides a
simple, yet seamless model for ensuring high QoS
in a ubiquitous IoT network has been proposed.

2) The Federated Averaging Paradigm has been em-
ployed for ensuring local to global aggregation that
enables a secure learning environment.

3) A case study was simulated to examine the perfor-
mance of the SDN based FL model.

2 FEDERATED LEARNING MODELS
2.1 Brief Background on Federated Learning

Federated Learning (FL) is a technique that trains ML
models harnessing data and computations on local devices
(nodes) [5]. This decentralization of training provides a
higher level of security to the nodes that do not wish to
upload all the data to a central entity. Instead, only ML
model parameters are uploaded to the central entity. The
central entity then merges all the information obtained from
the client nodes (end-devices) to provide a global update
to the model. In case of MDCs, the ME data that is used
to train the FL framework model remains private. The FL
framework, however, does not provide any detail on how to
carry forward seamless communication of these calculated
results between the ME and central entity, which can be
complicated as a node may move out of its initial position.

Mobility is a key challenge while exchanging infor-
mation. For instance, when a local model trained by an
MDC device in one location moves to another location, the
trained local model needs to be communicated to the central
controller for producing a global model so as to achieve
holistic training, else the model update is discarded. Since
mobility is an essential component for providing seamless
communication, nodes have to continue to provide their
locations around a particular area for completing a service
that has been requested by a caching user.

2.2 Survey of State of the Art

The study of FL training models in wireless networks is
on the rise. These studies have explored various network
parameters that come into play while the local FL models
are transmitted to the Base Station (BS) that aggregates all
the local FL models and maintains the global FL model
at the BS. The key to our work is producing a seamless
content placement/retrieval environment for cloud users
which not only benefits the MNO, but also provides a better
Quality of Experience (QoE) to the user considering ME
mobility in FL. Figure 1 shows how the collocation of the
BS-controller assists in reliably placing content. Now, we
compare and contrast how state-of-the-art models compare
with our approach.



2.2.1 Edge Caching Models and Federated Learning

Recently, there have been studies showing that usage of D2D
links to form clusters at the edge is a good replacement
for the expensive edge caching capacity, whereby D2D
clusters also provide better scalability. For instance, Zhang
et al. [6] have shown how mobile vehicles can act as smart
caching locations to enable a dynamic cache storage of tasks;
whereby, the vehicles communicate directly with the BS.
Similarly, Wu et al. have designed a content distribution ar-
chitecture based on the D2D assisted caching paradigm [7].
These solutions consider dynamic caching capacity usage,
but do not include demand variations. Additionally, all of
these state-of-the-art models provide benefits in terms of
caching, but disregard the dynamics of mobility that pose a
significant challenge at the last mile. These solutions rely on
probability-based estimates for judging the popularity of a
content which may be inaccurate in mobile environments.

Chen et al. [8] have studied FL training models in
wireless networks. In particular, Chen et al. have studied
the various network parameters that come into play while
the local FL models are transmitted to the BS that aggregates
all the local FL models and maintains the global FL model
at the BS. Chen et al. have formulated an optimization
problem to capture the wireless network parameters and
user choices. We take inspiration from the work by Chen
et al. for the MDC scenario where network factors come
into play while uploading the local FL models to the central
controller situated at the BS. The key difference from [8] is
that our interest is towards producing a seamless content
placement/retrieval environment for cloud users which not
only benefits the MNO but also provides a better user
QoE. To that end, during training, our algorithm strives to
produce optimal results while minimizing losses.

2.2.2 Federated Learning in Wireless Networks

Yang et al. [9] propose an over-the-air computation model.
This model exploits the super-position property of wireless
channels to aggregate data. This is one of the preliminary
models that provides a close observation of applying FL in
wireless networks. Yu et al., [10] propose a content caching
scheme called FL based proactive content caching (FPCC).
FPCC considers a hierarchical architecture where the users
upload only the requisite updates to the edge server and
keep all the remaining sensitive data within the devices.
However, owing to the complex nature of the FPCC model,
a scalable deployment of the model may not be possible.
On the other-hand, our proposed FL model is purely based
on the probabilities of outcomes that are judged via a user-
behavior modelling, which gives realistic outcomes for the
prediction process.

