KUDLA-RAPOPORT CYCLES AND DERIVATIVES OF LOCAL DENSITIES
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ABSTRACT. We prove the local Kudla-Rapoport conjecture, which is a precise identity between
the arithmetic intersection numbers of special cycles on unitary Rapoport—Zink spaces and the
derivatives of local representation densities of hermitian forms. As a first application, we prove the
global Kudla—Rapoport conjecture, which relates the arithmetic intersection numbers of special cy-
cles on unitary Shimura varieties and the central derivatives of the Fourier coefficients of incoherent
Eisenstein series. Combining previous results of Liu and Garcia—Sankaran, we also prove cases of

the arithmetic Siegel-Weil formula in any dimension.
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1. INTRODUCTION

1.1. Background. The classical Siegel-Weil formula ([Sie51, Wei65]) relates certain Siegel Eisen-
stein series to the arithmetic of quadratic forms, namely it expresses special values of these se-
ries as theta functions — generating series of representation numbers of quadratic forms. Kudla
([Kud97b, Kud04]) initiated an influential program to establish the arithmetic Siegel-Weil formula
relating certain Siegel Eisenstein series to objects in arithmetic geometry, which among others,
aims to express the central derivative of these series as the arithmetic analogue of theta functions
— generating series of arithmetic intersection numbers of n special divisors on Shimura varieties
associated to SO(n — 1,2) or U(n — 1,1). These special divisors include Heegner points on mod-
ular or Shimura curves appearing in the Gross—Zagier formula ([GZ86, YZZ13]) (n = 2), modular
correspondence on the product of two modular curves in the Gross—Keating formula ([GK93]) and
Hirzebruch-Zagier cycles on Hilbert modular surfaces ([HZ76]) (n = 3).

The arithmetic Siegel-Weil formula was established by Kudla, Rapoport and Yang ([KRY99,
Kud97b, KR0Ob, KRY06]) for n = 1,2 (orthogonal case) in great generality. The archimedean
component of the formula was also known, due to Liu [Liulla] (unitary case), and Garcia—Sankaran
[GS19] in full generality (cf. Bruinier—Yang [BY21] for an alternative proof in the orthogonal case).
However, the full formula (in particular, the nonarchimedean part) was widely open in higher
dimension.

In the works [KR11, KR14] Kudla-Rapoport made the nonarchimedean part of the conjectural
formula more precise by defining arithmetic models of the special cycles (for any n in the unitary
case), now known as Kudla—Rapoport cycles. They formulated the global Kudla—Rapoport conjecture
for the nonsingular part of the formula, and explained how it would follow (at least at an unramified
place) from the local Kudla—Rapoport conjecture, relating the derivatives of local representation
densities of hermitian forms and arithmetic intersection numbers of Kudla—Rapoport cycles on
unitary Rapoport—Zink spaces. They further proved the conjectures in the special case when the
arithmetic intersection is non-degenerate (i.e., of the expected dimension 0). Outside the non-
degenerate case, the only known result was due to Terstiege [Terl3a], who proved the Kudla—
Rapoport conjectures for n = 3. Analogous results were known in the orthogonal case, see [GK93,
KR99, KR00a, BY21] (non-degenerate case) and [Terll] (n = 3).

The main result of this paper settles the local Kudla—Rapoport conjecture for any n in the unitary
case. As a first application, we will be able to deduce the global Kudla—Rapoport conjecture, and
prove the first cases of the arithmetic Siegel-Weil formula in all higher dimensions. In a companion
paper [LZ21], we will also use similar methods to prove analogous results in the orthogonal case.

As explained in [Kud97b| and [Liulla], the arithmetic Siegel-Weil formula (together with the
doubling method) has important application to the arithmetic inner product formula, relating the
central derivative of the standard L-function of cuspidal automorphic representations on orthogonal
or unitary groups to the height pairing of certain cycles on Shimura varieties constructed from
arithmetic theta liftings. It can be viewed as a higher dimensional generalization of the Gross—Zagier
formula, and an arithmetic analogue of the Rallis inner product formula. Further applications to
the arithmetic inner product formula are investigated in [LL, LL21]. We also mention that the
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local Kudla—Rapoport conjecture has application to the so-called unitary arithmetic fundamental
lemma for cycles on unitary Shimura varieties arising from the embedding U(n) x U(n) < U(2n).

1.2. The local Kudla—Rapoport conjecture. Let p be an odd prime. Let Fy be a finite ex-
tension of Q, with residue field ¥ = F, and a uniformizer w. Let F' be an unramified quadratic
extension of Fy. Let F Dbe the completion of the maximal unramified extension of F'. For any inte-
ger n > 1, the unitary Rapoport-Zink space N'= N, (§2.1) is the formal scheme over S = Spf O,
parameterizing hermitian formal Op-modules of signature (1, — 1) within the supersingular quasi-
isogeny class. Let E and X be the framing hermitian Op-modules of signature (1,0) and (1,n — 1)
over k. The space of quasi-homomorphisms V = V,, = Homy, . (E,X) carries a natural F/Fp-
hermitian form, which makes V the unique (up to isomorphism) non-degenerate nonsplit (see §1.7)
F/Fy-hermitian space of dimension n (§2.2). For any subset L C V| the local Kudla—Rapoport
cycle Z(L) (§2.3) is a closed formal subscheme of N, over which each quasi-homomorphism x € L
deforms to homomorphisms.

Let L C V be an Op-lattice (of full rank n). We now associate to L two integers: the arithmetic
intersection number Int(L) and the derivative of the local density ODen(L).

Let x1,..., 2, be an Op-basis of L. Define the arithmetic intersection number

(1.2.0.1) Int(L) = x(N, Oz & - @Y Ozy,)),

where Oz,,) denotes the structure sheaf of the Kudla-Rapoport divisor Z(z;), ®F denotes the
derived tensor product of coherent sheaves on A/, and y denotes the Euler—Poincaré characteristic
(§2.4). By [Ter13a, Proposition 3.2] (or [How19, Corollary D]), we know that Int(L) is independent
of the choice of the basis z1,..., 2, and hence is a well-defined invariant of L itself.

For M another hermitian Op-lattice (of arbitrary rank), define Rep,;; to be the scheme of
integral representations of M by L, an Op,-scheme such that for any Op,-algebra R, Rep,; 1 (R) =
Herm(L ®0p, R, M ®0p, R), where Herm denotes the set of hermitian module homomorphisms.
The local density of integral representations of M by L is defined to be

_ #Repy (O, /&™)
Den(M, L) = N1—1>I£oo qN‘dim(RePM,L)FO

Let (1)F be the self-dual hermitian Op-lattice of rank k with hermitian form given by the identity
matrix 1. Then Den((1)* L) is a polynomial in (—¢)~* with Q-coefficients. Define the (nor-
malized) local Siegel series of L to be the polynomial Den(X, L) € Z[X] (Theorem 3.5.1) such
that

Den((1)"** L)

Den((—Q)_kvL) - Den((1)n*k (1))

It satisfies a functional equation relating X < %,

(1.2.0.2) Den(X, L) = (—X)"(%) . Den ()1( L> :
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Here val(L) is the valuation of L defined in §1.7. Since V is nonsplit, we know that val(L) is odd
and so the value Den(1, L) = 0. We thus consider the derivative of the local density

d
ODen(L) = ~Tx X:1Den(X, L).
Our main theorem in Part 1 is a proof of the local Kudla—Rapoport conjecture [KR11, Conjecture

1.3], which asserts an exact identity between the two integers just defined.

Theorem 1.2.1 (Theorem 3.4.1, local Kudla—Rapoport conjecture). Let L C 'V be an Op-lattice
of full rank n. Then
Int(L) = 0Den(L).

We refer to Int(L) as the geometric side of the identity (related to the geometry of Rapoport—
Zink spaces and Shimura varieties) and dDen(L) the analytic side (related to the derivatives of
Eisenstein series and L-functions).

Our main theorem in Part 2 proves a variant of the local Kudla—Rapoport conjecture in the
presence of a minimal nontrivial level structure, given by the stabilizer of an almost self-dual lattice
(see §1.7) in a nonsplit F'/Fy-hermitian space. The relevant Rapoport—Zink space on the geometric
side is no longer formally smooth. See Theorems 10.3.1 and 10.5.1 for the precise statement.

1.3. The arithmetic Siegel-Weil formula. Next let us describe some global applications of
our local theorems. We now switch to global notations. Let F' be a CM number field, with Fj its
totally real subfield of index 2. Fix a CM type ® C Hom(F,Q) of F. Fix an embedding Q < C and
identify the CM type ® with the set of archimedean places of F', and also with the set of archimedean
places of Fp. Let V be an F/Fp-hermitian space of dimension n and G = Resp, /o U(V). Assume
the signatures of V' are {(n—1,1)4,, (1,0)4cp—{4o}} for some distinguished element ¢y € ®. Define
a torus Z% = {z € Resp/g Gm : Nmp/g,(2) € Gy }. Associated to G = Z9 x @ there is a natural
Shimura datum (G, {hg}) of PEL type (§11.1). Let K = K40 X Kg C é(Af) be a compact open
subgroup. Then the associated Shimura variety Shy = ShK(é, {hg}) is of dimension n — 1 and
has a canonical model over its reflex field E.

Assume that Kyo C ZQ(AJ:) is the unique maximal open compact subgroup. Assume that
Kg =11, Kg,v, where v runs over the finite places of Fyy such that Kg, C U(V)(Fo,) is given by
e the stabilizer of a self-dual or almost self-dual lattice A, C V,, if v is inert in F,

e the stabilizer of a self-dual lattice A, C V,, if v is ramified in F,

e a principal congruence subgroup of U(V)(Fo,) ~ GLy(Fp,) if v is split in F.

Then we construct a global regular integral model Mg of Shyi over Op following [RSZ20] (see
§14.1, §14.2 for more precise technical assumptions needed). When Fy = Q, we have F = F and
the integral model Mg recovers that in [BHK™20] when K¢ is the stabilizer of a global self-dual
lattice, which is closely related to that in [KR14].

Let V be the incoherent Ar/A g, -hermitian space nearby V', namely V is totally positive definite
and V, =V, for all finite places v. Let px € #(V7}) be a K-invariant (where K acts on V;
via the second factor K¢) factorizable Schwartz function such that ¢, = 1,y at all v inert

in F. Let T' € Herm,(F') be a nonsingular hermitian matrix of size n. Associated to (T, px)
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we construct arithmetic cycles Z(T, ¢k ) over Mg (§14.3) generalizing the Kudla—Rapoport cycles
Z(T) in [KR14]. Analogous to the local situation (1.2.0.1), we may define its local arithmetic
intersection numbers Intr, (k) at finite places v (§13.5). Using the star product of Kudla’s Green
functions, we also define its local arithmetic intersection number Int7,(y, ¢k ) at infinite places
(§15.3), which depends on a parameter y € Herm,,(Fi)=o where Fi, = F ®g R =2 C®. Combining
all the local arithmetic numbers together, define the global arithmetic intersection number, or the
arithmetic degree of the Kudla-Rapoport cycle Z(T, ¢k ),

degr(y, o) = Y _ Ity (0x) + Y Into(y,

vfoo v]oo
It is closely related to the usual arithmetic degree on the Gillet—Soulé arithmetic Chow group
Che(M) (§15.4).
On the other hand, associated to ¢ = pxr ® Yoo € L (V"), where p is the Gaussian function,
there is a classical incoherent FEisenstein series F(z,s,pk) (§12.4) on the hermitian upper half
space

H, ={z=x+1iy: x € Herm,(Fw), y € Herm,(Fx)>0}-
This is essentially the Siegel Eisenstein series associated to a standard Siegel-Weil section of the
degenerate principal series (§12.1). The Eisenstein series here has a meromorphic continuation and
a functional equation relating s <» —s. The central value E(z,0, px) = 0 by the incoherence. We
thus consider its central derivative

OEis(z, pi) = —

dS E(Z,S,QOK)-

s=0
Associated to an additive character ¢ : Ap,/Fy — C*, it has a decomposition into the central
derivative of the Fourier coefficients
OEis(z, pk) = Z OEis7(z, pK ).
TeHerm, (F)
Now we can state our first application to the global Kudla—Rapoport conjecture [KR14, Conjec-
ture 11.10], which asserts an identity between the arithmetic degree of Kudla-Rapoport cycles and

the derivative of nonsingular Fourier coefficients of the incoherent Eisenstein series.

Theorem 1.3.1 (Theorem 14.5.1, global Kudla—Rapoport conjecture). Let Diff(T,V) be the set of
places v such that V,, does not represent T (§12.3). Let T' € Hermy,(F') be nonsingular such that
Diff (T, V) = {v} where v is inert in F and not above 2. Then

degr(y, pr)q’ = ck - OBisr(z, vK),

n

where ¢ = Yoo (tr T2), cx = % is a nonzero constant independent of T and g, and vol(K)

is the volume of K under a suitable Haar measure on é(Af).

We form the generating series of arithmetic degrees

deg(z, o) = > degr(y, ox)q"
TeHermy (F)
det T'#0
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Now we can state our second application to the arithmetic Siegel-Weil formula, which relates this
generating series to the central derivative of the incoherent Eisenstein series.

Theorem 1.3.2 (Theorem 15.5.1, arithmetic Siegel-Weil formula). Assume that F/Fy is unram-
ified at all finite places and split at all places above 2. Further assume that px is nonsingular
(§12.3) at two places split in F'. Then

d/e\g(z, vK) = ck - OEis(z, k).

In particular, d/eTg(z, ©vK) is a nonholomorphic hermitian modular form of genus n.

Remark 1.3.3. The unramifiedness assumption on F'/Fy forces Fyy # Q. To treat the general case,
one needs to formulate and prove an analogue of Theorem 1.2.1 when the local extension F/Fj is
ramified. We remark that at a ramified place, in addition to the Krdmer model with level given by
the stabilizer of a self-dual lattice, we may also consider the case of exotic good reduction with level
associated to an (almost) m-modular lattice. We hope to extend our methods to cover these cases,
which in particular requires an extension of the local density formula of Cho—Yamauchi [CY20] to
the ramified case (see [LL21] for the case of m-modular lattices).

Remark 1.3.4. The nonsingularity assumption on ¢ allows us to kill all the singular terms on
the analytic side. Such g exists for a suitable choice of K since we allow arbitrary Drinfeld levels
at split places.

1.4. Strategy of the proof of the main Theorem 1.2.1. The previously known special cases
of the local Kudla-Rapoport conjecture ([KR11, Terl3a]) are proved via explicit computation of
both the geometric and analytic sides. Explicit computation seems infeasible for the general case.
Our proof instead proceeds via induction on n using the uncertainty principle.

More precisely, for a fixed Op-lattice L’ C V = V,, of rank n—1 (we assume Lﬁp is non-degenerate

throughout the paper), consider functions on x € V'\ Lk};,
Int,(z) == Int(L’ 4 (z)), &Den,,(z) = dDen(L’ + (x)).

Then it remains to show the equality of the two functions Int;, = dDen;,. Both functions vanish
when x is non-integral, i.e., val(z) < 0. Here val(z) denotes the valuation of the norm of x. By
utilizing the inductive structure of the Rapoport—Zink spaces and local densities, it is not hard to
see that if z 1 L* with val(z) = 0, then

Int;, (z) = Int(L"), dDen;,(z) = dDen(L)

for the lattice L C V,,_1 = (x)+ of full rank n— 1. By induction on n, we have Int(L’) = dDen(L’),
and thus the difference function ¢ = Int;, —9Den;, vanishes on {x € V:z L L’ val(z) < 0}. We
would like to deduce that ¢ indeed vanishes identically.

The uncertainty principle (Proposition 8.1.6), which is a simple consequence of the Schrédinger
model of the local Weil representation of SLg, asserts that if ¢ € C2°(V) satisfies that both ¢ and
its Fourier transform ¢ vanish on {z € V : val(z) < 0}, then ¢ = 0. In other words, ¢, ¢ cannot
simultaneously have “small support” unless ¢ = 0. We can then finish the proof by applying

the uncertainty principle to ¢ = Int;, —0Den;,, if we can show that both Int;, and dDen;, are
6



invariant under the Fourier transform (up to the Weil constant vy = —1). However, both functions
have singularities along the hyperplane Lk}; C V, which cause trouble in computing their Fourier
transforms or even in showing that ¢ € C2°(V).

To overcome this difficulty, we isolate the singularities by decomposing

Int;, =1Intp, 4 +1Inty, 4, ODenp, = ODeny, 5 + ODeny, 4

into “horizontal” and “vertical” parts. Here on the geometric side Int;, 4, is the contribution from
the horizontal part of the Kudla—Rapoport cycles, which we determine explicitly in terms of quasi-
canonical lifting cycles (Theorem 4.2.1). On the analytic side we define dDeny, ,,» to match with
Int;p ,. We show the horizontal parts have logarithmic singularity along L%, and vertical parts
are indeed in C2°(V) (Corollary 6.2.2, Proposition 7.3.4). We can then finish the proof if we can

determine the Fourier transforms as
(1.4.0.1) I/n\tLM/ = —Inty, », ODenp, , = —0Denp, .

On the geometric side we show (1.4.0.1) (Corollary 6.3.3) by reducing to the case of intersection
with Deligne-Lusztig curves. This reduction requires the Bruhat-Tits stratification of A" into
certain Deligne-Lusztig varieties (§2.7, due to Vollaard~Wedhorn [VW11]) and the Tate conjecture
for these Deligne-Lusztig varieties (Theorem 5.3.2, which we reduce to a cohomological computation
of Lusztig [Lus76]).

On the analytic side we are only able to show (1.4.0.1) (Theorem 7.4.1) directly when z L L
and val(z) < 0. The key ingredient is a local density formula (Theorem 3.5.1) due to Cho-
Yamauchi [CY20] together with the functional equation (1.2.0.2). We then deduce the general case
by performing another induction on val(L?) (§8.2).

We remark the extra symmetry (1.4.0.1) under the Fourier transform can be thought of as
a local modularity, in analogy with the global modularity of arithmetic generating series (such
as in [BHK'20]) encoding an extra global SLo-symmetry. The latter global modularity plays
a crucial role in the second author’s recent proof [Zha2l] of the arithmetic fundamental lemma.
In contrast to [Zha21], our proof of the local Kudla—Rapoport conjecture does not involve global
arguments, thanks to a more precise understanding of the horizontal part of Kudla—Rapoport cycles.
In other similar (non-arithmetic) situations, induction arguments involving Fourier transforms and
the uncertainty principle are not unfamiliar: here we only mention the second author’s proof
[Zhal4] of the Jacquet—Rallis smooth transfer conjecture, and more recently Beuzart-Plessis’ new

proof [BP21] of the Jacquet-Rallis fundamental lemma.

1.5. The structure of the paper. In Part 1, we review necessary background on the local Kudla—
Rapoport conjecture and prove the main Theorem 1.2.1. In Part 2, we prove a variant of the local
Kudla-Rapoport conjecture in the almost self-dual case (Theorems 10.3.1, 10.5.1), by relating both
the geometric and analytic sides in the almost self-dual to the self-dual case (but in one dimension
higher). In Part 3, we review semi-global and global integral models of Shimura varieties and

Kudla—Rapoport cycles, and incoherent Eisenstein series. We then apply the local results in Parts
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1 and 2 to prove the local arithmetic Siegel-Weil formula (Theorem 13.6.1), the global Kudla-
Rapoport conjecture (Theorem 14.5.1), and cases of the arithmetic Siegel-Weil formula (Theorem
15.5.1).

1.6. Acknowledgments. The authors would like to thank X. He, B. Howard, S. Kudla, Y. Liu,
G. Lusztig, M. Rapoport, L. Xiao, Z. Yun, X. Zhu and Y. Zhu for useful conversations and/or
comments. The authors are also grateful to referees for careful reading and helpful suggestions.
C. L. was partially supported by an AMS travel grant for ICM 2018 and the NSF grant DMS-
1802269. W. Z. was partially supported by the NSF grant DMS-1838118 and 1901642. The authors
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1.7. Notation on hermitian lattices. Let p be a prime. In the local parts of the paper (Part 1
and 2), we let Fy be a non-archimedean local field of residue characteristic p, with ring of integers
Or,, residue field & = [F; of size ¢, and uniformizer w. Unless otherwise specified, we let I be a
quadratic extension of Fp, with ring of integers O and residue field kp. Let o be the nontrivial
automorphism of F/Fy. Let F be the completion of the maximal unramified extension of F', and
O} its ring of integers.

Unless otherwise specified, we assume that F'/Fj is unramified (with an exception of §8.1.5 on the
uncertainty principle). We further assume that Fy has characteristic 0 and residue characteristic
p > 2 (with exceptions of §3, §7, §8.1.5, §9, which concern only the analytic side).

Let V be a (non-degenerate) F'/Fy-hermitian space with hermitian form (, ). We write val(x) :=
val((z,z)) for any = € V, where val is the valuation on Fjy. Recall that the (non-degenerate)
F/Fy-hermitian spaces are classified up to isomorphism by its dimension n and its discriminant
disc(V) = (—1)(3) det(V) € Fy' /Nmp,p, F* ([Jac62, Theorem 3.1]). We say V is split if disc(V) =
1 € Fy' /Nmp, g F*, and nonsplit otherwise.

Let L C V be an Op-lattice of rank n. We denote by LV its dual lattice under (, ). We say that
L is integral if L C LV. If L is integral, define its fundamental invariants to be the unique sequence
of integers (a1, ...,a,) such that 0 < a; < --- < ay, and LY/L ~ & ,Op/w% as Op-modules;
define its valuation to be val(L) :== Y_" | a;; and define its type, denoted by t(L), to be the number
of nonzero terms in its fundamental invariants (aq,...,a,).

We say L is minuscule or a vertex lattice if it is integral and LY C w'L. Note that L is
a vertex lattice of type ¢ if and only if it has fundamental invariants (0", 1(®)) if and only if
L C' LYV C w 'L, where C! indicates that the Op-colength is equal to ¢t. The set of vertex lattices
of type t in V is denoted by Vert! = Vert!(V). We say L is self-dual if L = LV, or equivalently L is
a vertex lattice of type 0. We say L is almost self-dual if L is a vertex lattice of type 1. When F'/Fy
is unramified, if V is split then val(L) is even and V contains a self-dual lattice; if V is nonsplit
then val(L) is odd and V contains an almost self-dual lattice.

Unless otherwise specified, we denote by L C V an Op-lattice of rank n — 1, and we always
assume that L% is non-degenerate. Here we use the subscript (—)r to stand for the base change to
F,so L}, =L’ ®o, F.



Fix an unramified additive character ¢ : Fy — C*. Here “unramifiedness” means that the
conductor of ¢ (i.e., the largest fractional ideal in Fy on which ) is trivial) is Op,. For an integrable
function f on V, we define its Fourier transform f to be

(17.0.2) Fla) = /V F@)(erry s (@, 9)dy, T eV,

We normalize the Haar measure on V to be self-dual, so f(z) = f(—z). For an Op-lattice L C V
of rank n, we have (under the assumption that F/Fj is unramified)

1, =vol(L)1yv, and vol(L) = [LY:L]7Y/? = ¢qva@),
Note that val(L) can be defined for any lattice L (not necessarily integral) so that the above equality
for vol(L) holds.

1.8. Notation on formal schemes. Let X be a formal scheme. Denote by X4 the underlying
reduced scheme. For closed formal subschemes Zi,---,Z,, of X, denote by U",Z; the formal
scheme-theoretic union, i.e., the closed formal subscheme with ideal sheaf N[, 7z,, where Zz, is the
ideal sheaf of Z;. A closed formal subscheme on X is called a Cartier divisor if it is defined by an
invertible ideal sheaf.

Let X be a formal scheme over Spf Op. Then X defines a functor on the category of Spf O -
schemes (i.e. Op-schemes on which @ is locally nilpotent). For a noetherian w-adically complete
O-algebra R, write X (R) := Homgyo,. (Spf R, X) = lim X (Spec R/w™).

When X is noetherian, denote by K (X) the Grothendieck group (modulo quasi-isomorphisms)
of finite complexes of coherent locally free Ox-modules, acyclic outside Y (i.e., the homology
sheaves are formally supported on Y). As defined in [Zha21, (B.1), (B.2)], denote by F{K} (X) be
the (descending) codimension filtration on K] (X), and denote by Gr® K} (X) its i-th graded piece.
As in [Zha21, Appendix B], the definition of K} (X), FIK} (X) and Gr’ K} (X) can be extended
to locally noetherian formal schemes X by writing X as an increasing union of open noetherian
formal subschemes. Similarly, we let K{(X) denote the Grothendieck group of coherent sheaves of
Ox-modules. Now let X be regular. Then there is a natural isomorphism K} (X) ~ K}(Y). For

L L L L
closed formal subschemes Zi,--- | Z,, of X, denote by Z1 Nx -+ Nx Z,, (or simply Z; N --- N Z,,)
the derived tensor product Oz, ®H@X e ®H@X Oz,,, viewed as an element in KOZ 100Zm (X,
For F a finite complex of coherent O x-modules, we define its Euler—Poincaré characteristic

X(X,F) = Z(—l)“‘j lengthp H'(X, H;(F))
0.

if the lengths are all finite. Assume that X is regular with pure dimension n. If F; € F" KOZ (X)
with 32, 7; > n, then by [Zha21, (B.3)] we know that x(X, ®* F;) depends only on the image of F;
in Gr" KZ'(X). In fact, we will only need this assertion when X is a scheme (cf. Remark 6.4.11).
When X is a formal scheme, the assertion holds trivially when one of the r; is dim X; this special
case will be used repeatedly.

For a morphism 7 : X — Y between two formal schemes and a closed formal subscheme Z < Y,
let 771(Z) < X be the preimage of Z. Let * : KZ(Y) — Kgil(z) (X) be the homomorphism

induced by pulling back locally free sheaves. If 7 is proper (i.e., a morphism of finite type such
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that the induced morphism X™4 — Y™ on the reduced schemes is proper), there is a direct
image homomorphism 7, : K{(X) — K{(Y) sending (the class of) a coherent Ox-module F to

Zizo(—l)iRim}'.

1.9. Reminder on hermitian spaces over finite fields. Let V be a (non-degenerate) kp/k =
IF,2 /F;-hermitian space of dimension m (which is unique up to isomorphism). The following (well-

known) formula will be used throughout this article often without explicit reference.

Lemma 1.9.1. Let S,(V') be set of totally isotropic kp-subspaces of dimension b in' V', and Sp,p :=
#Sy(V'). Then
S = [T opia (1 — ('—Q)i)'
| [Tim (1 = ¢*)
Proof. The unitary group U(V)(k) = U,,(k) acts transitively on the set S,(V'), with stabilizer given
by a parabolic subgroup Py(k) C U(V)(k). As an affine variety, we have

Pb ~ ReSkF/k GLb X ReskF/k GZ(S X GZZ X Ug,

where 6 = m — 2b. Therefore

s . #Un(k) _ ¢ (1~ (—9) ™)
To#Bk) [P TLo (- g 2] g2 g (g TT, (1 — (=) )]
which simplifies to the desired formula. O

Part 1. Local Kudla—Rapoport conjecture: the self-dual case
2. KunDLA-RAPOPORT CYCLES

2.1. Rapoport—Zink spaces N. Let n > 1 be an integer. A hermitian Op-module of signature
(1,n — 1) over a Spf O z-scheme S is a triple (X, ¢, ) where
(1) X is a formal w-divisible Op,-module over S of relative height 2n and dimension n,

(2) ¢ : Op — End(X) is an action of Op extending the Op,-action and satisfying the Kottwitz
condition of signature (1,n — 1): for all a € Op, the characteristic polynomial of ¢(a) on Lie X
is equal to (T — a)(T — o(a))" ! € Og[T],

(3) A: X = XVis a principal polarization on X whose Rosati involution induces the automorphism

o on Of via t.

Up to Op-linear quasi-isogeny compatible with polarizations, there is a unique such triple
(X, 1x, Ax) over S = Speck. Let N' = N, = N5, , be the (relative) unitary Rapoport-Zink space
of signature (1,n — 1), parameterizing hermitian Op-modules of signature (1,7 — 1) within the
supersingular quasi-isogeny class. More precisely, N is the formal scheme over Spf O » which rep-
resents the functor sending each S to the set of isomorphism classes of tuples (X, ¢, A, p), where the
framing p: X xgS — Xxspeckg is an Op-linear quasi-isogeny of height 0 such that p*((Ax)g) = Ag.
Here S := S} is the special fiber.

The Rapoport—Zink space N' = N,, is formally locally of finite type and formally smooth of

relative dimension n — 1 over Spf O ([RZ96], [Mih, Proposition 1.3]).
10



2.2. The hermitian space V. Let E be the formal Op -module of relative height 2 and dimension
1 over Speck. Then D := EndOOF0 (E) := Endo (E) ® Q is the quaternion division algebra over
Fy. We fix an Fy-embedding (g : ' — D, which makes E into a formal Op-module of relative
height 1. We fix an Op,-linear principal polarization A\g : E = EV. Then (E, (g, Ag) is a hermitian
Op-module of signature (1,0). We have N} ~ Spf O and there is a unique lifting (the canonical
lifting) &€ of the formal Op-module E over Spf O, equipped with its Op-action tg, its framing
pe : & — E, and its principal polarization Ag lifting p%(Ag). Define E to be the same Op-module
as E but with Op-action given by t5 == tg 0 0, and Az := Ag, and similarly define £ and Ag.
Define

V =V, = Hom{_(E,X) = Homop,.(E,X) ® Q

to be the space of special quasi-homomorphisms ([KR11, Definition 3.1]). Then V carries a F'/Fp-
hermitian form: for z,y € V, the pairing (z,y) € F is given by
-z Ax \/yv—\/)‘il_ o /M) — ,_
(E=X=X"—=E —E)e€Endp,(E) =g(F) = F.
The hermitian space V is the unique (up to isomorphism) non-degenerate non-split F'/ Fy-hermitian
space of dimension n. The space of special homomorphisms Homg,, (E,X) is an integral hermitian
Op-lattice in V. The unitary group U(V)(F)j) acts on the framing hermitian Op-module (X tx, Ax)

(via the identification in [KR11, Lemma 3.9]) and hence acts on the Rapoport—Zink space N via
9(X, 1, M, p) = (X,1,A, g op) for g € U(V)(Fp).

2.3. Kudla—Rapoport cycles Z(L). For any subset L C V, define the Kudla—Rapoport cycle (or
special cycle) Z(L) C N to be the closed formal subscheme which represents the functor sending
each S to the set of isomorphism classes of tuples (X,¢, A, p) such that for any x € L, the quasi-
homomorphism

- 5 g PE T G g P G
plozops:Es x5S 5 E Xgpeer S 2 X Xgpeer S = X x5 8

extends to a homomorphism £ — X ([KR11, Definition 3.2]). Note that Z(L) only depends on
the Op-linear span of L in V.

2.4. Arithmetic intersection numbers Int(L). Let L CV be an Op-lattice of rank r > 1. Let
Z1,..., T, be an Op-basis of L. Since each Z(z;) is a Cartier divisor on N ([KR11, Proposition 3.5]),
we know that Oz(,,) € FIKOZ(%)(N') (see §1.8), and hence by [Zha21, (B.3)] we obtain

Oz(ey) O @ Oz, € F'EZ P (W),

This is independent of the choice of the basis xi,...,x, by [Howl9, Corollary C] and hence is
a well-defined invariant of L itself. We will provide a different proof of this independence (see
Corollary 2.8.2) after recalling the structure of the reduced scheme of Z(L).

Definition 2.4.1. Define the derived Kudla—Rapoport cycle “Z(L) to be the image of Oz "
- @ Oz(,,) in the 7-th graded piece Gr" Ko " (N).
11



Definition 2.4.2. When L C V has rank r = n, define the arithmetic intersection number
(2.4.2.1) Int(L) = x(N,“2(L)),

where x denotes the Euler-Poincaré characteristic (§1.8). Notice that if L is not integral then Z(L)
is empty and hence Int(L) = 0.

Example 2.4.3 (The case rank L = 1). If rank L = 1, then by the theory of canonical lifting
([Gro86)), we have
Int(L) = val(L) + 1'
2
2.5. Generalized Deligne—Lusztig varieties Yy . Let V' be the unique (up to isomorphism)
kg /k-hermitian space of odd dimension 2d + 1. Define Yy to be the closed kp-subvariety of the
Grassmannian Grgy1(V) parameterizing subspaces U C V of dimension d + 1 such that U+ C
U ([Vol10, (2.19)]). It is a smooth projective variety of dimension d, and has a locally closed

stratification
d

Yo = || Xp, (wi),
i=0
where each Xp, (w;) is a generalized Deligne-Lusztig variety of dimension ¢ associated to a certain
parabolic subgroup P; € U(V) ([Voll0, Theorem 2.15]). The open stratum Y9 = Xp,(wq) is a
classical Deligne-Lusztig variety associated to a Borel subgroup P; C U(V) and a Coxeter element
wq. Each of the other strata Xp (w;) is also isomorphic to a parabolic induction of a classical
Deligne—Lusztig variety of Coxeter type for a Levi subgroup of U(V) ([HLZ19, Proposition 2.5.1]).

2.6. Minuscule Kudla—Rapoport cycles V(A). Let A C V be a vertex lattice. Then V) =
AY /A is a kp-vector space of dimension t(A), equipped with a (non-degenerate) kp/k-hermitian
form induced from V. Since V is a non-split hermitian space, the type ¢(A) is odd. Thus we have
the associated generalized Deligne-Lusztig variety Yy, of dimension (¢#(A) — 1)/2. The reduced
subscheme of the minuscule Kudla-Rapoport cycle V(A) = Z(A)*d is isomorphic to YVA,I}I‘ In
fact Z(A) itself is already reduced ([LZ17, Theorem B]), so V(A) = Z(A).

2.7. The Bruhat-Tits stratification on N, The reduced subscheme of A satisfies N4 =
Up V(A), where A runs over all vertex lattices A C V. For two vertex lattices A, A’, we have
V(A) C V(A') if and only if A D A’; and V(A) N V(A') is nonempty if and only if A + A’ is also
a vertex lattice, in which case it is equal to V(A + A’). In this way we obtain a Bruhat-Tits
stratification of N4 by locally closed subvarieties ([VW11, Theorem B]),

Nt =] v, vy =vi) - [ va).

A ACA

Each Bruhat-Tits stratum V(A)° =~ Y\Z\,E is a classical Deligne-Lusztig variety of Coxeter type
associated to U(Vy), which has dimension (t(A) —1)/2. It follows that the irreducible components
of N4 are exactly the projective varieties V(A), where A runs over all vertex lattices of maximal

IWe naturally identify V with No in [VW11] and C in [KR11] via [KR11, Lemma 3.9]. Notice that V(A) in [VW11]
and [KR11] is the same as our V(AY).
12



type ([VW11, Corollary C]). The points in the 0-dimensional Bruhat-Tits strata, i.e., V(A) for type
1 vertex lattices A, are known as superspecial points.

For L C V be an Op-lattice of rank » > 1. By [KR11, Proposition 4.1], the reduced subscheme
Z (L) of a Kudla-Rapoport cycle Z(L) is a union of Bruhat-Tits strata,

(2.7.0.1) Zyet=J v).
LCA
When n > 3, a point z € N(k) is called super-general if there is no special homomorphism u
of valuation 0 such that z € Z(u)(k). By (2.7.0.1), we know that z is super-general if and only
if z € V(A)° for A a vertex lattice of type n. In particular, there is no super-general point on N

when n > 3 is even.

2.8. Independence of the choice of the basis. We generalize the results of Terstiege [Terl3a,
Lemma 3.1, Proposition 3.2].

Lemma 2.8.1. Let x,y € V=1V, be linearly independent. Then the sheaves Tor?N” (Oz(2), Oz(y))
vanish for all i > 1. In particular,

Oz() @ Oz(y) = Oz(x) @ Oz(y).

Proof. The proof is similar to [Terl3a, Lemma 3.1]. Let 2 € N,,(k) and let R = Oy, . be the local
ring at z. Let f,g € R be the local equations at z of Z(z), Z(y) respectively. Then (cf. loc. cit.)
Oy -f
Tor; ™" (Oz(2), Oz(y))= = ker (R/(g9) —— R/(9)),
and Torl(-QN” (Oz(2), Oz(y)). = 0 for i > 1. We claim that f and g have no common divisor in the
regular ring R for every z € N, (k). The claim implies the desired vanishing of Tor;.

We prove the claim by induction on n. When n < 3, this is known by the proof of [Terl3a,
Lemma 3.1]. Now assume that n > 4.

Let U be the set of z € N, (k) where the local equations of Z(x) and Z(y) share a common
divisor.

First suppose that 2 contains a point z that is not super-general (§2.7). Choose u with valuation
0 such that z € Z(u)(k). We may further assume that u is linearly independent from z and y. In
fact, if u € (z,y)r, we may choose a non-zero v’ € (z,y)% such that z € Z(u')(k), and then we
replace u by u+u/. Denote by z” (resp. 3°) the orthogonal projection of z (resp. y) to (u)*. Then
2* and 3’ remain linearly independent. The restrictions of Z(z) and Z(y) to Z(u) ~ Ny_1 (cf.
(2.11.0.2)) are the special divisors Z(z°) and Z(y°). By our assumption z € U, the local equations
at z € N,_1(k) of Z(2*) and Z(3’) share a common divisor. This contradicts the induction
hypothesis.

Now suppose that U consists of only super-general points. In particular, n is odd. Recall that the
difference divisor D(y) := Z(y) — Z(y/w) (as Cartier divisors) is effective and regular by [Ter13b].
We have an equality of Cartier divisors Z(y) = > .-, D(y/w") (this is a locally finite sum). Let
2o € ¥ and let A be the unique vertex lattice of type n such that z € V(A)(k). Possibly replacing y

by y/w" for some i > 0, we may assume that locally at zg the divisor D(y) is a component of Z(z).
13



By the argument of [KR11, Lemma 3.6], the set of points z € D(y)™! where the local equations at
z of Z(x) and D(y) share a common divisor is open and closed in D(y)"4. In fact we can directly

red

apply loc. cit by letting X be the formal completion of A, along D(y)™* and noting that the local

equation of D(y) is given by an irreducible element. It follows that there exists an irreducible
component of the scheme D(y) N V(A), denoted by Dy, passing through zg. Then Do (k) C U, and
D is closed subscheme of V(A). By our assumption on U, we have ®y C V(A)°. However, by
[Lus76, Corollary 2.8], the open variety V(A)° is affine with dimV(A) = 25 > 2 and hence can
not have any positive dimensional projective irreducible subscheme (such as ©g). Contradiction!

This completes the induction. ]

Corollary 2.8.2. Let L CV be an Op-lattice of rank r > 1. Let x1,...,x, be an Op-basis of L.
Then Oz(y,) k.. @k Oz, € KGZ(L) (N) is independent of the choice of the basis.

Proof. This is similar to [Ter13a, Proposition 3.2]. We can transform a basis into any other basis by
a suitable sequence of the following operations: permutations; the multiplication on a basis vector
by a unit in O; for every pair (i, j),i # j, the substitution of z; by z; + ax; for o € Op. O

2.9. Horizontal and vertical parts of Z(L).

Definition 2.9.1. A formal scheme Z over Spf O is called vertical (resp. horizontal) if w is
locally nilpotent on Z (resp. flat over Spf O). Clearly the formal scheme-theoretic union of two
vertical (resp. horizontal) formal subschemes of a formal scheme is also vertical (resp. horizontal).

We define the horizontal part Z,» C Z to be the closed formal subscheme defined by the ideal
sheaf Oz[w™>] C Oz. Then Z,r is the maximal horizontal closed formal subscheme of Z.

When Z is noetherian, there exists N > 0 such that @V Oz[w>] = 0, and we define the
vertical part Zy C Z to be the closed formal subscheme defined by the ideal sheaf @V Oz. Since
Oz[@*] NwN Oz = 0, we have a decomposition

Z=ZLy\ULy,

as a union of horizontal and vertical formal subschemes. Notice that the horizontal part Z, is
canonically defined, while the vertical part Zy depends on the choice of N.

Lemma 2.9.2. Let L CV be a Op-lattice of rank r > n—1 such that Ly is non-degenerate. Then
Z(L) is noetherian.

Proof. As a closed formal subscheme of the locally noetherian formal scheme N, we know that Z(L)
is locally noetherian. Since L has rank r > n — 1, the number of vertex lattices A C V such that
L C A is finite. In fact, when r = n we have L C A C LY; when r =n — 1 we have L1 C A C L,
where L1 = L @ (z) and (x) C Ly is an Op-lattice with val(z) > 0 (depending only on L). By
(2.7.0.1), we know that Z(L)™4 is a closed subset in finitely many irreducible components of A/,
Since each irreducible component of N is quasi-compact, we know that Z (L) is quasi-compact,

hence noetherian. O
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By Lemma 2.9.2, for L C V an Op-lattice of rank r > n — 1, we obtain a decomposition of the
Kudla—Rapoport cycle into horizontal and vertical parts

Z(L) = Z(L).» UZ(L)y.

Again notice that the vertical part Z(L)y depends on the choice of an integer N > 0. Since the
choice of N is not important for our purpose we suppress it from the notation (cf. §5.2).

2.10. Finiteness of Int(L). The following result should be well-known to the experts.

Lemma 2.10.1. Let L C'V be an Op-lattice of rank n. Then the formal scheme Z(L) is a proper
scheme over Spf Op. In particular, Int(L) is finite.

Proof. The vertical part Z(L)y is a scheme by Lemma 5.1.1 below. We show that the horizontal
part Z(L) s is empty. If not, there exists z € Z(L)(Ok) for some finite extension K of F. Let X
be the corresponding Op-hermitian module of signature (1,n — 1) over Og. Since L has rank n,
we know that X admits n linearly independent special homomorphisms #; : £ — X, which gives
rise to an Op-linear isogeny

(T1,...,%p) : E" = X.

It then follows that the Op-action on X satisfies the Kottwitz signature condition (0,n) rather than
(I,n — 1) in characteristic 0, a contradiction. Thus Z(L), is empty, and so Z(L) is a scheme.
Since Z(L)* is contained in finitely many irreducible components of N4 and each irreducible
component of N is proper over Speck, it follows that the scheme Z(L) is proper over Spf Op.
The finiteness of Int(L) then follows from the discussion before [Zha21, (B.4)]. O

2.11. A cancellation law for Int(L). Let M C V,, be a self-dual lattice of rank r. We may
choose the framing object (X, tx, Ax) of Ny—, the framing object (X x E", 1x X tr, Ax X Agr) of N,
and g € U(V,,)(Fp) such that the self-dual lattice Homo, (E,E") C Homg, (E,X x E") is identified
with the self-dual lattice gM C V,,. Recall that U(V,,)(Fy) naturally acts on N,, (§2.2). The map
(X 0,0, p) = g HX X E, 1 X 1gry A X Agry p X per) gives a closed embedding

(2.11.0.1) om: Noop — N,

which identifies NV, _, with the special cycle Z(M) ([RSZ18, Remark 4.5]). Let V,, = V,,_, & Mp
be the induced orthogonal decomposition. For u € V,,, denote by u’ the projection to V,_,. If
u’ # 0, then the special divisor Z(u) intersects transversely with A,_, and its pull-back to N,
is the special divisor Z(u”). By [Zha2l, Lemma B.2 (i)], we obtain

(2.11.0.2) Ny 3 Z(u) = Z(u).

Lemma 2.11.1. Let M C V,, be a self-dual lattice of rank r and L’ an integral lattice in V,_,.
Then

Int(L’ & M) = Int(L").

Proof. This follows from the equation (2.11.0.2) and the definition of Int by (2.4.2.1). O
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3. LOCAL DENSITIES

In this section (except §3.4) we allow F to be a non-archimedean local field of characteristic not
equal to 2 (but possibly with residue characteristic 2), and F' an unramified quadratic extension.

3.1. Local densities for hermitian lattices. Let L, M be two hermitian Op-lattices. Let Rep,, 1,

be the scheme of integral representations of M by L, an Of,-scheme such that for any O, -algebra
R,

(3.1.0.1) Repyy L (R) = Herm(L ®op, R, M @op, R),

where Herm denotes the set of hermitian module homomorphisms. The local density of integral
representations of M by L is defined to be

. #Repy (O, /&™)
Den(M, L) = N1—1>r—1|—1<>o qN‘dim(RepM,L)FO ’
Note that if L, M have rank n,m respectively and the generic fiber (Repy, 1)r # <, then n <m
and

(3.1.0.2) dim(Repy 1) r, = dim Uy, —dim Uy, =0 - (2m —n).

3.2. Local Siegel series for hermitian lattices. Let & > 0 be an integer. Let (1)¥ be the
self-dual hermitian Op-lattice of rank k with hermitian form given the identity matrix 1. Let L
be a hermitian Op-lattice of rank n. By [Hir98, Theorem II], Den((1)"** L) is a polynomial in
(—q)~* with Q-coefficients (zero if L is not integral). A special case (see [KR11, p.677]) is

n

(3.2.0.3) Den((1)"**, (1)") = JJ(1 = (—¢) 7' X) .
i=1 X=(—q)~*

Define the (normalized) local Siegel series of L to be the polynomial Den(X, L) € Z[X] (Theorem
3.5.1) such that

_ Den((1 n+k7L
Den((—¢) 7", L) = Den(<(1<>"+k7 <1>31)

The local Siegel series satisfies a functional equation ([Hirl2, Theorem 5.3])
1
(3.2.0.4) Den(X, L) = (— X)) . Den <X7 L) .

Definition 3.2.1. Define the central value of the local density to be
Den(L) := Den(1, L).
In particular, if val(L) is odd, then Den(L) = 0. In this case, define the central derivative of the
local density or derived local density by
d
Den(L) := —— Den(X, L).
8 en( ) dX 1 en( Y )

Notice that if L is not integral then Den(X, L) = 0 and hence dDen(L) = 0.
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Notice that by definition Den(M, L) only depends on the isometry classes of M and L, and hence
only depends on the fundamental invariants of M and L. In particular, Den(X, L) and dDen(L)
only depends on the fundamental invariants of L. Moreover, there is an analog of Lemma 2.11.1:
for any self-dual lattice M of rank(M) = m and any integral lattice L’ of rank(L’) = n, we have

Den(X, L’ & M) = Den(X, L?)
and therefore we obtain a cancellation law:
(3.2.1.1) dDen(L’> @ M) = dDen(L").

3.3. Relation with local Whittaker functions. Let A = (1)" be an self-dual hermitian Op-
lattice. Let L be a hermitian Op-lattice of rank n. Let T = ((4,2;))1<i j<n be the fundamental
matrix of an Op-basis {z1,...,z,} of L, an n X n hermitian matrix over F. Associated to the
standard Siegel-Weil section of the characteristic function @9 = 1p» and the unramified addi-
tive character ¢ : Fy — C*, there is a local (generalized) Whittaker function Wr(g, s, o) (see
§12.2, §12.3 for the precise definition). By [KR14, Proposition 10.1], when g = 1, it satisfies the
interpolation formula for integers s = k > 0 (notice v,(V) = 1 in the notation there),

Wr(1, k, o) = Den((1)"?* L).
So its value at s =0 is
Wir(1,0,0) = Den((1)", ) = Den(L) - Den({1)", (1)"),
and its derivative at s = 0 is?
Wir(1,0,p0) = dDen(L) - Den((1)™, (1)™) - log ¢*.

Plugging in (3.2.0.3), we obtain

(3.3.0.2) Wr(1,0, @) = Den(L) - [J(1 -
i=1

(3.3.0.3) Wi(1,0, @) = dDen(L) - [ J(1 - ) - log ¢%.
i=1

3.4. The local Kudla—Rapoport conjecture. Now we can state the main theorem of this arti-
cle, which proves the Kudla—Rapoport conjecture on the identity between arithmetic intersection
numbers of Kudla—Rapoport cycles and central derivatives of local densities. Recall that V =V,
is the hermitian space defined in §2.2.

Theorem 3.4.1 (local Kudla—Rapoport conjecture). Let L C V be an Op-lattice of full rank n.
Then

Int(L) = 0Den(L).
This will be proved in §8.2.

2In [KR14, Proposition 9.3], the factor logp should be logp®.
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Remark 3.4.2. In the notation of §3.3, it follows immediately from Theorem 3.4.1 and (3.3.0.3)
that

n

W(1,0
Int(L) = Tlogq’ #0) JIa- )L,
1=1

3.5. Formulas in terms of weighted lattice counting: Theorem of Cho—Yamauchi. Define
weight factors

a—1 a—1
m@:X) = J[0 - %) mlo) =g |  m@x) = [0~ (o)),
=0 = =1

where by convention m(0; X) = 1 and m(0) = 0, m(1) = 1. Then we have the following explicit
formula for the local Siegel series.

Theorem 3.5.1 (Cho—Yamauchi). The following identity holds:
Den(X,L)= Y  X*E/D . mt(L); X),
LCL/CLY

where the sum runs over all integral lattices L' D L. Here
((L'/L) :=lengthy, L'/L.

Proof. This is proved the same way as in the orthogonal case [CY20, Corollary 3.11], using the
following hermitian analogue of [Kit93, §5.6 Exercise 4]. Let U be an F,2/F,-hermitian space of
dimension n whose radical has dimension a. Let V' be a (non-degenerate) I /F-hermitian space
of dimension m > n. Then the number of isometries from U to V is equal to

nta—1

qn(2m—n) . H (1 o (_q)i—m)‘

i=0
Writing m = n + k, this is equal to
g"®™™) - Den((1)™*, (1)) - m(a; (—¢) ),
which explains the correct weight factor m(a; X') appearing in the theorem.

We remark that since F/Fp is unramified, the analogue of the smoothness theorem [CY20,
Theorem 3.9] is valid in the hermitian case even when the residue characteristic is p = 2, as [GY00,

Lemma 5.5.2] is still valid for p = 2 by [GYO00, §9]. O
Example 3.5.2 (The case rank L = 1). If rank L = 1, the formula specializes to
val(L)
Den(X,L) = > (-X)"
=0
In particular, if val(L®) is odd, we obtain Den(L) = 0 and
I(L)+1
dDen(L) = va(2)—|—.

Also note that if L’ D L, then val(L’) and val(L) have the same parity (see §1.7). In particular,
if val(L) is odd, then ¢(L’) > 0 and hence m(¢(L’);1) = 0. Thus we obtain the following explicit

formula for 0Den(L).
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Corollary 3.5.3. If val(L) is odd, then

ODen(L) = > m(t(L)).

LcrL'cLv

3.6. Some special cases. Since m(a;(—¢) %) =0if 0 < k < (a — 1), we also obtain

Corollary 3.6.1. For k > 0,

Den((—q) ", L) = > ¢ *"/PF m((L); (-¢) ")

LcL'cL'v
t(L")<k
In particular, for k =0,
(3.6.1.1) Den(L) =Den(1,L) = Y 1=#{L self-dual: L C L'}.
LcL'cL'v
t(L")=0
For k=1,
(3.6.1.2) L pen(—g L= Y 1+ Y (4g)—
o vol(L) ’ vol(L)’
LCL/CL/V LcL/CL/\/
t(L')=0 t(L))=1

Corollary 3.6.2. The following identities hold:

(3.6.2.1) Den(—q,L)= > [L':L]-m(t(L')+1),
Lcr'cLrv

and

(3.6.2.2) Den(—g, L) = Voll( FDen((-) . L)

Proof. The first part follows from Theorem 3.5.1 and the fact that
m(t(L'); —¢) = m(t(L') + 1).

The second part follows from the functional equation (3.2.0.4). O

3.7. An induction formula.

Proposition 3.7.1. Let L’ be a hermitian Op-lattice of rank n — 1 with fundamental invariants
(a1, an—1). Let L =L° + () and L' = L’ + (w~'x) where x L L’ with val(z) > a,_1. Then

Den(X, L) = X?Den(X, L') 4+ (1 — X)Den(—¢X, L’).
This is [Ter13a, Theorem 5.1] in the hermitian case, and Katsurada [Kat99, Theorem 2.6 (1)] in

the orthogonal case (see also [CY20]).
19



4. HORIZONTAL PARTS OF KUDLA—RAPOPORT CYCLES

4.1. Quasi-canonical lifting cycles. Let (y) C V3 be a rank one Op-lattice. By [KR11, Propo-
sition 8.1], we have a decomposition as Cartier divisors on N3,
Lval(y)/2]
Z(y) = Zval(y)—Zi'
i=0

Here Z, (s > 0) is the quasi-canonical lifting cycle of level s on N3, the horizontal divisor cor-
responding to the quasi-canonical lifting of level s of the framing object (X, ix,Ax) of N2 (the
quasi-canonical lifting of level s = 0 is the canonical lifting). We define the primitive part of Z(y)
to be

Z(y)o = Zval(y) - Z(y)
Let Ops = O, + @w®*OF C Of. Let F, be the finite abelian extension of F corresponding to the

subgroup O}, ; under local class field theory. Let O , be the ring of integers of the ring class field
F,. Then Oj o = Oj, and the degree of O  over O is equal to ¢°(1 + q¢~1') when s > 1. We have

Z, 2 Spf O .

4.2. Horizontal cycles. Let M* C V,, be an integral hermitian Op-lattice of rank n — 1. When
t(M®) < 1, we may find a rank n — 2 self-dual Op-lattice M, o, and a rank one Op-lattice (y),
such that we have an orthogonal direct sum decomposition

M = M, & (y).

Let Mfl;l 7 €V, be the orthogonal complement of M,,_5 r in V,,. Then we have an isomorphism

Mnl_Q’F ~ Vy, and thus an isomorphism (see §2.11)

Z(Mn,Q) ~ Nz.

Under this isomorphism, we can identify the Cartier divisor Z(M®) C Z(M,_s) with the Cartier
divisor Z(y) C Ns.

We define the primitive part Z(M")° C Z(M”) to be the primitive part Z(y)° C Z(y) under
the above identification. Since val(y) = val(M?), we have a decomposition as Cartier divisors on
Z(Mnf2)>

[val(M") /2]
(4.2.0.1) Z(M") ~ Z Z (M) 24
=0

and we can characterize Z(M?)° as the unique component of Z(M?”) isomorphic to Z ai(are) (the
component of the maximal degree). In particular, Z(M)° is independent of the choice of the

self-dual lattice M,,_s and we have

(4.2.0.2) degoﬁ(Z(Mb)") — 1, t(Mb) = (1)7

vol(M?) (1 4¢71), #(M?) =
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Theorem 4.2.1. Let L° C 'V, be a hermitian Op-lattice of rank n — 1. Then

(4.2.1.1) ZL) = |J 200

LbCMbC(mP)V
t(MP)<1

Moreover, the identity

(4212) OZ(Lb)% - Z Oz(Mb)o

LPCMbC(nmP)V
t(MP)<1

holds in Gr™~! Kf(Lb)”(Nn).
Lemma 4.2.2. The primitive cycles Z(M")° on the right-hand-side of (4.2.1.1) are all distinct.

Proof. If not, suppose Z(M?)° = Z(M35)°. Let M’ = M} + M}, which also has type t(M°) < 1.
Then by definition we have Z(M") = Z(M?) N Z(M3). By the assumption Z(M?)° = Z(M3)° we
know that Z(M?)° C Z(M®) (for i = 1,2). So by (4.2.0.1) the inclusion Z(M})° =~ Zval(Mib) C
Z(M") implies that val(M?) < val(M”). But M” D MY, it follows that M* = M?, and so M} = M3,
a contradiction. 0

Theorem 4.2.1 will be proved in §4.5. By Lemma 4.2.2, we know that (4.2.1.1) implies (4.2.1.2).
It is clear from construction that in (4.2.1.1) the right-hand-side is contained in the left-hand-side.
To show the reverse inclusion, we will use the Breuil modules and Tate modules, to be explained

in next two sections.

4.3. Breuil modules. First let us review the (absolute) Breuil modules ([Bre00], [Kis06, Appen-
dix], [BC09, §12.2]). Let W = W (k) be the ring of Witt vectors. Let Ok be a totally ramified exten-
sion of W of degree e defined by an Eisenstein polynomial E(u) € W[u] (i.e., W[u]/(E(u)) = Ok).
Let S be Breuil’s ring, the p-adic completion of W[u][%]zzl (the divided power envelope of Wu|
with respect to the ideal (E(u)). The ring S is local and W-flat, and S/uS = W. Let Fil'S C S be
the ideal generated by all E(;!‘)Z. Then S/Fil'S = Og. For a p-divisible group G over O, we have
its Breuil module .Z(G) = D(G)(S), where D(G) is the (covariant) Dieudonné crystal of G. It is
a finite free S-module together with an S-submodule Fil'.#(G), and a ¢g-linear homomorphism
b,y : Fil'u#t (G) — G satisfying certain conditions. By Breuil’s theorem, the functor G — . (G) =
D(G)(S) is an equivalence of categories between p-divisible groups over Og and Breuil modules
([Kis06, Proposition A.6]). The classical Dieudonné module M (Gy,) of the special fiber Gy, is given
by D(G7)(W) = D(G)(S) ®s W = 4 (G)/u.(G), with Hodge filtration Fil' M (G}) equal to the
image of Fil'.#(G). We also have D(G)(Ox) = D(G)(S) ®5 O = 4 (G) ®5 Ok-.

For w-divisible Op,-modules, one has an analogous theory of relative Breuil modules (see [Hen16])

by replacing W = W (k) with Op = Wop, (k), and by defining S to be the w-adic completion of
the Op,-divided power envelope (in the sense of [Fal02]) of O x[u] with respect to the ideal (E(u)).

4.4. Tate modules. Let K be a finite extension of F. Let z € N, (Og) and let G be the corre-
sponding Op-hermitian module of signature (1,7 — 1) over Og. Let

L := Homg,. (T,€, T,G),
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where T),(—) denotes the integral p-adic Tate modules. Since the polarizations Ag and Aj are
principal, we know that L is a self-dual Op-hermitian lattice of rank n under the hermitian form
{z,y} € O given by

(T6—>TG TGV—>TSV—>T5)€EndOF(T5) Or

There are two injective Op-linear homomorphisms (preserving their hermitian forms)

Homop,. (€, G)

7 T

L = Homo,. (T,€, T,G) Vyp = Homp, (E,X,),

where the right map iz is induced by the reduction to Spec k and the framings pg and p, : Gr = Xy
corresponding to £ and z € N, (Of) respectively. These extend to F-linear homomorphisms (still
denoted by the same notation)

(4.4.0.1) Homy, . (&,G)

Lp V.
Lemma 4.4.1. The following identity holds:
(4.4.1.1) Homo, (€,G) =iy L(L),

Proof. We may identify Homg, . (€,G) as subspaces of the bottom two vector spaces. So
i (L) = LN Homgp, (€, G)

where the intersection is taken inside the F-vector space Lp. By [Tat67, Theorem 4, Corollary 1],

ix induces an isomorphism
Homop,.(€,G) = HOIHOF[FK](TPE, ,T,G),
where I'y = Gal(K/K), and so an isomorphism
Homg,, (€, G) = Homo,r, (Vo€ V,G),
where V,(—) denotes the rational p-adic Tate module. Thus we obtain
L NHomp (€, G) = Homo, (T,€, T,G) N Homp 1, (V,E€, V,G)
= Homg,, 0 (T,€, , T,G)
=~ Homo, (€, G),
which proves the result. ]

Let M C V,, be an Op-lattice (of arbitrary rank). By definition we have z € Z(M)(Ofk) if and
only if M C iz(Homp,(€,R)). It follows from Lemma 4.4.1 that z € Z(M)(Ok) if and only if

(4.4.1.2) M Cir(ig' (L)).
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4.5. Proof of Theorem 4.2.1. Let z € Z(L")(Og) and let G be the corresponding Op-hermitian
module of signature (1,n — 1) over Og. By (4.4.1.2), we know that

L’ Cigligh(L)).