2.3 Considered Use case for Federated Learning

As illustrated in Figure 1, the data plane comprises of all
the locations which can be potential content placement sites.
Also, the users request content in the data plane. Every user
in the data plane (whether part of the MDC or not) down-
loads the long short-term memory (LSTM) model from the
server and trains the model with the local data and uploads
the model to the server. The edge data center has a FedCo
agent which is downloaded for local training from the
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Fig. 2. System architecture: Each MDC user device downloads the FL
framework from the controller and trains the model with the local data;
the locally trained models are then re-uploaded to the closest controller,
specifically, the Federated Averaging Engine (Fed Avg).

central server. The locally trained models are re-uploaded
to the closest controller. The controller has an input graph
of the network where the locations of the popular contents
are saved. In this way, routing the request to the placement
site follows a breadth first traversal following the shortest
path to the content placement site at the edge. In case of the
MDC, if the device that was trained in one location moves
to another location, then the closest controller communi-
cates to the home-controller and exchanges the necessary
information. Therefore, placing the contents in locations
where the MNO increases its revenue, and at the same time,
the requesting user will not be compromising QoS while
moving from one place to another, are the main aims of our
system model.

2.3.1 Federated Learning Challenges

As explained above, there are key challenges that a stan-
dalone FL approach cannot solve. However, challenges that
are easily solvable in the purview of the FL framework, such
as security and trust [11], are definitely important features.
Further, the number of messages exchanged between the
client nodes and the central entity should be considered.
Therefore, the FL framework usage posits the following
challenges to the network.

o Fast delivery: To ensure the best performance of
the task, MDCs or 5G-D2D device clouds [2] should
exchange information about new requests for content
with a specified deadline to maintain the QoS. How-
ever, a standalone FL framework does not necessar-



ily perform pipe creations between geographically
disparate controllers specifically for information ex-
changes in scenarios where the devices are moving
in and out of an area, such as stadium environments.

o Trust and privacy: An FL framework addresses the
trust and privacy issues to a large extent in 5G-
D2D clouds by letting the client nodes keep their
personal sensitive data within their devices. Trust
and privacy are critical metrics to consider, which
the FL framework naturally takes into considera-
tion. However, a key challenge is the communication
between two FL controllers that are geographically
separated; SDN assistance can facilitate privacy in
the communication channels between controllers.

e Security: The content caching service may face a se-
curity issue, such as a man-in-the-middle attack, or in
case of an EDC, a distributed denial of service attack.
These risks are alleviated by the FL framework, that
mainly caters to the data accountability and integrity
characteristics of the secure environment by putting
the end user in complete control of the data that is
uploaded to the central entity.

e QoS: As mentioned before, at the time of mobility,
nodes exchange various types of data, such as cached
multimedia content, or new requests for popular
content. Using the FL framework as a standalone
model will not be enough to maintain a seamless
service.

3 FEDERATED LEARNING FOR EDGE CACHING
3.1 Edge Caching and 5G

With the emergence of 5G, caching at the edge became a key
service that could leverage the advantages of 5G technology
jointly with SDN technology. Each technology can provide
the other with a variety of benefits that can have a big
impact on the quality of different ubiquitous IoT services:

e Caching Policies in 5G: A main challenge for
caching policies and computing in 5G are the need
for accurate recognition and control of all available
resources. At the last mile, caching can be incorpo-
rated in the macro-cells and small-cell clouds for
which there is a need to separately analyze the
data that is being processed and the resource be-
ing put into use. The resource management with
an SDN controller is therefore a promising solution
when multiple points of computation and caching
are available.

o Caching Policies over SDN: As posited in [12] a
caching policy is defined for an SDN controller that
has an added complexity of resource partitioning and
job partitioning. This approach takes into account
only situations when caching happens in parts. This
is one of the earliest studies that elaborates on the
need of SDN control at the edge, but does not con-
sider the privacy issues and the solutions offered by
our FedCo approach.

We build on the 5G and SDN technologies to propose our
FedCo concept and later provide simulations to evaluate the
key performance metrics.

3.2 Concept and Proposal
3.2.1

In the system we consider, in combination with heavily
resourced EDCs, mobile phones communicating in an MDC
form a “mini” edge cloud in their support. Such a hetero-
geneous system is vulnerable to many problems; whereby
trust is very important. The profit margin maximization
of the serving MNO entity the its management policies
are quite complex and require high-speed communication,
caching, computation; also, the MDC participants need to
provide identification and go through authentication.

In this section, we present the design of a hierarchical
architecture for content delivery and caching, designed to
serve these networks. Specifically, our proposed solution
includes an FL framework for highly secure non-intrusive
management of demand information, in conjunction with
an SDN controller, used to manage the dynamics of the
user locations as they move from one BS to another. In
our model, the MNO places the 5G-D2D compositions in
different strategic areas along with other edge computing
entities, allowing users to chose their offloading points. We
employ the FL framework to predict the users” demands for
a particular content in order to provide the exact location for
the content placement. The SDN edge controller behaves as
the global aggregation point, while the users provide the
locally processed information

Overview

3.2.2 System Architecture

Figure 2 presents the various system architecture compo-
nents and the interactions between the components of the
architecture. The control plane consists of three important
modules, namely: 1) the Placement Identifier, 2) the Feder-
ated Averaging Engine module , and 3) the Cache Decision
making module.

The Placement Identifier module inside the FedCo con-
troller keeps track of where a particular content is placed,
e.g., MDC or EDC. This module makes on-going procedural
calls to the respective MDCdb and the DCdb databases to
understand the popularity of a content and manages the
placement.

The Federated Averaging Engine is tasked to train a model
that predicts two important quantities, namely the L(-) and
ms in our FL framework. The quantity L(-) is the weighting
function that captures the probabilistic outcome of popular
placements. L(-) can be interpreted as the perception of
the operator about a probabilistic outcome. For instance, a
content may be placed in an MDC or an EDC, a content
placed in an MDC might not always be profitable due to
the mobile nature of the MDC if we do not ensure other
mobility parameters. The quantity m, is the value function
that captures the subjective operation of the QoS perceived
by the user. The quantity ms can be interpreted as the prob-
ability of achieving the highest QoS when the computation
is performed on a resource s. The mathematical model is
elaborated in [13]. In the data-plane, the users update the
Deep Neural Network (DNN) model producing a result that
will be uploaded to the control plane once the computation
is complete.

The Cache Decision making module considers the place-
ment popularity score L(-) and the QoS users scores m; to



TABLE 1

Comparison between Federated Learning Approaches. + means relatively high, | means relatively low

Characteristics Basic Edge Caching 5G based Edge Caching Federated Learning (FL) based
Edge Caching (FedCo)
Communication Mobile Device Clouds use Range depends on 5G Base Station Range depends on 5G Base station
range limited-range based technologies (typ. higher than for Basic Edge
(e.g., Zigbee or WiFi) Caching)
Quality of Data delivery as a QoS measure; Data delivery is a QoS measure, Data delivery is a QoS measure;
Service throughput is typ. limited. typ. average throughput and high throughput and reliability
reliability through FL framework.
Security 3 3 1 Sensitive information is stored in
local devices, ensuring data
security
Privacy + + 1 Sensitive information is stored
locally in the devices, ensuring data
privacy
Trust 1 1 1 As all participants register with
their IDs, trust and privacy of
information is maintained
Distribution of Centralized Centralized Decentralized
Control
Resource Depends on the state-of-the-art Follows the norms of managing 5G Advanced resource management
orchestration technology, e.g., Bluetooth or resources techniques combined with FL
Zigbee are candidates resource management
Scalability 1 1 1 Improved scalability as there are
multiple points where the contents
can be placed
Intelligence 1 1 1 FL framework provides a high
intelligence to the system to
self-learn and provide a high-profit
operation
Autonomy Limited Limited Very advanced

decide how to best place the content. These scores can be
represented through a cost function, the details of the cost
function are beyond the scope of this overview article.