Define M® = L% N ZE(ZI_(l(L)) By (4.4.1.2) again, we obtain that z € Z(M")(Og). Moreover, the
diagram (4.4.0.1) induces an isomorphism

M" —— Lvig (i ' (L%)).
Set W = zK(zﬁ_l(L*};)) Then it has the same dimension as L.

Lemma 4.5.1. Assume that L is a self-dual Op-hermitian lattice of rank n and W C Lp is a
vector subspace of dimension n — 1. Let M’ =W N L. Then t(M”) < 1.

Proof. Since M” = W N L, we know that L/M > is a free Op-module of rank one. Hence we may
write L = M” + (z) for some x € L. Choose an orthogonal basis {e1,...,e,_1} of M’ such that

(e5,e;) = w®. The fundamental matrix of {ey,...,e,—1,2} has the form
w (ela :E)
w? es, T
. (2 7)
(xvel) (‘73762) ($,:L‘)

If t(M”) > 2 (i.e., at least two a;’s are > 0 ), then the rank of 7' mod w is at most n— 1, contradicting
that L is self-dual. O

It follows from Lemma 4.5.1 that z € Z(M”)(Ok) is a quasi-canonical lifting contained in the
right-hand-side of (4.2.1.1). By construction, M is the largest lattice in L%, contained in iE(iI}l(L)),
thus in fact we have z € Z(M®)°(Ok) by the equation (4.4.1.2). Therefore the Og-points of both
sides of (4.2.1.1) are equal.

To finish the proof of Theorem 4.2.1, by the flatness of both sides of (4.2.1.1) it remains to check
that the Og[e]-points of both sides are equal (where £2 = 0). By Lemma 4.2.2, each Og-point
on the right-hand-side of (4.2.1.1) lifts uniquely to an Og[e]-point. Thus it remains to show that
for each z € Z(L*)(Of), there is a unique lift of z in Z(L")(Okle]). Let D(G) be the (covariant)
Op,-relative Dieudonné crystal of G. The action of Of via ¢ : Op — End(G) induces an action
OF ®op, Ok ~ Ok ® Ok on D(G)(Ok), and hence a Z/2Z-grading on D(G)(Ok). Let & =
groD(G)(Ok) be the 0th graded piece of D(G)(Ok), a free Ox-module of rank n. By the Kottwitz
signature condition, it is equipped with an Og-hyperplane 7 = Fil'«7 := Fil'D(G)(Ox) N o (as
usual, hyperplane means a free direct summand of rank n—1). The Ox-hyperplane  contains the
image of L’ under the identification of [KR11, Lemma 3.9]. Let o = groD(G)(Okle]). Since the
kernel of Ok [e] — Ox has a nilpotent divided power structure, by Grothendieck—Messing theory, a
lift # € Z(L*)(Okle]) of z corresponds to an O [¢]-hyperplane A of o lifting the Og-hyperplane
A of o/ and contains the image of L’ in J(cf. [LZ17, Theorem 3.1.3], [KR11, Proof of Proposition
3.5]). Since L’ C Homo, (€, G) has rank n — 1, by Breuil’s theorem (§4.3) we know that the image

of L’ in gryD(G)(S) has rank n — 1 over S and thus its image in the base change ./ has rank
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n — 1 over Og. Hence the Og/[e]-hyperplane A is the unique Ok |[e]-hyperplane containing the
Ok [e]-submodule of rank n — 1 spanned by the image of L’ in /. Hence the lift 7 is unique as
desired.

4.6. Relation with the local density. Notice that degoﬁ(Z (L)) is equal to the degree of the
0-cycle Z (L") 7 in the generic fiber N » of the Rapoport—Zink space, which may be interpreted as
a geometric intersection number on the generic fiber. We have the following identity between this

geometric intersection number and a local density.
Corollary 4.6.1. degOF(Z(Lb)%) = vol(L’)'Den((—q)~', L?) = Den(—q, L?).

Proof. The first equality follows immediately from Theorem 4.2.1, Equation (4.2.0.2), and Equation
(3.6.1.2). The second equality follows from the functional equation (3.6.2.2). O

Remark 4.6.2. Using the p-adic uniformization theorem (§13.1) and the flatness of the horizontal
part of the global Kudla—Rapoport cycles, one may deduce from Corollary 4.6.1 an identity between
the geometric intersection number (i.e. the degree) of a special O-cycle on a compact Shimura variety
associated to U(n, 1) and the value of a Fourier coefficient of a coherent Siegel Eisenstein series on
U(n,n) at the near central point s = 1/2. This should give a different proof (of a unitary analogue)
of a theorem of Kudla [Kud97a, Theorem 10.6] for compact orthogonal Shimura varieties.

5. VERTICAL PARTS OF KUDLA—RAPOPORT CYCLES

5.1. The support of the vertical part Z(Lb)«//. Let L’ be an Op-lattice of rank n — 1 in V,,.
Recall that Z(L”)y is the vertical part of the Kudla-Rapoport cycle Z(L") C N, (§2.9).

Lemma 5.1.1. Z(Lb)y/ is supported on N9, i.e., OZ(L")V is annshilated by a power of the ideal
sheaf of N¥*4 C N,,.

Proof. If not, we may find an affine formal curve C' = Spf R (i.e., an affine formal scheme of
dimension 1) as a closed formal subscheme of Z(L”)y such that C™ consists of a single point
z € ./\/fled. The universal p-divisible Op,-module X iV gyer A, pulls back to a p-divisible OF,-
module X, over a geometric generic point 7 of Spec R. Since C™d = {2}, we know that the p-
divisible O -module X, is not supersingular. Otherwise, if X}, is supersingular, then &, corresponds
to a geometric point of "4 —{z} (we may identify the complete local ring Oy, . of A;, at z with the
complete local ring at a closed point of the integral model of a unitary Shimura variety and identify
ON’ELed7Z with the complete local ring of the supersingular locus), and hence a geometric point of
Cred — {2}, which is impossible. On the other hand, if L’ = (x1,...,z,_1), then X, admits n — 1
linearly independent special homomorphisms Z; : (‘,_’,7 — X, which gives rise to a homomorphism

(i’l, ey Tp1) 5777171 — Xy

Since 1 has characteristic p, by the Dieudonné-Manin classification we know that &, is isogenous to
5,771_1 x & for A} a p-divisible O r,-module of relative height 2 and dimension 1 with an Op-action.
It follows that X,; is supersingular, and so &, itself is also supersingular, a contradiction. ]
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5.2. Horizontal and vertical parts of “Z(L?). Since Z(L’), is one dimensional, the inter-
section Z(L") » N Z(L’)y must be zero dimensional (if non-empty). It follows that there is a
decomposition of the (n — 1)-th graded piece

(5.2.0.1) G  KZE(NG) = Gt KZED () @ e KZEDY ().

Definition 5.2.1. The decomposition (5.2.0.1) induces a decomposition of the derived Kudla—
Rapoport cycle into horizontal and vertical parts

Lz(r) = LZ(L)) 5 + L2(L)y € Gt KZED ().

From this decomposition, we see that even though the vertical part Z (Lb)y/ depends on the choice
of an integer N >> 0 (§2.9), the element “Z(L")y € Gr"~! KOZ(U)(J\/}L) is canonical and independent
of the choice of V.

Since Z (Lb) w» has the expected dimension, the first summand *Z (Lb) v is represented by the
structure sheaf of Z(L”), by [Zha2l, Lemma B.2 (ii)]. Abusing notation we shall write the sum
as

(5.2.1.1) Lz =z2(L") p + “2(1%)y.
By Lemma 5.1.1, we have a change-of-support homomorphism
_ z Lb ) _ Nred
G K (W) —— G R ().
Abusing notation we will also denote the image of “Z(L?), in the target by the same symbol.
Corollary 5.2.2. There exist finitely many curves C; C Nt and multe, € Q such that

LZ(D)y =Y mulie,[Oc,] € G Ky (AG).

Proof. 1t follows immediately from Lemma 5.1.1, where the finiteness of such curves Cj; is due to
Lemma 2.9.2. g

5.3. The Tate conjecture for certain Deligne—Lusztig varieties. Consider the generalized
Deligne-Lusztig variety Yy = Yy and the classical Deligne-Lusztig variety Y; := Y} as defined
in §2.5, where V' is the unique kp/k-hermitian space of dimension 2d + 1. Recall that we have a
stratification

d
Yd = |_| Xpi (’U)Z)

i=0
Let

(2

i
XP = Xp(w;), X;=X.= |_| X,
m=0

Then X is a disjoint union of isomorphic copies of the classical Deligne-Lusztig variety Y;°, and
each irreducible component of X; is isomorphic to Y;.
For any kp-variety S, we write H’(S)(i) .= H(Sg,,Q(i)) (¢ # p is a prime). Let F = Fry, be

the ¢*-Frobenius acting on H7(S)(i).
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Lemma 5.3.1. For any d,i > 0 and s > 1, the action of F* on the following cohomology groups
are semisimple, and the space of F°-invariants is zero when j > 1.

(i) H¥ (Y)(35)-
(ii) H* (X7)(5)-
(iii) H* (Yq — X;)(5)-

Proof. (i) By [Lus76, 7.3 Case 2 Ay,] (notice the adjoint group assumption is harmless due to [Lus76,
1.18]), we know that there are exactly 2d + 1 eigenvalues of F on H}(Y?), given by (—¢)™ where
m = 0,1,...,2d, and the eigenvalue (—¢)™ appear exactly in HZ(Yy) for j = [m/2] + d. By the
Poincare duality, we have a perfect pairing

HZI(Y7) x H(Y])(d) — HZ(Y{)(d) ~ Q.
Thus the eigenvalues of F on H% (Y})(j) are given by ¢2(4=9) times the inverse of the eigenvalues
in HZ(”‘*J)(Y;), which is equal to {(—¢)%, (—¢)* 1} when d > 2j > 0, and {(—¢)* = 1} when
j = 0. Hence the eigenvalue of F* is never equal to 1 when j > 1. The semisimplicity of the action
of F* follows from [Lus76, 6.1].
(ii) It follows from (i) since X7 is a disjoint union of Y,°.

(iii) It follows from (i) since Yy — X; = [ | _. , X2. O

m=i+1“*m
Theorem 5.3.2. For any 0 <1t < d and any s > 1, we have

(i) The space of Tate classes H* (Yy)(i)¥ =1 is spanned by the cycle classes of the irreducible com-
ponents of Xq_;. In particular, the Tate conjecture ([Tat65, Conjecture 1], or [Tat94, Conjecture
T%) holds for Yy.

(ii) Let H*(Yy)(i)1 € H?(Yy)(i) be the the generalized eigenspace of F* for the eigenvalue 1. Then
H2(Y)(i)y = B2 (Yg) (i)F°=1.

Proof. The assertion is clear when ¢ = 0. Assume ¢ > 0. Associated to the closed embedding
X4_; — Yy we have a long exact sequence

(5.3.2.1) s HY (Ya) = HY (Yg) = HI(Yq— Xaog) = HY (Yg) = -+

Take j = 2i. We have a Gysin isomorphism
(5.3.2.2) @D H2) > HY (Y)),
ZGII‘I‘(Xd,i)

where the sum runs over all the irreducible components of X;_;. By (5.3.2.2) and Lemma 5.3.1,
the actions of F* on H?gd (Y;) and H?(Yy — X4_;) are semisimple, and thus

HY (Yo = HE, (Yo =, H¥(Yg— Xa) (i = H*(Yq — Xg_i) ()T,

Taking the i-th Tate twist and taking the generalized eigenspace of F* for the eigenvalue 1 of
(5.3.2.1), we obtain a 3-term exact sequence

HY (V) ()T = = H*(Ya)(i)1 — H* (Ya — Xaq—i) (i) =
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The last term is 0 by Lemma 5.3.1 (iii) as ¢ > 0. Thus H?(Yy)(i); = H*(Yy)(#)¥ =1, and we have
a surjection onto Tate classes

P EB@D=HY (Y)OF - H Y@=
Zelr(Xg_y)
So H?(Yy)(i)¥"=! is spanned by the cycle classes of the irreducible components of Xg_;. 0

Let us come back to the situation of §5.1.

Corollary 5.3.3. There exists finitely many Deligne—Lusztig curves C; C /\/',1;ed (i.e., C; = V(A)
for a vertex lattice A of type 3) and multc, € Q, such that for any x € V,, \ LI},

XN, “2(L0)y A Z(2)) = - multe, - x(N, Ci 1 Z().

Proof. By the Bruhat-Tits stratification of N4 (§2.7), any curve C in N lies in some Deligne-
Lusztig variety V(A) = Y; for a vertex lattice A. By Theorem 5.3.2 (for i = d — 1), the cycle class
of such a curve C can be written as a QQ-linear combination of the cycle classes of Deligne-Lusztig

L
curves on V(A). Notice that x(N,C N Z(x)) only depends on the cycle class of C. In fact, since

L
Z(z) is a Cartier divisor on N, V(A) N Z(z) is explicitly represented by the two-term complex of
locally free sheaves

[On, (= 2(2)lva) = Onlvy] € FIEo(V(A)).
Hence by [Zha21, (B.3)], x(N,C % Z(x)) only depends on the image of O¢ in Gré™! Ko(V(A))g =
Ch? 1 (V(A))g, and the image of V(A) % Z(z) in Gr' Ko(V(A))g = Ch!(V(A))g. As the cycle class
map intertwines the intersection product and the cup product, cf. (6.4.0.1), we know that x(N,C %
Z(x)) only depends on the cycle class of C. The result then follows from Corollary 5.2.2. O

5.4. The vertical cycle in the case n = 3, and Theorem 3.4.1 in the case n = 2. Now let
n =3, and let L” C V3 be a rank two integral lattice. Denote by Vert!(L”) the set of vertex lattices
A of type t containing L°. For any integral lattice A, we denote L'j\ = L*}; N A, which is an integral
lattice in sz.

Theorem 5.4.1. (i) Let L’ € V3 be a rank two lattice. Then the following identity

Z(L)y =Y multy(A)-V(A),
AeVert3 (L)

holds in Gr? Kf(Lb)"’/(/\fg), where
mult,, (A) = #{L” | I’ c L"” c L’}
Similarly, the following identity

FEZ(D)y = ) mult(A)-V(A)
AeVert3(LP)

holds in Gr? KOZ(U)"’/(./\/},).
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(ii) Theorem 3.4.1 holds when n =2, i.e., Int(L?) = dDen(L?) for all L’ C V5.

Remark 5.4.2. (i) Part (ii) is known by [KR11, Theorem 1.1]. However, our proof is logically
independent from loc. cit..

(ii) Later we will only need (in the proof of Lemma 6.2.1) a very special case of part (i) of Theorem
5.4.1, i.e., the minuscule case in the proof below.

We first establish two lemmas. The first one is trivial and we state it because it will be used
repeatedly.

Lemma 5.4.3. Let e € V3 be a unit-normed vector. Then there is a unique vertex lattice Ao of
type 1 in V3 containing e. Moreover, if L C V3 is any integral lattice (not necessarily of full rank)
and e € L, then L C A..

Proof. The hermitian space (e)* C V3 is two dimensional and non-split, hence has a unique maximal
integral lattice A” (consisting of all vectors with integral norms). Then we see that A, = (e) @ A
has the desired property. O

Lemma 5.4.4. Fiz Ay € Vert>(L?). Then there exists a vector e € V3 with unit norm such that,
when denoting M = (e),

(i) The lattice Ao+ M 1is equal to the vertex lattice A. of type 1 in Lemma 5.4.3, and Ae = LB\@ bM;
(ii) Ao = L), + @M and L) = L) ;

(iii) For any other A # Ao in Vert®(L’ +wM), the lattice L’ is equal to L;Ag and is a sub-lattice
of ij\o = LL of colength one;

(iv) For any lattice L” such that L’ C L” C Lie, we have

2, ifL” C Ly,

1, otherwise.

HL” @ M) =

Remark 5.4.5. Before presenting the proof, we indicate the geometric picture of the lemma. The
reduced scheme Z(L°)*d of Z(L’) is a (connected, a fact we do not need) union of the curves
V(A) for A € Vert}(L’). The lemma implies that, on any given irreducible component V(Ag),
there exists a (superspecial) point V(A.), such that among all the curves V(A) C Z(L?)* passing
through V(A.) (noting that such A necessarily belongs to Vert?(L” + wM) due to the implication
V(Ae) C V(A) = e € AY = we € A), the given one V(Ag) has the (strictly) largest associated
lattice LB\o‘ This suggests the possibility to determine the multiplicity mult;,(A) by induction on
(L3, : L.

Proof. There exist vectors with valuation one in the lattice LB\O. Otherwise, choose an orthogonal
basis {e1,es} of Lg\o and choose eg € A such that Ay = LB\O @ (e3). Consider the fundamental
matrix of the basis {e1, ea,es} of Ag

(61,61) 0 (31,63)
T = 0 (e2,€2) (e2,e3)

(e3,e1) (es,e2) (es,es3)
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Since t(Ag) = 3, every entry of T is divisible by w. Moreover, we have val(e;) > 2 and val(ez) > 2.
It follows that val(det(7T)) > 4, contradicting val(det(7")) = 3.

Now we pick a vector x of valuation one in LRO and denote by E the rank one lattice (z). Then
L&O splits as an orthogonal direct sum

L), =EoM

where M’ is a rank one lattice.

We claim that there exists a vector e L E such that

(a)The norm of e is a unit;

(b)Denoting M = (e), then the rank two lattice M’ & M is self-dual;

(c)No=E6 (M ®wwM).

To show the claim, we consider the two dimensional subspace (x)%. From val(z) = 1, it follows
that (2)+ 7 is a split hermitian space, and Ay is an orthogonal direct sum E@ E* for a vertex lattice
E+ of type 2 in (z)F. Consider the two dimensional kp-vector space V := w 1EL/EL with the
induced hermitian form. The g + 1 isotropic lines in V' are bijective to self-dual lattices containing
EL. Since the lattice M’ is saturated in E+, the image of w™'M’ in V is non-zero. Hence there
exists an isotropic line not containing the image of w'M’ in V. Or equivalently, there exists a
self-dual lattice = C (x)F+ containing E+ but not w~'M’ (i.e., the rank one lattice M’ remains
saturated in Z). Finally, we choose a unit-normed e lifting a generator of the free Op-module =/M’
of rank one. It is easy to verify that such a vector e satisfies all the conditions (a), (b) and (¢) and
this proves the claim.

We fix such a vector e and we now verify that it satisfies the desired conditions. Parts (i) and
(ii) are clear by the claim above. Now let A be a lattice in Vert®(L’ + (we)). Then A + (e) is an
integral lattice containing a unit-normed vector, hence is a vertex lattice of type 1 (recall from §2.6
that the type of a vertex lattice is always odd). Therefore, by Lemma 5.4.3, we obtain A+ (e) = A,
for all A € Vert3(L® + (we)). Now assume that A # Ag. Then we obtain the following diagram

Ae=ES (M & M)

/\

A =EO (M & wM) A— L\ @wM

/

wA) = E® (wM' & wM)
1
whe =wE & (wM' & wM).

It is easy to see that

EowM c L)\ c EoM,
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and hence either LE\ = FED M or L?\ = E® wM’'. In the former case, we must have A D
Eo(M' @& wM) = Ao, contradicting A # Ag. This shows that I\ =EowM = waAv, and hence
completes the proof of (iii). ’

Let L C L?\e = E@ M’. Then the type of L” @ M is either 1 or 2. To show part (iv), we first
assume that L” C L;Ag = FE® wM’'. Then we have

tL" ® M) > t(Ea (wM' & M)) = t(E) + t(wM' @& M)

and t(F) = 1. Now noting that M’ & M is self-dual, its proper sub-lattice wM’ @& M can not be
self-dual, and hence t(wM’' @® M) > 1. Since M is self-dual, it follows that t(L” @ M) < 3, and
hence t(L” @ M) = 2.

Finally we assume that L” ¢ E® M’ but L” ¢ E & wM’, then there must be a vector u € L”
whose projection to M’ is a generator of M’. It follows that (u) ® M is a rank-two self-dual sub-
lattice of L” & M, forcing the type ¢(L’ b M ) < 1. Since V3 is a non-split hermitian space, it does
not contain any self-dual lattice of full rank. Therefore ¢(L” @ M) = 1 and this completes the proof
of (iv). O

Proof of Theorem 5.4.1. The proof is rather involved and will be divided into four steps:

(1) both parts hold when ¢(L°) < 1.

(2) part (i) holds for minuscule L’ and we deduce (5.4.5.5) that will be used repeatedly later.
(3) part (i) for L’ with odd val(L’) implies part (ii) for the same L°.

(4) part (i) for all L* holds by induction on val(L”).

red
We start with a remark. By Lemma 2.8.1, LZ(L?), € Gr? Kév ® (N3) is represented by the class
of Oz(yp),,1- Therefore

(5.4.5.1) L2y =2(L)y = ) multy(A)-V(A)
AeVert3 (L)

where the multiplicity mult;,(A) is a positive integer to be determined.

We first prove that both parts hold in the special case t(L’) < 1. In fact, if t(L”) < 1, we may
write L* = (u)@(e) for a unit-normed vector e. Then Z(u) and Z(e) ~ N> intersect transversely (cf.
the discussion before (2.11.0.2)). Therefore Z(L?) is flat over Spf Oj and Z(L)y = L2(L")y =0.
Noting that mult;,(A) = 0 for any vertex lattice A C V3 of type 3, we have proved part (i).
Similarly, part (ii) is reduced to the case n = 1 by the cancellation law Lemma 2.11.1 and (3.2.1.1).
By Example 2.4.3 and 3.5.2 we have

val(L?) 4+ 1

(5.4.5.2) Int(L’) = — = dDen(L’).

Next we consider the minuscule case of part (i), i.e., when the fundamental invariants of L’ are
(1,1). Then Vert3(L") consists of a single type 3 lattice A = L* @ (u) for a vector u of valuation
one. By Theorem 4.2.1 the horizontal part is the sum of quasi-canonical lifting cycles Z(L”) ~ N}

corresponding to the ¢ + 1 self-dual lattices L” containing L’. Therefore by (2.7.0.1) we have an
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b
equality in Gr? ng(L )(Ng),

(5.4.5.3) Z(L") =m-V(A) + Z(L"),
LPCL=(L")V

where the multiplicity m of V(A) is a positive integer to be determined. Now let xj,z2 be an
orthogonal basis of L?, so that val(z;) = val(zy) = 1. Now choose vector e L z; such that e has
unit norm and (z2) @ (e) is a self-dual lattice. It follows that L’ @ (e) is a vertex lattice of type 1,
and that, for any L” = (L"), the strictly larger lattice L” @ (e) can not be integral. Therefore,
Z(e) does not intersect with any of the quasi-canonical lifting cycles Z(L”) appearing in (5.4.5.3).
Now consider

Int(L’ @ (€)) = x(No, Z(I°) A Z(e)).

On one hand, by Lemma 2.11.1 applied to the self-dual lattice (z3) @ (e), we obtain Int(L’ @ (e)) =
Int((z1)) = 1 by Example 2.4.3. On the other hand, using the decomposition (5.4.5.3), we have

L
Int(L’ & (e)) = m - x(N3, V(A) 1 Z(e)).
We deduce that the multiplicity m = 1 in (5.4.5.3), and
L
(5.4.5.4) XNz, V(A) N Z(e)) = 1.

We note that, choosing L’ appropriately, the argument above shows that (5.4.5.4) holds for any
A € Vert? and a unit-normed e such that A+ (e) is an integral lattice (necessarily a vertex lattice of
type 1). Moreover, it is obvious that x (N3, V(A) % Z(e)) = 0if A+ (e) is not integral (equivalently
e ¢ AV). Therefore we obtain that, for any A € Vert® and any e with unit-norm,

1, e€ AV

(5.4.5.5) YWNs, V(A) B Z(e)) = o

This equation will be repeatedly used later.

Next we show that part (ii) for L” C Vy (necessarily with odd val(L”), as V5 is non-split) follows
from part (i) with the same L’ C V3. Here we have implicitly fixed an isomorphism V3 ~ V, @ Mp
and an embedding Ny — N3 of the form (2.11.0.1) induced by a self-dual lattice M = (e) of rank
one. Let L” be a type one lattice containing L°, then by Lemma 2.11.1 and (5.4.5.2),

val(L”) +1
—

Let L be the unique lattice such that L” ¢ L < (L”)Y and L"/L” has length one. Then by
part (i) for L” and L we have

Int(L"” & M) = Int(L") =

Z(L/b) _ Z(L/b)%, Z(L//b) _ Z(L/lb)%ﬂ.
b
By Theorem 4.2.1 we obtain an equality in Gr? K(;Z(L )(J\/g),

Z(L/b) _ Z(L//b> —i—Z(L/b)O,
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where Z(L")° is the associated quasi-canonical lifting cycle (cf. §4.1). It follows that
(5.4.5.6) x(N3, Z(M) A Z(L")°) = Int(L") — Int (L") = 1.

Therefore by Theorem 4.2.1 we obtain

(5.4.5.7) XWNo, Z(M) 6 Z(L0) ) = #4L7 | I € L < ()Y, (L") = 1}.

By part (i) for L’ (note that we are assuming this part to hold), and by (5.4.5.5), we obtain

YN, Z0) A Z(L)y) = S mult (A)

A€ Vert3 (Lb)
McAY

= > #{AeVet (L) |L" c A, M C A}

LbcrLc(rLhyVv
t(L'P)=2

Here, for A € Vert?, the condition M = (e) C AY (i.e., M + A being integral) is equivalent to
A C A, where A, is the lattice in Lemma 5.4.3. Note that A, = M & A® where A® is the unique
maximal integral lattice in M. If L” is of type 2, then (L”,A”) C wOF (we leave the proof to
the reader), or equivalently L’ b w(Ab)V. Therefore any L” of type 2 is automatically contained
in wA), hence contained in any type 3 vertex lattice A C A.. It follows that the condition L c A
in the sum above is redundant. Since there are ¢ + 1 of type 3 lattices A C A., we obtain

(5.4.5.8) (N3, Z(M) A Z(L)y) = (¢+ 1) #{integral L” | L’ c L” t(L”) = 2}.

Then the desired assertion for part (i) for L’ C Vs follows from (5.4.5.7), (5.4.5.8) and the formula
in Corollary 3.5.3:

ODen(L’) = Y m(t(L")), where m(t(L")) =

1, t(L")
LPCLPC(LP)Y a1, #(L")

L,
2.

Finally, we prove part (i) for L’ C V3 by induction on val(L”). We have proved it when #(L?) = 1.
Now we fix L’ C V3 of type 2. By induction, we may assume that part (i) holds for all L” C V3
with val(L”) < val(L”). Note that, by what we have proved, the induction hypothesis also implies
that part (ii) holds for all L C V3 with odd val(L”) < val(L") (here L” need not to be a lattice in
L%).

To determine the multiplicity, we fix Ag € Vert3(L”). Choose e as in Lemma 5.4.4 and follow
the same notation. We claim that Z(M) does not intersect the horizontal part Z(L”) . In fact, if
Z(M) were to intersect non-emptily with Z(L”) -, then by Theorem 4.2.1, Z(M) would intersect
non-emptily with Z(L”)° for a type 1 lattice L” containing L’. This would imply that M @ L” is
an integral lattice, and hence M & L” C A, by Lemma 5.4.3. Therefore L” C Lk}\e and hence the
type of L'j\e is at most one. By Lemma 5.4.4 (ii), L'j\e = Le\o is a sub-lattice of Ag € Vert3(L’) and
hence it has type 2. Contradiction!

It follows from the claim and (5.4.5.1) that

L
Int(L”®M)= > mult;,(A)x(Ns,V(A) N Z(e)).
A€ Vert3(LP)
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By (5.4.5.5) and noting that e € AV <= we € A, we obtain

(5.4.5.9) Int(L> @ M) = mult,, (Ao) + Z mult;, (A).

A€Vert3 (L0 4w M)
A#Ag

Note that the second summand is understood as zero if Ag is the only element in Vert?(L’ + wM).

By Lemma 5.4.4 (i), we obtain [A, : L” ® M| = [Lf\e : L’]. From val(A.) = 1 and Val(Lf\e) > 2,
it follows that val(L® @ M) < val(L"). Since M is self-dual, we can decompose L’ ® M = M+ @ M
orthogonally for a rank two lattice M1 (note that here M+ C Vj3 is not necessarily a lattice in
L%). Then val(M*1) is odd and val(M') < val(L’). By induction hypothesis, part (ii) holds for
M. Tt follows that, by the cancellation law Lemma 2.11.1 and (3.2.1.1),

Int(L* @ M) = Int(M™*) = dDen(M™*) = dDen(L’ & M).
By Corollary 3.5.3, @Den(L’ @ M) is the sum
ODen(L’ @ M)= > m({(L)).
LPeMcCL'CLY
Note that, by Lemma 5.4.3, any integral lattice L’ containing M is necessarily contained in A..
Since A, = LE\E @® M by Lemma 5.4.4 (i), every L’ in the sum must be a direct sum L” @ M for a
unique integral lattice L” lying between L’ and foe. In other words, dDen(L’ @& M) is the sum
H{LP | D C L C LA} - #{I7 | I € L € I (1" @ M) = 2).
By (ii), (iii), and (iv) of Lemma 5.4.4, the above sum is equal to

(5.4.5.10) #{L" | L cLP c L)} + > #{L" |’ cL” c L}

A€Vert3(LP +wwM)
A#£Ag

If L?\O = I?, then both (5.4.5.9) and (5.4.5.10) have only one term and we obtain
multy, (Ag) = #{L” | L’ c L" c L},,} = 1.