3.2.3 Federated Learning Based Management

Table 1 elaborates the characteristics and subjective evalu-
ation of the FL based approaches. Table 1 compares and
contrasts various factors, such as control distribution, of the
proposed FedCo approach compared to Basic Edge Caching
and 5G based Edge Caching. The devices are subscribed
to the BS and once the D2D links are in place, the in-
termediate devices communicate via the BS at the time
of mobility. The MEs either volunteer or lease their own
idle storage resources for enhancing the MDC capacity. All
mobile devices typically already have a 5G subscription and
MAC-IDs, which are known centrally by a BS (owned by
a MNO). The client that requests a service forms a D2D
resource composition using the idle device-resources that
are close-by, i.e., exploits the MDC. However, despite the
MDC promises, privacy issues are still prevalent.

FedCo overcomes these privacy issues via local train-
ing on the devices. We use the Long Short Term Memory
(LSTM) DNN architecture (which is a type of Recurrent
Neural Network) to predict the content popularities and
the users” QoS scores. More specifically, each user in the
MDC downloads the initial LSTM model from the central
controller at the base station. The devices train the model
with the local device data and re-upload their local update
to the central controller. In particular, the local device data
that is used to train the model encompasses popularity
indices that are stored on the device based on the user’s
daily activities (e.g., the past history of videos that the user

watched and related contextual information). Based on this
local device data, each device trains its own model, i.e.,
there is one model per device location. This raw local device
data is never revealed. The central controller only knows the
device ID which is used to subscribe to the service and the
updated learning model (from which the raw local data can-
not be readily derived). Our LSTM framework receives the
traffic matrix as input, whereby the traffic matrix (requests
of clients, content data held by owner of data in an MDC,
features) is part of the initial model download. The central
controller co-located with a base station aggregates all the
federated local models received from the devices in its cov-
erage area and applies the averaging algorithm to determine
the predictions of the content popularities and the user
QoS scores. Based on the content popularity and user QoS
score predictions of the LSTM DNN architecture (operating
in a federated mode), the FedCo module (centrally with a
machine learning strategy) decides on the placement of the
popular contents in favorable positions for the user (QoS-
wise) and for the operator (revenue-wise). The placement
sites are the MDC and EDC locations.

Based on the content placement, the SDN controller
adapts the routing paths to the placement sites. More specif-
ically, the placement locations are fed as a network graph
to the SDN controller. Once the prediction from the LSTM
is obtained (i.e., future popularities, QoS scores) and the
FedCo module has decided on the content placement, then
the SDN controller determines and activates the routing
paths towards the placement sites. If a device serving a
request has moved out of a location, the closest controller
will forward the uploaded model, whereby the forwarding
routing paths are determined by the SDN controller.



Through the FedCo model, users at the lower-most layer
may request services from a 5G-D2D mobile device cloud
(registered with the MNO) or an EDC collocated with the
5G-NR (New Radio) BS. The multiple available content
placement locations forms a convenient business model,
while at the same time empowering the customers to select
the desired level of QoS that they can afford (in terms of
cost). The service QoS is strongly influenced by the place-
ment decisions for popular content; therefore, the content
management is very important. Accordingly, we assume a
network graph which is given as input to the LSTM at the
time of training. Further, as both of the service locations (i.e.,
the EDC and the MDC) are registered with the MNO, the
question of where the content with a higher demand should
be placed influences the MNQO'’s profit margin. Therefore,
a controller which is situated at the edge makes the key
decisions of content placement. The routing of the requests
is based on the state of the network. That is, there are no
static routes defined as common in traditional networks.
Based on the FedCo updates, new paths can be added from
a source to a destination utilizing 5G-D2D edge routing [2].
As shown in Figure 1 when each user downloads the FL
framework from the controller for training the model with
the local data, the main goal of the data-plane entities is to
upload only the necessary parameter updates

3.3 Advantages

The proposed SDN based FL framework has several advan-
tages:

o Improved network QoS in terms of latency, efficiency
achieved and security, which are the key require-
ments for the caching service.

e Information privacy and reliability of caching loca-
tions and content delivery sites.

o Identification of mobile devices participating in
forming the device cloud is maintained as a log for
new cloud formations, that provides trustworthiness
and anonymous presence for the mobile devices
which in turn protects them from security attacks.

o Better resource orchestration that enables better net-
work control via the SDN controller, especially at the
time of device handovers in case of MDCs and total
available data center resources in case of EDCs. This
essentially provides better scalability, accessibility,
and power efficiency.

All of these characteristics are showcased in the next sec-
tion devoted to analyze the performance of the proposed
architecture.

4 PERFORMANCE EVALUATION: A CASE STUDY

To test the proposed FL framework and comment on its
effectiveness, a simulation case study has been performed
via the Mininet simulator [14] which is based on Python.
We employed Pytorch, a common tool for Federated Learn-
ing simulations, with typical synthetic IID data-sets. To
maintain clarity, the experiments have been performed on
an Intel Core i7-4510U CPU with 2.0 GHz and 8 GB of
RAM. The simulator quantities are provided in Table II,
in a network region of 1500 m x 1500 m, up to 40 mobile
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devices are scattered. Devices can share idle memory of up
to 1.0 GB per device in order to collectively store multiple
parts of a 100.0 MB test video. Two 5G NR BSs are placed
similar to the scenarios in [2] to cover the entire simulation
environment with 5G-D2D. The communication between
the mobile nodes and requesting mobile node is conducted
via the BS. The devices are allowed to move anywhere in the
network area and the handovers between the BS is managed
by a single POX controller. We compare our model with
random caching [15] and Edge-Boost caching [2] with an
SDN controller. We evaluate the delay aspects at the time of
request generation from the user and the Cache Hit Ratio
(CHR).

TABLE 2
Simulator Settings

Parameters Numerical Values

IEEE 802.11n (for 5G-D2D)
Communication LTE gNB with 1 Gbps bandwidth
medium -(for edge data center access)
Area considered 1500 m X 1500 m
No. of BSs 2
No. of MEs & Edge | 40&5
Nodes
Edge  Data-Center | Uniform rand. distribution
placement
Mobility model Random-waypoint protocol
Simulation Duration | 100 s
Packet length 1024 bytes
Packet interval 5 us

4.1 Cache Hit Ratio
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Fig. 3. Cache Hit Ratio as a function of cache size.

The Cache Hit ratio (CHR) is defined as the percentage
of satisfied requests to the total number of received requests.
The results depicted in Figure 3 indicate that the proposed
FedCo solution outperforms traditional techniques and the
SDN assisted state-of-the-art EdgeBoost solution. The CHRs
of all the methods increase with growing caching capacity.
This can be attributed to the fact that as the caching size
grows, the CHR values are increasing as the probability



of yielding the right location becomes higher. Due to the
precise and timely estimate of demand for content, FedCo
achieves a higher CHR than the other methods across the
entire range of considered caching space (inclusive of both
the EDC as well MDCs). For example, for a 4 percent cache
size,the FedCo CHR is roughly 12% higher than the random
caching CHR. These results indicate that with dynamic mo-
bility cases, SDN assistance is capable of adjusting locations
and continuously monitoring the device locations to meet
service demands. Additionally, as the node density increases
the CHR is likely going to increase.
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Fig. 4. Average delay as a function of number of mobile devices (MEs).