If L*j\o # I’, by Lemma 5.4.4 (iii), the index [LY : L”] is strictly smaller than [L?XO : L] for A # Ag
in the sum of (5.4.5.10). Therefore, by induction on [LAE\O : L], comparing (5.4.5.9) and (5.4.5.10)
we finish the proof of the multiplicity formula for Ag, i.e., mult;,(Ag) = #{L” | L’ ¢ L” C LEXO}'
This completes the proof. O

Corollary 5.4.6. Let L’ C V,, be an integral lattice of rank n — 1 and type t(Lb) < 1. Then for
any © € V,, \ L%,

L
XN, Z(z) 0 Z(17)°) = > mH(I).
LP+(z)CL/CL/V,
L'nLh,=rb

Proof. By the assumption that t(L”) < 1, there exists a self-dual lattice M of rank n — 2 such that

L’ = M & (u). We then reduce the question to the case n = 2, in which case L’ = (u). By Theorem
b

4.2.1, we have an equality in Gr! KOZ(L )(./\/2) (or as Cartier divisors on N> in this case),

Z(L) = Z(w L") + Z(L)°.
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By Theorem 5.4.1 part (ii),
Int(L’ @ (z)) = Den(L’ & (z)),

and
Int(w 'L’ @ (x)) = dDen(w 'L’ @ (z)).
Therefore
YN, Z(2) 1 Z(1)°) = dDen(L’ @ (x)) — dDen(w ' I’ @ (x))
and the assertion follows from the formula for local density in Corollary 3.5.3. O

6. FOURIER TRANSFORM: THE GEOMETRIC SIDE

Let I’ ¢ V = V,, be an Op-lattice of rank n — 1. Let L%, = I’ ®op ' C 'V, be the F-vector
subspace of dimension n — 1. Assume that L% is non-degenerate throughout the paper.

6.1. Horizontal versus Vertical cycles. Recall from (5.2.1.1) that there is a decomposition of
the derived special cycle “Z (L") into a sum of vertical and horizontal parts

L2y =2(L)p + “2(L)y,
and by Theorem 4.2.1, the horizontal part is a sum of quasi-canonical lifting cycles
Z(L) e = Z(L"),
I
where the sum runs over all lattices L” such that
L'cL?c @’V cly L") <1.
Definition 6.1.1. Define the horizontal part of the arithmetic intersection number
L
(6.1.1.1) Ity (2) = XN, 2(2) N 2(L) ), x€V\ L.
Definition 6.1.2. Analogously, define the horizontal part of the derived local density
(6.1.2.1) ODeny, y(x):= > wmtL)1p(x), zeV\Lk,
rbcr/cr/v
t(LP)<1

where L' C V are Op-lattices of rank n, and we denote
(6.1.2.2) L’ =LNLycC L.
Theorem 6.1.3. As functions on V\L'};,
Int;, ,» = ODenps 4.
Proof. By Corollary 5.4.6, for a fixed integral lattice L” C L'}; of type t < 1, we have
XN 2@) 27 = S m(ur).

L/b+(ac>CL/CL/V,
L'nrh =L

The assertion follows from Theorem 4.2.1 and the corresponding formula (6.1.2.1) for the horizontal
part of the local density 0Denj, 5. O
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Definition 6.1.4. Define the vertical part of the arithmetic intersection number
L
(6.1.4.1) Intys o (2) == XNy, Z(2) NE2(L)y), x€V\ L.
Then by [Zha21, (B.3)] there is a decomposition
(6.1.4.2) Intyy(z) =Intpy () + Intpy 4 (z), €V L.
We will defer the vertical part of the derived local density to the next section (Definition 7.3.2).

6.2. Computation of Inty). Let A C V be a vertex lattice. Let V(A) be the Deligne-Lusztig
variety in the Bruhat-Tits stratification of Ni° (§2.7). Define

(6.2.0.3) Tnty(a) () = x (N, V) A Z()), €V {0},
Next we explicitly compute Inty,p) for A € Vert?, i.e., for V(A) a Deligne-Lusztig curve.
Lemma 6.2.1. Let A € Vert®. Then
Ity = —*(L+@)a+ >, 1a.
ACA t(A)=1
Proof. We note that

(1—¢?), x€A,

(6.2.1.1) —@(1+@lale)+ D Ia(z) =11, z € AV \ A, and val(z) > 0,

ACA’, t(A)=1 .
CA%HA) 0, otherwise.

We start with the simple observation that Z(z) N V(A) is empty unless 2 € AV and val(z) > 0. In
fact, if Z(z) N V(A) is non-empty, the intersection must contain a point V(A’) for a type 1 vertex
lattice A’. Then A C A’ and by (2.7.0.1) we have z € A’. Tt follows that x € A’ C A’V C V.

To show (6.2.1.1), we first consider the special case n = 3. If u ¢ A, then Z(u) N V(A) is non-
empty only when u lies in one of the type 1 lattices nested between A and AV. Then the intersection
number is equal to one by (5.4.5.5), and the desired equality follows.

Now assume u € A and u # 0. Choose an orthogonal basis {e1,e2,e3} of A (so the norms of
them all have valuation one). Let L be the rank two lattice generated by ej, es. Now we note that,
by Theorem 4.2.1 and Theorem 5.4.1 part (i),

ZL)=vN)+ > Z(M),
LCM=MVCLY
where each of Z(M) ~ Nj since M is self-dual. There are exactly ¢ + 1 such M.
Let w € A\ {0}, and write it in terms of the chosen basis

u = A1e1 + Ageg + Agez, A\ € Op.

Assume that A3 # 0, and let a3 = 2val(A3) + 1 (an odd integer). By [Ter13a], we may calculate all
of the intersection numbers

XN, Z(0) 6 2() = 252 g+ 1)+ (1 - ),
XN, Z(M) A 2(u) = © 5L
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It follows that
L
X(N3, V(A) N Z(w) = (1 - ¢°).

If A3 = 0, then we choose L to be the span of some other pairs of basis vectors, and we run the
same computation. This proves the desired equality if uw € A\ {0} and completes the proof when
n = 3.

Now assume that n > 3. Since A is a vertex lattice of type 3, it admits an orthogonal direct sum
decomposition

(6.2.1.2) A=N oM

where A” is a rank 3 vertex lattice of type 3, and M is a type 0 (i.e., self-dual) lattice of rank n — 3.
Then

A =NV M
and any element v € AV has a unique decomposition
u=u + upr, W e Al”v, upr € M.

First assume that u* # 0, i.e., u ¢ M. Since M is self-dual, we have a natural embedding
(2.11.0.1)
) M: N- 33— N, n
which identifies N3 with the special cycle Z(M). Moreover, the Deligne-Lusztig curve V(A?) on
N3 is sent to V(A), and the special divisor Z(u) intersects properly with N3 and its pull-back to

N3 is the special divisor Z(u’), cf. (2.11.0.2).
We obtain (by the projection formula for the morphism dy)

XN, V(A) A 2 (1)) = x(Ns, V(A®) A Z ().

This reduces the case u” # 0 to the case n = 3. In particular, when «* € A* \ {0},

(6.2.1.3) XN, V(A) A Z(u)) =1- ¢

Finally it remains to show that the intersection number is the constant (1 — ¢?) when u €
(Ab @ M) \ {0}. It suffices to show this when u € M \ {0}. Choose an orthogonal basis {e1, €2, €3}
for A°, and {f1,--- , fo_3} for M. Write

u=pi1fr+-+ pn-3fn-3, p; €O0F.

One of the pu; is non-zero, and without loss of generality we assume p; # 0. Now define M to be
the new lattice generated by e + fi1, fo, -, fn—s- It is self-dual, and its orthogonal complement
A in A is again a type 3-lattice. Now replace the decomposition A = A” @& M by the new one
A=A @ M. Then u ¢ J\7, and hence we can apply (6.2.1.3). This completes the proof. O

Corollary 6.2.2. The function Inty, , extends to a (necessarily unique) function in CZ°(V).

Proof. This follows from Corollary 5.3.3 and Lemma 6.2.1. 0
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6.3. Fourier transform: the geometric side; “Local modularity”. We compute the Fourier
transform of Int;, 5 as a function on V.

Lemma 6.3.1. Let A € Vert®. Then the function Intyp) € C°(V) satisfies

IntV(A) =Yy Intv(A) .
Here v = —1 is the Weil constant.

Proof. By Lemma 6.2.1, we obtain

Inty(y = —vol(A) - > (1 +4q) - 1av+ Y. vol(A') - Law
ACA t(A)=1

=—(I4+¢ ") -Tav+ >, ¢l
ACA, t(A)=1

Now we compute its value at u € V according to four cases.

(i) If u € A, then there are exactly ¢> + 1 type 1 lattices A’ containing A, and the value is
P+~ (1+g ) =¢" 1.

(ii) Assume that u € A; \ A for some A; € Vert!, i.e., the image of @ of u in AY/A is an isotropic
vector. Notice that v € A’V if and only if @ is orthogonal to the line given by the image of (A’)" in
AV /A. So there is exactly one such A’ € Vert!, i.e., A’ = Ay, and we obtain the value

¢ -(1+q"H)=-1

(iii) Assume that u € AV \ A but u & Ay \ A for any A; € Vert'. Then @ is anisotropic in AY/A.
Notice that @ is a non-degenerate hermitian space of dimension two, and A’ corresponds to an
isotropic line in wt. So there are exactly ¢ + 1 of such A’ € Vert!, and we obtain the value

¢ g+ —(l+g ) =0
(iv) If u € AV, then the value at u is
¢ 0-(1+q¢hH-0=0,
This completes the proof by comparing with (6.2.1.1). O

Remark 6.3.2. It follows from Lemma 6.3.1 that Inty,) is SL2(Op,)-invariant under the Weil
representation. This invariance may be viewed as a “local modularity”, an analog of the global
modularity of arithmetic generating series of special divisors (such as in [BHK20]).

Corollary 6.3.3. The function Inty, ,, € C2°(V) satisfies
IELT;’/ - W IntLb"V .

Proof. This follows from Corollary 5.3.3 and Lemma 6.3.1. 0
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6.4. Fourier transform: the geometric side; “Higher local modularity”. In this subsection
we generalize Lemmas 6.2.1 and 6.3.1 on the function Inty,) for vertex lattices A of type 3 to vertex
lattices A of arbitrary type t(A) =2d 4+ 1 > 3.

Let

d
ch: Ko(V(A))g — @ Ch'(V(A))g

be the Chern character from the Grothendieck ring to the Chow ring of V(A), which is an isomor-
phism of graded rings. In particular, it induces an isomorphism

chy : Gr' Ko(V(A))g —5 CH(V(A))q,
for 0 <4 <d. Let

cli : Ch'(V(A))g — H*(V(A), Qo)(7)

be the f-adic cycle class map and let

d d d
= G_%cli : E_% Ch'(V(A))g — @HQi(V(A),@g)(i).

Then cl intertwines the intersection product on the Chow ring and the cup product on the coho-
mology ring, namely the following diagram commutes,

GI‘ Ko V X Gl"j K() V(A )Q — Grz+] Ko(V(A))Q
2 | chy ZJC% Zlchm‘
(6.4.0.1) Chi(V(A))g x  Ch(V(A)g ———— Ch(V(A))g

J e

HE(V(A)), Qo)) x  HF(V(A),Q)(j) — HAFD(V(A), Qe) (i + j)-

Denote by Tate?'(V(A)) € H*(V(A),Qy)(i) the subspace of Tate classes, i.e., the elements fixed
by F?® for some power s > 1. Then by Theorem 5.3.2, we have the identity

m(cl;)g, = Tate’ (V(A)),

and moreover Tate?'(V(A)) is spanned by the cycle classes of V(A’) € V(A), where A’ O A runs
over vertex lattices of type 2(d — i) + 1. Denote by

(6.4.0.2) Ko(V(A)) := Ko(V(A))g/ ker(cl o ch), ﬁZ(V(A)) = Chi(V(A))Q/ker cl;.
Then ch and cl induce isomorphisms
d A d ‘ d
(6.4.0.3) ch: Ko(V(A) = @ Ch'(V(A)), o : T (V(A))g, — EP Tatey'(V(A)).
i i=0 i=0

By Theorem 5.3.2 (ii) and that the cup product is F-equivariant, the Poincaré duality induces a
perfect pairing

(6.4.0.4) U : TateZ'(V(A)) x Tate?” 2 (V(A)) — Q.
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Definition 6.4.1. For z € V'\ {0}, define Ky,5)(x) € Ko(V(A)) to be the image of

V(M) A 2() € KXW W) 5 Ko(V(A))
under (6.4.0.2).

Remark 6.4.2. Our main result in this subsection (Theorem 6.4.9) shows that the function Ky )
satisfies the local modularity analogous to Lemma 6.3.1.

L
Since Z(xz) is a Cartier divisor on N,,, we know that V(A) N Z(x) is explicitly represented by
the two-term complex of line bundles on V(A),

[On;, (—Z(2))lvn) = O, lvay) € FTEo(V(A)).
Thus we have the Chern character
ch(V(A) i Z()) = ch(On;, (=Z(x))lva)) — ch(Op))
= exp(c1(On, (—Z2(2))|v())) — exp(c1(Oya)))
d 01(0Nn(—3(w))lvm))i_

, i!

)

Definition 6.4.3. For x € V '\ {0}, define

1) (@) == c1(On, (—Z(2))lya)) € Ch' (V(A))q,

1

and
deg

vy (@) = c1(On, (—Z(x))lya))? € Ch(V(A))g — Q.

Lemma 6.4.4. The function ciy) (resp. cy(y)) is A-invariant, under the translation by A. In
particular, the function ciy () (resp. CV(A)) extends uniquely to an A-invariant function on V, or
equivalently, a function on V/A (still denoted by the same symbol).

L
Proof. Tt suffices to show that V(A) N Z(z) € KX(A) (NV,) is A-invariant, i.e.,
(6.4.4.1) Oz(a) @ Oz = Ozn) & Oz(4py)

for any x # 0 and any y € A such that x +y # 0.
First assume that x,y are linearly independent. Then by Corollary 2.8.2, we have

L L
Oz(y) © Oz(e) = Oz(y) @ Oz(s4y).-
Thus the left-hand-side of (6.4.4.1)
Oz(a) ®" Oz() = Oz(a) ®6,,,, Oz @ Oz()
equals the right-hand-side of (6.4.4.1)
Oz(a) ©" Oz(a1y) = Oz(n) ©6,,, Oz) @ Oz(aty)

as desired.
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It remains to consider the case that z,y are linearly dependent. Choose x1 € A linearly inde-
pendent of z. Then
Oz(n) ®" Oz2) = Oz(a) @ Oz(p1ay)-

Since = + x7 is linearly independent of y, we obtain

OZ(A) ®" 02(1+x1) = OZ(A) ®" OZ(x+z1+y)‘
Since z + y # 0,  + y is linearly independent of x; and hence

Oz(a) ®" Oz(wsa1+y) = Oz(8) ®" Oz(aty).
This completes the proof. O

Lemma 6.4.5. Let A € Vert>**!. Then for any x € A, we have

1
C1,V(A) (z) = —W Z Cl,V(A)(y) S Ch1<V(A))Q7

yeVA\{0}
(y,9)=0

where VoA = AV /A is a kp/k-hermitian space of dimension 2d + 1 (see §2.6).

Proof. Since the cycle class map for divisors cl; : Ch*(V(A))g — H2(V(A),Qp)(1) is injective, we
know from (6.4.0.3) that

Ch'(V(A))g, — Tatej(V(A)).
It follows from the perfect pairing (6.4.0.4) that to show the desired identity it suffices to show that
for any Deligne-Lusztig curve V(A') C V(A) (t(A) = 3), the following identity

1

(6.4.5.1) ey (@) VA =~ D avm®) - V@)
q y(eVA>\{8}
Y,y)=

holds in Chd(V(A))@ Z Q. By the projection formula,

ey (@) - [VN)] = cryan (@),  erpny®) - [VA)] = crvman ().
Since t(A’) = 3, we know from Lemma 6.2.1 that
(1—¢*), yeN/A,
cryan (@) = Ity () = (1= ¢%),  erpan(y) = Intyany(y) = § 1, ye ANV/Ay & A/A,
0, y & AV/A.
Since A’/A C V), is totally isotropic, the number of nonzero isotropic vectors y € A’/A equals
#(N'/A) — 1 = ¢?4=1) — 1. The number of isotropic vectors y € A’V/A, y & A’/A equals #(A’/A)

times the number of nonzero isotropic vectors in A’ /A’, which evaluates to ¢2* 1. (14¢%)(¢® —1).
It follows that

> avm@) VA = (@Y -1 1-)+FTVA+ ) (P - 1) = —(1— D)1+ M.

yeVA\{0}
(y,9)=0
Hence 1
Tl g2l Z Cl,V(A)(y) : [V(A/)} =(1- q2) = Cl,V(A)(fﬁ) ) [V(A,)L
q y(EVA)\{g}
Y,y)=
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and the desired identity (6.4.5.1) holds. O

Lemma 6.4.6. Let A € Vert?**1. Then
(1—¢*h), 2z €A,
ey (@) =c(d) - { 1, z e AV \ A, val(z) >0,
0, otherwise.

Here ¢(1) =1 and ¢(d) = H?:_ll(l —q¢*).

Proof. We induct on d. The base case d = 1 follows from Lemma 6.2.1. By the same proof as in
Lemma 6.2.1, we know that cy(ay(z) = 0 unless z € AV and val(z) > 0. By the A-invariance of
¢y(p) in Lemma 6.4.4, to show the result it remains to show that

(6.4.6.1) o) (0) = eld) (1~ %), eyqa)(a) = e(d)

for any x € Vi \ {0} with (z,z) = 0.
By Lemma 6.4.5, we have

. B 1
v (0) = ey (0 er v (0) = ey (O | —3 57 >, avn®)
q vEVANID)
Y,y)=

By the projection formula, we have

vy (07 ey yiay () = ey (097,

which by induction equals

cv(at ) (0) = c(d — 1)(1 — g*“@71)
since t(A+ (y)) = 2d—1. The number of nonzero isotropic vectors y € V equals (1+¢?*+1)(¢%?—1).
Hence

cwmm=@%“+mf¢4y<Zﬂpm—mu—ﬂ*%)=u—&mrﬂw*»dm4»

l+g
On the other hand, for any = € V \ {0} with (x,2) = 0. by the projection formula, we have

ey (@) = ey (@) e vy (@) = e varen (@)

which by induction equals
ev(ag e (2) = e(d — 1)(1 — ¢*47Y)

since t(A+(z)) = 2d—1. The desired identity (6.4.6.1) then follows as c(d—1)(1—¢*(¢1) = ¢(d). O

Lemma 6.4.7. Let A € Vert2t1, Then

c(d
C/((d)> Z IntV(A’)‘

A eVert3
A'DA

) =

Here ¢(1) =1 and ¢/(d) = []%,(1 + ¢**) when d > 2.

Proof. We distinguish three cases.
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(i) For 2 € A, we have Intyzn(2) = 1 — ¢* for any A’ in the sum by Lemma 6.2.1. The number
of such A’ is the number of (d — 1)-dimensional totally isotropic subspaces in Vi, which equals
S9d+1,d—1 (in the notation of Lemma 1.9.1). Hence the right-hand-side evaluates to

A e dd) - ()
¢(d) [To(t+ g2 TI5 (1~ ¢%)
which equals ¢y (7) by Lemma 6.4.6.
(ii) For x € AV \ A with val(x) > 0, we have

(1—¢%) = c(d)(1 - ¢*%),

(1—¢%), ze€N,

Intv A (l’) ==
) 1, zeNV\N.

The number of A’ such that € A’ is the number of (d — 2)-dimensional totally isotropic subspaces
in Va4 (z), which equals Szg1,4-2. The number of A’ such that = € A\ A’ is the number of
(d — 1)-dimensional totally isotropic subspaces W C Vj such that = ¢ W but x € W+. In this case
the map W — W + (z)/(x) gives a surjection onto the set of (d — 1)-dimensional totally isotropic
subspaces in (x)*/(z), whose fiber has size equal to the number of (d — 1)-dimensional subspaces
of W + (z) not containing (z). Hence the number of such W is equal to Soq_1,4-1 - ¢*¢~2. So the
right-hand-side evaluates to

c(d)

c(d)

(S2d-1,a-2(1 — ¢*) + S2d—1,4-1 - ¢**7?)

¢(d) <H?"41(1 — (—q)")

[Tt + a2+ \ TIZR( - o) [T - a?)

= c(d),

g 10 <—q>i>q2d_2)

which equals cy()(z) by Lemma 6.4.6.
(iii) If # € AV or val(z) < 0, then both sides are zero. O

Corollary 6.4.8. Let A € Vert?* 1. Then cyn) € C2(V) satisfies

—

CY(A) = TV CY(A)-
Proof. Tt follows immediately from Lemmas 6.4.7 and 6.3.1. 0

Theorem 6.4.9 (K-theoretic local modularity). Let A € Vert?*!.  For any linear map | :
Ko(V(A)) = Q, the function o Kyy) extends to a (necessarily unique) function in C°(V) and
satisfies

l &V\(A) =y loKyn.
Here, we refer to Definition 6.4.1 for Kyy).

Proof. Since the Tate classes are spanned by the cycle classes of Deligne-Lusztig subvarieties
V(A") C V(A), it follows that from the perfect pairing (6.4.0.4) that under the identification (6.4.0.3)
any linear map Ko(V(A)) — Q is a linear combination of linear maps
1:Ch'(V(A) = Q
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given by the intersection product with [V(A’)] for varying V(A’) C V(A). So we may assume [ has
the form

d—d’

[=-[V@A)]:Ch " (V@A) = Q,

where d' = dim V(A’) < d. Then
1o Kya (@) = cha (V(A) A Z(2)) - P(A)]

which by the projection formula equals to

L ey (@)
Lo Ky (@) = cha (VW) 11 2(2)) = 2000
By induction on d, we may assume d = d’ and we are reduced to show that cy(n) € C(V) satisfies

—

Cy(A) = WV CY(A)-

This is exactly Corollary 6.4.8. O

Now we return to the function Inty,) defined by (6.2.0.3).

Corollary 6.4.10 (Higher local modularity). Let A € Vert?¢*!. Then Inty,(p) extends to a (neces-

sarily unique) function in C°(V) and satisfies

IntV(A) =Yy Intv(A) .

Proof. Consider the linear map given by the Euler—Poincaré characteristic
X: Ko(V(A))g = Q, [F]— x(V(A),F).

By the Grothendieck-Riemann-Roch theorem, we have x(V(A), F) = deg(ch(F)-Td(V(A))), where
Td(V(A)) is the Todd class of the tangent bundle of V(A). It follows from (6.4.0.1) that x factors
through Ko(V(A)) and thus defines a linear map x : Ko(V(A)) — Q. By definition we have
X © Kya) = Inty(p). The result then follows from Theorem 6.4.9. U

Remark 6.4.11. Corollary 6.4.10 allows us to give an alternative proof of Corollary 6.3.3 without a
priori knowing that only the (n—1)-th graded piece of the derived Kudla—Rapoport cycle contributes
to Int;, 4 (z) in the decomposition (6.1.4.2), in particular, without using [Zha21, (B.3)] for a formal
scheme.

7. FOURIER TRANSFORM: THE ANALYTIC SIDE

In this section we allow F{; to be a non-archimedean local field of characteristic not equal to 2

(but possibly with residual characteristic 2), and F' an unramified quadratic extension.
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7.1. Lattice-theoretic notations. Recall that V =V, is the hermitian space defined in §2.2 (in
particular it is non-split). We let L’ ¢ V=V, be an integral Op-lattice of rank n — 1, such that
L% is non-degenerate. Define

(7.1.0.1) (L)V° ={x e (L) | (z,2) € Op}.
The fundamental invariants of L’ are denoted by
(a17 o 7an—1) S Znila

where 0 < a; < --- < a,_1. Denote the largest invariant by

(7.1.0.2) emax(L’) = an_1.
Let
(7.1.0.3) M=ML)=0La/u)

be the lattice characterized by the following condition: w € V is a vector satisfying v L L’ and
with valuation a,—1 or a,—1 +1 (only one of these two is possible due to the parity of val(det(V))).
In other words, the rank one lattice (u) is the set of all z L L’ with val(z) > a,_;. Then the
fundamental invariants of M (L) are

(ala”' 7an—17an—1)7 or (alv'” 7an—17an—1+1)-
Finally we note that, if L C L are two integral lattices of rank n — 1, then
(7.1.0.4) emax(L”) < emax(L")

and M (L") ¢ M(L"). The above inequality follows from the characterization of —emax(L’) as the

minimal valuation of vectors in the lattice (L°)V.
7.2. Lemmas on lattices. In this subsection, we do not require the lattice L’ to be integral.
Lemma 7.2.1. Let L” C L), be an Op-lattice (of rank n — 1). Denote
Lat(L"”) := {Op-lattices L' C V | rank L' = n, L” = L'NL}}.
Then there is a bijection
(7.2.1.1) [(V/L?)\ (L’}/L’b)]/O; —= 5 Lat(L")
ut L” + (u).

Proof. The indicated map is well-defined and clearly injective. To show the surjectivity, we note
that L'/L” is free for any L' € Lat(L”). Choose any element u € L' whose image in L'/L" is a
generator. Then it is clear that L' = L” + (u). O

Let (x)p = F x be the F-line generated by z € V'\ L}. Corresponding to the (not necessarily

orthogonal) decomposition V = Lg;v @ (x)F, there are two projection maps

Ty VLl mp: V—o (2)p.
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Lemma 7.2.2. Let L' C 'V be an Op-lattice (of rank n). Denote
L"=0'nL% L, =Lnrp
The natural projection maps induce isomorphisms of Op-modules
m(L') /L «~— L'/(L” & L) —— m,(L')/ L.
In particular, all three abelian groups are Op-cyclic modules.
Proof. Consider the map
¢: L' —— m(L")/L.,.

We show that the kernel of ¢ is L” & L; the other assertion can be proved similarly.

Let u € I/ and write u = v’ + u® uniquely for v’ € L%, uf € (z)p. Then ¢(u) = u¥ mod L.
If u € ker(¢), then u! € L. It follows that «* = u — u® € L/, and hence v’ € L”. Therefore
u € L” ® L, and ker(¢) C L” @ L. Conversely, if u € L” @ L., then «’ € L”,u% € L, and clearly
¢(u) = 0. This completes the proof. O

Now we assume that | L. We rename the projection map to the line (z)r = (L%)* as 7, .
Then we have a formula relating the volume of L’ to that of L” = L' N L}, and of the image of the
projection 7 (the analog of “base x height” formula for the area of a parallelogram)

(7.2.2.1) vol(L') = vol(L"”) vol(m, (L)).

In fact, this is clear if L' = L” @ 7, (L') and in general we obtain the formula by Lemma 7.2.2:

vol(L') _ vol(m (L))
vol(L" & L) vol(L},)

7.3. Local constancy of dDen;, ,. We now resume the convention in §7.1. In particular, LY is
now an integral lattice. When rank L = n with val(L) odd, recall that the derived local density is
(Corollary 3.5.3)

ODen(L)= > m(t(L)),
LcrL'crv
where

1+ —-¢*)---(1-(-9* "), a>2,

ma) = 1, a€{0,1}.

Definition 7.3.1. For x € V\ L%, define
dDen, () := dDen(L’ + (x)).
Then
(7.3.1.1) ODenp,(z) = > m(L)1y(w),
LbcL'cLY
where the sum is over all integral lattices L’ C V of rank n. Note that this is a finite sum for z in

a compact subset of V'\ L'};. However, when varying x € V' \ L}, infinitely many L’ can appear.
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Definition 7.3.2. Recall that we have defined the horizontal part dDenj, , in Definition 6.1.2.
Now define the vertical part of the derived local density

(7.3.2.1) dDenp; (x) = ODeny,(x) — ODeny, 4 (x), €V L.

Obviously the functions dDen;; ,,» and dDen, are locally constant on V'\ L. Hence dDen Ly
is also locally constant on V' \ L%.

Definition 7.3.3.

(a) Let LL(V) be the space of integrable functions that are defined on a dense open subset of V and
vanish outside a compact subset of V.

(b) Let W be a non-degenerate co-dimension one subspace of V. We say that a smooth function f
on V\ W has logarithmic singularity along W near w € W, there is a neighborhood U, of w in V
such that

f(u) = Colog |(ut,u)| + C
holds for all u € U, \ W, where u~ € W+ denotes the orthogonal projection of u to W+, and
Cy, C1 are constants (depending on w). We say that a smooth function f on V\ W has logarithmic
singularity along W if it does so near every w € W. Notice that such a function f is locally

integrable on V (i.e., [, |f(x)|dz < oo for any compact open C C V).

Proposition 7.3.4.

(a) The functions dDenp, , and ODeny, lie in LL(V), and they have logarithmic singularity along
L.

(b) The function dDenp, . extends to a (necessarily unique) element in C°(V) (we will still denote
this extension by ODeny, ), i.e., there exists an element in C°(V) whose restriction to the open

dense subset V' \ L%, is equal to ODenyp, .

Proof. Consider the set
(7.3.4.1) N(L") :={z € V| (z) + L’ is integral}.

We claim that N (L") is a compact open subset of V. To show the claim, we rewrite the above set
as
N(L’)={z eV |(z,L") COp, (z,2)€Op}.

Write © = 2” 4+ 2 according to the orthogonal direct sum V = L%, @ (L%)*. Then the condition
(z, L") C Op is equivalent to z° € (L?)". Since (L”)V is a compact subset of L', (2, 2°) is bounded
in F. Together with the integrality of the norm (x,z), it follows that (z,z") is also bounded.
Therefore 2+ lies in a bounded subset £ of the F-line (L%)*. Tt follows that N (L") is contained in
a bounded set (L”)Y & L. Since N(L”) is open and closed in V, it must be compact.

Note that all three functions dDenj,, dDen;, ,» and dDeny, , vanish outside N (L%). Tt follows
that all three vanish outside a compact subset of V, and are smooth functions on V'\ L%. To show
part (a) it suffices to show both functions dDenj,, dDenj, , have logarithmic singularity along
L% near each e € L% (then the integrability follows by the consideration of the support). To show

part (b), it suffices to show that dDen;, , is a constant near each e € L.
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We now consider the behavior of the three functions dDen,, dDeny, ,» and dDeny, ., near each
e € L%. By the above discussion on the support, we may assume e € L'}; NN (L").

First we consider the case e € L°, and we consider its neighborhood M(L?) = L’ @ (u), the
lattice defined by (7.1.0.3). Obviously the three functions are all invariant under L’-translation.
By Lemma 7.3.5, both dDen, ,» and ODen, have logarithmic singularity along L?ﬂ near such e.

Again by Lemma 7.3.5, when = € (wu) is non-zero, we have

ODeny 4 (z) — 8Dean7y/(w*1x) = Den(—q, L) — Den((—q) ", L"),

vol(L?)

which vanishes by the functional equation for Den(X, L") evaluated at X = —q, cf. (3.6.2.2). It
follows that ODeny, () = 8Dean,7/(w_13:) when x € (wu) is non-zero. Therefore dDeny, , is a
constant in M (L") \ L.

Next we consider the case e € L% N N(L’) but e ¢ L’. We denote L’ := (e) + L’. Choose
an orthogonal basis eq,---,e,_1 of the lattice L’ and write e = Mej 4+ - + Ap_1€n_1. Up to
re-ordering these basis vectors, we may assume that A; attains the minimal valuation among all of
the coefficients A;, 1 <i < n — 1. Since we are assuming e ¢ Lb, we have A\; ¢ Op. Let us denote

A=) €O0p.
Then we have
e1 = e — )\1_1)\262 — e = )\1_1)\”_16”_1 S ()\6, €9,€3,. .. ,en_1>.

Fix a basis vector e,, of the line (L%)*. Since all three functions are invariant under L’-translation,
it suffices to consider the behavior of the function:

t € Op —— 9Deny, (e + tey,)

when ¢ is near 0 € OF, and the similar functions for dDeny, ,», 0Deny, . respectively.
Set x4 := e + te, and My := (ea, €3, ,en—1, 7). Then we have

L’ + () = (e1,€2,€3, - ,en_1,€ + tey)

= <)\t6n7 €2,€3, " ,€p—1,€+ t€n>
= Mt + <)\t6n>.
Note that the vector space V has an orthogonal basis {es, €3, - ,en—_1,€1 + Aten, el }, where
/ (enaen)

e, = e, —o(t)ue; and p = o(N) erey € I, where o(t) denotes the Galois conjugation of
t. A straightforward computation shows that, when [¢| is sufficiently small, with respect to
V = (e},)r & (e},), the projection of e, to (e},)F lies in My, and to the line (e},)p is uze], where

us € Op is a unit (since uy — 1 as ¢ — 0). It follows that, when [¢] is sufficiently small,
L’ + (z) = My & (Mtel).
Note that, when |¢| is sufficiently small, the lattice M; has the same fundamental invariants as

L' = 1"+ (e) = (ea,e3,--- ,en_1,¢), and (¢,,¢,) differs from (ey,e,) by a unit, and thus the

lattices M, @ (Ate!,) and L’ @ (Ate,) have the same fundamental invariants. Since dDen (z) =
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dDen (L’ + (z;)) depends only on the fundamental invariants of the lattice L’ + (z;), we obtain that,
when |t| is sufficiently small,

(7.3.4.2) dDeny, (zt) = ODeng, (Mtey).

Now by Lemma 7.3.5, the function dDen;, has logarithmic singularity near e.
Next we investigate the behavior of dDeny, , (2¢) when t — 0. By (6.1.2.1), we have

(7.3.4.3) ODenyy (i) — ODeng, (i) = Z Z m(t(L)).

Lo (L)Y L4 (e CL LY

e¢L”, ¢(L”)<1  L'nLb =L
We claim that, when [¢| is sufficiently small, the right hand side is a constant dependent on L
and e but not on ¢t. The outer sum has only finitely many terms. Therefore, to show the claim,
it suffices to show that each of the inner sums is a constant dependent on L” and e but not on ¢.
Now fix an integral lattice L O L” such that e ¢ L” and t(L”) < 1. We may further assume that
L” + () is integral (otherwise the inner sum for such L” is empty when |t| is sufficiently small).
Then L” must be an orthogonal sum M @ (f) for some self-dual lattice M of rank n — 2, and a
rank one lattice (f). Denote by e* the orthogonal projection of e to the line (f)g. Since L” + (e)
is integral and e ¢ L”, we must have e — e* € M and f = £e* for some £ € Op but & ¢ Oy. Let
W = (f,en)r be the orthogonal complement of Mp. Then the inner sum associated to L’ > is equal
to

Z m(t(L)) = ODen((f, e* + tey)) — ODen((w 1 f, e* + te,)).

(f,e*+ten)CL'CL'V CW
L'OLS=(f)

Now it is easy to see that, when |¢| is sufficiently small, the lattice (f,e* + te,) = (&e*,e* + te,)
(resp., (wLf,e* +te,) = (w 1e* e* +te,)) has the same fundamental invariants as {(Ete,,e*)
(resp., (w~'&tey,, e*)). By Lemma 7.3.5, when |t| is sufficiently small, the difference
ODen((f,e* +te,)) — ODen((w ' f,e* + te,))
=dDen((Ete,, e*)) — ODen((w™ ete,, e*))
:8Den<e*>(§ten) - 6Den<e*> (wiléten)
=Den(—gq, (¢*))
is a constant independent of ¢. This proves the claim. Note that dDenj, . (zt) = dDens, %(ten)
and it has logarithmic singularity along E% = L% by Lemma 7.3.5. It follows from the claim that
the function 0Den 1> also has logarithmic singularity along Lip near e. Now we have completed
the proof of part (a).
By (7.3.4.2) and (7.3.4.3), let ¢ — 0 and denote by C' the constant equal to (7.3.4.3):
dDenp, (w¢) = ODeny, (z¢) — ODenyy (1)
= 0Deny, (Mte,) — ODeng, .(te,) — C
= (0Denj, (Ate,) — 0Deng, (te,)) + ODeng, ., (te,) — C.
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By Lemma 7.3.5, the term (0Deng, (Ate,) — 0Deng, (te,)) is a constant dependent on L’ and e but

not on ¢. By the previous case (replacing L’ by Eb) that we have considered, the term dDeny, ,, (te,)

is a constant when ¢ — 0. This shows that dDen 1>y 18 a constant near e, and we have completed
the proof of part (b). O

Lemma 7.3.5. Assume that v 1 L’ and val(z) > 1+ emaX(Lb). Then
dDeny, () — dDen,, (w ™ 'z) = Den(—gq, L’),
and

_ 1 _
ODeny, (x) — ODeny, ,(w 'x) = WDen((—q) L.

Proof. The first part follows from the induction formula in Proposition 3.7.1
Den(X, L) = X?Den(X, L') + (1 — X)Den(—¢X, L’),
where
I'=La(w'z), L=La().
Now we consider the second part. By the definition (6.1.2.1) of the function dDeny, ,, we obtain
ODeny y(z) = Deny p(@'a)= Y. m((L),

Lbcr/cL'V,
t(L'?)<1, L' N (z) p=(x)

where we recall that L” = L' N L., cf. (6.1.2.2). This sum can be rewritten as a double sum, first
over all L' with a given L' N L% = L” then over all L”

(7.3.5.1) > > m(t(L')).

L' c(L)V L'cL'v
LPcLh, y(Lhy<1 LNLS =L, 1/"(z) p=(x)

Fix L” with t(L"”) < 1 and we consider the inner sum. Since t(L”) < 1, we may assume that
L” has an orthogonal basis ¢/, --- , e/ | such that val(e}) = val(ey) = --- = val(e/, ,) = 0, and
no1 = val(e, ).

By Lemmas 7.2.1 and 7.2.2, each lattice L’ in the inner sum is of the form L” + (u) where u

a

satisfies
(u, L") € Op, (u,u) € Op.
Write u = v’ + ut according to the orthogonal direct sum V = L% @ (L%)*. We claim that
val(u”) > 0 and val(u't) > 1.
To prove the claim, we first note that the condition (u, L”) C Op above is equivalent to u’ €
(L")V. Therefore we may write u’ = el + -+ A€l where \; € Op (1 <i<n-—2)and
A1 € @ n-10p. By Lemma 7.2.2, we have

(L) _ wh o~ m(L) _ L) OptAa—1-0
(7.3.5.2) L/Jﬁ(x)p — Z”ci) N ble _ L/bu ~ Or OFl P

This isomorphism implies that

(7.3.5.3) max{0, —2val(\,_1)} = —val(ul) + val(z).
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Now if val(u”) < 0, from (u,u) € Op it follows that val(u’) = val(u') < 0 and val(v’) =
2val(A,—1) + al,_;. Hence 2val(\,—1) < —al,_; (in particular, val(A,—1) < 0). It follows from
(7.3.5.3) that val(z) = a],_;, which contradicts val(z) > an—1 > a_;.

have val(u’) > 0 and val(u') > 0. Tt then follows that val(\,_1€/, ;) > 0, or equivalently
2val(Ap—1) +al,_; > 0. By (7.3.5.3), we have either val(ut) = val(x) > 1 or

Therefore we must

val(ul) = val(z) + 2val(Ay_1) > (14 ap_1) —al, | > 1.

Here the last inequality follows from epay(L”) = al,_; < emaX(Lb) = ap—1 by (7.1.0.4) applied to
L’ ¢ L”. We have thus completed the proof of the claim.

Now we define L” = m,(L') = L” 4+ (u”). Then L” is an integral lattice. By val(u®) > 1, we
obtain

t(L) = t(L") + 1.

Moreover, for a given integral lattice L’ > L”, the set of desired integral lattices L’ is bijective to
the set of generators of the cyclic Op-module L”/L”. Therefore the inner sum in (7.3.5.1) is equal
to

B _ 1 if zlb _ le’
(7.3.5.4) > mHI”) + D[L”: L] L
(=), D017,

where the index [E”’ L] = :’/Z}gi% For the sum (7.3.5.4), we distinguish three cases.

(1) If t(L”) = 0, i.e., a/,_; = 0, then the sum is equal to 1.

(2) If a),_; > 0 is odd, then the sum is equal to
I+ @)1+ (¢ = 1)+ -+ (g% = g™17%)) = g™} (1 + ).

(3) If a),_; > 0 is even, then the sum is equal to

’

(L q) 1+ (g7 = 1) oo (g2 = g ™) o (g%t — g 7%) = g1+ q).
Therefore the inner sum in (7.3.5.1) is equal to

1, t(L") =0,
1

(0 gy HE7) =

(7.3.5.5)

We obtain that (7.3.5.1) is equal to

S+ Y (g = Den((—) ", L),

h b
LbC L t(L")=0 LbC L t(L")=1 vol(L”) vol(Z?)

by (3.6.1.2), and hence
ODenyy () — aDean’%(wflx) =—

This completes the proof. [l
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We introduce an auxiliary function on V' \ L7,

ODeny,(x) = Z 1p(x).

LbcL/'cLY

Similar to Proposition 7.3.4, we have:

Lemma 7.3.6. The function ODen, lies in LL(V), having logarithmic singularity along L%.

Proof. It suffices to show the logarithmic singularity near 0 € V. The behavior of dDen;, near
an arbitrary e € V is then reduced to this case by the same argument as the proof of part (a)
in Proposition 7.3.4 for dDen;,. More precisely, the equality (7.3.4.2) also holds for the function

—_—~—

dDen,}, since dDen, (x) depends only on the fundamental invariants of the lattice L’ + (z).
Note that the function dDen;, is invariant under L’-translation. It suffices to show that, when
z L L5 and val(z) > 2 emax (L"),

mp (1‘) =)y Val(a;) + 1

for some constants Cy, Cy. Write the function as a double sum:

—_—~—

ODenj,(z) = Y > 1p(a).

LPCLPC(L?)Y  L'cL'Y
L'nLh =L

Since the outer sum has only finitely many terms, it suffices to prove the desired logarithmic
singularity for the inner sum associated to each integral lattice L” > L”. Fix such an L”. It suffices
to show that, when = 1 L% and val(z) > 2emax(L”) (we remind the reader that emayx(L”) <
emax(L’) by (7.1.0.4)), the cardinality

(7.3.6.1) #{L | cLV, I'NnLy=L"L'n(Ly)* = ()}

is independent of z.
Following the proof of Lemma 7.3.5, each lattice L’ in the above set is of the form L” 4 (u) where

(u, L") € Op, (u,u) € Op.

Write u = u” 4+ u' according to the orthogonal direct sum V = L'}; &S (L'};)L. We claim that
val(ut) > 1. In fact, by (u,L”) C Op, we obtain v’ € (L”)¥, and hence length,, L'bz,ﬁ“” <
emax(L"). Comparing the lengths of the Op-modules in (7.3.5.2), we obtain

P + <ub>

1 _
—val(u~) + val(x) = 2 length,,, —

< 2 emax(L”).

The claim follows.
It follows that the cardinality (7.3.6.1) is given by (7.3.5.4) without the weight factor m(t(L”)+1),
hence independent of x. This completes the proof. [l

By Proposition 7.3.4, the functions dDen,,dDen;, , and dDeny, , are all in LY(V), hence

Fourier transforms exist for all of them.
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Corollary 7.3.7. The Fourier transforms of ODenp, and ODeny, 4, are given by (pointwise) ab-
solutely convergent sums

(7.3.7.1) dDeny, L, (x) = 3 vol(L)ym(t(L')1 v (),
LPcL/cL'V, t(L")<1
and
(7.3.7.2) denyy(z) = > vol(L)m(t(L')1pv(x),
LPcL'cLY
where x € V in both equalities.
Proof. By definition (1.7.0.2) we have
(7.3.7.3) dDenp,(z) = / > mEINL()e(trp g (z,y) dy.
Vicrcny

By Lemma 7.3.6 we have
/ S ) ()b ey ()] dy < ()] / S 1u()dy
VL"CL’CL’V VLbCL’CL’V
_ \m(n)]/afﬁe/np(y) dy < 0.
\%

Therefore we can interchange the order of the integration and the sum in (7.3.7.3). This proves
(7.3.7.2). The equality (7.3.7.1) is proved similarly. O

7.4. Fourier transform of dDen, , .

Theorem 7.4.1. Assume that x L L’ and val(z) < 0. Then

a/]:);[]b’«y(l') = 0
Proof. This follows from Lemma 7.4.2 below, and the functional equation (3.6.2.2)
1

Den(—q, L’ + (v)) = mDen((—q)_l,Lb +@). O

Lemma 7.4.2. Assume that x L L° and val(z) < 0. Then
@Den s (z) = (1 - ¢~%) " vol((z)Y) / Den(—q, L’ + (v’)) du’,
Ly

and

— 1
_ —2\—1 \Y -1 7b b b
ODenpy (x) = (1—q ") vol({(x) )/L% mDen((—Q) L7+ (u’)) du’.
Recall that (z)V denotes the dual lattice of (x) in the line (x)p. Here we use the self-dual measures
on L% and on {(x)p respectively, cf. §1.7.
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Proof. First we consider the Fourier transform of Den;,. By (7.3.7.2), it is equal to the (pointwise)
absolutely convergent sum

dDen,, (z) = 3 vol(L')m(t(L")).

LPCL/'CL'V,zeLl’Y
For an integral lattice L” > L, define
(7.4.2.1) S(L°z)={L'cV|zelV,L'cLV,L"=LnNL}.
Then
(7.4.2.2) Denyy(z)= Y. ST vol(L)m(t(L)).

LPCLPC (L)Y L'ex(L" x)
By Lemmas 7.2.1 and Lemma 7.2.2, we have a bijection

~

(7.42.3) (@) + LP)L2)\ (L /L2 O — (TP, )
wt L” + (u).

Here, though ((x) + L")V is not necessarily a lattice, it is invariant under L”-translation and
Oj-multiplication. Hence the quotient on the left hand side makes sense.

Now we follow the same argument as in the proof of Lemma 7.3.5. Write v = u” 4+ u! according
to the orthogonal direct sum V = L*}; a (Lz,-,)l. Then the condition x € L'V is equivalent to the
projection 7, (L) C (z)V (inside the line (L%)* = (2)F), or equivalently, (x,u") € Op. Since
val(z) < 0, we must have val(u®) > 0 (due to 2val((z,u')) = val(z) +val(u’)). It follows from the
i

)

integrality of the norm (u,u) and (u,u") that u” also has integral norm and hence u” € (L”)V°.

Thus we have
(<I‘> + L/b)\/,o _ (L/b)v,o o <x>\/
and a bijection with the left hand side of (7.4.2.3)
m\V,o 7 @V\{0}  ~ H\V,0 /T v x
(L)L ) o= —— [(L7)H° /L7 x ()" \ {0})]/OF
sending (u’, Of - @™z) to the O}-orbit of (u”, w™z) (with the diagonal O }-action)3. We have the
resulting bijection

(L/b)v,o/L/b v <x>g\x{0} ~ Z(L’b,:zj).
F

(z)V\{0}

Or _ ~
(corresponding to (ut) = 7, (L')). We write L’ = (L) = L’ + (ub> Then L” is an integral
lattice. By val(u’) > 1, we obtain

Y

The second factor can be further identified with the set of lattices contained in (x)

t(L) =t(L") +1,
and by (7.2.2.1),
vol(L') = vol(L”) vol(m (L)).

3The bijection depends on the choice of a basis vector of (z), and here we have simply chosen x.
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Therefore the inner sum in (7.4.2.2) is equal to

vol(L”) Y wm(t(L")+1) > vol(N)

wre LVe NC(z)Y
b
=vol(L”)vol((2)") ("¢ %) Y m((L”) +1)
>0 ube(L/b>\/,o
b

=vol(L")vol((x)") (1 — ¢ )" Y mt(L")+1).
ubei(ybzbv’o

We now return to the sum (7.4.2.2), which is now equal to

(7.4.24)  @Denp(x) =vol((@)¥) > volI"(1-g 2 3 mEE”) +1).

LbCL’bC(L’b)V ube(L/b)v,o
b

~ ~ byV,0
For a given integral lattice L such that L”/L” is a cyclic Op-module, the number of u’* € %

such that L” + (u”) = L" is

[E/b : L'b](l . q72) _ vol(f/")(l _ q72), if I 4 L/b,

vol(L")
1, if L = L.
We thus obtain
_— (P -
dDenp,(z) =vol((z)¥) Y wol(L”) 3 VOI(L/b)m(t(L’b) +1)
LbCL’bC(L’b)V L”’CZ”, Z/b/L/b cyclic vo ( )

+q 21 —g ) vol(()Y) Y vol(L”)m(H(L") + 1).
LbCL’bC(L’b)V

Here we split the contribution of the factor corresponding to L” = L” into two pieces ¢ 2+ (1—q~2).

Interchanging the sum over L” and L”, we obtain

(7.42.5)  @Denpy(z) =vol((x)*) > vol(L")m(t(L") + 1) 3 1
LbCZ”’C(Z"’)V LbCL’bCz’b,E’b/L’b cyclic
+¢72(1 = ¢ H tvol((z)Y) Z vol(L”)m(t(L") + 1).
LbcL/bC(L/b)v

Next we consider the integral
/ Den(—q, L’ + (u’))du’.
b
F
This can be written as a weighted sum over integral lattices M C L} such that L’ ¢ M and M / L
is a cyclic Op-module, with the weight factor

vol(M)(1 — ¢~2), if M # L,

vol(L), if M =L,
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Therefore we obtain
(7.4.2.6) / Den(—gq, L’ + (u*))du’ = ¢~ vol(L”)Den(—gq, L")
L
+(1—q7?) > vol(M)Den(—q, M).

LPcMcCMY,M/LP cyclic

Again here we split the contribution of the factor corresponding to M = L’ into two pieces ¢~2 +
(1 — ¢ 2). By the formula (3.6.2.1), the first term is equal to

(7.4.2.7) g ?vol(L’)Den(—q, L’) =q > Y vol(L”)m(t(L") + 1).
LbCL”’C(L"’)V
Again by (3.6.2.1), the second term in (7.4.2.6) is equal to

> vol(M)Den(—q, M)
LPCcMCMY,M/LP cyclic

VOI(L,b) i
= > vol(M) an m(t(L”) +1)
L'CMCLPC(L"?)V,M/LP cyclic

= Y vol(L")m((L")+1) - #{M | L’ c M  L”, M/L" cyclic}.
LbCL’bC(L”’)V

Now note that we have an equality
#{M | L’ c M c L”, M/L’ cyclict = #{M | L’ ¢ M c L”, L” /M cyclic}.
In fact, the right hand side is the same as
#{MV | L"Y c MV c LV, MY/L"V cyclic}.

and this is equal to the left hand side, due to the (non-canonical) isomorphism of finite O p-modules

~

L/b/Lb (Lb)\//(L/b)\/.
It follows that

(7.4.2.8) > vol(M)Den(—q, M)
L CMCL»C(L")V,M/Lb cyclic

= > vol(L”)ym(H(L") +1) - #{M | L’ ¢ M C L”, L"” /M cyclic}.

LbCL’bC(L'b)V
By (7.4.2.6), (7.4.2.7) and (7.4.2.8), we obtain
(7.4.2.9)
/ _ Den(—q, L+ @)de’ =1-¢7%) Y vol(L”)m(t(L") +1)- > 1
L LPCLP (L)Y LPCMCL?, L /M cyclic
) b h
+q > vol(LP)m(t(L”) +1).
L"CL’bC(L’b)V

55



Comparing (7.4.2.9) with (7.4.2.5) we obtain

BDenys(x) = (1~ g%) " vol((2)") [ Den(—aq,L’ + (u))dw,
L
and this completes the proof of the first part concerning mp.
Similarly, let us consider the horizontal part dDenj, ,. By (7.3.7.1), we have a (pointwise)

absolutely convergent sum

(7.4.2.10) en, y(x)= . ST mt(L)) vol(L).
L"cL’bc(L’b)V L’EE(L’b,x)
t(LP)<1

Here X(L”, z) is the set defined by (7.4.2.1). Similar to the equation (7.4.2.4) for 0/DED,, we obtain

dDenp o (z) =vol((x)¥) > vol”)A1—¢ D' Y m(t(L?)+1).

LbcleC(le)\/ ube(L/b>\/,o
t(L”’)Sl b

The inner sum is equal to (7.3.5.4), hence equal to (7.3.5.5). We obtain

ety () = (1 -2 vol(e)Y) 3 vol(2?)d HL") =0,
enp, »(z) =(1—¢q vol((x Vo . , . o
LbC?;bbC)g/b)v q m(t(L ) + ]-)Vol(le)? t(L ) - 1
t(L")<1
1, t(L") =0,
= (1 _ q*2)71 VO](<.%'>V) Z X ( /b)
LbCL’bC(L’b)V, t(L"’)Sl 1 + qi ’ t(L ) = 1

From the formula (3.6.1.2), it follows that

1 —
/L; WDGD((—Q) LI 4 () dul

= Z /L 10 (u") du’

b
LbCLC(L?)V, t(L?)=0""F

+ Z ¢ 'm(t(L”) + 1)\701(11/*’) /L% 1,5 (u”) du’

LPCLC(L"?)V, t(LP)=1

= > 1+ > (1+q¢7h).

LbCL’bC(L’b)V, t(L"’):O LbCL’bC(L’b)V, t(L’b):l

This completes the proof of the second part concerning the horizontal part. O

8. UNCERTAINTY PRINCIPLE AND THE PROOF OF THE MAIN THEOREM

8.1. Uncertainty principle.
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8.1.1. Quadratic case. In this subsection we first let V be a (non-degenerate) quadratic space of
dimension d over a non-archimedean local field F' with characteristic not equal to 2. Here we allow
the residue characteristic to be p = 2. We denote by (, ) the symmetric bi-linear form on V. Let
Ve (resp. V°°) denote the “positive cone” (resp. “strictly positive cone”), defined by

(8.1.1.1) Ve ={z eV |val((z,x)/2) >0}, V*°={xeV|val((z,z)/2) > 0}.

Fix an unramified additive character ¢ : F' — C* and, similar to the hermitian case (cf. §1.7), we

define the Fourier transform on C$°(V) b

Y
(8.1.1.2) /f ((z,y))dy, =xe€V.

Proposition 8.1.2. Let ¢ € C°(V) satisfy
e supp(¢) C V°°, and

e supp(¢) C V°.
Then ¢ = 0.

Proof. If dimV is odd, we consider the “doubling” quadratic space V&YV and the function ¢ ® ¢ €
C(VOV). It is easy to see that supp(¢p®R¢) = supp(¢) xsupp(¢), @ = gg@qg, VexvVe c (Vav)e,
and V°° x V°° C (V@ V)°°. Therefore it suffices to consider the case when dimV is even, which
we assume from now on. We use the the Weil representation w of SLa(F'). The group SLa(F') acts
on C°(V) by the following formula

w < ) #(z) = xv(@)al*/*9(az).

(8.1.2.1) w (1 b) p(x) = (; b(x,x)> o(x),

where xv is a quadratic character of F'* associated to the quadratic space V, and ~yy is the Weil
constant (see [Kud97b, p.642]).

By the assumption on the support, the functions ¢ and ¢ are fixed by N (™ 'OF) and N(OF)
respectively, where N denotes the unipotent subgroup of the standard Borel of SLgy of upper tri-
angular matrices. Therefore ¢ is fixed by N(w 'Of) and N_(Op) (the transpose of N(O)).
However, N(w 1Op) and N_(Op) generate SLy(F). We sketch a proof of this well-known fact.
Using the following identity in SLa(F")

E-( ()

it is easy to show that the group SLy(F') is generated by N(F') and any single element in SLa(F') \

1 1
B(F). Now we first apply the above equality to <1 1) (resp. ( 1)) to generate ( >
w
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—1/w -1 1w\ [(-w )
(resp. <w )) Then we note that <1 ) (w ) = ( —1/w> and this

element together with N(w1Op) generate N(F).

It follows that ¢ is fixed by SLa(F') and therefore supp(¢) is contained in the null cone {x € V :
(z,z) = 0} (e.g., by using the invariance under the diagonal torus, or N(F)). Since ¢ is locally
constant, it must vanish identically. O

Remark 8.1.3. The uncertainty principle is also used in the new proof by Beuzart-Plessis [BP21]
of the Jacquet—Rallis fundamental lemma.

Corollary 8.1.4. Let ¢ € C°(V) satisfy
e supp(¢) C V°°, and

° 4/5 is a multiple of ¢.

Then ¢ = 0.

8.1.5. Hermitian case. Now we return to the case of hermitian space with respect to a (possibly
ramified) quadratic extension F'/Fy where Fj is non-archimedean local field with characteristic not
equal to 2. Define V° and V°°

(8.1.5.1) Ve ={z eV |val(z) >0}, V*°={zeV]|vallz)>0},
where we recall that val(z) = val((x, z)) for the hermitian form (, ) on V, cf. §1.7.

Proposition 8.1.6. Let ¢ € C°(V) satisfy
e supp(¢) C V°°, and

-~

e supp(¢) C V°.
Then ¢ = 0.

Proof. Consider the symmetric bilinear form on the underlying Fy-vector space of V,

(xvy)Fo = trF/Fo(xay) € F07 T,y € V.

Then the Fourier transform on C2°(V) defined in §1.7 using the hermitian form (, ) on V is the same
as the one in (8.1.1.2) using (, )i, on the underlying Fy-vector space of V. Since (z,2)p, /2 = (z, )
for any = € V, the cones defined by (8.1.1.1) and (8.1.5.1) coincide. Therefore the desired assertion
follows from Proposition 8.1.2. (|

The uncertainty principle implies that, by Lemma 6.3.1, the function Int by s determined by

its restriction to
Ve\V?? ={z € V|val(x) =0}.

Ideally one would like to prove the same conclusion as Lemma, 6.3.1 holds for the function dDen oy
Then, by induction on dimV, we can prove the main Theorem 3.4.1. However, we have not
succeeded finding a direct proof the analog of Corollary 6.3.3 for dDen,, . Nevertheless, a weaker
version of the uncertainty principle suffices to prove the identity Int Ly = 8Deany and this is
what we will actually do in the next subsection. A posteriori we can deduce that the function

dDeny, 4 also satisfies the same identity as Int;; , does in Corollary 6.3.3.
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8.2. The proof of Theorem 3.4.1. We now prove the main Theorem 3.4.1. Fix a rank n — 1
lattice L” C V such that L’ is non-degenerate. We want to prove an identity of functions on V\ L,

Int;, = 0Deny,.
By Theorem 6.1.3, equivalently we need to show
Theorem 8.2.1. Let L’ C V be a rank n — 1 lattice such that L'}; 1s non-degenerate. Then
(8.2.1.1) Inty, , = 0Deny, 5
as elements in C°(V).

Proof. We prove the assertion by induction on val(L?). Let (ai,as,--- ,an_1) be the fundamental
invariants of the lattice L”, cf. §7.1. Let M = M (L") = L’ & (u) be the lattice defined by (7.1.0.3).