4.2 Average Delay

We define the average access latency (AAL) or Average
delay as “the time interval between sending the request and
receiving the first packet of the requested content”. As the
number of relay nodes increase the packets generated in-
creases depending on the number of relay nodes. This is the
case observed in MDC scenario. Thus, by using the MDC,
the number of packets generated increases to assist in the
communication between authenticated MDC devices. Thus,
there exists an efficiency trade-off. That is there would either
be increase in the communication overhead or we could
optimize on the delay reduction. We measure the average
delay specifically for the MDCs. We find that as the number
of devices increases, surprisingly, the delay is reduced as
the content is easily found through the collaboration of the
devices. For example, when there were only 10 devices, the
FedCo delay is roughly 50us; when the number of devices
is increased to 40 MEs, the delay is reduced to around 20 ys.
This delay reduction is achieved through the collaboration
and the willingness of the devices to participate in the MDC.
However, a key point to note here is that FedCo still outper-
forms other state-of-the-art frameworks, mainly because of
the relational learning via the Deep Neural Network that
constantly updates the requirements and the ME locations
monitored by the SDN controller.

5 CHALLENGES AND FUTURE RESEARCH

The SDN controller assisted FL framework has advantages,
including but not limited to security and resource orches-
tration features. However, the deployment of such a frame-
work faces challenges that need to be addressed in future
research:

e Scalability: The MDC deployment has challenges
mainly in the form of data generated between the
devices. That is the key challenges is in terms of
scalability. Additionally throughput, and latency also
get affected due to the rapid growth in of data moved
between the MDC systems. Further, the willingness
of the participants is also an important consideration.
This participation in essence affects scalability which
is also a critical challenge that can cause QoS reduc-
tion.

o Federated Learning in MDCs: It is well known that
5G technology provides a resource rich communi-
cation infrastructure that can run complex applica-
tions across geographically diverse regions. Forming
clouds via the idle device resources of end-users is
one such example that can leverage the 5G infras-
tructure. In case of MDC, mobile devices can be
utilized as intermediate nodes to forward messages.
Moreover, via Federated Learning (FL) mechanisms,
MDCs can assist in processing the collected data and
training them locally. This also raises questions about
device resource constraints such as CPU, battery,
and RAM for computation. Moreover, sophisticated
resource allocation strategy needs to be in place for
enabling device lifetimes and also optimization of
computation on the device.

o Information diversity: Mobile devices exchange in-
formation that needs to be processed differently in
an MDC. Some of the control information exchanged
are purely messages that are used to maintain the 5G-
D2D control link between the devices. These could
be different instructions received from the SDN con-
troller or simply the “keep-alive” messages between
devices in an MDC.

e 5G Infrastructure: There are a handful of notable
places or cities which have started deploying the 5G
infrastructure. However, there is a need for 5G infras-
tructure to be installed across continents for better
acceptance of such frameworks. Various methods as
to how such a deployment can be made quicker
is still an open challenge due to cost attached to
installing the 5G infrastructures.

e Automated MDC network: The proposed frame-
work is a self-stabilizing or self-adjusting network
that allows the environment to adapt to changes.
Therefore, such models achieve a high degree of
automation which are the key to designing a mobile
device cloud service. It is also important to under-
stand the needs of communication which are going to
be separated by geographically diverse regions such
as land, sea or air.

e Dense number of nodes: As the node density in-
creases, it is integral to understand the dynamics of
the links between the nodes. Various physical layer



characteristics such as Fading losses, location ID,
channel interference-management plays a crucial role
in monitoring the MDCs.

6 CONCLUSION

In this paper we present an SDN-assisted Federated Learn-
ing (FL) framework that not only provides secure and trust
worthy service delivery but also ensures seamless commu-
nication in a scalable manner to end-users. With the aid of
SDN-assisted FL, mobile devices can act as key computation
and caching resources. Via intermediate nodes routing can
be achieved that leverages all the resource available at the
edge in a distributed /hierarchical manner. With the advent
of ubiquitous IoT, service requests are going to be irregular,
and may span across geographically diverse regions. Thus
such a framework is not only economically profitable but
also improves the service quality. Having an intelligent re-
source management such as an SDN-assisted FL framework
to manage the resources in the network, is beneficial to
overcome a permanent fixed ( (potentially) over- or under-
provisioned edge network). We provide a simulation analy-
sis on Mininet simulator check the feasibility of our solution.
The key metrics we consider are compare the cache hit
ratio and average delay. We provide a comparison analysis
of the proposed FL based solution and other state-of-the-
art caching techniques for a better understanding of the
framework.
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