Lemma 8.2.2. Let v € V\ L%, and let (a},dl, - ,al,) be the fundamental invariants of the lattice
L’ + (z). Then the inequality

(8.2.2.1) aj+--+a_;>a+ o +an

holds if and only if x € M.

Proof. For x € M, we write x = 2° + 2 where 2* € L’ and 2+ 1 L°. Then L’ + (z) = L’ + (z).
Therefore we may assume that 2 L L°. It follows that val(z) > a,_1 by the definition of the lattice
M, and af = a; for 1 < i <n—1. Hence ¢} +---+al,_; = a1 + -+ + ap—1, and the equation

(8.2.2.1) holds.
We now assume that the inequality (8.2.2.1) holds. We start with a special case. If x L L?, the

fundamental invariants of the lattice L’ + (z) is a re-ordering of (ay,as, - ,an_1,val(z)). From
the inequality (8.2.2.1), it follows that val(z) > a,—1, and therefore = € M.
Now we consider the general case. Let {e1,---,e,_1} be an orthogonal basis of L’ such that

(e5,e;) = w®. Write
= Aep+ -+ M1en1 +at,

where \; € F,1 <i<n—1and 2t L L”. The fundamental matrix of the basis {e1, ,en_1,2}
of L’ 4 (z) is of the form

wi (e1,x)
T =
w1 (ep—1,T)
($7€1> (xven—l) (xvx)

We now use the characterization of the sum a} +--- +al,_; as the minimum among the valuations
of the determinants of all (n — 1) x (n — 1)-minors of 7. The set of such minors is bijective to the
set of (7, j)-th entry: removing i-th row and j-th column to get such a minor. The valuation of the
determinant of the (n,7)-th minor is

val((e;, z)) —a; + (a1 + -+ + an—1).
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From the inequality (8.2.2.1), it follows that
val((e;, x)) > a;,

or equivalently \; € O, for all 1 < i < n — 1. Therefore z — z+ € L, and L’ + (z) = L’ + (z+).
Now we can assume that 2 L L’ and by the special case above we complete the proof. O

Now we assume that the equation (8.2.1.1)
IHtL/b,af/ = 8Denle,«,/

holds for L” such that val(L”) < val(L’). We may further assume that L’ + () is integral and has
a basis (€}, ¢eh, -+ ,el,) such that val(e}) = a}. Let L” = (¢},--- ,¢e/, ;). Then we have
Inty, o (x) = Intys o (2'), and  dDenp, 4 () = dDenps ('),

where 2’ = €/,. By Lemma 8.2.2, if # ¢ M, then we have a strict inequality

aj+-4a,_;<ar+-+an1.
And so val(L”) < val(L?). By induction hypothesis, we have

IntL,w/(az/) = 8DenL,b77/(93/).

It follows that the support of the difference

¢ =1Int;, y —0Deny, 5 € C°(V)

is contained in the lattice M.
By Corollary 6.3.3, we know

Ity , (x) = —Intps , (2).
In particular, if val(xz) < 0, then
Int;, (z) = 0.

We know a little less about dDeny, ,: by Theorem 7.4.1, the vanishing mpy(:v) = 0 holds
when val(z) < 0 and = L L. Tt follows that, when val(z) < 0 and = L L’

d(z) = 0.

Obviously the function ¢ is invariant under L. By the constraints imposed by the support of ¢
(being contained in M), it is of the form

p=1p, oL,
where ¢, € C2°((L%)1) is supported on the (rank one) lattice M| = (u). Then

¢ =vol(L")1,,0 ® by

an

Here ¢, is invariant under the translation by the dual lattice MY = (u), where u" = @ u.
Note that val(u') = —a, < 0. Now the Fourier transform ¢, vanishes at every 2 L L” such that

val(xz) < 0. It follows that qAS 1 vanishes identically. Therefore ¢ = 0. This completes the proof. [
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Part 2. Local Kudla—Rapoport conjecture: the almost self-dual case
9. LOCAL DENSITY FOR AN ALMOST SELF-DUAL LATTICE

9.1. Local density for an almost self-dual lattice. In this section we allow Fj to be a non-
archimedean local field of characteristic not equal to 2 (but possibly with residue characteristic 2),
and F' an unramified quadratic extension.

Recall that we have defined the local density for two hermitian Op-lattices L and M

) #Repy, 1.(OF, ™)
Den(M, L) = NLHEOO qN~dim(RepM7L)F0

in terms of the scheme Rep,, 1, cf. (3.1.0.1) in Section 3.1.
Let L be a hermitian Op-lattice of rank n. For k& > 0, set

M — <1>n—1+k & (w), M = <1>n+1+k’
and
(9.1.0.2) LF=Lat, 0= (u), (up,up)="mw.
We then have the following “cancellation law”.
Lemma 9.1.1. Let k > 0. Then

Den(M, L) = Den(M, LY)

Den(M, ?)
Proof. For any hermitian Op-lattice L, we denote

L,=1L Rop OF/wi,

endowed with the reduction of the hermitian form.

Then the restriction to ¢; defines a map

Res: Herm(Lg, M;) —— Herm({;, M;)

P ¢le-
Let ¢ € Herm(L?, ]\Z) Denote by ¢(¢;)" the orthogonal complement in M; of the image o), ie.,
p(ti)t = {x € My | (v, p(t:)) = 0},
Now let i > 2. We claim that there is an isomorphism of hermitian modules over Op/w":
oL ——= M; .
Since the norm of uy has valuation one, so does itSAi/mag(iEUo = p(ug) € M, (this makes sense when

i > 2). Hence wy ¢ w]\Z, i.e., wg mod wN;é 0€ M =M R0, m Op/w. By the non-degeneracy

of the hermitian form on the reduction M;, the map

x —— (z,wo)
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is surjective, and its kernel is ¢(£;)* by definition. The kernel is a free module over O /@’ (since
it must be flat, being the kernel of a surjective morphism between finite free modules; alternatively,
look at the reduction mod w and apply Nakayama’s lemma).

Now there exists wy € M; such that (wh,wo) = 1. Then {wp,w;} span a self-dual submodule
of rank two, which must be an orthogonal direct summand of ]\Z, again by non-degeneracy of the
hermitian form on ]\Ajz This reduces the assertion ¢(¢;)* ~ M; to the case rankl\z = 2. In the
rank two case, it is easy to verify the desired isomorphism, e.g., using the basis {wp,w(}. This
proves the claim.

Note that the fiber of the map Res above |y, is the set Herm(L;, p(¢;)*) (and ¢(¢;)* depends
only on the restriction ¢ls,). It follows from the claim that the fiber has a constant cardinality (in
particular, the map Res is surjective), namely that of Herm(L;, M;). Hence,

#Herm(Lg, ]\Z) = #Herm(L;, M;) - #Herm(¢;, JE)

The result then follows from

r(LA)(2r(M) = r(LF) = r(L)(2r(M) = r(L)) + r(£)(2r(M) = (L),
where r denotes the rank, cf. (3.1.0.2). O

Recall that by (3.2.0.3)

n—1
Den((1y 4, (1)) = [[0 - (o))
i=1 X=(—q)7*
Theorem 9.1.2. Let A = (1)" " 1 @& (w). Let k > 0 and L be a hermitian Op-lattice of rank n.
Then
Den(A @ (1)%, L)
Den((1)»=1+F, (1)»~1)

= Den(X, Lﬁ)'
X=(-q)~*

Proof. By (3.2.0.3), we have

Den((1)" 1k (1)) = (1 — (—q)‘lX)‘

X:(—q)*"*’“'
and
n+1 '
Den((1)™+ 1+ (1)) = [ (1 - <—q>lx>1
i=1 X=(—q)~F

It follows that

Den((1 n+1+k’ 1yn+1 n L
Ben( 15, (.~ 1101~ (-071%)

i=1 ’X=(q)"’
= Den({1)"**, (1)").
(Alternatively, repeat the proof of Lemma 9.1.1 in the case ¢ a self-dual lattice of rank one.)
By Example 3.5.2, we have Den(X, /) =1 — X, and hence

Den(<1>"+1+k,€)
Den((1)m+1+k, (1)1)

—Den(-a) "R = (- ()|
0 =(~a)



It follows that

Den((1)7+1+k (yn+1 n—1 »
D§n2<1>"+1‘5k,>6) ) = 1:[1(1 - (_Q> X)‘X:(q)—k

— Den(<1>n71+k’ <1>n71)

Finally, by Lemma 9.1.1, we obtain
Den(()" """ & (w), L) Den((1)"*+1+%_ L%) /Den((1)"1+k, ¢)

Den((1)n=1+k (1)) Den((1)"+1+k (1)7+1) /Den((1)"+1+F, 1)

— Den(X, L)
X=(—q)~*

This completes the proof. O

Example 9.1.3 (The case rank L = 2). If rank L = 2, Theorem 9.1.2 above specializes to
Sankaran’s formula [San17, Proposition 3.1] which we recall now. Let L = (@®) @ (w’),a < b,
a + b even. Define

0, ifbiseven
1, if bis odd.
Then the formula loc. cit. asserts that the LHS of Theorem 9.1.2 is equal to

1-X X))o — (¢X)€
1_q_1X{qX<1—q>(q JX_(i )

€ =

(1-X)(X?—(®— )X +1)+

X2b o X2e

9.1.3.1 X%(g—qg ' X))

4 {_qb-i-l(X 1)+ gXUt! — q_leH}

Xa+1 _ Xb+1
o)

On the other hand, this is consistent with the explicit formula for Den(X, L*) given by [Terl3a,
proof of Theorem 5.2].

b+1 b—1
1 - —
(9.1.3.2)  Den(X, L) = X {Z XY(gh — gttty - ZX”I(qQ“ _ g lXa—H)} ‘
=0 1=0

In fact, two functions on (a,b) € (Z>0)? (not only for (a + b) such that 2 | a + b) are characterized
by the following properties:

e The value at (0,0) (resp., (1,1)) is 1 — X (resp., (1 — X)(X2% — (¢*> —q¢)X +1)).

e The term involving a is

Xa+1
X2 -1

1-X b+1 b+1 —1 yb+2
R e X —1)4¢gXt — X+}~
X [q ( ) +a q

1 b+1 b—1
=1 - XXa+1 {_ Z qu1+b—l + Z X1+lq1+bl} )
1=0 =0

The two expressions come from (9.1.3.1) and (9.1.3.2) respectively.

e The term not involving a is a function ¢ in one variable b € Z>(, which satisfies a difference

equation
1

1+ X
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The difference equation is easy to see from (9.1.3.2), and from (9.1.3.1) by a straightforward
calculation.

Definition 9.1.4. After Theorem 9.1.2, define the (normalized) local Siegel series relative to A =
(1)1 @ () as the polynomial Deny (X, L) € Z[X] such that

en k
(9.1.4.1) Deny((—q) ", L) = Den(?m(/}g giik:f&nl)'

Then by Theorem 9.1.2,
(9.1.4.2) Deny (X, L) = Den(X, L*) € Z[X].

In particular, if val(L) is even, then Deny (1, L) = 0. In this case, we denote the central derivative

of local density by

d
ODeny (L) == % Deny (X, L).
X=1

9.2. Relation with local Whittaker functions. Let A = (1)"~! @ () be an almost self-dual
hermitian Op-lattice. Let L be a hermitian Op-lattice of rank n. Let T = ((z4,2;))1<i j<n be the
fundamental matrix of an Op-basis {1, ..., x,} of L, an n xn hermitian matrix over F'. Associated
to the standard Siegel-Weil section of the characteristic function ¢; = 1a» and the unramified
additive character ¢ : Fj — C*, there is a local (generalized) Whittaker function Wr(g, s, p1) (see
§12.2, §12.3 for the precise definition). By [KR14, Proposition 10.1], when g = 1, it satisfies the
interpolation formula for integers s = k > 0 (notice v,(V) = —1 in the notation there),
WT(1> ka Sol) = (_Q)n : Den(A S <1>2k7 L)

So its value at s = 0 is

Wr(1,0,¢1) = (—q)™" - Den(A, L) = (=¢)™" - Dena (L) - Den((1)" ", (1)" ™),
and its derivative at s = 0 is

W (1,0,¢1) = (—q)™" - 9Dens (L) - Den((1)" 1, (1)" ") - log ¢*.

Plugging in (3.2.0.3), we obtain

n—1
(9.2.0.3) Wr(1,0,¢1) = Deny (L) - (—=¢) " [] (1 = (—¢) ™),
i=1
n—1
(9.2.0.4) Wi(1,0,¢01) = 0Deny (L) - (—q) ™" H(l —(—=¢)™") - log ¢*.
i=1

10. KUDLA—RAPOPORT CYCLES IN THE ALMOST PRINCIPALLY POLARIZED CASE

10.1. Rapoport—Zink spaces N,! with almost self-dual level. We recall the construction
from [RSZ18, §5]. For a SpfOp-scheme S, we consider triples (Y,¢,\) over S as in §2.1, except
that X is no longer principal; instead, it is required that ker A C Y[i(w)] and has order ¢2. Up
to Op-linear quasi-isogeny compatible with polarizations, there is a unique such triple (Y, ¢y, Ay)

over Speck. Let N1 = Nl = N}, /o,n D€ the formal scheme over Spf O which represents the
64



functor sending each S to the set of isomorphism classes of tuples (Y, ¢, A, p), where the framing
p:Y xg8—=Y X Speck S is an Op-linear quasi-isogeny of height 0 such that p*((A\y)g) = Ag-

The Rapoport—Zink space Nt = /\/‘7% is a formal scheme, locally formally of finite type, regular, of
relative dimension n —1 and has semi-stable reduction over Spf O ([RSZ18, Theorem 5.1], [Chol8,
Theorem 1.2]). Denote

W, = Homp, . (E,Y),

and endow it with the hermitian form by the formula similar to V,, (cf. §2.2). Then W, is a split
hermitian space of dimension n. Similar to §2.3, for every non-zero x € W,, we can define the
special divisor on Al, denoted by Y(x) (resp. )V'(x)), over which the special homomorphism =
(resp. Ay ox) extends to a homomorphism s — Y (resp. s — YV). Then, by a similar argument
to the self-dual case in [KR11, Proposition 3.5], the special divisors Y (z) and )’(z) are Cartier (cf.
[Chol8, Proposition 5.9], denoted by Z(z) and Y(x) in loc. cit.).

For the later use, we recall from [Chol8, Proposition 5.10]

V(r) ~ N>,  when val(z) =0,

(10.1.0.5)
V'(z) ~Ny—1, when val(z) = —1.

We only indicate the construction of the second isomorphism )’(z) ~ N,,_1, since the first one

1

is rather close to the self-dual case (cf. (2.11.0.1)). We may assume that (z,z) = w~". Fix an

Op-linear isomorphism
(10.1.0.6) B: X1 XxE—Y,

such that 8*(\y) = Ax
we have an orthogonal decomposition W,, = V,,_; @ (z)r. Then we define a map 6 : Nj,_1 — N}
sending (X°, tyb, Axs, px) € Npuo1(S) to (X x E, 1y X 1z, Ay» X WAE, px» X pg) € N;H(S). Then
the homomorphism (0,Ag) : € — (X MWV ox & extends Ay oz € W, and the map ¢ defines an
isomorphism § : N1 ~ V().

X wAg and the restriction of 3 to the second factor is wx € W,,. Then

n—1

Definition 10.1.1. Let L € W,, be an Op-lattice of rank n and let x1,--- ,x, be an Op-basis of
L. Then we define

(10.1.1.1) Int'(L) = x (N1, Oy ey @ -+ @Y Oy

We have not justified the independence of the choice of the basis, which will be proved under a
conjectural relation between A;! and some auxiliary Rapoport-Zink spaces. It turns out that Int’(L)
is not equal to the derived local density dDeny (L) (cf. Theorem 10.5.1 below). This is a typical
phenomenon in the presence of bad reductions, cf. [KR0Ob, San17, RSZ17, RSZ18]. Therefore, we
will instead define a variant Int(L) of Int’(L), which will give an exact identity Int(L) = dDeny (L)
(Theorem 10.3.1).

10.2. Auxiliary Rapoport—Zink spaces. Before we present our variant, we need an auxiliary
moduli space (cf. [LRZ21]). Let (X;41,tx,,,5 AX,4,) be as in §2.1. Fix an Op-linear isogeny

(10.2.0.2) a:Y xE— X1,
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such that kerow C (Y x E)[w] and a*(Ax,,,) = Ay X wAg. Let 29 € Vyp1 = Homg, (B, X;41)
be the restriction of « to the second factor. Then the assumption implies that the norm of xg is
(z0,20) = w, and we have an orthogonal decomposition

Vig1 = W, © (zo) p.
We denote by
(10.2.0.3) Ny = Nt xspeo, Naga

the closed formal subscheme consisting of tuples (Y, ty, Ay, py, X, tx, Ax, px) such that « lifts to
an isogeny a: Y x & — X. If « lifts, then & is unique and satisfies kera C (Y x &)[w] and
a*(Ax) = Ay x whg.

We therefore obtain a diagram

(10.2.0.4) N}

N, Z(x0) — Nog1,

n

where 71 and 7o are induced by the two projection maps in (10.2.0.3). Recall from [Ter13b] that
the formal scheme Z(x() is regular.

Remark 10.2.1. Let A = (1)"~! @ (w) be as before. Let A* be a self-dual lattice of rank n + 1
containing A @ (w); there are ¢ + 1 such lattices in the vector space Ap @ (w)p. Then we have a
natural embedding of hermitian spaces

W, i=A®0, F < Vo1 =N ®0, F

and their isometry groups U(W,,) < U(V,,4+1). Let K = Aut(A) be the stabilizer of A, and similarly
let K* = Aut(Af). Define K := K N K* where the intersection is taken inside the unitary group
U(Vn+1)2

K=KnK!

T

K = Aut(A) K* = Aut(A%).

Intuitively, the Rapoport—Zink spaces N'*, N1, and N,41 correspond to the level structure K, K,
and K* respectlvely It is easy to see that the generic fiber of the map m : N I — N is finite étale
of degree [K : K] = ¢+ 1, and the generic fiber of the map m : N* — Z(x0) is an isomorphism.

Therefore, Z(xg) is a regular integral model of a finite étale covering of the generic fiber of N

Let € W,, C V,,41. Denote by Z°(z) the restriction of the special divisor Z(z) (on Ny 11) to
Z(x9), i€
2"(z) == Z(z0) N Z(2)

viewed as a formal subscheme on Z(z).
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Remark 10.2.2. Tt will be clear (cf. Theorem 10.4.3) that the generic fiber of Z°(z) (viewed as a
divisor on the generic fiber of ./Vﬁ since 7o is an isomorphism on the generic fibers) is equal to the
pull back along 7 of the generic fiber of Y(z) on N,}. Therefore, we may use Z°(x) as an integral
model of the pull-back of the generic fiber of Y(z).

Motivated by Remark 10.2.1, we now define a variant of Int’(L).

Definition 10.2.3. Let L C W, be an Op-lattice of rank n and let x1,--- ,x, be a basis of L.

Then we define

1 L L
(10.2.3.1) Int(L;2q, -, 2p,) = ﬁX(Z(gco),z"(xl) A0 2°(2y)),
q

where the derived tensor product is taken as Oz(,,)-sheaves.

10.3. The Int = dDen theorem. The following theorem justifies our definition of the variant of

intersection numbers.

Theorem 10.3.1. Let L CV be an Op-lattice of full rank n. Then, for any basis x1,--- ,x, of L,

we have

1
Int(L;xq,--- =——0D L).
n( y L1, 7‘TTL) q+1 enA( )
In particular, Int(L; zq,- -+, zy,) is independent of the choice of the basis and we therefore denote it

by Int(L).
Proof. Let x € Wy, be non-zero. Then x L zg. By Lemma 2.8.1, we have
Ozv() = Oz(x) ®" Oz(ag)

as elements in K{(Z(zg)). Therefore,

X(E (@), 2(@1) B -+ A 2(@n)) = X(Nosr, Z(@o) A Z(21) 6 -+ 6 Z(x),

which is Int(L*). By Theorem 3.4.1, this is equal to dDen(LF). By (9.1.4.2) we obtain dDen(L*) =
0Deny (L) and the proof is complete. O

Remark 10.3.2. In the notation of §9.2, it follows immediately from Theorem 10.3.1 and (9.2.0.4)
that

n

Int(L) = W%l(olég’fl) : (_;1): 1‘ L .ilj[l(l — (=)

10.4. The comparison of two divisors. We compare the two divisors Y(z) and Z°(x) after
pulling-back to /\N/;% along the diagram (10.2.0.4). The result is conditional on a conjectural relation
between N}, VL and Z (o).

Recall from (10.2.0.4) that there are two projections 71 and ma. Let Vert®(W,,) be the set of self-
dual lattices A in W,,. For each type 1 lattice in V,, 41 of the form A ® (zg) where A € Vert®(W,,),
there is a closed stratum V(A & (zg)) C N;gifll which consists of a superspecial point (cf. §2.7)
contained in Z(zg). Let Z(z¢)* C Z(x0) be the union of all of such superspecial points. Note that
Z(x0)*® does not contain all superspecial points on Z(zg). Define Z(x¢)™ = Z(zg) \ Z(x0)*® (as

an open formal subscheme of Z(xg)).
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By the Bruhat-Tits stratification of the reduced locus of A}l in [Chol8], there exist a family of
(disjoint) closed formal subschemes Py = P! < N} indexed by A € Vert®(W,,) (cf. Remark 2.15
of loc. cit.). Denote by Ny™ the (disjoint) union of them, and define Np™ := N1\ N,

Define N™ := 75 1(Z(20)®) and ™ := ML\ N;™. The following conjecture was observed
by Kudla and Rapoport in an unpublished manuscript.

Conjecture 10.4.1.

(i) The morphism w1 is finite flat of degree q+ 1, étale away from ./\/;nlb’ss, and totally ramified along
N

(ii) The formal scheme /\77% s regular. The morphism ma is proper and ils restriction to Nt

, . A
induces an isomorphism Nyp™ ~ Z(xg)".

(iii) The closed formal subscheme N of ./\7,1 is a Cartier divisor and isomorphic to Ny under

m1. In particular, we may and will identify Ny with Nio™ = Laevertow,,) Pa-

(iv) For Ay,--- , Ay, € Vert®(W,,), we have

(_1)11—17 Al =--= A’VU

- L L
(10.4.1.1) XNLPA, N NPy,) =
0, otherwise.

In [LRZ21] the authors plan to prove this conjecture, which from now on we assume to hold.
We remind the reader of our convention in §1.8.

Lemma 10.4.2. Letn > 1. Let 2 € W,, be non-zero vector. Then both 7, (V(z)) and 75 *(2°(x))

are Cartier divisors on N*. Moreover, we have 7+(Y(z)) = i (V(z)) (in Kgfl(y(x))(Nﬁ) ~
N AL 7 7 —
Ky V(@) and w3(2(2)) = 73 (2(a)) (in Fg2 &V W) o Ky (22(2)).

Proof. We have the following observation which applies to both 71 and 7. Let w : X — ) be a
morphism between regular formal schemes such that for every z € X4 the induced map on local
rings 77,5 : Oym(z) — Ox , is injective. Let D be a Cartier divisor on }. Then 7T_1(D) is a Cartier
divisor.

Now that both 771 (Y(x)) and 7, *(2°(z)) are Cartier divisors on N1, it follows that 71 (Oy@)) =
Oﬂ_l—l(y(x)) and 73(Ogzs () = Oﬂ_;l(zb(x)) (e.g., by the argument of [Zha2l, Lemma B.2 (4)], which
applies even if the vertical map in loc. cit. is not a closed immersion). ]

Theorem 10.4.3. Let n > 1. Let x € W,, be a non-zero vector and define Vert(z) = {A €
Vert®(W,,) | z € A}. Define a locally finite Cartier divisor on N}

Exp(x) == Z Py.

A€eVert(x)

(Here, Exp stands for “exceptional divisor” since the map mo behaves like a blow-up map with center

at Z(x0)*.) Then there is an equality of Cartier divisors on N:

m V(@) = mp (27 () - Exp(a).
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Proof. We first note that a point V(A @ (z0)) in Z(20)* corresponding to A € Vert?(W,) lies on
2°(z) if and only if z € A.
From the moduli interpretations, it is clear that m; *()(x)) C 7, ' (2°(x)). Denote

D= (2 (2) — 7 V().
Let multp(z) € Z>o be the multiplicity of Py (as a Cartier divisor on NY) in . Set

D =D - Z multy (z) Py,
AeVert(z)

Then ®’ is an effective Cartier divisor and it does not contain any of the P5. It suffices to show
that ©' = 0 and multy (z) = 1 for every A € Vert(z).

We proceed by induction on n > 1. When n = 1, we know that Nll ~ Spf Op, w2 is an
isomorphism ./\711 ~ Z(xp) where both ./\711 and Z(xg) are isomorphic to a quasi-canonical lifting,
the degree ¢ + 1 ramified cover Spf OF,1 of Spf O;. Then Y(x) is non-empty unless val(z) > 2
(note that val(x) is even), in which case it has O j-length %(x) by the theory of canonical lifting.
By [KR11], we also know that the divisor Z°(z) = Z(x) N Z(xo) has Op j-length 1+ (¢ + 1)%@)
Therefore the desired equality of Cartier divisors on ./\N/'l1 follows by comparing the O p’l—lengths.

Now let n > 2. We note that the case n = 2 is slightly different (and in fact easier). We
claim that, when n = 2, the divisor @’ is vertical (cf. §2.9). To show the claim, we first consider
the case: (z,z) € Of and (z,z) # 0. By [Sanl7, Theorem 2.9] and the finite flatness of m
(Conjecture 10.4.1 (i)), the horizontal part of m; *()(x)) has degree ¢ + 1 (over Op); similarly
by Theorem 4.2.1 and Conjecture 10.4.1, one can show that the horizontal part of 75 *(2°(z))
also has degree ¢ + 1. By 7' (Y(x)) C m, '(2°(x)), their horizontal parts must cancel out in D’
We then consider the remaining case: (z,x) = 0 and z # 0. We apply Lemma 4.4.1 to deduce
that 2°(z) = Z(x¢) N Z(x) C N3 has no horizontal part (otherwise the rank two lattice (z,z) is
embedded into the self-dual lattice L in Lemma 4.4.1; however, the orthogonal complement of (z¢) ¢
in Lf is a two dimensional non-split hermitian space which has no non-zero isotropic vector). This
proves the claim. Now by [Terl3a, Theorem 0.2], the special fiber of Z(z¢) (as a Cartier divisor
on Z(x0)) is the sum of V(A?) for all Af € Vert®(V3) containing . Let V(A?) be the irreducible
component, of 75 ' (V(A)) that is not contained in A}***. Then we may write ®’ as a (locally finite)
sum of Cartier divisors

(10.4.3.1) D = Z mult y; () V(AF),  multy:(z) € Zso.
AfeVert3(V3), zoEAE

We now return to n > 2. Now the basic idea is to intersect the given divisors with (many)
well-positioned special divisors that are isomorphic to N} | or M,_1 (cf. (10.1.0.5)). We first
determine mult (x) and show that, when n > 3, the divisor ®’ does not intersect any of the Py for
A € Vert(z). We fix a Ag € Vert(z). Since Ay is self-dual of rank n > 2, there exists a vector e € Ag
such that val(e) = 0 and that e is linearly independent of x. We have an orthogonal decomposition
W, =W, _1 6 (e), and let 2’ € W,_; be the projection of z to W,_;. Then 2’ # 0. By (10.1.0.5),

the special divisor Y(e) on N} is isomorphic to NV;}_;. We consider the commutative diagrams with
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the obvious maps

(10.4.3.2) N}

1= Y(e) e:z:o ) —— Z(e) ~ N,

Na ) ——— Nt
(In fact the leftmost and the rightmost squares are cartesian; but the middle square is not.) All the
vertical maps are closed immersions. The pull-back of the divisor ® along the map ¢ is the analogous

Cartier divisor ®° = (%)~ 1(2(2")) — (#3)~1(V(2")) on N1, (cf. [Chol8, Proposition 5.11 (1, 2)]).
The pull-back of ' along § is then a Cartier divisor

(10.4.3.3) M@ =2"— Y multp(x) By,

A€eVert(x)
e€A

where A” € Vert?(W,,_;) denotes the orthogonal complement of e in A. By induction hypothesis,
we have ©” = Exp(z”), which is a sum over A € Vert(z®) (and Vert(z") is bijective to the set of
A = A° @ (e) in the sum (10.4.3.3)), but with known multiplicity mult,,(z°) = 1. When n = 2,
by (10.4.3.1) and the fact that V(A?) does not intersect the image of 8, we have 6~ (') = 0, and
hence we can already deduce that multy,(z) = 1 for every Ag € Vert(z).

When n > 3, we can only deduce that multy,(z) < 1. To see that multy,(z) # 0, we look at the

intersection number between ©’ and a certain line P! in Py,
~ L ~ L ~ L
YNLPEA D) = x(VL P A D) — multy, (z) x(NL, P A Py,).

Here we choose the line P! to be Pj; for some rank two self-dual sublattice M C Ag such that

r ¢ Mi. Since @' does not contain Py, its restriction to P, is an effective Cartier divisor

and therefore the left hand side is non-negative. On the other hand, y(N! P! % D) = —1is
strictly negative (e.g., by repeating (10.4.3.2) n — 2 times to reduce to the case n = 2). Therefore
multp, () # 0 and we deduce that multp,(x) = 1. This is true for every Ag € Vert(z). It follows
that 6~ 1(®’) = 0, i.e., ® does not intersect N1 | in (10.4.3.2). This then implies that " does
not intersect Py, for every Ag € Vert(z). (Otherwise the intersection ®' NPy, would be a non-zero
Cartier divisor on Py, which necessarily intersects with the hyperplane Py, ﬂ/(/’,%_l in Py, ~ P!
when n > 3; hence ® must intersect J\wfﬁ_l, a contradiction!)

It remains to show that @’ is locally trivial at every point z € N (%) (i.e., the local equations
are all units). Suppose that there exists a point z € Ny (k) = Z(20)" (k) where the local equation
defining ® is not a unit. By (2.7.0.1), there exists a unique mazimal vertex lattice A* C V,,;1 such
that z € V(A¥) € Z((zo, z))"ed.

We first assume that z is a non-super-general point (as a point on N, 1, §2.7). Then the type
t(A%) < n. Therefore there exists e € Af such that val(e) = 0 and e is linearly independent of .

Then (e, xg) is a vertex lattice of rank two. There are exactly two cases:
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(i) (e, zp) has type 1.

(ii) (e, xo) has type 0.

In the first case, we may assume that e | zg. Then we again consider the commutative diagrams
(10.4.3.2) and retain the notation there. Now the point z belongs to Jvi_nf (k). We have assumed
that locally at z the divisor © is not defined by a unit. It follows that ©” is not defined by a
unit locally at z, contradicting the induction hypothesis. In the second case, let ¢ € W,, be the
orthogonal projection of e to W,,. Then val(¢’) = —1, and we may assume that (e’,¢e”) = w1
Then by (10.1.0.5), the special divisor )’(e’) on N is isomorphic to A,_;. We consider the

commutative diagrams
N1
/ Sl \
V() N

Np_1 ~ Z((e,x0)) ¥ N1 —— Z(e) @ N,

| > | |

N} Z(xg) —— Nana

(10.4.3.4)

where the only non-obvious map 5 Np—1 — J\~/',% is defined as follows. The natural morphisms
Np1 = V() = N} and N1 ~ Z({e,xz0)) < Z(2¢) —> Npy1 induced a morphism N, | —
N} x Nj11, which factors through J\~/'n1 (10.2.0.3) and defines the morphism 5.

The rest of the proof is similar to the first case (using [Chol8, Proposition 5.11 (3, 4)] instead),
and we omit the detail. When n = 2, this already implies ®" = 0 because every curve 17(Aﬁ) in
(10.4.3.1) must pass through some non-super-general point z € Z(z0)"(k) (there are ¢>+1 of them
on V(A¥) and only ¢ + 1 lie in Z(x0)).

Finally, we assume that n > 3 and z € D'(k) is a super-general point. Then n + 1 is odd
and t(Af) = n + 1. Consider V(AF)™ := V(A#) \ Z(x0)* (the complement of a finite scheme in a
projective scheme of dimension %). The restriction of ®’ to V(A¥)™ is a projective scheme and is a
Cartier divisor. We have shown that this Cartier divisor is locally trivial at all non-super-general
points. Therefore it must be contained in the open subscheme V(A®)°. Then this Cartier divisor
on V(A®)™ must be trivial due to the affineness of V(A*)° [Lus76, Corollary 2.8] and its dimension
5 > 2. This completes the induction. O

10.5. The intersection number Int’(L). We are now ready to complete the computation of the
intersection number Int’(L) defined by (10.1.1.1). Note that the result is conditional on Conjecture
10.4.1.

Theorem 10.5.1. Let L CV be an Op-lattice. Then
1
Int’'(L) = —— (ODeny (L) — Den(L)).
(1) = - (0Dena(L) - Den(1)
In particular, the definition (10.1.1.1) is independent of the choice of the basis.

Remark 10.5.2. The case n = 2 is due to [Sanl7].
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Example 10.5.3 (The case n =1). When n =1, let L = (z) C W;. It is easy to see that

val(z)
mi'(ry={ 2 @ vl@=0
0, otherwise.

On the other hand, the local density formula shows that

1+ (g+ 1)) val(z) > 0,

ODeny (L) =
0, otherwise.

This verifies the theorem in the case n = 1.

Proof. By the projection formula for the finite flat map 7, we obtain an equality in K} (Y(x1) N
T+ (1] (Oy () @ - - @ 1} (Oy(a,)) = deg(m1) Op(ay) @ - - @ Oy,
and hence

Int'(L) =x <./\/3, Oy(ml) k... @k Oy(zn))
1 A7l x L L _x
= deatry X (N7 Oy @5 - 8 71Oy, ) )
For two Cartier divisors D; and Dy on a regular formal scheme X, we have Op,+p, = Op, +
Op, € K(])DlUD2 (X)/FQKODIQD%X). This allows us to apply Lemma 10.4.2 and the equality of
Cartier divisors in Theorem 10.4.3 and to obtain an equality in K} (5 *(2°(z)))/F' K} (Exp(z))

T (Oy)) = m3(Ozs (1)) — Orsxp(a)-

For A € Vert(z), let iy : Px — N} denote the closed immersion. For any F € F1Ky(Py) and n — 1
Cartier divisors D1,---, D,_1 on N}, we have an equality in Ko(PPy)

f®ﬂ(§ﬁ% ODl ®H(")7\771L e ®H(;)ﬁr1b ODn—l = ‘F®H@PA ZT\(ODI) ®H(7)]P>A e ®H6PA /LT\(ODn—l)
Since i} (Op,) € F1Ko(P,), the above product belongs to F"K((Pa) by [Zha21, B.3] (applied to
the scheme Py). Since dimPy = n — 1, we conclude that f®ﬂéf\7% Op, ®H@ﬁ% E ®H@N% Op, , =0.
It follows that
(10.5.3.1)

1 _— \
Int'(L) = deg(r)* (/\517 (73(O25 () = Okxp(an)) @ -+ @ (15(Oz5 () — OEXp(ccn))> :

We apply the projection formula to the proper morphism 7y : ./Vﬁ — Z(x0)
L * L
T2 (OPA ®Of\fl 7T2 (‘F)) = 7T2*(OPA) ®OZ(zO) f:

where A € Vert®(W,,) and F € Ko(Z(xg)). Since the first factor ma,(Op,) is supported on a
zero-dimensional subscheme of Z(xg), we have

(10.5.3.2) X(N3, Op, @, m5(F)) =0,

for any F € F1K(Z(xp)).
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Next, we recall (10.4.1.1). Together with (10.5.3.1) and (10.5.3.2) we obtain
(10.5.3.3)
deg(m) (L) = x (N, 75(Oz4) " - 8 75020, )) + (1" 30 (-1

AeVertO(Wy,)
LCA

Apply again the projection formula for 7o,
T2:(m3(O (1)) = 726 (O @051 2(Oz0(s1)))
) ®Héz(l.0) Ozb(l‘l) € K(/)(Z(ﬂfo))

) — Oz(4,) is supported on Z(z()* which is zero-dimensional. We obtain

= TFQ*(ON—

1
n

Note that 7r2*((9/\7

1
n

X (MR35 (Ozay)) 85+ @ 73O 25(s,))
L L
n---

=y <Z(w0), Z°(x1) A zb(g;n)>
=0Deny (L),

where the last equality follows from Theorem 10.3.1.
Finally, by (3.6.1.1) we have

# {A € Vert®(W,) | L C A} = Den(L).
By (10.5.3.3) and deg(m1) = ¢ + 1, the proof is complete. O

Remark 10.5.4. In the notation of §3.3 and §9.2, it follows immediately from Theorem 10.5.1,
(3.3.0.2), (9.2.0.4) that

Wir(1,0,01) (=) —1
/ _ T\
nt (L)_< log g2 . qg+1

e ) JT0- (o)

i=1
Part 3. Semi-global and global applications: arithmetic Siegel-Weil formula

In this part we apply our main Theorem 3.4.1 to prove an identity between the local intersection
number of Kudla-—Rapoport cycles on (integral models of) unitary Shimura varieties at an inert
prime with hyperspecial level and the derivative of a Fourier coefficient of Siegel-FEisenstein series
on unitary groups (also known as the local arithmetic Siegel-Weil formula). This is achieved by
relating the Kudla—Rapoport cycles on unitary Shimura varieties to those on unitary Rapoport—Zink
spaces via the p-adic uniformization, and by relating the Fourier coefficients to local representation
densities. This deduction is more or less standard (see [KR14] and [Terl3a]), and we will state
the results for more general totally real base fields and level structures, making use of the recent
advance on integral models of unitary Shimura varieties ([RSZ20]). We will also apply the main
Theorem 10.3.1 in the almost self-dual case to deduce a similar identity at an inert prime with
almost self-dual level. Finally, combining these semi-global identities with archimedean identities
of Liu [Liulla] and Garcia-Sankaran [GS19] will allow us to deduce the arithmetic Siegel-Weil
formula for Shimura varieties with minimal levels at inert primes, at least when the quadratic

extension is unramified at all finite places.
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11. SHIMURA VARIETIES AND SEMI-GLOBAL INTEGRAL MODELS

11.1. Shimura varieties. We will closely follow [RSZ20] and [RSZ21]. In this part we switch to
global notations. Let F' be a CM number field, with F{ its totally real subfield of index 2. We
fix a CM type ® C Hom(F,Q) of F and a distinguished element ¢y € ®. We fix an embedding
Q < C and identify the CM type ® with the set of archimedean places of F', and also with the
set of archimedean places of Fy. Let V be an F/Fj-hermitian space of dimension n > 2. Let
Vs =V ®F ¢ C be the associated C/R-hermitian space for ¢ € ®. Assume the signature of Vy is
given by

(n_]-a]-)v ¢:¢0a

<n70)7 ¢€ ‘I)\{%}

Define a variant G of the unitary similitude group GU(V) by
G := {g € Resg, ;g GU(V) : c(g) € Gni},

(T¢7T<z_>) =

where ¢ denotes the similitude character. Define a cocharacter
hge : € = GR(R) C [ GUVH)(R) ~ [] GU(rg,r5)(R),
ped ped®

where its ¢-component is given by

hge ¢(2) = diag{z - 1r,,Z - 1, }
under the decomposition of V, into positive definite and negative definite parts. Then its GOR)-
conjugacy class defines a Shimura datum (G@, {hso}). Let E. = E(GY, {hgo}) be the reflex field,
i.e., the subfield of Q fixed by {oc € Aut(Q/Q) : ¢*(r) = r}, where r : Hom(F,Q) — Z is the
function defined by r(¢) = rg.

We similarly define the group Z@ (a torus) associated to a totally positive definite F'/ Fy-hermitian
space of dimension 1 (i.e., of signature {(1,0)4cq}) and a cocharacter hyo of Z@. The reflex field
FEo = E(Z9 {h40}) is equal to the reflex field of the CM type ®, i.e., the subfield of Q fixed by
{0 € Gal(Q/Q) : 0 0 ® = P}.

Now define a Shimura datum (G, {hs}) by

G=2%xg, G¥={(z,9) € 29 x GU: Nmp g (2) = c(9)},  hg = (hze, hge).

Its reflex field E is equal to the composite F,Eg, and the CM field F' becomes a subfield of E via
the embedding ¢g. Let K C é(Af) be a compact open subgroup. Then the associated Shimura
variety Shg = Shg (G, {hg}) is of dimension n — 1 and has a canonical model over Spec E. We
remark that £ = F when F/Q is Galois, or when F' = FyK for some imaginary quadratic K/Q
and the CM type @ is induced from a CM type of K/Q (e.g., when Fy = Q).

11.2. Semi-global integral models at hyperspecial levels. Let p be a prime number. If p = 2,
then we assume all places v of Fy above p are unramified in F. Fix an embedding 7 : Q — @p.
Let v be the place of E above p induced by o. It determines places vy of Fy and wy of F via the
embedding ¢o. To specify the level K, notice that for G := Resp, /g U(V') we have an isomorphism

(11.2.0.1) G~Z9x G, (z,9) — (2,27 'g).
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We consider the open compact subgroup of the form
K~K 70 X KG

under the decomposition (11.2.0.1). We assume that K o is the unique maximal open compact
subgroup of Z%(Af) and
Ko = HKG’U x KP,.
vlp

In this subsection, we assume
(H1) wp is inert in F' (possibly ramified over p).
H2) V,, is split and we take K¢ ,, to be the stabilizer of a self-dual lattice A,, C V,,, a hyperspecial
0 »V0 0 0
subgroup of U(V')(Fo,u)-
(H3) For each place v # vy of F above p, let K¢, , be the maximal compact subgroup of U(V')(Fo,v)
given by the stabilizer of a vertex lattice A, C V,. We take K¢, = K, &v if v is nonsplit in
F. We take Kg, C K&v to be any open compact subgroup if v is split in F.
(H4) K7, C G(A?) is any open compact subgroup.
H5) For each place v # vg of Fy above p such that v is split in F and K¢g, # K72, there exists a
p p P ) G’
place w of F above v matching with the CM type ®: if ¢ € Hom(F,Q) induces the place w
(via 7: Q < Q,), then ¢ € ®.
H6) If vg is ramified over p, then the subset {¢ € ® : ¢ induces wg} C Hom(F,,,Q,) is the
07 p
pullback of a CM type ®** C Hom(Fr,Q,) of Fiit. Here F is the maximal subfield of F,
unramified over Q,,.
Under these conditions, Rapoport—Smithling—Zhang [RSZ20, §4.1] and [RSZ21, §4-5] (see also
Liu21, Proposition C.20]) construct a smooth integral model Mg of Shi over Og (). More
()
precisely, for a locally noetherian Op (,)-scheme S, we consider Mg(S) to be the groupoid of
tuples (Ao, to, Ao, 4, ¢, A, 7P, 7,°), where
(M1) Ag (resp. A) is an abelian scheme over S.
(M2) ¢ (vesp. ¢) is an action of OF ® Z,) on Ag (resp. A) satisfying the Kottwitz condition of
signature {(1,0)gce} (resp. signature {(re,73)sca})-

(M3) Ao (resp. A) is a polarization of Ay (resp. A) whose Rosati involution induces the automor-
phism given by the nontrivial Galois automorphism of F'/Fy via to (resp. ¢).

(M4) 77 is a Kg-orbit of A}, ;-linear isometries between lisse A}, (-sheaves
nP - Homp(VP(Ap), VP(A)) ~ V @ A%f.

Here V?(-) denotes the AL, s~ Tate module.

(M5) 7,0 is a collection {7, }, where v # vy runs over places of Fy above p such that v is split in
F and Kg, # K¢, and each 7, is a Kgg-orbit of Fy-linear isomorphisms between lisse
F-sheaves

1y : Homo,_(Ao[0™], A[w™]) ®op._ Fo =V QF Fg.
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Here v = ww and w is the place above v matching with the CM type ® by (H5), and we view
K¢, as an open subgroup of GL(Vg) = U(V;,) under the decomposition V;, = V;,® V4. Notice
that by the Kottwitz signature condition, both Ag[w™>] and A[w*] are étale Op, -modules
(cf. [Liu21, Definition C.19]).

Such a tuple is required to satisfy the following extra conditions:

(M6) (Ao, o, Xo) € Mg’é(S). Here Mg’£ is an integral model of Shi g (Z%,{h4q}) coming from an
axillary moduli problem depending on a choice of an nonzero coprime-to-p ideal a of Of, and
¢ a certain similarity class of 1-dimensional hermitian F'/ Fy-hermitian spaces ([RSZ20, §3.2]).
These axillary choices are made to ensure that the unitary group in 1-variable with a-level
structure exists and so M8’£ is non-empty. In particular, the polarization Ag is coprime-
to-p. We remark that when F'/Fj is ramified at some finite place, one may choose a to be
the trivial ideal. Moreover, when Fy = Q, there is only one choice of &, and the condition
(Ao, o, No) € MS’E(S) is nothing but requiring )¢ to be principal.

(MT7) For each place v of Fj above p, A induces a polarization A, on the p-divisible group A[v*°].
We require ker A\, C A[(m,)] of rank equal to the size of A)//A,, where w, is a uniformizer

of Fy,. In particular, we require A,, to be principal.

(M8) For the place vg, we further require the Eisenstein condition in [RSZ21, §5.2, case (2)]. We
remark the Eisenstein condition holds automatically when vg is unramified over p,

(M9) For each place v # vy of Fy above p, we further require the sign condition and FEisenstein
condition as explained in [RSZ20, §4.1]. We remark that the sign condition holds automati-
cally when v is split in F', and the Eisenstein condition holds automatically when the places
of F' above v are unramified over p.

A morphism (Ao, to, Ao, A, 1, A\, 7P, 7,°) — (Ag, 1, Ags A5/, Ny 7?7 mp0") in this groupoid is an iso-
morphism (Ao, to, Ao) — (Af, 1y, Ay) in Mg’g(S) and an Op,()-linear quasi-isogeny A — A’ inducing
an isomorphism A[p>®] = A’[p>°], pulling A\’ back to A, pulling 7*’ back to 7” and pulling ny°" back
to 7,°.

By [RSZ20, Theorem 4.1}, [RSZ21, Theorem 5.4 (c)], the functor S — Mg (S) is represented by
a Deligne-Mumford stack My smooth over Spec Og (,). For K, g small enough, My is relatively
representable over Mg,g, with generic fiber naturally isomorphic to the canonical model of Shy
over Spec E.

11.3. Semi-global integral models at almost self-dual parahoric levels. With the same
set-up as §11.2, but replace the assumptions (H1) and (H2) by

(A1) v is inert in F' and unramified over p.
(A2) V,, is nonsplit and we take K¢, to be the stabilizer of an almost self-dual lattice A,, C V,,,
a maximal parahoric subgroup of U(V')(Ep ).
For a locally noetherian O (,)-scheme S, we consider Mg (S) to be the groupoid of tuples
0, L0, A0, A, L, A, P, 1,0) satistying — . In particular, A,, 1s almost principal instea:
Ao, to; Ao, A, 1, A 7P, 1, isfyi M1 M9). I icular, A\, is al incipal i d

of principal in (MT7).
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By [RSZ20, Theorem 4.7], the functor S — M () is represented by a Deligne-Mumford stack
Mg flat over Spec O (,). For K?, small enough, M is relatively representable over ./\/lg’g, with
generic fiber naturally isomorphic to the canonical model of Shx over Spec E. Moreover, when v is
unramified over p (e.g., all p-adic places of F' are unramified over p), Mg has semi-stable reduction
over Spec O, () by [RSZ20, Theorem 4.7] and [Chol8, Proposition 1.4].

11.4. Semi-global integral models at split primes. With the same set-up as §11.2, but replace
the assumption (H1) by

(S) wo is split in F' (possibly ramified over p).

For a locally noetherian O (,)-scheme S, we consider M (S) to be the groupoid of tuples
(Ao Lo, Ao, A, 1, A, 7P, 7p°) satisfying (M1)— (M9). We further require

(MS) when p is locally nilpotent on S, the p-divisible group A[w§°] is a Lubin-Tate group of type
rlw, ([RZ17, §8]). We remark that this condition holds automatically when v is unramified
over p.

By [RSZ20, Theorem 4.2], as in the hyperspecial case, the functor S — Mg (S) is represented by
a Deligne-Mumford stack My smooth over Spec O (,). For K 2 small enough, My is relatively
representable over Mg’g, with generic fiber naturally isomorphic to the canonical model of Shg
over Spec E.

11.5. Semi-global integral models with Drinfeld levels at split primes. With the same set-
up as §11.4, we may consider semi-global integral models with Drinfeld levels by further requiring

(D) (a) the place v of E matches the CM type ® (in the sense of [RSZ20, §4.3]): if ¢ € Hom(F, Q)
induces the p-adic place wy of F (via 7 : Q — @p), then ¢ € ®. We remark that this
matching condition holds automatically when F = FyK for some imaginary quadratic
K/Q and the CM type @ is induced from a CM type of K/Q (e.g., when Fy = Q), or
when vg is of degree one over p.

b) the extension E,/FE, is unramified, where E, is the local reflex field as defined in
|U0 IU()
[RSZ20, §4.1]. We remark that this condition holds automatically if all p-adic places of F'
are unramified over p.

For m > 0, we consider the open compact subgroup K/ C Kg such that Ké,, © Kau is the
principal congruence subgroup modulo @y, and K¢/, = Kg,, for v # vg. Write K™ = Ko x K.
Notice that K = K. We define a semi-global integral model Mgm of Shgm over Og,u) as
follows. For a locally noetherian Op (,)-scheme S, we consider Mgm(S) to be the groupoid of
tuples (Ao, to, Ao, A, t, A, 7P, 1%, M, ), where (Ao, Lo, Ao, A, 1, A, 7P, 7,°) € M (S) and the additional
datum 7, is a Drinfeld level structure:

(MD) when p is locally nilpotent on S, 7w, is an Opzp,-linear homomorphism of finite flat group

schemes

Nwo * Ty Mo/ Ay — Homy,, (Ao[wg'], Afwg']),

which is a Drinfeld wj'-level structure on the target (cf. [HT01, §II1.2]).
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By [RSZ20, Theorem 4.5], [RSZ21, Remark 5.6] (where the second condition in (D) should be
added to ensure regularity), the functor S — M gm (S) is represented by a regular Deligne-Mumford
stack Mg, flat over Spec O (,) and finite flat over Mg, with generic fiber naturally isomorphic
to the canonical model of Shim over Spec E.

11.6. Semi-global integral models at ramified primes. With the same set-up as §11.2, but
replace the assumption (H1) by

(R) vp is ramified in F' (so p # 2) and unramified over p.

For a locally noetherian O (,)-scheme S, we consider Mg(S) to be the groupoid of tuples

(Ao Lo, Ao, A, 1, A, 7P, 7p°) satisfying (M1)— (M9). We further require

(MR) when p is locally nilpotent on S, the p-divisible group A[wg®] satisfies the Pappas wedge
condition ([KR14, Definition 2.4], [RSZ21, §5.2, case (3)]).

By [RSZ21, Theorem 5.4 (d)], the functor S — M (S) is represented by a Deligne-Mumford stack
Mg flat over Spec O (,). For K7, small enough, M is relatively representable over ./\/lg’g, with
generic fiber naturally isomorphic to the canonical model of Shi over Spec E. By [RSZ21, Theorem

6.7], it has isolated singularities and we may further obtain a regular model by blowing up (the
Krdamer model, see [RSZ21, Definition 6.10]) which we still denote by M.

12. INCOHERENT EISENSTEIN SERIES

12.1. Siegel Eisenstein series. Let W be the standard split F'/Fy-skew-hermitian space of di-
mension 2n. Let G, = U(W). Write G,,(A) = G,(Ap,) for short. Let P,(A) = M, (A)N,(A) be
the standard Siegel parabolic subgroup of G,,(A), where

M,y (A) = {m(a) _ (g tao_1> cae GLn(AF)},

N, (A) = {n(b) = (1n b) :be Hermn(AF)} .

0 1,

Let n : A;O/FOX — C* be the quadratic character associated to F/Fp. Fix x : Aj — C*

a character such that x|,x = 7n". We may view x as a character on M,(A) by x(m(a)) =
Fo

x(det(a)) and extend it to P,(A) trivially on N, (A). Define the degenerate principal series to be

the unnormalized smooth induction

Gn(A) s+n/2)

I,(s,x) = Indp"c) (x| Ig seC.

For a standard section ®(—,s) € I,(s,x) (i.e., its restriction to the standard maximal compact
subgroup of G, (A) is independent of s), define the associated Siegel Fisenstein series

E(g,s,®) = > ®(vg,s), g€ Gn(A),
YEPn (Fo)\Gn(Fb)

which converges for Re(s) > 0 and admits meromorphic continuation to s € C. Notice that

E(g,s,®) depends on the choice of .
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12.2. Fourier coefficients and derivatives. By class field theory?, we may and do choose an
additive character ¢ : Ap, /Fy — C* such that v is unramified outside Spl(F'/Fp) (the set of finite
places of Fy split in F'). We have a Fourier expansion

E(9757(I)): Z ET(Q?‘Sv(I))v

T€Herm,, (F)

where
Er(g,s,®) = / E(n(b)g, s, B)(— tr(Th)) dn(b),
Nin(Fo)\Nn(A)

and the Haar measure dn(b) is normalized to be self-dual with respect to ). When T' is nonsingular,

for factorizable ® = ®,®, we have a factorization of the Fourier coefficient into a product

ET(g, S, (I)) = H WT,U(gvv S, (I)U)7
where the local (generalized) Whittaker function is defined by

WT”(QU’S’@”):/N(F )@U(wgln(b)g,s)w(—tr(Tb))dn(b), Wy, = (_(i 1;).

and has analytic continuation to s € C. Thus we have a decomposition of the derivative of a

nonsingular Fourier coefficient at s = s,

(12.2.0.2) El (g, s9, ® ZET” g, 50, ®),

where

(12.2.0.3) B (9,5, ®) = Wi (90,5, @) - [ Wrw (9o, 5, o).
v'#v

12.3. Incoherent Eisenstein series. Let V be an Ap /A g, -hermitian space of rank n. Let ./ (V")
be the space of Schwartz functions on V™. The fixed choice of x and v gives a Weil representation
w = wyy of Gp(A) x U(V) on .7 (V™). Explicitly, for ¢ € (V") and x € V",

w(m(a))p(x) = x(m(a))|det al3*p(x - a), m(a) € My(A),
w(n(b))p(x) = P(trbT(x))p(x), n(b) € Nn(A),
w(wn)p(x) = 7 - P(x), wn = (9, %)
w(h)p(x) = p(h™" - x), h € U(V).

4This should be well-known, but we include the argument for the convenience of the readers. Let ¢o = ¥gotrg, g :
Ap,/Fo — C*, where g : Ag/Q — C* is the standard additive character (so 1g,0o(z) = ¢*™*). Then the conductor
of 1 is the different ideal § g, /g of Fo/Q. Let H be the Hilbert class field of Fy. Since F/Fp is ramified at infinite places,
we know that H and F are linearly disjoint over Fy. It follows that Gal(H/Fp) is generated by the Frobenii associated
to Spl(F/Fy). Hence by class field theory, the ideal class group of Fy is generated by Spl(F/Fp). In particular, we
may find a € Fy® such that the ideal adp, is supported on Spl(F/Fy). Then the character ¢ (xz) = to(azx) works.
Moreover, by a theorem of Hecke ([Hec54, Theorem 176], see also [Arm67]), the ideal class of g, g is a square. Hence
we may further choose a € F;* to be a square.
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Here T'(x) = ((zi, z;))1<i j<n is the fundamental matriz of x, vy is the Weil constant (see [KR14,
(10.3)]), and @ is the Fourier transform of ¢ using the self-dual Haar measure on V" with respect

to ?l) @) trF/Fo .
For ¢ € .7(V"), define a function

Dy(g) = w(g)p(0), g€ Gn(A).

Then ®, € I,,(0,x). Let ®,(—,s) € I,(s,x) be the associated standard section, known as the
standard Siegel-Weil section associated to ¢. For ¢ € .7 (V") we write

E(g,5,¢) = E(g,5,%p), Er(g,s,¢) = Er(g,s,%,), Er,(9,5¢) = Er,(g,s, ),

and similarly for Wz ,(gu, s, ¢.). We say V (resp. @, E(g,s,¢)) is coherent if V =V ®@p, Ap,
for some F'/Fjy-hermitian space V, and incoherent otherwise. When E(g,s,¢) is incoherent, its
central value E(g,0, p) automatically vanishes (cf. [KR14, §9]). In this case, we write the central

derivatives as

OEis(g, p) = E'(9,0,¢), OEisr(g,¢) = Ep(g,0,9), 0Eist(g,%) = E1,(9,0, ).

Let T' € Herm,(F') be nonsingular. Then Wy, (gv,0,¢,) # 0 only if V, represents 1" (i.e., there
exists x € V2 such that 7'(x) = T'), hence 0Eis7, (g, p) # 0 only if V, represents T for all v' # v.
Let Diff (T, V) be the set of finite places v such that V,, does not represent 7T'. Since V is incoherent,
by (12.2.0.2) we know that 0Eisr(g, ¢) # 0 only if Diff (7', V) = {v} is a singleton, and in this case
v is necessarily nonsplit in F' (cf. [KR14, Lemma 9.1]). Thus

(12.3.0.4) OEist(g,¢) # 0= Diff(T, V) = {v}, OEisr(g,¢) = OEist (g, ¢).

We say ¢, € .7 (V) is nonsingular if its support lies in {x € VI : det T'(x) # 0}. By [Liullb,
Proposition 2.1], we have

(12.3.0.5) ¢ is nonsingular at two finite places = 9Eisp(g, ¢) = 0 for any singular 7.

12.4. Classical incoherent Eisenstein series associated to the Shimura datum. Assume
that we are in the situation in §11.1. Let V be the incoherent hermitian space obtained from V so
that V has signature (n,0)sce and V, =V, for all finite places V.

The hermitian symmetric domain for G,, = U(W) is the hermitian upper half space

H,, = {z € Mat,,(Fw) : % (z—"2z) > 0}
={z=x+1y: x € Herm,(Fx), y € Herm,(Fs)>0},
where Fiy = F ®@g R = C®. Define the classical incoherent Eisenstein series to be
B(z,5,¢) = Xoo(det(a)) ™ det(y) ™2 - E(gz,5,¢), gz = n(x)m(a) € Gn(A),

where a € GL,(F) such that y = a'a. Notice that E(z, s, ®) does not depend on the choice of .
We write the central derivatives as

OEis(z, ) = E'(z,0,¢), 0Eisr(z,¢) = Ep(z,0,¢), OEisry(z,¢) = E7,(z,0,¢).
80



Then we have a Fourier expansion
(12.4.0.6) OEis(z,o) = Y OFisp(z,9)
TeHerm,, (F)

By (12.3.0.4) we know that
(12.4.0.7) OEisr(z,¢) # 0 = Diff(T,V) = {v}, OEisr(z, ) = 0Eis7,(z, ¢).
For the fixed open compact subgroup K C é(A ), we will choose

P =K O P €S (V")

such that px € (V%) is K-invariant (where K acts on V via the second factor K¢) and ¢ is
the Gaussian function
Voo (X) = Yoo (i tr T'(x)).

For our fixed choice of Gaussian ¢, we write
E(z,8,0r) = E(z,8,px ® o), OFis(z,px) = OEis(z, ok ® ¢¥oo)

and so on for short. When 7" > 0 is totally positive definite, by [Liulla, Proposition 4.5 (2)] the
archimedean Whittaker function is

WT,OO(Za 0, (Poo) = Coo - qu qT = Yoo (tr<TZ))
for some constant ¢, independent of 7'. It follows from (12.2.0.3) that we have a factorization

(12408) aEiST,’U (27 SOK) = Cxo * leﬂ,v(la 07 SOK,’U) : H WT,U/(L 07 SOK,U’) : qT'

v/ #£v,v'foo
13. THE SEMI-GLOBAL IDENTITY AT INERT PRIMES

In this section we assume that we are in the situation of §11.2 (hyperspecial level) or §11.3
(almost self-dual level). We fix the level K as above and write M = M for short.

13.1. p-adic uniformization of the supersingular locus of M. Let M be the completion
of the base change ./\/loEy along the supersingular locus M3’ of its special fiber My, . Here E,
is the completion of F at v and k, is its residue field. Assume p > 2. Then we have a p-adic
uniformization theorem ([RZ96], [Chol8, Theorem 4.3|, see also the proof of [RSZ20, Theorem
8.15]),

(13.1.0.9) Mss = G(Q\IV' x G(Ah)/K?].

Here G’ = 29 XGom G'Q is the group associated to a F/Fy-hermitian space V' obtained from V by
changing the signature at ¢¢ from (n—1,1) to (n,0) and the invariant at vg from +1 (resp. —1) to
—1 (resp. +1) (i.e., V;, is a non-split (resp. split) Fy,/Foy,-hermitian space) in the hyperspecial
case (resp. the almost self-dual case). The relevant Rapoport—Zink space N’ associated to G s
given by

N' = (Z%Qp) /K z0,) x Noy, x [] UV)(Fo)/Ka.,

v#£vo
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where the product is over places v # vy of Fy over p, and N is isomorphic to N, Fug/Fo,ug . the
Rapoport-Zink space defined in §2.1 in the hyperspecial case’, or isomorphic to A } /B the

wQ 00
Rapoport—Zink space defined in §10.1 in the almost self-dual case.

13.2. The hermitian lattice V(Ag, A). For a locally noetherian Of (,)-scheme S and a point
(Ao, Lo, Aoy A, 1, A\, iP) € M(S), define the space of special homomorphisms to be

V(AQ, A) = HOmOF (Ao, A) & Z(p),

a free Op,(,) = OF ® Zy-module of finite rank. Then V(Ag, A) carries a Of,(,)-valued hermitian
form: for z,y € V(Ap, A), the pairing (z,y) € O,y is given by

x A v At
(A() S AS AY y—> AE)/ 0—) Ao) S EndoF(A(]) & Z(p) = LO(OF,(p)) ~ OF,(p)'

Notice that Ay ! makes sense as the polarization \g is coprime-to-p by (M6).
Let m > 1. Given an m-tuple x = [z1,..., 2] € V(Ag, A)™, define its fundamental matriz to
be
T(x) = (i, zj) 1<ij<m € Hermy (Op,p)),

an m x m hermitian matrix over Op, ().

13.3. Semi-global Kudla—Rapoport cycles Z(T, ¢x). We say a Schwartz function i € . (V?)
is vo-admissible if it is K-invariant and ¢, = 1(5,)m for all v above p such that v is nonsplit in
F. First we consider a special vg-admissible Schwartz function of the form

(13.3.0.10) ok = (pi)) € S(VE), @i=1lq, i=1,...,m,

where ; C V; is a K-invariant open compact subset such that €2;, = A, for all v above p such

that v is nonsplit in F'. Given such a special Schwartz function ¢ and T' € Herm,, (OF,(p)), define

a semi-global Kudla—Rapoport cycle Z(T, k) over M as follows. For a locally noetherian O E,(v)"

scheme S, define Z(T', ¢k )(S) to be the groupoid of tuples (Ao, to, Ao, 4, ¢, A, 7P, 7,0, %) where

(1) (Ao, 0, Ao, A1, A, 7P, 7,0) € M(S),

(2) x=[x1,...,2m]| € V(Ag, A)™ with fundamental matrix T'(x) =T

(3) nP(x4) € (QEp)) C (Vgep))m. Here x, € Homp(VP(Ag), VP(A))™ is the element induced by x.

(4) nu(x«) € (Qiw) C Vi for all §, € 7,0 (cf. (M5)). Here x, € Homo,. (Ao[w™], A[@w™])" @0,
F is the element induced by x.

The functor S +— Z(T, ¢k )(S) is represented by a (possibly empty) Deligne-Mumford stack which is

finite and unramified over M ([KR14, Proposition 2.9]), and thus defines a cycle Z(T, ) € Z*(M).

For a general vp-admissible Schwartz function px € . (VTJP), by extending C-linearly we obtain a
cycle Z(T, i) € Z*(M)c.

SWe use the convention (1,n — 1) for the signature of Rapoport—Zink spaces while the convention (n — 1,1) for
Shimura varieties; each of these two conventions is more preferable in its respective setting. Strictly speaking, [RSZ20,
Theorem 8.15] assumes that vg is unramified over p. This assumption can be dropped (in the hyperspecial case) due
to the Eisenstein condition in (M8). In fact, under the assumption (H6), [Mih, Definition 2.8 (ii)] specializes to the
Eisenstein condition in (M8) for signature (1,7 — 1), so Mihatsch’s theorem [Mih, Theorem 3.1] is still applicable
even when vy is ramified over p.
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13.4. Variants of semi-global Kudla—Rapoport cycles Zb(T, ¢ ) at almost self-dual level.
Assume that we are in the situation of §13.3 and A,, is almost self-dual. We will define a variant
ZI’(T , k) of the semi-global Kudla—Rapoport cycle. To do so, consider a diagram of Shimura
varieties

(13.4.0.11) Shyen gt
>
ShK ShKﬁ?

where the level at vg is modified as in Remark 10.2.1.

More precisely, consider a F'/Fy-hermitian space of dimension n + 1,
V=V e (x),
where ug = (zg, z¢) is totally positive, has valuation 1 at vy and valuation 0 for all places v # vy of
Fy above p. We take the level K* C G*(Ay) of the form as in §11.2 such that
(1) K, g,vo is the stabilizer of a self-dual lattice Ag,o - VZJﬁO,
(2) for v # vy a place of Fy above p, Kg , is the stabilizer of the lattice A, & (o) C Vvﬁ,
(3) K? 2> K*P N G(AY).
Denote by
Shycs = Shya (G, {hge})s  Shinre = Shgpre (G, {hg})
the Shimura varieties defined in §11.1.
Let Mgy be the semi-global model of Shyy over O, (,) as defined in §11.2. Define the semi-global
integral model My of Shyng: over Og () as follows. For a locally noetherian Op, (,)-scheme

S, define M gnxt(S) to be the groupoid of tuples (Ag, o, Ao, 4, ¢, A, ﬁp,ﬁgo,Aﬁ, AONE ﬁﬁ’p,ﬁg’vo,a),

where
(1) (AO) Lo, )‘07 Au L, )‘7 ﬁp) 77’50) S MKP(Kﬁ,:UﬂKP)(S)7
(2) (A07LO7)\07A'17LﬂvAu7ﬁﬁ’paﬁg’vo) € MKﬁ(S)y

(3) a: A x Ay — A' is an isogeny of degree ¢, such that
(a) kerao C (A x Ap)[uo),

(b) a* (M) = X x upAo,
(c¢) The K, gp -orbit of . (n? x nf) coincides with 7P where nh is the A% f—linear map between
lisse AI} f-sheaves given by

ng : HomF<Vp(A0), VP<A0)) — <-%'O>F Xp A%,f? idVP(AO) — XQ-

(d) For all 7, € m,°, the K, g ,-0rbit of a (1, X 10,,) coincides with ﬁg, where 7, is the Fip-linear
map between lisse F-sheaves

10, : Homo . (Ao[w™], Ao[w™]) ®op. Fw = (ro)r OF Fz, 1da,[me~] — 0.
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Then the diagram (13.4.0.11) extends to semi-global integral models

MEnk:
N
Mg M.
The p-adic uniformization theorem (13.1.0.9) of [RZ96] then holds for M gt with N = N, }wo JFo g’
the auxiliary Rapoport—Zink space defined in §10.2.

Analogous to Remark 10.2.2, we obtain a cycle Z°(T, @) on M Knit, Which can serve as an inte-
gral model of the pullback of the generic fiber of Z(T, ¢ ) along 71. More precisely, first assume that
¢k is a special vp-admissible Schwartz function as in (13.3.0.10). For a locally noetherian Og (-
scheme S, define Z°(T, o )(S) to be the groupoid of tuples (Ao, o, Ao, A4, 1, \, 7P, 0, Af BN

nhP, ﬁlﬁ;vo, a, x), where

(1) (A07L07>\07A7 La)‘7ﬁp7ﬁ507Aﬁ7Lu7)\ﬂvﬁmp7ﬁg7voaa) € MKﬂKﬁ(S)a

(2) x = [21,...,2m] € V(Ay, AH)™ with fundamental matrix T(x) = T, and each z; is orthogonal
to al4, (as elements of the hermitian lattice V(Ag, A*) defined in §13.2),

(3) nP((a™1x)4) € (Q(p)) C (Vgcp))m. Notice that by (2) we have a~'x € Homg (Ao, A)™, and

(2

(o 'x), € Homp(VP(Ag), VP(A))™ is the element induced by o 'x.

(4) ny((a~1x),) € (Qz(p)) - (Vgcp))m for all 7, € 7j2°. Here (a™'x), € Homo,, (Ao[w™], A[w™>])™

®0p. Fy is the element induced by o~ !x.

The functor S + Z°(T, ¢x)(S) is represented by a (possibly empty) Deligne-Mumford stack which
is finite and unramified over My and thus defines a cycle 2°(T, o) € Z*(Mgngt). For a
general vp-admissible Schwartz function g € & (V}"), by extending C-linearly we obtain a cycle
2°(T, ¢x) € Z*(Mgnis)c.

13.5. The local arithmetic intersection number Intr,,(px). Assume T € Herm,(OF p))>0
is totally positive definite. Let ¢1,...,t, be the diagonal entries of T'. Let px € Y(V?) be a special
Schwartz function as in (13.3.0.10). We have a natural decomposition (cf. [KR14, (11.2)]),

(13.5.0.12) Z(t, o) NN Z(t,en) = || 2(T0k),
TeHerm, (F)
here N denotes taking fiber product over M, and the indexes T have diagonal entries ¢1,...,t,.

When A, is self-dual, define

(135013) IntTW(SOK) = X(Z(T7 QOK)’ OZ(t1,(,D1) ®L T ®L OZ(tn,cpn)) -log qv,

where ¢, denotes the size of the residue field k, of F,, (’)Z(ti’%) denotes the structure sheaf of the
semi-global Kudla-Rapoport divisor Z(t;, ¢;), ®" denotes the derived tensor product of coherent
sheaves on M, and x denotes the Euler—Poincaré characteristic (an alternating sum of lengths of
Op,(v)-modules). Notice that the derived tensor product Oz, ) @b .. @0 Z(tn,pn) Das the struc-
ture of a complex of Oz, 1)n..NZ(tn,6,)-MOodules, hence has a natural decomposition by support

according to the decomposition (13.5.0.12).
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Similarly, when A,, is almost self-dual, define

1
13.5.0.14 Int =
(185014)  Iirlex) = oo

X(Z2°(T, oK), Ozo(t1,01) Q... " Oz (1, 0)) 108 Qs

where degm is the generic degree of the generically finite morphism 7; (§13.4).
Finally, when A, is self-dual or almost self-dual, define

1
E: R > Ity ().
’ v|vo

Intr, (pr) =

We extend the definition of Int7,,(¢x) to a general vp-admissible px € .7 (V?) by extending
C-linearly.

13.6. The semi-global identity. Recall that we are in the situation of §11.2 (hyperspecial level)
or §11.3 (almost self-dual level).

Theorem 13.6.1. Assume p > 2. Assume pi € S (V}) is vo-admissible (§13.3). Then for any
T e Hermn(OF,(p))>0,

IntT,uo(SOK)qT = cx - OEist,., (2, ¢K),

where cx = % is a nonzero constant independent of T and ¢k, and vol(K) is the volume of K

under a suitable Haar measure on é(Af).

Proof. As explained in [Ter13a, Remark 7.4], this follows routinely from our main Theorem 3.4.1 in
the hyperspecial case. We briefly sketch the argument. The support of Z(7') lies in the supersingular
locus M3® by the same proof of [KR14, Lemma 2.21]. We may then compute the left-hand-
side via p-adic uniformization §13.1 as the product of the arithmetic intersection numbers on the
Rapoport—Zink space N and a theta integral of cp}}g f The arithmetic intersection number is equal
to W}yvo(l,o, ©Kw,) Up to a nonzero constant independent of 7" and ¢k by our main Theorem
3.4.1 and Remark 3.4.2 (as p > 2). Since T is nonsingular, the theta integral of @?7 f evaluates to
[Tos200,0100 W0 (1,0, 9K,0) up to a constant independent of T" and ¢x ([Ich04, §5-6]). The result
then follows from the factorization (12.4.0.8) of the right-hand-side 0Eist .

The identity follows in a similar way from our main Theorem 10.3.1 and Remark 10.3.2 in the
almost self-dual case. In fact, by the same proof of [San17, Theorem 4.13], it remains to check that
for A = (1)" ' @ (@) an almost self-dual lattice and L C V any Op-lattice of full rank n, we have
the following identity

Den(A, A) ~ ODeny (L)
Den((1)»=1, (1)»=1) —  Int(L)

(13.6.1.1)

By Theorem 9.1.2, the left-hand-side of (13.6.1.1) is equal to Den(A?). By (3.6.1.1), Den(A¥) is

equal to the number of self-dual lattices containing Af. Since Af is a vertex lattice of type 2, the

latter is equal to the number of isotropic lines in a 2-dimensional (non-degenerate) kp/k-hermitian

space, which is ¢ + 1 (cf. Remark 10.2.1). By Theorem 10.3.1, the right-hand-side of (13.6.1.1) is

also equal to ¢ + 1, and thus the desired identity (13.6.1.1) is proved. O
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14. GLOBAL INTEGRAL MODELS AND THE GLOBAL IDENTITY

14.1. Global integral models at minimal levels. In this subsection we will define a global
integral model over Of of the Shimura variety Shg introduced in §11.1. We will be slightly more
general than [RSZ20, §5], allowing F'/Fj to be unramified at all finite places.

We consider an Op-lattice A C V and let

K¢ ={g € G(Af) : g(A ®0; Or) = A @0, Or}.
Assume that for any finite place v of Fy (write p its residue characteristic),
(GO) if p = 2, then v is unramified in F'.
(G1) if v is inert in F' and V, is split, then A, C V,, is self-dual. If v is further ramified over p, then
(H6) is satisfied.
(G2) if visinert in F' and V}, is nonsplit, then v is unramified over p and A, C V;, is almost self-dual.
(G3) if v is split in F, then A, C V,, is self-dual.
(G4) if v is ramified in F', then v is unramified over p and A, C V,, is self-dual.

We take K° = Kyo x K¢, where Ko is the unique maximal open compact subgroup of ZQ(A )
as in §11.2.

Notice the assumptions (G0)—(G4) ensure that each finite place vg and the level K¢ ,, belongs
one of the four cases considered in §11.2, §11.3, §11.4, §11.6. Define an integral Mo of Shgo over
Op as follows. For a locally noetherian Opg-scheme S, we consider Mo (.S) to be the groupoid of
tuples (Ao, to, Ao, 4, ¢, A), where
(1) Ap (resp. A) is an abelian scheme over S.

(2) ¢o (resp. ¢) is an action of Op on Ag (resp. A) satisfying the Kottwitz condition of signature
{(1,0)gca} (resp. signature {(re,73)sca})-
(3) Ao (resp. A) is a polarization of Ay (resp. A) whose Rosati involution induces the automorphism

given by the nontrivial Galois automorphism of F/Fj via ¢ (resp. ¢).

We require that the triple (Ao, ¢, Ao) satisfies (M6), and for any finite place v of E (write p its
, satisfies the conditions (M7), (M9), and
moreover (MS) when vy is split in F' and (MR) when v is ramified in . We may and do choose

residue characteristic), the triple (A4,:, \) over SOE,(V

the axillary ideal a C Op, in (M6) to be divisible only by primes split in F'.

Then the functor S — Mo (S) is represented by a Deligne-Mumford stack Mgo = Mo flat
over SpecOg. It has isolated singularities only in ramified characteristics, and we may further
obtain a regular model by blowing up (the Krdamer model) which we still denote by M. For each
finite place v of E, the base change Mo 0, o 18 canonically isomorphic to the semi-global integral

models defined in §11.2, §11.3, §11.4, §11.6.

14.2. Global integral models at Drinfeld levels. With the same set-up as §14.1, but now we
allow Drinfeld levels at split primes. Let m = (m,) be a collection of integers m, > 0 indexed by
finite places v of Fy. Further assume

(G5) if my, > 0, then v satisfies (S), and each place v of E above v satisfies (D).
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We take K& C K¢ such that (Kg&), = (Kg&), if m, =0 and (K2&), = (K&);" to be the principal
congruence subgroup mod wy* if m, > 0. Write K™ = Kyo x K. Define Mgm to be the
normalization of Mo in Shgm (G, ha)-

Then Mgm is a Deligne-Mumford stack finite flat over M go. Moreover for each finite place
v of F, the base change M Km0 () 18 canonically isomorphic to the semi-global integral models
defined in §11.2, §11.3, §11.4, §11.5, §11.6. Thus Mgm is smooth at places over vy in (G1), (G3),
semi-stable at places over vy in (G2) when v is unramified over p, and regular at places over vy in
(G4), (Gb5). In particular, assume all places v over vy in (G2) are unramified over p, then Mgm is
regular. When m is sufficiently large, M gm is relatively representable over Mg’g.

14.3. Global Kudla—Rapoport cycles Z(T, ¢r). We continue with the same set-up as §14.2.
From now on write K = K™ and M = Mgm for short. Let o = (¢;) € #(V}') be K-invariant.
Let t1,...,tym € F. Let Z(t;, p;) be the (possibly empty) Kudla-Rapoport cycle on the generic fiber
of M (defined similarly as in §13.3) and let Z(¢;, ;) be its Zariski closure in the global integral
model M. Then we have a decomposition into the global Kudla—Rapoport cycles Z(T, k) over
M (cf. [KR14, (11.2)]),

Z(t17(pl)mﬁz(tm7¢m): |_| Z(T,(,OK),
TeHerm, (F)
here N denotes taking fiber product over M, and the indexes T have diagonal entries t1,...,tn,.

14.4. The arithmetic intersection number Inty(¢x). For nonsingular 7' € Herm,, (F’), define
Intr(vr) = ZIDtT,v(SOK)
v

to be the sum over all finite places v of F' of local arithmetic intersection numbers defined as in
§13.5. By the same proof of [KR14, Lemma 2.21], this sum is nonzero only if Diff (7, V) = {v} is a
singleton, and in this case v is necessarily nonsplit in F'. Hence

(14.4.0.2) Intr(¢k) # 0 = Diff (T, V) = {v} and Intr(px) = Int7r,(pK).

14.5. The global Kudla—Rapoport conjecture for nonsingular Fourier coefficients. As-
sume that we are in the situation of §14.2. We say ¢ € Y(V’}‘) is inert-admissible if it is
v-admissible at all v inert in F' (§13.3). When ¢k is inert-admissible, the base change of the
global Kudla—Rapoport cycle Z(T, px) to Spec O E,(v) @bove an inert prime agrees with the semi-
global Kudla-Rapoport cycle defined in §13.3. We say a nonsingular T' € Herm,,(F) is inert if
Diff (T, V) = {v} where v is inert in F' and not above 2.

Theorem 14.5.1. Assume ¢ € S (V}) is inert-admissible. Let T € Herm,,(F') be inert. Then
Intr(¢x)q’ = cx - OBist(z,¢K),
where cg = % as in Theorem 13.6.1.

Proof. Since T is inert, we know that 7" > 0, and moreover by (14.4.0.2) and (12.4.0.7) both sides

are contributed non-trivially only by the term at Diff(7,V) = {v}. Since px is inert-admissible,
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both sides are zero unless 7' € Herm,, (O ) (p the residue characteristic of v). So we can apply
Theorem 13.6.1 to obtain IntTVU(goK)qT = ck - OEist (2, pK). O

Corollary 14.5.2. Kudla—Rapoport’s global conjecture [KR14, Conjecture 11.10] holds.

Proof. We take Fy = Q and K = K°. We also take the axillary ideal a to be trivial (see (M6)).
Then the global integral model Mo agrees with the moduli stack MY in [KR14, Proposition
2.12]. The test function ¢ in [KR14] satisfies px = Liyn and @ is the Gaussian function, so ¢
is inert-admissible. The assumption Diffo(7") = {p} with p > 2 in [KR14, Conjecture 11.10] ensures
that T is inert. The result then follows from Theorem 14.5.1. O

15. THE ARITHMETIC SIEGEL—WEIL FORMULA

15.1. Complex uniformization. Assume we are in the situation of §11.1. Under the decom-
position (11.2.0.1), we may identify the the G(R)-conjugacy class {hg} as the product {hze} x
[Iscaihc,s}- Notice {hzo} is a singleton as ZQis a torus, and {hg 4} is also a singleton for ¢ # ¢
as hg ¢ is the trivial cocharacter. For ¢ = ¢ the cocharacter is given by hg 4,(2) = diag{1,—1, 2/z},
and {hg g} is the hermitian symmetric domain

Dp-1=2Un—-1,1)/(Un—1) x U(1)).
We may identify D,,_1 C P(V,)(C) as the open subset of negative C-lines in Vp,, and G(R) acts
on D, via its quotient PU(Vj,)(R). We may also identity it with the open (n — 1)-ball
Dp1 —{z¢€ crt. lz| <1}, [z1,..-y2n0) —> (21/2n, -y Zn—1/%n),
under the standard basis of Vj,. In this way we obtain a complex uniformization (via ¢y),

(15.1.0.1) Shy (C) = G(Q\[Dy_1 x G(Af)/K].

15.2. Green currents. Write D = D,,_; for short. Let x € Vj, be a nonzero vector. For any
z € D, we let * = x, + x,1 be the orthogonal decomposition with respect to z (i.e., z, € z and
x,1 L z). Let R(z,2) = —(x;,x;). Define

Dx)={z€D:zLlz}={z€D: R(zx,z) =0}.

Then D(z) is nonempty if and only if (z,x) > 0, in which case D(x) is an analytic divisor on D.
Define Kudla’s Green function to be

g(z,z) = —Ei(—27R(x, 2)),

where Ei(u) = — [~ eTutdt is the exponential integral. Then g(x, —) is a smooth function on D\ D(x)
with a logarithmic singularity along D(z). By [Liulla, Proposition 4.9], it satisfies the (1, 1)-current
equation for D(x),

dd®[g(z)] + dp(z) = [w(@)],

where w(z, —) = 2" @®) oy (x, —), and prm(—, —) € (S (Vg,) ® AVLD))V Vo) ®) is the Kudla-

Millson Schwartz form ([KM86]). Here we recall d = 0 + 9, d° = (0 — 0) and dd® = —5%00.
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More generally, let x = (x1,...,2m,) € Vi, such that its fundamental matrix T(x) = ((xi,x))1<ij<m
is nonsingular. Define

D(x) =D(z1) N---ND(xm),

which is nonempty if and only if 7'(x) > 0. Define Kudla’s Green current by taking star product

9(x) = [g(a1)] * - x [g(zm)].

It satisfies the (m, m)-current equation for D(x),
dd®(g(x)) + dp(x) = [w(@1) A+ Aw(wm)].

Here we recall that

[9(z)] * [g(y)] = [9(x)] A dp(y) + [w(@)] A lg(y)]-

15.3. The local arithmetic Siegel-Weil formula at archimedean places. Let T € Herm,,(F)
be nonsingular. Let px € (V') be K-invariant. Let Z(T, k) be the (possibly empty) Kudla-
Rapoport cycle on the generic fiber Shi. Then

Z(T7 ‘PK)«C) = Z Z @K(g_l ) 'Z(ng)K7

x€GQ\V™(F) Ged G(A
oLy ) GECK(AN\G(Af) /K

where we define the cycle on Shg (C) via the complex uniformization (15.1.0.1),

Z(x,9)k = Gx(Q\[D(x) x Gx(Af)gK/K],

and Gy C G is the stabilizer of x. Define a Green current for Z(T, ¢ )(C) by

9060 Tk 2,9) = > ¢ox(G7'%) g(x-a,2), (2,§) €D xG(Ay),
xG(V’)”(F)
T(x)=T

where a € GL(Vy,) = GL,(C) and yg, = a'a. Define the archimedean arithmetic intersection
number (depending on the parameter y,,) to be

1
Intr g, (Yoo, i) = 5 /S ) (C)g(yqsmT, K ).
K

Replacing the choice of ¢ by another ¢ € ® (§11.1) gives rise to a Shimura variety Shf( conjugate
to Shy, associated to a hermitian space V¢ whose signature at ¢g, ¢ are swapped compared to V.
Thus we can define in the same way the archimedean intersection number for any ¢ € ®,

1
(15.3.0.2) Int7 (Yo, Pr) = 2/ 9(ys, T, 0K ).
Sh% (C)

Theorem 15.3.1. Assume pi € ' (V}) is K-invariant. Let T € Hermy(F) be nonsingular and

¢ € ®. Then
Intr 4(y, i )q" = cx - OFist4(z, oK),
where cg = % as in Theorem 13.6.1.
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Proof. By the main archimedean result of [Liulla, Proposition 4.5, Theorem 4.17] (the archimedean
analogue of our main Theorem 3.4.1) and the standard unfolding argument, we can express the
integral (15.3.0.2) as a product involving the derivative quﬂ ¢(gz, 0, 0r)q" and the product of values
[Tz Wr,w(92: 0, 9k) from the Siegel-Weil formula, up to a nonzero constant independent of 7.
The result then follows from the factorization (12.2.0.3) of Fourier coefficients and comparing the
constant with that of Theorem 13.6.1. See the proof of [Liulla, Theorem 4.20] and the proof in
the orthogonal case [BY21, Theorem 7.1] for details. When V is anisotropic (e.g., when Fy # Q),
the result also follows from [GS19, (1.19)] for r = p+ 1 = n in the notation there. O

15.4. Arithmetic degrees of Kudla—Rapoport cycles. Let us come back to the situation of
§14.2. Let T' € Herm,(F) be nonsingular. Let ox = (¢;) € (V}) be K-invariant. Define the
arithmetic degree (depending on the parameter y = (y¢)sca)

(15.4.0.1) degp(y, o) = Intr(ox) + Y Ity (ye, ¢x)
ped

to be the sum of all nonarchimedean and archimedean intersection numbers. Define the generating

series of arithmetic degrees of Kudla—Rapoport cycles to be

deg(z,0x) == > degrly,ox)q’-
TeHermp (F)
det T#0

It is related to the usual arithmetic degree on arithmetic Chow groups as we now explain.
For nonzero ti,...,t, € F, we have classes in the Gillet-Soulé arithmetic Chow group (with C-
coefficients) of the regular Deligne-Mumford stack Mg ([GS90, Gil09)),

~

~1
1
We have an arithmetic intersection product on n copies of Chg(Mg),
—~1 1 —~n
< sttt >GS : Chc(MK) X+ X Ch(c(MK) — Ch(c(MK),
and when M is proper over O, a degree map on the arithmetic Chow group of O-cycles,
deg : Che(Mg) — C.
We may compose these two maps and obtain a decomposition

deg<§(ya tl’ (pl)a tee ag(ya tna Qpn»GS = Z degT(Ya SDK)a
T

where the matrices T' have diagonal entries t1,...,¢,. The terms corresponding to nonsingular 7'
agree with (15.4.0.1), at least in the hyperspecial case at inert primes.

15.5. The arithmetic Siegel-Weil formula when F/Fj is unramified. Assume that we are
in the situation of §14.2.

Theorem 15.5.1 (Arithmetic Siegel-Weil formula). Assume that F'/Fy is unramified at all finite
places and split at all places above 2. Assume that o € Y(V?) is inert-admissible (§14.5) and
nonsingular (§12.8) at two places split in F. Then

deg(z, i) = cx - OFis(z, px),
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1H"™

where cg = % as in Theorem 13.6.1.

Remark 15.5.2. The assumption that F'/Fj is unramified at all finite places implies that Fy # Q
and hence the Shimura variety Shx is projective and the global integral model M g is proper over
Opg. Moreover, this assumption forces that the hermitian space V to be nonsplit at some inert

place, and thus it is necessary to allow almost self-dual level at some inert place (as we did in

(G2)).

Remark 15.5.3. The Schwartz function ¢k satisfying the assumptions in Theorem 15.5.1 exists
for a suitable choice of K since we allow arbitrary Drinfeld levels at split places.

Proof. Since g is nonsingular at two places, by (12.3.0.5) we know that only nonsingular T
contributes non-trivially to the sum (12.4.0.6). For a nonsingular T', by (12.4.0.7) we know that
Diff (T, V) = {v} for v nonsplit in F. By the assumption on F'/Fj, we know that either T is inert
or v is archimedean. The result then follows from Theorem 14.5.1 and Theorem 15.3.1 depending

on T is inert or v is archimedean. OJ
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